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Abstract

Heart rate estimation from photoplethysmography (PPG) signals generated by1

wearable devices such as smartwatches and fitness trackers has significant im-2

plications for the health and well-being of individuals. Neural models designed3

to estimate heart rate are largely deployed on wearable devices and thus must4

adhere to strict memory and latency constraints. In this workshop submission,5

we explore and characterize how large pre-trained PPG models may be distilled6

to smaller models appropriate for real-time inference on the edge. We evaluate7

four distillation strategies: hard distillation, soft distillation, decoupled knowl-8

edge distillation (DKD), and feature distillation through comprehensive sweeps of9

teacher and student model capacities. We present a characterization of the resulting10

scaling laws describing the relationship between model size and performance. This11

early investigation lays the groundwork for practical and predictable methods for12

building edge-deployable models for physiological sensing.13

1 Introduction14

Wearable devices such as smartwatches and fitness trackers have enabled the collection of in-situ15

datasets of sensor signals with the potential to support individuals in tracking and monitoring16

their health and well-being. Amongst other signals, photoplethysmography (PPG), a method for17

optical estimation of blood volume pulse (BVP), has shown utility in allowing individuals to gauge18

their cardiovascular health [14, 9, 6]. The growing ubiquity of wearable devices has led to the19

accumulation of large PPG datasets [5, 10, 7] and the subsequent training of large neural models useful20

in estimating cardiac function (e.g., heart rate and heart rate variability among other cardiovascular21

conditions) [6, 16, 17, 12, 9]. These developments represent significant progress towards end-user22

applications, such as providing real-time feedback in exercise contexts (e.g., heart rate response to23

exercise intensity) as well as passive screening of diseases (e.g., hypertension).24

Despite the success of these large models across a variety of sensor data tasks, their significant25

computational requirements pose a barrier to adoption and limit their utility. While edge models26

(e.g., those running on wearables) better preserve privacy and better support real-time feedback,27

large sensor models may struggle to realize these gains. More work is thus needed to develop and28

characterize methods for enabling large physiological sensing models to effectively scale to the edge.29

Prior work has established the utility of knowledge distillation [4, 2], where efficient student models30

learn from larger, high capacity, pretrained teacher models. For example, DistilBERT [13] found31

success in optimizing language models for edge deployments while retaining performance. More32

similar to wearable physiological sensing, prior work has found success in distilling audio [8]33

and accelerometer models [15] useful for human activity recognition. However, while knowledge34

distillation has been established as a powerful tool in developing compute-efficient models, there35

has been little exploration into the characterization of these methods, making it difficult to predict36
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the performance of a distilled model. Only recently have scaling laws that govern the distillation of37

language models been established to predictably compute distilled language model performance [1].38

Building off these ideas, this workshop submission takes a first step towards establishing predictable39

distillation performance in the domain of physiological sensing. Specifically, for the task of PPG heart40

rate estimation, we evaluate four distillation strategies across different student and teacher model41

capacities and characterize the effect of these variables on distilled model size. We further compare42

the interplay between model computational requirements (i.e., memory consumption and inference43

time) and distilled performance. We find that distilled models improve upon models trained from44

scratch, that the decoupled knowledge distillation strategy outperforms other evaluated strategies,45

and the performance of distilled models follow a characterizable exponential scaling curve.46

2 Methods47

Distillation Experiment Setup. We characterize the distillation scaling behavior of physiological48

sensing models across a number of teacher and student model sizes. Specifically, we employ the49

variant of a 1D-ResNet backbone [3] used by [5] to classify the instantaneous heart rate given a PPG50

signal window. To vary model capacity, we sweep across the number of residual blocks (i.e., resulting51

in an approximately exponential sweep of model parameters) for student and teacher models, as52

illustrated in Table 1. We further explore the following four distillation strategies:53

• Hard Distillation: The teacher model’s predictions (i.e., the final argmax output) are used as labels54

for training the student model, helping it mimic the discrete decision boundaries of the teacher.55

• Soft Distillation: The student model is trained on the output probability distributions of the teacher56

model, encoding richer information about inter-class relationships and uncertainty [4].57

• Decoupled Knowledge Distillation (DKD): The teacher model’s outputs are separated into target58

class and non-target class distillation components in the student model’s loss to introduce flexibility59

in weighting the significance of true label and incorrect label probabilities [18].60

• Feature Distillation: Moving beyond operating on model outputs, in feature distillation, the student61

model is trained to match the learned feature maps of the teacher model, aligning its intermediate62

representation space [11].63

Heart rate detection performance is evaluated via Mean Absolute Error (MAE) in beats per minute64

(BPM). The performance of all distilled student models are evaluated against a corresponding model65

of the same size trained from scratch rather than distilled from a teacher model.66

Table 1: Experimental variables for characterizing the process of distilling PPG models.

Name Description Values

Strategy Procedure
for distillation

Hard Distillation, Soft Distillation,
Decoupled Knowledge Distillation, Feature Distillation

Teacher size
# of residual blocks
(# of parameters)
in teacher model

2 (33,724), 3 (44,156), 4 (54,588), 5 (97,852),
6 (139,196), 8 (221,884), 10 (534,460), 12 (863,676)

Student size
# of residual blocks
(# of parameters)
in student model

1 (23,292), 2 (33,724), 3 (44,156), 4 (54,588),
5 (97,852), 6 (139,196), 8 (221,884), 10 (534,460)

Datasets. For all experiments, we leverage 3 free-living PPG datasets containing a total of 107 hours67

of PPG sensor signals: WildPPG [5], PPG-DaLiA [10], GalaxyPPG [7]. Following prior work, we68

use only the green channel of the PPG sensor, resampled to 25 Hz and segmented into 8-second69

windows with 2-second strides [5, 10]. Each dataset includes heart rate ground truth (in beats per70

minute) derived via an electrocardiogram (ECG) signal. We generate subject-independent train-test71

splits by taking data from 80% of the subjects for training, and data from 20% of the subjects for72

evaluation. We conduct 2-fold cross validation across all experiments.73

2



Fro
m

sc
ra

tch 34
K

44
K

55
K

98
K

13
9K

22
2K

53
4K

86
4K

Teacher size (Parameters)

23K
34K
44K
55K

98K
139K

222K

534K

St
ud

en
t s

ize
 (P

ar
am

et
er

s)

11.3 10.7 10.5 10.9 10.2 10.7 10.2 10.0 10.4

8.0 8.0 7.5 7.1 7.4 7.9 7.7 7.7
7.7 7.7 7.5 7.7 7.2 7.4 7.2
7.5 7.2 7.5 7.6 7.2 7.1

6.9 7.0 7.0 6.9 7.0

6.8 6.9 6.7 6.8

7.1 6.8 6.7

6.9 6.3

Model Performance Across
Different Model Sizes

7

8

9

10

11

M
od

el
 P

er
fo

rm
an

ce
 (M

AE
)

Figure 1: Model performance across different
teacher and student model sizes. Color and size
both encode the same MAE metric. The “From
scratch” column denotes baseline models trained
from scratch rather than with distillation.
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Figure 2: Scaling law for modeling distilled
model performance across different teacher and
student sizes. Note that experimental conditions
with smaller teacher sizes yielded too few data
points to effectively fit a curve to.

3 Results74

Distilled models outperform those trained from scratch. In Figure 1, we show the results of our75

distillation experiment using the soft distillation strategy. The left-most column, “From scratch”,76

denotes baseline models of a given size trained from scratch rather than distillation. We find that77

this baseline is consistent with prior work (e.g., the target model size with 8-blocks yields a similar78

MAE to the result using the same model reported in [5]). In general, we observe that smaller models79

exhibit worse MAE performance, and that distillation always improves performance over training80

from scratch. We note that larger teacher models generally exhibit improved performance, and81

hypothesize that too-large models may overfit easily, resulting in degradation. These results support82

that significant gains can be obtained in terms of performance from model distillation.83

Table 2: Model performance (MAE) across different distillation strategies and student model sizes.
Teacher model size is fixed at 12 blocks.

Distillation
Strategy

Student Model Size (Blocks)
1 2 3 4 5 6 8 10

Hard 11.734 10.418 9.256 7.478 7.208 6.983 6.830 6.493
Soft 10.380 7.703 7.200 7.111 7.042 6.801 6.679 6.327
DKD 8.899 6.772 6.689 6.849 6.522 6.291 5.959 5.759
Feature 9.397 7.200 6.952 6.914 6.872 6.800 6.659 6.409

DKD outperforms other strategies. As shown in Table 2, we find that DKD performs the best of the84

four strategies evaluated across all model size configurations, including across different teacher sizes85

not shown in the table. DKD is followed in performance by feature distillation, then soft distillation,86

and finally hard distillation. Out of the logit-based strategies, hard distillation performed the worst87

due to the lack of information encoded in its discrete labels, and soft distillation performed marginally88

better. DKD, on the other hand, poses the clearest advantage in being able to flexibly weigh true89

label and incorrect label probabilities, particularly in our task framing where the classification bins90

are semantically ordinal. Our experiments used α = 1 and β = 8 such that that non-target class91

distillation (NCKD) probabilities are weighed 8 times more than target class distillation (TCKD)92

probabilities. Our results indicate that while our small models may not have the capacity to learn a93

rich representation when trained from scratch, regressing to richer labels (via distillation), than the94

original BPM ground truths, allows the student models to successfully learn the internal representation95

of the larger teacher models, leading to improved performance.96
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We thus show that our student models are small enough to learn a strong internal representation97

independently given a rich enough label.98

Varying model size exhibits predictable scaling. In Figure 2, we show a preliminary experiment99

regarding characterizing distillation in the physiological sensing domain. Specifically, following prior100

work on the scaling laws for language model distillation [1], we derive scaling curves that map the101

size of student models to their distilled performance. For varying teacher sizes, we find the following102

scaling law equations:103

• Teacher size = 8 blocks (221k params): y = 11.704 ∗ e−1.338x + 7.121104

• Teacher size = 10 blocks (534k params): y = 9.690 ∗ e−1.378x + 6.888105

• Teacher size = 12 blocks (863k params): y = 11.607 ∗ e−1.172x + 6.755106

We observe that performance seemingly begins to saturate at student models of size 6 residual blocks107

(139k params). We also note that although this figure shows fit curves for results obtained using the108

soft distillation strategy, the DKD and feature distillation strategies also adhered to these curves while109

the hard distillation strategy produced a much sharper saturation at an earlier point (i.e., at a smaller110

model size).111

Table 3: System compute benchmarking for distilled model inference. Inference time is reported in
seconds (mean ± standard deviation) and peak GPU memory is reported in megabytes.

Time & Memory
Metrics

Model Size (Blocks)
1 2 3 4 5 6 8 10 12

Inference Time (s) 0.512±0.025 0.938±0.028 1.340±0.0316 1.787±0.144 2.177±0.192 2.622±0.167 3.357±0.147 4.419±0.115 4.758±0.130
Memory Usage (MB) 9.468 9.646 9.824 10.002 10.623 11.275 12.568 18.440 23.483

Distillation can lead to large gains in memory consumption and inference time. Table 3 shows112

system benchmarking of these models on an Nvidia RTX 2080-Ti GPU. Although this is not113

representative of our final application scenario (e.g., microprocessors in wearable devices), we114

include these results to show the relative improvement made possible by distillation. For example,115

distilling a 12-block model (i.e., the largest model we considered) to a 1-block model results in a116

nearly 90% decrease in inference time and 60% decrease in memory usage with only a 30% reduction117

in MAE performance.118

4 Discussion and Conclusion119

Dataset generalization. In this workshop submission, we presented an initial investigation into the120

distillation of heart rate estimation models. Our evaluation used a naive cross-validation scheme with121

shuffling samples from three datasets. We are interested in further studying the generalizability of122

these distilled models across datasets (i.e., by training on one dataset and testing on another).123

Model architecture. Our preliminary investigation utilized a straightforward ResNet backbone124

model trained with supervision as the teacher model. We are interested in continuing our experiments125

using larger models trained with more recent contrastive approaches (e.g., we note that the model126

in [12] will be open source soon) to investigate how the potentially richer features learned in a127

self-supervised fashion might be distilled into smaller models.128

Novel distillation strategies. We leveraged three approaches to distillation already documented in129

the literature to provide baseline characterizations of these heart rate estimation models. Leveraging130

insights from these experiments, and through participation and discussion in the NeurIPS TS4H131

workshop, we are excited to develop new methods of distillation that are particularly well-suited for132

this class of tasks.133

This paper provides an initial demonstration of how knowledge distillation can be used to adapt134

large heart rate estimation models for resource-constrained wearable devices. Our preliminary135

evaluation shows that distilled models consistently outperform those trained from scratch, with136

DKD outperforming all other evaluated strategies. We also characterized a scaling law that confirms137

distillation enables substantial reductions in memory usage and inference time for a modest trade-138

off in performance. These findings provide an encouraging path forward for deploying powerful,139

real-time health monitoring models on the edge.140
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