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Abstract

Heart rate estimation from photoplethysmography (PPG) signals generated by wear-
able devices such as smartwatches and fitness trackers has significant implications
for the health and well-being of individuals. Although prior work has demonstrated
deep learning models with strong performance in the heart rate estimation task, in
order to deploy these models on wearable devices, these models must also adhere
to strict memory and latency constraints. In this work, we explore and characterize
how large pre-trained PPG models may be distilled to smaller models appropri-
ate for real-time inference on the edge. We evaluate four distillation strategies
through comprehensive sweeps of teacher and student model capacities: (1) hard
distillation, (2) soft distillation, (3) decoupled knowledge distillation (DKD), and
(4) feature distillation. We present a characterization of the resulting scaling laws
describing the relationship between model size and performance. This early inves-
tigation lays the groundwork for practical and predictable methods for building
edge-deployable models for physiological sensing.

1 Introduction

Wearable devices such as smartwatches and fitness trackers have enabled the collection of in-situ
datasets of sensor signals with the potential to support individuals in tracking and monitoring their
health and well-being. Amongst other signals, photoplethysmography (PPG), a method for optical
estimation of blood volume pulse (BVP), has shown utility in allowing individuals to gauge their
cardiovascular health [11}16]. The growing ubiquity of wearable devices has led to the accumulation
of large PPG datasets [[7,[9,[12]] and the subsequent training of large neural models useful in estimating
cardiac function such as heart rate and heart rate variability [|8, [11} 14,18} |19]. These developments
represent significant progress towards end-user applications, such as providing real-time feedback
in exercise contexts (e.g., heart rate response to exercise intensity) as well as passive screening of
diseases (e.g., hypertension).

Despite the success of these large models across a variety of sensor data tasks, their significant
computational requirements pose a barrier to adoption and limit their utility [|6]. While edge models
such as those running on wearables better preserve privacy and better support real-time feedback,
large sensor models may struggle to realize these gains. More work is thus needed to develop and
characterize methods for enabling large physiological sensing models to effectively scale to the edge.
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Table 1: Experimental variables for characterizing the process of distilling PPG models.

Name Description Values
Strat Procedure Hard Distillation, Soft Distillation,
rategy for distillation Decoupled Knowledge Distillation, Feature Distillation
# of residual blocks

2 (33,724), 3 (44,156), 4 (54,588), 5 (97,852),

Teacher size (¥ of parameters) 135 96\ "¢ (221 884). 10 (534.460). 12 (363.676)

in teacher model

# of residual blocks
Student size  (# of parameters)

in student model

1 (23,292), 2 (33,724), 3 (44,156), 4 (54,588),
5(97,852), 6 (139,196), 8 (221,884), 10 (534,460)

Prior work has established the utility of knowledge distillation [2, 4], where efficient student models
learn from larger, high capacity, pretrained teacher models. For example, DistilBERT [15]] has found
success in optimizing language models for edge deployments while retaining strong performance.
More similar to wearable physiological sensing, prior work has found success in distilling audio [10]
and accelerometer models [17] useful for human activity recognition. However, while knowledge
distillation has been established as a powerful tool in developing compute-efficient models, there
has been little exploration into the characterization of these methods, making it difficult to predict
the performance of a distilled model. Only recently have scaling laws that govern the distillation of
language models been established to predictably compute distilled language model performance [[1].

Building off these ideas, our work takes a first step towards establishing predictable distillation
performance in the domain of physiological sensing. Specifically, for the task of PPG heart rate
estimation, we evaluate four distillation strategies across different student and teacher model capacities
and characterize the effect of these variables on distilled model size. We further compare the interplay
between model computational requirements (i.e., memory consumption and inference time) and
distilled performance. We confirm that distilled models improve upon models trained from scratch,
find that decoupled knowledge distillation outperforms other evaluated strategies, demonstrate that
the performance of distilled models follow a characterization exponential scaling curve, and observe
that these scaling behaviors vary by model architecture.

2 Methods

Distillation Experiment Setup. We characterize the distillation scaling behavior of physiological
sensing models for PPG across a number of teacher and student model sizes. Specifically, we employ
the variant of a 1D-ResNet backbone [3]] used by Meier et al. [7] to classify the instantaneous heart
rate given a PPG signal window. To vary model capacity, we sweep across the number of residual
blocks (i.e., resulting in an approximately exponential sweep of model parameters) for student and
teacher models, as illustrated in Table[T} We further explore the following four distillation strategies:

* Hard Distillation: The teacher model’s predictions (i.e., the final argmaz output) are used as labels
for training the student model, helping it mimic the discrete decision boundaries of the teacher.

* Soft Distillation: The student model is trained on the output probability distributions of the teacher
model, encoding richer information about inter-class relationships and uncertainty [4].

* Decoupled Knowledge Distillation (DKD): The teacher model’s outputs are separated into target
class and non-target class distillation components in the student model’s loss to introduce flexibility
in weighting the significance of true label and incorrect label probabilities [20].

e Feature Distillation: Moving beyond operating on model outputs, in feature distillation, the student
model is trained to match the learned feature maps of the teacher model, aligning their intermediate
representation spaces [[13]].

Heart rate estimation performance is evaluated via Mean Absolute Error (MAE) in beats per minute
(BPM). The performance of all distilled student models are evaluated against a corresponding model
of the same size trained from scratch.

Training Procedure. All models were trained for 300 epochs at a learning rate of 5 * 10~* using a
cross-entropy loss. Following the task formulation given by Meier et al. [7], all models are trained
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Figure 1: DKD Distilled Model Performance Figure 2: DKD Distilled Model Scaling Behav-
Across Different Student / Teacher Capacities. ior. Scaling curves for distilled student model
Color and size both encode MAE metric for in- performance as a function of student and teacher
stantaneous heart-rate prediction. The “From model size. Note that experimental conditions
scratch” column denotes baseline models trained ~ with smaller teacher sizes yielded too few data
from scratch rather than distilled from a teacher.  points to effectively fit a curve.

to predict the instantaneous heart rate via classification by making a decision between 180 classes
corresponding to heart rate values between 30 to 210 BPM.

Datasets. For all experiments, we leverage three free-living PPG datasets containing a total of 107
hours of PPG sensor signals: (1) WildPPG [7], (2) PPG-DaLiA [12], (3) GalaxyPPG [9]. Following
prior work, we use only the green channel of the PPG sensor, resampled to 25 Hz and segmented into
8-second windows with 2-second strides [7, [12]. Each dataset includes heart rate ground truth (i.e., in
BPM) derived via an electrocardiogram (ECG) signal. We generate participant-independent train-test
splits by taking data from 80% of the participants for training, and data from 20% of the participants
for evaluation. We conduct 2-fold cross validation across all experiments.

3 Results

Distilled models outperform those trained from scratch. In Figure|l, we show the results of
our distillation experiment using the DKD strategy. The left-most column, “From scratch”, denotes
baseline models of a given size trained from scratch rather than distillation. We find that this baseline
is consistent with prior work (i.e., the target model size with 8-blocks yields a similar MAE to the
results reported by Meier et al. [7] using the same model). In general, we observe that smaller
models exhibit worse MAE performance, and that distillation always improves performance over
training from scratch. We note that larger teacher models generally exhibit improved performance,
and hypothesize that too-large models may overfit easily, resulting in degradation. These results
support that gains can be obtained in terms of performance from model distillation.

DKD outperforms other strategies. As shown in Table[2] we find that DKD performs the best of the
four strategies evaluated across all model size configurations, including across different teacher sizes
not shown in the table. DKD is followed in performance by feature distillation, then soft distillation,
and finally hard distillation. Out of the logit-based strategies, hard distillation performed the worst
due to the lack of information encoded in its discrete labels, and soft distillation performed marginally
better. DKD, on the other hand, poses the clearest advantage in being able to flexibly weigh true
label and incorrect label probabilities, particularly in our task framing where the classification bins
are semantically ordinal. Through hyperparameter search, we found o = 1, 5 = 8, temperature
T = 2, cross-entropy loss weight CE = 1 to work best. With these parameters, non-target class
distillation (NCKD) probabilities are weighed 8 times more than target class distillation (TCKD)
probabilities. Our results indicate that while our small models may not have the capacity to learn
a rich representation when trained from scratch. Instead, by regressing to richer probability labels
(via distillation) rather than the original BPM ground truth labels, the student models are able to



Table 2: Model performance (MAE) across different distillation strategies and student model sizes.
Teacher model size is fixed at 12 blocks.

Distillation Student Model Size (Blocks)

Strategy 1 2 3 4 5 6 8 10
Hard 11.734 10418 9.256 7.478 7.208 6.983 6.830 6.493
Soft 10.380 7.703 7.200 7.111 7.042 6.801 6.679 6.327
DKD 8.899 6.772 6.689 6.849 6.522 6.291 5959 5.759
Feature 9.397 7200 6952 6914 6.872 6800 6.659 6.409

more closely mimic and learn the internal representation of the larger teacher models, leading to
improved performance. We thus show that our student models are small enough to learn a strong
internal representation independently given a rich enough label.

Varying model size exhibits predictable scaling. In Figure 2] we show results from a preliminary
experiment regarding characterizing distillation in the physiological sensing domain. We first note
that, consistent with prior work on the scaling laws for language model distillation [1], these trend
lines follow a predictable exponential curve in mapping the size of student models to their distilled
performance. We observe that performance seemingly begins to saturate at student models of size 6
residual blocks (139K parameters). We also note that although this figure shows fit curves for results
obtained using the soft distillation strategy, the DKD and feature distillation strategies also adhered
to these curves while the hard distillation strategy produced a much sharper saturation at an earlier
point (i.e., at a smaller model size).
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Figure 3: Soft Distilled Model Scaling Behavior for ResNet and MLP Student Architectures.
Performance analysis of student models trained via soft distillation across varying parameter counts.
ResNet students (blue) demonstrate superior scaling efficiency and a significantly lower error floor
compared to MLP students (orange), indicating a stronger inductive bias for the PPG task.

Modeling decisions affect distillation scaling. We conduct an experiment to show the extent
to which targeted modeling decisions affect distilled scaling by comparing the performance of
distillation across different model architectures. Specifically, we compare the scaling behavior of
distilled student models with ResNet and multilayer perceptron (MLP) backbones, while consistently
distilling from a ResNet-like teacher model. Figure [3]illustrates how MLP-based models, similar
to ResNet-based models, also exhibit predictable scaling as a function of both teacher and student
capacities. However, we find that MLP-based student models consistently underperformed more
sophisticated ResNet-based student models. We hypothesize that the innate inductive biases of the
convolutional layers (e.g., a natural tendency to smoothly filter signals) paired with more targeted
architecture designs such as residual connections enable more sample-efficient learning. We thus
infer that while scaling may be observed for diverse model architecture, the specific scaling behavior
may vary considerably.



Table 3: System compute benchmarks for distilled model inference. Inference time is reported in
seconds (mean =+ standard deviation) and peak GPU memory is reported in megabytes.

Time & Memory Model Size (Blocks)
Metrics 1 2 3 4 5 6 8 10 12

Inference Time (s) 0.512  0.938 1.340 1.787 2177 2622 3357 4419 4758
£0.025 +£0.028 +0.0316 +0.144 +0.192 £0.167 +£0.147 +0.115 =+0.130
Memory Usage (MB) 9.468 9.646  9.824 10.002 10.623 11.275 12.568 18.440 23.483

Distillation can lead to large gains in memory consumption and inference time. Table [3]shows
system benchmarking of these models on an Nvidia RTX 2080-Ti GPU. Although this is not
representative of our final application scenario (e.g., microprocessors in wearable devices), we
include these results to show the relative improvement made possible by distillation. For example,
distilling a 12-block model (i.e., the largest model we considered) to a 1-block model results in a
nearly 90% decrease in inference time and 60% decrease in memory usage with only a 30% reduction
in MAE performance.

4 Discussion and Conclusion

Dataset generalization. We presented an initial investigation into the distillation of heart rate
estimation models. Our evaluation used a naive cross-validation scheme with shuffling samples from
three datasets. We are interested in building off of work such as that of Kasnesis et al. [S]] towards
further studying the generalizability of these distilled models across datasets (i.e., by training on one
dataset and testing on another).

Model architecture. Our preliminary investigation utilized a straightforward ResNet backbone
model trained with supervision as the teacher model. We are interested in continuing our experiments
using larger models trained with more recent contrastive approaches (e.g., we note that the model
in [[14] will be open source soon) to investigate how the potentially richer features learned in a
self-supervised fashion might be distilled into smaller models.

Novel distillation strategies. In this work, we leveraged four approaches to distillation already
documented in the literature to provide baseline characterizations of these heart rate estimation
models. Leveraging insights from these experiments, we look forward to developing new methods of
distillation that are particularly well-suited for this class of tasks.

This paper provides an initial demonstration of how knowledge distillation can be used to adapt
large heart rate estimation models for resource-constrained wearable devices. Our preliminary
evaluation shows that distilled models consistently outperform those trained from scratch, with
DKD outperforming all other evaluated strategies. We also characterized a scaling law that confirms
distillation enables substantial reductions in memory usage and inference time for a modest trade-
off in performance. These findings provide an encouraging path forward for deploying powerful,
real-time health monitoring models on the edge.
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