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Abstract

Heart rate estimation from photoplethysmography (PPG) signals generated by
wearable devices such as smartwatches and fitness trackers has significant im-
plications for the health and well-being of individuals. Neural models designed
to estimate heart rate are largely deployed on wearable devices and thus must
adhere to strict memory and latency constraints. In this workshop submission,
we explore and characterize how large pre-trained PPG models may be distilled
to smaller models appropriate for real-time inference on the edge. We evaluate
four distillation strategies: hard distillation, soft distillation, decoupled know!l-
edge distillation (DKD), and feature distillation through comprehensive sweeps of
teacher and student model capacities. We present a characterization of the resulting
scaling laws describing the relationship between model size and performance. This
early investigation lays the groundwork for practical and predictable methods for
building edge-deployable models for physiological sensing.

1 Introduction

Wearable devices such as smartwatches and fitness trackers have enabled the collection of in-situ
datasets of sensor signals with the potential to support individuals in tracking and monitoring
their health and well-being. Amongst other signals, photoplethysmography (PPG), a method for
optical estimation of blood volume pulse (BVP), has shown utility in allowing individuals to gauge
their cardiovascular health [14] 9, [6]. The growing ubiquity of wearable devices has led to the
accumulation of large PPG datasets [5,[10L[7] and the subsequent training of large neural models useful
in estimating cardiac function (e.g., heart rate and heart rate variability among other cardiovascular
conditions) 6, 16} 117, 12,19]. These developments represent significant progress towards end-user
applications, such as providing real-time feedback in exercise contexts (e.g., heart rate response to
exercise intensity) as well as passive screening of diseases (e.g., hypertension).

Despite the success of these large models across a variety of sensor data tasks, their significant
computational requirements pose a barrier to adoption and limit their utility. While edge models
(e.g., those running on wearables) better preserve privacy and better support real-time feedback,
large sensor models may struggle to realize these gains. More work is thus needed to develop and
characterize methods for enabling large physiological sensing models to effectively scale to the edge.

Prior work has established the utility of knowledge distillation [4} 2], where efficient student models
learn from larger, high capacity, pretrained teacher models. For example, DistilBERT [13]] found
success in optimizing language models for edge deployments while retaining performance. More
similar to wearable physiological sensing, prior work has found success in distilling audio [§]]
and accelerometer models [15] useful for human activity recognition. However, while knowledge
distillation has been established as a powerful tool in developing compute-efficient models, there
has been little exploration into the characterization of these methods, making it difficult to predict
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the performance of a distilled model. Only recently have scaling laws that govern the distillation of
language models been established to predictably compute distilled language model performance [[1].

Building off these ideas, this workshop submission takes a first step towards establishing predictable
distillation performance in the domain of physiological sensing. Specifically, for the task of PPG heart
rate estimation, we evaluate four distillation strategies across different student and teacher model
capacities and characterize the effect of these variables on distilled model size. We further compare
the interplay between model computational requirements (i.e., memory consumption and inference
time) and distilled performance. We find that distilled models improve upon models trained from
scratch, that the decoupled knowledge distillation strategy outperforms other evaluated strategies,
and the performance of distilled models follow a characterizable exponential scaling curve.

2 Methods

Distillation Experiment Setup. We characterize the distillation scaling behavior of physiological
sensing models across a number of teacher and student model sizes. Specifically, we employ the
variant of a 1D-ResNet backbone [3] used by [5] to classify the instantaneous heart rate given a PPG
signal window. To vary model capacity, we sweep across the number of residual blocks (i.e., resulting
in an approximately exponential sweep of model parameters) for student and teacher models, as
illustrated in Table|l} We further explore the following four distillation strategies:

* Hard Distillation: The teacher model’s predictions (i.e., the final argmaz output) are used as labels
for training the student model, helping it mimic the discrete decision boundaries of the teacher.

* Soft Distillation: The student model is trained on the output probability distributions of the teacher
model, encoding richer information about inter-class relationships and uncertainty [4].

* Decoupled Knowledge Distillation (DKD): The teacher model’s outputs are separated into target
class and non-target class distillation components in the student model’s loss to introduce flexibility
in weighting the significance of true label and incorrect label probabilities [[18].

¢ Feature Distillation: Moving beyond operating on model outputs, in feature distillation, the student
model is trained to match the learned feature maps of the teacher model, aligning its intermediate
representation space [LL1]].

Heart rate detection performance is evaluated via Mean Absolute Error (MAE) in beats per minute
(BPM). The performance of all distilled student models are evaluated against a corresponding model
of the same size trained from scratch rather than distilled from a teacher model.

Table 1: Experimental variables for characterizing the process of distilling PPG models.

Name Description Values

Strategy Procedure Hard Distillation, Soft Distillation,
for distillation Decoupled Knowledge Distillation, Feature Distillation
# of residual blocks

2 (33,724), 3 (44,156), 4 (54,588), 5 (97,852),

Teacher size  (# of parameters) " 156 196\ ¢ (271 88410 (534.460). 12 (363.676)

in teacher model

# of residual blocks
Student size  (# of parameters)

in student model

1(23,292), 2 (33,724), 3 (44,156), 4 (54,588),
5(97,852), 6 (139,196), 8 (221,884), 10 (534,460)

Datasets. For all experiments, we leverage 3 free-living PPG datasets containing a total of 107 hours
of PPG sensor signals: WildPPG [5], PPG-DaLiA [10], GalaxyPPG [7]. Following prior work, we
use only the green channel of the PPG sensor, resampled to 25 Hz and segmented into 8-second
windows with 2-second strides [5,[10]. Each dataset includes heart rate ground truth (in beats per
minute) derived via an electrocardiogram (ECG) signal. We generate subject-independent train-test
splits by taking data from 80% of the subjects for training, and data from 20% of the subjects for
evaluation. We conduct 2-fold cross validation across all experiments.
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Model Performance Across Scaling Law across Different Model Sizes
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Figure 1: Model performance across different Figure 2: Scaling law for modeling distilled
teacher and student model sizes. Color and size model performance across different teacher and
both encode the same MAE metric. The “From  student sizes. Note that experimental conditions
scratch” column denotes baseline models trained ~ with smaller teacher sizes yielded too few data
from scratch rather than with distillation. points to effectively fit a curve to.

3 Results

Distilled models outperform those trained from scratch. In Figure[T] we show the results of our
distillation experiment using the soft distillation strategy. The left-most column, “From scratch”,
denotes baseline models of a given size trained from scratch rather than distillation. We find that
this baseline is consistent with prior work (e.g., the target model size with 8-blocks yields a similar
MAE to the result using the same model reported in [5]). In general, we observe that smaller models
exhibit worse MAE performance, and that distillation always improves performance over training
from scratch. We note that larger teacher models generally exhibit improved performance, and
hypothesize that too-large models may overfit easily, resulting in degradation. These results support
that significant gains can be obtained in terms of performance from model distillation.

Table 2: Model performance (MAE) across different distillation strategies and student model sizes.
Teacher model size is fixed at 12 blocks.

Distillation Student Model Size (Blocks)

Strategy 1 2 3 4 5 6 8 10
Hard 11.734 10418 9.256 7.478 7.208 6.983 6.830 6.493
Soft 10.380 7.703 7.200 7.111 7.042 6.801 6.679 6.327
DKD 8.899 6.772 6.689 6.849 6.522 6.291 5959 5.759
Feature 9.397 7200 6952 6914 6872 6.800 6.659 6.409

DKD outperforms other strategies. As shown in Table[2] we find that DKD performs the best of the
four strategies evaluated across all model size configurations, including across different teacher sizes
not shown in the table. DKD is followed in performance by feature distillation, then soft distillation,
and finally hard distillation. Out of the logit-based strategies, hard distillation performed the worst
due to the lack of information encoded in its discrete labels, and soft distillation performed marginally
better. DKD, on the other hand, poses the clearest advantage in being able to flexibly weigh true
label and incorrect label probabilities, particularly in our task framing where the classification bins
are semantically ordinal. Our experiments used & = 1 and 8 = 8 such that that non-target class
distillation (NCKD) probabilities are weighed 8 times more than target class distillation (TCKD)
probabilities. Our results indicate that while our small models may not have the capacity to learn a
rich representation when trained from scratch, regressing to richer labels (via distillation), than the
original BPM ground truths, allows the student models to successfully learn the internal representation
of the larger teacher models, leading to improved performance.



97 We thus show that our student models are small enough to learn a strong internal representation
98 independently given a rich enough label.

99 Varying model size exhibits predictable scaling. In Figure 2| we show a preliminary experiment
100 regarding characterizing distillation in the physiological sensing domain. Specifically, following prior
101 work on the scaling laws for language model distillation [[1]], we derive scaling curves that map the
102 size of student models to their distilled performance. For varying teacher sizes, we find the following
103 scaling law equations:

104 » Teacher size = 8 blocks (221k params): y = 11.704 x e~ 13387 17,121
105 » Teacher size = 10 blocks (534k params): y = 9.690 x e~ 13787 4+ 6.888
106 » Teacher size = 12 blocks (863k params): y = 11.607 x e~ 1172% 4 6.755

107 We observe that performance seemingly begins to saturate at student models of size 6 residual blocks
108 (139k params). We also note that although this figure shows fit curves for results obtained using the
109 soft distillation strategy, the DKD and feature distillation strategies also adhered to these curves while
110 the hard distillation strategy produced a much sharper saturation at an earlier point (i.e., at a smaller
111 model size).

Table 3: System compute benchmarking for distilled model inference. Inference time is reported in
seconds (mean =+ standard deviation) and peak GPU memory is reported in megabytes.

Time & Memory Model Size (Blocks)

Metrics 1 2 3 4 5 6 8 10 12
Inference Time (s) 0.51240.025 0.9384+0.028 1.340+0.0316 1.787+0.144 2.17740.192 2.6224+0.167 3.357£0.147 4.41940.115 4.758+0.130
Memory Usage (MB) 9.468 9.646 9.824 10.002 10.623 11.275 12.568 18.440 23.483

112 Distillation can lead to large gains in memory consumption and inference time. Table [3]shows
113 system benchmarking of these models on an Nvidia RTX 2080-Ti GPU. Although this is not
114 representative of our final application scenario (e.g., microprocessors in wearable devices), we
115 include these results to show the relative improvement made possible by distillation. For example,
116 distilling a 12-block model (i.e., the largest model we considered) to a 1-block model results in a
117 nearly 90% decrease in inference time and 60% decrease in memory usage with only a 30% reduction
118 in MAE performance.

119 4 Discussion and Conclusion

120 Dataset generalization. In this workshop submission, we presented an initial investigation into the
121 distillation of heart rate estimation models. Our evaluation used a naive cross-validation scheme with
122 shuffling samples from three datasets. We are interested in further studying the generalizability of
123 these distilled models across datasets (i.e., by training on one dataset and testing on another).

124 Model architecture. Our preliminary investigation utilized a straightforward ResNet backbone
125 model trained with supervision as the teacher model. We are interested in continuing our experiments
126 using larger models trained with more recent contrastive approaches (e.g., we note that the model
127 in [12]] will be open source soon) to investigate how the potentially richer features learned in a
128 self-supervised fashion might be distilled into smaller models.

129 Novel distillation strategies. We leveraged three approaches to distillation already documented in
130 the literature to provide baseline characterizations of these heart rate estimation models. Leveraging
131 insights from these experiments, and through participation and discussion in the NeurIPS TS4H
132 workshop, we are excited to develop new methods of distillation that are particularly well-suited for
133 this class of tasks.

134 This paper provides an initial demonstration of how knowledge distillation can be used to adapt
135 large heart rate estimation models for resource-constrained wearable devices. Our preliminary
136 evaluation shows that distilled models consistently outperform those trained from scratch, with
137 DKD outperforming all other evaluated strategies. We also characterized a scaling law that confirms
138 distillation enables substantial reductions in memory usage and inference time for a modest trade-
139 off in performance. These findings provide an encouraging path forward for deploying powerful,
140 real-time health monitoring models on the edge.
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