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Abstract

Reinforcement learning with verifiable rewards
(RLVR) is a promising approach for training lan-
guage models (LMs) on reasoning tasks that elicit
emergent long chains of thought (CoTs). Un-
like supervised learning, it updates the model us-
ing both correct and incorrect samples via policy
gradients. To better understand its mechanism,
we decompose the learning signal into reinforc-
ing correct responses and penalizing incorrect
ones, referred to as Positive and Negative Sample
Reinforcement (PSR and NSR), respectively. We
train Qwen2.5-Math-7B and Qwen3-4B on
a mathematical reasoning dataset and uncover
a surprising result: training with only negative
samples—without reinforcing correct responses—
can be highly effective: it consistently improves
performance over the base model across the entire
Pass@Fk spectrum (k up to 256), often matching or
surpassing PPO and GRPO. In contrast, reinforc-
ing only correct responses improves Pass@1 but
degrades performance at higher &, due to reduced
diversity. These inference-scaling trends high-
light that solely penalizing incorrect responses
may contribute more to performance than previ-
ously recognized. Through gradient analysis, we
show that NSR works by suppressing incorrect
generations and redistributing probability mass
toward other plausible candidates, guided by the
model’s prior beliefs. It refines the model’s ex-
isting knowledge rather than introducing entirely
new behaviors. Building on this insight, we pro-
pose a simple variant of the RL objective that
upweights NSR, and show that it consistently im-
proves overall Pass@Fk performance on MATH,
AIME 2025, and AMC23.
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1. Introduction

Language models (LMs) have recently demonstrated re-
markable capabilities in various complex reasoning tasks,
including mathematics (Cobbe et al., 2021; Hendrycks et al.,
2021), coding (Jimenez et al., 2024; Yang et al., 2024b), and
scientific reasoning (Phan et al., 2025; Rein et al., 2024). A
key technique in achieving such success is reinforcement
learning with verifiable rewards (RLVR) (Guo et al., 2025;
Jaech et al., 2024; Lambert et al., 2024a; Team et al., 2025a),
which is particularly effective in domains where the correct-
ness of an outcome can be automatically verified via tools or
functions. RLVR typically employs a binary reward (41 or
—1) based on the objective correctness of model responses.
This simple yet effective mechanism not only mitigates re-
ward hacking (Miao et al., 2024; Skalse et al., 2022) but
also eliminates the need for extensive human annotations
and complex reward model training (Li & Li, 2025; Zhang
et al., 2025b).

RLVR’s appeal is multifaceted: it offers a conceptually
simple formulation (Lambert et al., 2024a), exhibits no-
table sample efficiency (Fatemi et al., 2025; Li et al., 2025;
Wang et al., 2025), and enables inference-time scaling be-
haviors (Gandhi et al., 2025; Muennighoff et al., 2025; Wu
et al., 2025b; Yeo et al., 2025; Zeng et al., 2025a). However,
the precise mechanisms driving its effectiveness remain un-
derexplored, particularly how it utilizes correct and incorrect
samples. To address this, we decompose RLVR into two
learning paradigms: Positive Sample Reinforcement (PSR)
and Negative Sample Reinforcement (NSR), as illustrated in
Figure 1. This decomposition prompts a natural question:
What roles do PSR and NSR play in shaping model behavior
and generalization?

To empirically isolate the effects of PSR and NSR, we train
two LMs, Qwen2.5-Math-7B and Qwen3—-4B, either
PSR or NSR exclusively, and evaluate their inference-time
performance across a range of Pass@#k metrics. We find
that PSR-only training improves Pass@1 but hurts Pass @k
at larger k values, indicating a loss of output diversity and
exploration capacity. More strikingly, NSR-only training
consistently improves performance over the base LM across
the entire Pass@Fk spectrum and, in many cases, matches
or even surpasses the performance of PPO (Schulman et al.,
2017) and GRPO (Guo et al., 2025; Shao et al., 2024).

To understand why NSR alone is so effective, we conduct
a token-level gradient analysis and demonstrate that NSR
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works by suppressing incorrect reasoning steps and redis-
tributing probability mass towards other plausible candi-
dates already favored by the model’s prior. This effectively
refines its existing knowledge without aggressively teach-
ing new behaviors. PSR, in contrast, sharpens the output
distribution around sampled correct paths (Anthony et al.,
2017; Havrilla et al., 2024; Xiong et al., 2025), often at the
cost of suppressing alternative valid solutions. This suggests
that NSR plays a pivotal role in preserving diversity and
promoting generalization, especially when the base model
already encodes strong reasoning priors.

Motivated by this insight, we propose Weighted-
REINFORCE, a simple yet effective variant of the REIN-
FORCE (Williams, 1992) objective that upweights its NSR
contribution. We demonstrate that this adjustment consis-
tently improves the Pass@k performance on MATH, AIME
2025, and AMC?23, yielding an overall better result than
strong baselines including PPO (Schulman et al., 2017) and
GRPO (Guo et al., 2025; Shao et al., 2024).

Our contributions in this work are as follows:

* We decompose RLVR into two components, PSR and
NSR, and investigate their distinct impacts on model
behavior and generalization measured by a range of
Pass@Fk metrics.

* We empirically demonstrate the surprising effectiveness
of NSR-only training and use gradient analysis to show
that NSR refines the model’s prior by suppressing in-
correct reasoning steps and preserving plausible alterna-
tives.

* We propose Weighted-REINFORCE, a simple modifica-
tion to the RL objective that upweights NSR, yielding
consistent gains across complex reasoning benchmarks
including MATH, AIME 2025, and AMC23.

2. RLVR Objective and Decomposition
2.1. Reinforcement Learning with Verifiable Rewards

Reinforcement learning with verifiable rewards (RLVR)
has recently emerged as a powerful paradigm for enabling
LMs to self-improve on tasks with objectively verifiable out-
comes. The reward is given by a deterministic verification
function r which assesses whether the model’s response y to
the prompt x is correct or not. All tokens {y1,¥a,...,yr}
in a response y receive the same reward (e.g., +1 for correct
responses and —1 for incorrect ones).

Formally, given an LM with parameters 0, a set of prompts
D from which «x is sampled, and a verifiable reward func-
tion r, RLVR learns a policy 7y to minimize the following
objective:

‘CRLVR(Q) = _EEND,y’\/ﬂ'[)("w) [r(ac, y)]a

1
r(x,y) € {—1,+1}. M

In common RL algorithms (e.g., PPO (Schulman et al.,
2017), GRPO (Guo et al., 2025; Shao et al., 2024)), rewards
are further normalized to stabilize training, enforcing a zero
mean per batch B (i.e., Ep yor, (-|2) [ (2, y)] = 0).

2.2. Decomposing RLVR into Positive and Negative
Sample Reinforcement

While RLVR has demonstrated promising empirical results,
its underlying learning dynamics remain underexplored. In
particular, it is unclear how the model updates its behavior
under this binary outcome reward setting. What the model
learns when receiving both positive and negative rewards
can be entangled and hard to interpret. To better understand
these dynamics, we begin by decomposing the RLVR ob-
jective into two distinct learning paradigms: learning from
correct responses and learning from incorrect responses.
This decomposition allows us to investigate how positive
and negative reward signals shape model behavior, which
we will show in the next section.

The RLVR objective optimizes the expected reward-
weighted likelihood:
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where we define two sub-objectives representing each learn-
ing paradigm:

Lpsr(0) = —Egnp | Y
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We refer to these two learning paradigms as positive sample
reinforcement (PSR) and negative sample reinforcement
(NSR). The positive reward case resembles supervised fine-
tuning (SFT), where the model is updated to increase the
likelihood of correct responses. In contrast, the negative
reward case mirrors likelihood minimization that reduces
the probability assigned to incorrect responses. Notably,
PSR and NSR are on-policy—the responses are sampled
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& : Alice has 3 apples. She buys 2 more and gives 1 to her friend. How many apples does she have now?

Y, ~ Ty (y|:l:) Y1:3+2-1= 4. So Alice has 4 apples. 1 Positive Sample Reinforcement (PSR) :
e maxm (y|lz)  Pass@l :
LLM Y5 : Start 3, buy 2 (now 5), give 1 (now 4). : ¢ Pass@32 ¥ .
o (y|w) Y3:3 +2=5.So the answer is 5 apples.
max —7g (y|w) Pass@1
Y 4: We can’t tell how many she has now. 0 Pass@32

Figure 1: Decomposing learning signals in RLVR into positive and negative reward components. Positive Sample
Reinforcement (PSR) increases the likelihood of correct responses and improves Pass@ 1, but reduces output diversity and

hurts Pass@F£ for large k. Negative Sample Reinforcement (NSR) discourages

and redistributes probability

mass according to the model’s prior knowledge, improving the full Pass@¥k spectrum.

from the model itself during training.

Thus, the full RLVR objective decomposes into two sub-
objectives Lrivr(0) = Lpsr(0) + Lnsr (0). This decompo-
sition reveals that RLVR jointly performs PSR on positively
rewarded samples and NSR on negatively rewarded ones. To
better understand the individual effects of these two learning
paradigms on model behavior, we conduct experiments to
train LLMs with each sub-objective independently, as well
as the full RLVR objective for comparison.

3. Positive and Negative Sample
Reinforcement for LLM Reasoning

3.1. Experimental Setup

Models. To understand how different training objec-
tives affect the model’s behavior, we train the model
with PSR and NSR and evaluate their inference scal-
ing performance on reasoning tasks. Specifically, we
use Qwen2.5-Math-7B (Yang et al., 2024a) and
Qwen3-4B (Yang et al., 2025) as the base models.
Qwen3-4B has two modes (thinking and non-thinking),
and we use the non-thinking mode for training and infer-
ence.

Compared algorithms. We compare the performance of
PSR and NSR with commonly used RL algorithms, includ-
ing PPO (Schulman et al., 2017) and GRPO (Guo et al.,
2025; Shao et al., 2024). PSR and NSR are implemented
by selectively updating the policy model using only correct
or incorrect responses, respectively. As a result, PSR and
NSR are trained on fewer samples per batch than standard
RL algorithms (e.g., PPO and GRPO) that use both correct
and incorrect responses. The training objectives of these
algorithms can be found in Appendix D.1. We also report
the performance of the base models for reference.

Training setup. For the training set, we use MATH
(Hendrycks et al., 2021), which contains 7,500 problems.

We train the models using the verl framework (Sheng et al.,
2024). The prompt batch size is 1,024, with 8 rollouts
generated per prompt. The sampling temperature during
training is set to 1.0, and the maximum context length is
set to 4,096 and 32,768 tokens for Qwen2 .5-Math-7B
and Qwen3-4B, respectively. We update the model with
a mini-batch size of 256 and a learning rate of 1e-6. More
hyperparameter settings can be found in Appendix D.1.

Evaluation setup. We evaluate on three widely used math
reasoning benchmarks, including the test sets of MATH,
AIME 2025 and AMC23. During evaluation, we sam-
ple 256 responses per prompt for Qwen2.5-Math-7B
with a temperature of 0.6 and a top-p of 0.95, and 64
responses for Qwen3-4B with a temperature of 0.7, a
top-p of 0.8 and a top-k of 20, prompt templates can be
found in Appendix D.2. For evaluation metric, recent
work (Hochlehnert et al., 2025) highlights that accuracy
based on greedy decoding can be unreliable. For this reason,
we adopt a full spectrum of Pass@Fk as our main evalua-
tion metric, using k € {1,2,4,8,16, 32,64, 128,256} for
Qwen2.5-Math-7B and k € {1,2,4,8,16,32,64} for
Qwen3-4B. Pass@k is defined as the fraction of problems
for which at least one correct response is produced in &
independent trials. However, directly computing Pass @k
using only &k samples per example often suffers from high
variance. We follow the unbiased estimator proposed by
(Chen et al., 2021), which generates n samples per problem
(n > k), counts the number of correct responses ¢, and
computes an unbiased estimate of Pass@F as:

Pass@k = E,.p ll — ( f: )] . (@)

(¢)

Notably, varying k provides insights into different aspects
of model behaviors. Pass@1 approximates greedy decoding
accuracy, reflecting how confidently the model can produce
a correct response in a single attempt, essentially reflecting
exploitation. In contrast, Pass@Fk with large k evaluates
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Figure 2: Pass@Fk curves of Qwen?2 . 5-Math-7B trained with PPO, GRPO, PSR, and NSR. NSR is comparable to other
methods across different k values and outperforms them at k = 256.
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Figure 3: Pass@k curves of Qwen3—-4B (non-thinking mode) trained with PPO, GRPO, PSR, and NSR. NSR consistently
performs competitively across varying k values, while PSR does not improve the base model.

the model’s ability to generate diverse correct responses
across multiple attempts, capturing its exploration ability
and reasoning boundary.

3.2. Inference Scaling Trends Under Different Training
Objectives

NSR alone is surprisingly effective. As shown in Fig-
ures 2 and 3, NSR exhibits unexpectedly strong perfor-
mance across the full range of k values. Despite being
trained solely on negative samples, it consistently improves
Pass@Fk compared to the base model. While PPO, GRPO,
and PSR explicitly reinforce correct responses and naturally
outperform the base model at Pass @1, it is surprising that
NSR achieves a comparable Pass@1 without training on
any correct responses. This suggests that NSR is able to re-
inforce correct responses indirectly by suppressing incorrect
ones and redistributing probability mass toward plausible
alternatives.

NSR outperforms or stays comparable to the base model
at a large k value. At larger decoding budgets (e.g.,
Pass@256), recent work (Yue et al., 2025) shows that RL-
trained models often lose their advantage, and in some cases
underperform the base model. This trend is generally ob-
served in our experiments with PPO, GRPO, and PSR, es-
pecially in Figure 2. NSR, on the other hand, maintains a

comparable or even better Pass@256 performance than the
base model, generally outperforming the other algorithms.
These results suggest that NSR promotes exploration and
preserves the output diversity.

PSR improves accuracy at the cost of diversity. In con-
trast, PSR, which only reinforces correct samples, displays
a more polarized behavior. It improves Pass @1, particularly
on AIME 2025 and AMC23 in Figure 2. However, this preci-
sion comes at a cost: as k increases, Pass @k improves more
slowly than other methods and eventually falls below the
base model for £ > 8. As shown in Figure 4a, PSR improves
greedy decoding accuracy rapidly during early training but
plateaus quickly and is overtaken by other methods. This
behavior indicates that PSR overly concentrates probability
mass on early correct responses, leading to overconfidence
and a collapsed output distribution and ultimately limiting
the model’s ability to generate diverse correct responses
when allowing for more test-time compute.

PSR fails to unlock the model’s latent reasoning capa-
bilities. Figure 3 demonstrates the performance of training
Qwen3-4B under non-thinking mode to simulate a sce-
nario where the model’s underlying knowledge is known to
be strong (i.e., its learned thinking mode triggered by the
‘<think>’ tag). While one may intuitively expect all algo-
rithms to easily transfer the model’s reasoning ability across
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Figure 4: Training dynamics of Qwen2 . 5-Math-7B on MATH under PPO, GRPO, PSR and NSR across training steps,
including (a) greedy decoding accuracy on the test set, (b) the model’s entropy on the test set, (c) the ratio of correct
responses per batch on the training set, and (d) the proportion of fully-solved prompts per batch (i.e., all rollouts are correct)
on the training set. NSR achieves competitive performance in greedy decoding accuracy while maintaining substantially
higher entropy throughout training, suggesting greater exploration. NSR improves both the correct sample ratio and the
fully-solved sample ratio, though less aggressively compared to other algorithms.

different prompt formats (i.e., from thinking to non-thinking
mode), our results demonstrate significant performance dif-
ferences across different algorithms. PSR fails to activate
these latent capabilities and does not improve the perfor-
mance, even degrading Pass@k on MATH and AMC23
significantly. This highlights a fundamental limitation of
PSR: it reinforces the currently dominant behavior in the out-
put distribution, suppressing potentially stronger underlying
capabilities. In contrast, NSR and GRPO significantly im-
prove the performance of the base model across all Pass@k
metrics, achieving thinking mode capabilities. Specifically,
Qwen3-4B in thinking mode achieves a Pass@1 of 94.5
and a Pass@64 of 97.8 on MATH test set. NSR and GRPO
closely match this performance, with NSR reaching 94.0
(Pass@1) and 98.0 (Pass@64), and GRPO achieving 93.9
(Pass@1) and 98.2 (Pass@64).

4. Understanding the Effectiveness of Negative
Sample Reinforcement

To better understand the learning mechanisms of PSR and
NSR, and to explain why NSR consistently demonstrates
strong inference scaling performance, we analyze their train-

ing dynamics through both empirical observations and gra-
dient analysis.

4.1. Entropy as a Lens on Inference Scaling
Performance

Since diversity is crucial for strong Pass @k performance—
especially at a large k—we quantify model diversity by
tracking its entropy on a held-out test set throughout training,
aiming to understand how entropy evolves under different
training algorithms. In addition, we monitor two comple-
mentary metrics on the training set: the correct sample
ratio, which measures the proportion of correct responses
per batch, and the fully solved ratio, which measures the
fraction of problems per batch where all rollouts are correct.

Figure 4b shows that NSR maintains a high level of entropy
on the held out test set throughout training, closely match-
ing that of the base model, while PSR leads to a rapid and
substantial drop in entropy. PPO and GRPO offer a middle
ground: they gradually reduce entropy during training, with
levels that fall between those of PSR and NSR. Nevertheless,
their entropy still declines considerably, which likely lim-
its output diversity and helps explain why their Pass @256
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Positive Sample Reinforcement (PSR) Reward: +1

Apples cost $2 each and oranges $1 each, so 2 apples and 3 oranges cost $7., ' Apples cost $2 each and oranges $1 each, so 2 apples and 3 oranges cost $0.

suppress correct alternatives
... s0 2 apples and 3 oranges cost $- x 2 + $1 x 3 = $7. ... s0 2 apples and 3 oranges cost $< x 2 + $1 x 3 = $7.

..............................................................................

. LogitA Exploitation: Sharpen the correct ) o Logit A Exploration: Redistribute logits in proportion '
' A token’s probability, suppress others e to alternative tokens’ current probability .
' ..711. N . []
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Figure 5: Gradient dynamics of PSR and NSR under a math word problem example. Bars indicate token logits before the
update, and arrows indicate gradient direction and magnitude. Left (PSR): The model generates the correct response (“7”)
and receives a 41 reward. Gradients increase the logit of the sampled token while suppressing all others, including potentially
correct alternatives like “2”, resulting in a sharpened, overconfident distribution. Right (NSR): The model generates an
incorrect response (“6”) and receives a —1 reward. Gradients demote the sampled incorrect token and proportionally
reallocate logits to other tokens (e.g., “7”, “2”) based on their current probabilities, thereby promoting exploration on
alternative correct paths and preserving diversity.

performance remains below that of the base model. Interest-  takes the form:
ingly, PPO exhibits a slight rebound in entropy during the

T
later stages of training—a trend not seen in GRPO. This di- _ 1

vergence may stem from PPO’s use of a critic model, which LO) =~k T Z o (el y<t)

can provide potentially more fine-grained and exploratory t? 6)
advantage estimates. - _R 1 exp(zy, )

As shown in Figures 4c and 4d, NSR consistently improves T = > ey oxp(z)

the correct sample ratio but maintains a lower proportion

of correct samples and fully solved problems throughout Where R =r(z,y) € {.—1, +1} denotes the reward as-
training. This indicates that the model avoids becoming ~ Signed to the sampled trajectory, and 2, denotes the logit
overconfident in the observed correct responses. By preserv-  corresponding to token v in the vocabulary V.

ing uncertainty, NSR enables stronger scaling performance  To analyze the effect of these objectives on the model’s
in Pass@£k, as demonstrated in Figure 2. In contrast, PSR~ token distribution, we compute the gradient of the loss
rapidly increases the number of correct samples in each ~ With respect to token-level logits at each step. Let 7, =

batch and achieves a higher fully solved ratio compared to ¢ (v]e, _y<t) denote the probability of token v at time step ¢,
other methods, suggesting a tendency to overfit to the ob- the gradient descent directions of PSR and NSR are shown

served correct responses. While this leads to better Pass@ 1 in Equations (7) and (8) (the full derivation is provided in

Tespot Het Appendix B), which are illustrated in Figure 5.
performance, it significantly reduces output diversity and

results in weaker Pass @k performance as k increases. ALpsr {Wyt -(1—my,) ifv=1y; (sampled token)

— X ; .
These trends underscore the importance of preserving output Oz T Ty ifv 7y (unsampled tOken()7)
entropy during RL and highlight a key insight: reinforcing  ppg formulation clearly shows how PSR increases the log-
negative samples alone can improve accuracy without com-  jts of tokens appearing in correct responses while decreas-
promising the base model’s generation diversity. ing the logits of all other tokens. As training progresses,

it repeatedly amplifies the probability of observed correct
sequences—pushing their likelihoods toward 1, while sup-
pressing alternative generations. This continual sharpening

. . - . of the output distribution can lead to reduced entropy and
To gain a deeper understanding of the training dynamics of overfitting as shown in Figure 4b, especially in on-policy

PSR and NSR, we conduct a token-level gradient analysis.  gettings where the same examples may be encountered fre-
The loss for both PSR and NSR on a training instance (z,y)  quently. Over time, the model’s behavior may collapse onto
a narrow set of responses, limiting its ability to explore or

4.2. Token-Level Gradient Dynamics of PSR and NSR
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Key Insights into NSR via Gradient Analysis

NSR is scaled by (1
fundamental knowledge learned during pretraining.

1. Preserving high-confidence priors: When the model assigns high probability to certain tokens (i.e., my, — 1)
that appear in incorrect outputs (e.g., common grammatical or linguistic constructions), the negative gradient from
— Ty, ), resulting in small updates. This allows NSR to penalize mistakes without erasing

2. Prior-guided probability redistribution: NSR performs a soft reranking of the output distribution by boosting
unsampled tokens’ logits z,, in proportion to their current probabilities ,. This allows the model to effectively
explore and search for better candidates according to their prior beliefs.

3. Implicit regularization against overfitting: NSR updates only when the model generates incorrect responses.
Once the model consistently avoids these mistakes, NSR naturally halts further updates on those samples. This
stopping criterion prevents the model from overfitting or collapsing diversity in examples it has already mastered.

generalize beyond what has been reinforced.

if v = y; (sampled token)

OLnsk )=y - (1= y,)
0zy Ty Ty, if v # y; (unsampled token)

(®)
In contrast, NSR works by penalizing the logits of tokens
in incorrect responses and softly redistributing probability
mass to other candidate tokens. Importantly, NSR increases
other tokens’ logits in proportion to their current likelihoods.

This objective has several desirable properties:

These analyses highlight an important strength of NSR: it
preserves the model’s prior knowledge over plausible tokens
and stops updating once errors are corrected, effectively
locking in successful experiences. This is a unique advan-
tage of NSR, as we demonstrate in Appendix B via gradient
analysis that simply applying an entropy bonus in the policy
loss, despite promoting diversity, cannot preserve model’s
prior.

4.3. Extending Gradient Analysis to PPO and GRPO

Our earlier analysis was based on a simple REINFORCE-
like objective (Williams, 1992). We now analyze how it
extends to PPO and GRPO. The losses for GRPO and PPO
are as follows:

T
Lrpo(0) = Z ( molyl®: Yer) At

Toud (Yt |, Y 1)

= ©))
clip( W2 Y<t) gy ga, )
ﬂ—()ld(yt‘may<t)
G
1 1 o mo(yiile, Y, <t)
r o) — L 1 — =" Ay,
areo(0) G ; T t:zl <mln(7rold(yi,t|w7yi,<t) !

7o (Yi,t|, yi,<t)

clip(—————=
p( Wold(yi,t|w7 yi,<t)

=6 1+e)Aiy) - BKL(Welﬂref)>

(10)
where A denotes the advantage. Comparing the PPO and
GRPO objectives to Equation (6), there are three key dif-

ferences: (1) policy loss clipping, (2) KL regularization
(reward penalty in PPO, loss in GRPO), and (3) advantages
instead of raw rewards. We analyze their impact on the
gradient dynamics below:

1. Clipping constrains update magnitude when the new pol-
icy diverges significantly from the old one, but preserves
the gradient update direction, thus leaving our analysis
qualitatively unchanged.

2. KL regularization discourages deviation from the refer-
ence policy. While it may dampen positive and negative
updates, its practical impact is often negligible: for rea-
soning tasks, the KL coefficient is either very small or
completely removed, leading to better performance, as
demonstrated in recent works (Chu et al., 2025; Xu et al.,
2025b; Yu et al., 2025).

r; —mean(r)

3. The advantage of GRPO A; = —— 1)

rescaling of the gradient and retains the raw reward’s
sign. In PPO, the advantage is computed relative to a
value function: tokens that outperform the baseline are
reinforced, while other tokens are penalized. This yields
finer-grained credit assignment but does not alter the
overall gradient dynamics—positive reinforcement still
reduces diversity, and negative reinforcement promotes
alternatives under the model prior.

acts as a

Therefore, while PPO and GRPO introduce modifications
that stabilize learning, the core gradient behaviors identified
in our previous analysis still hold. We further discuss the
differences between RLVR and RL with reward models in
Appendix C.

5. Balancing Positive and Negative
Reinforcement

Our previous analyses reveal a trade-off in reinforcement
learning objectives: PSR improves Pass@1 quickly but
sacrifices performance on Pass@Fk for larger k, whereas
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Table 1: Pass@k results on MATH, AIME 2025 and AMC23 with Qwen2 .5-Math-7B. Bold and underlined numbers

denote the best and second-best results for each k.

Method Pass@k
k 1 2 4 8 16 32 64 128 256
MATH
Base Model 63.2 76.0 83.7 88.4 91.6 937 952 96.2 96.9
GRPO 76.3 81.7 85.6 88.4 90.6 92.3 93.6 94.7 95.5
PPO 76.6 82.6 86.7 89.6 91.7 934 94.7 95.6 96.3
PSR 74.1 78.3 81.6 84.1 86.2 87.9 89.3 90.4 91.2
NSR 75.7 82.4 86.9 90.1 924 94.1 95.3 96.2 96.9
W-REINFORCE 76.6 82.8 87.1 90.2 92.4 94.1 95.3 96.1 96.7
AIME 2025
Base Model 6.1 9.7 13.8 17.9 22.2 26.5 30.8 36.6 46.7
GRPO 10.3 147 194 24.0 28.4 32.8 37.3 42.5 50.0
PPO 8.5 13.2 18.0 22.5 26.6 30.3 33.8 37.9 433
PSR 11.6 14.1 16.2 18.6 21.7 25.7 30.9 36.9 433
NSR 10.0 14.6 19.2 24.1 293 346 402  46.0 533
W-REINFORCE 10.6 15.3 20.0 24.7 29.7 34.6 40.5 47.8 56.7
AMC23
Base Model 41.0 56.2 69.2 78.9 85.1 89.1 92.9 97.2 100.0
GRPO 61.7 68.7 74.6 80.0 85.1 89.7 93.4 95.9 97.5
PPO 62.0 70.0 76.1 80.9 85.3 89.5 93.1 96.0 97.5
PSR 62.6 69.9 74.5 71.5 80.3 83.5 87.2 90.6 92.5
NSR 60.9 70.0 77.4 83.2 87.6 91.1 945 97.9 100.0
W-REINFORCE 62.0 70.0 77.0 83.1 87.8 91.8 95.2 97.1 97.5

NSR preserves Pass@Fk, but may underperform when k
is small. To strike a better balance between accuracy and
diversity, we propose a simple weighted combination of PSR
and NSR: we scale down the reward magnitude for PSR by a
factor of \ and combine it with NSR, allowing the model to
learn from both correct and incorrect samples. When A = 1,
it is exactly the same as REINFORCE. We refer to this
method as Weighted-REINFORCE (W-REINFORCE):

>

yir(x,y)=1

Lw-reNrorcE(0) = —Egzup A-mo(ylx)

A-Lpsr (0)

>

yir(z,y)=-1

Lysr(8)

—Eznp —7o(y|z)

an
We apply A = 0.1 in our experiments. As shown in Ta-
ble 1, W-REINFORCE consistently delivers a favorable
trade-off across a range of k£ values on MATH, AIME 2025
and AMC23. On MATH, W-REINFORCE matches the
best Pass@1 score 76.6 with PPO and has the highest per-
formance for all k£ < 64, while still preserves competitive
performance at k = 256. On AIME 2025, W-REINFORCE
performs even more strongly—achieving the best result
across all k values except k¥ = 1. These results confirm
that W-REINFORCE, a simple weighted extension of the
classic REINFORCE algorithm, strikes an effective balance

between the strengths of PSR and NSR. By merely scaling
down the weight of positive rewards, it achieves strong per-
formance while preserving diversity. Despite its simplicity,
W-REINFORCE consistently outperforms strong RL algo-
rithms such as PPO and GRPO across most Pass@k. These
findings suggest this simple variant of REINFORCE can
serve as a competitive alternative to more complex RL algo-
rithms when the model prior is strong (e.g., Qwen models).

6. Conclusion

In this work, we investigate the mechanism underlying
RLVR for LM reasoning. By decomposing RLVR into posi-
tive and negative sample reinforcement, we reveal a surpris-
ing finding: solely penalizing incorrect samples can effec-
tively enhance LM reasoning capabilities while preserving
generation diversity. Experimental results show that NSR
consistently improves performance across a wide Pass @k
spectrum and in many cases matches or outperforms strong
RL algorithms such as PPO and GRPO. Our gradient analy-
sis demonstrates that NSR works by suppressing incorrect
responses and redistributing probability mass toward plausi-
ble alternatives based on the model prior. Building on these
findings, we proposed a simple variant of REINFORCE,
Weighted-REINFORCE, that upweights the negative sam-
ple reinforcement. Empirical results show that it achieves a
good balance between PSR and NSR, and yields consistent
Pass@Fk improvements across multiple reasoning bench-
marks. We discuss limitations and future work directions in
Appendix E.
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A. Related Work

Reinforcement learning with verifiable rewards. Reinforcement learning has shown great promise in improving large
language models, as demonstrated by the success of reinforcement learning from human feedback (RLHF) and from Al
feedback (RLAIF), which align model responses with human preferences (Lee et al., 2024; Meng et al., 2024; Ouyang
et al., 2022; Rafailov et al., 2023). More recently, reinforcement learning with verifiable rewards (Dai et al., 2025; Gao
et al., 2024; Havrilla et al., 2024; Lambert et al., 2024a; Liu et al., 2025; Shao et al., 2024; Team et al., 2025b; Wang et al.,
2025; Xu et al., 2025a; Yu et al., 2025; Yuan et al., 2025a;b; Zhang et al., 2025a) has attracted growing attention for its
effectiveness in incentivizing reasoning in LLMs with rule-based rewards (Fatemi et al., 2025; Guo et al., 2025; Kazemnejad
et al., 2024; Team et al., 2025a; Zeng et al., 2025a; Dong et al., 2024; Lambert et al., 2024b; Mroueh, 2025). Notably,
DeepSeek-R1 (Guo et al., 2025) and Kimi K1.5 (Team et al., 2025a) demonstrate that RLVR can elicit emergent reasoning
behaviors such as long chain of thought and self-reflection, and achieve strong performance across diverse reasoning tasks
such as math and coding problems. Yeo et al. (Yeo et al., 2025) further explore the emergence of long CoT across different
RLVR setups.

Despite these advances, many prior works mainly focus on evaluating the model’s Pass@1 or greedy decoding performance,
which might overlook the underlying change in model behavior (e.g., inference scaling performance). More importantly,
the mechanisms behind RLVR for driving reasoning and generalization remain underexplored. In this work, we take a
step further by decomposing the RLVR objective into two distinct learning paradigms—Iearning from correct responses
and learning from incorrect responses—and analyzing the learning signal at the token level through gradient analysis. We
evaluate the models extensively using Pass@£% with a wide spectrum of k. Our findings highlight the critical yet previously
underappreciated role of negative rewards in RLVR.

Inference-time scaling behaviors. Inference-time scaling has emerged as a promising direction for enhancing model
performance (Balachandran et al., 2025; Brown et al., 2024; Chen et al., 2024; Lightman et al., 2024; Muennighoff et al.,
2025; Qu et al., 2025; Setlur et al., 2025; Snell et al., 2024; Wang et al., 2024a;b; 2023; Welleck et al., 2024; Wu et al., 2025a;
Zhu et al., 2023; Yao et al., 2023; Zelikman et al., 2022; Zhao et al., 2025)—particularly in reasoning tasks where generating
multiple candidate solutions (Cobbe et al., 2021; Zhu et al., 2023) or longer reasoning traces (Muennighoff et al., 2025; Yeo
et al., 2025; Zeng et al., 2025b) can help hit the correct answer. Through the lens of inference-time scaling, recent studies
have raised questions about whether RL-trained models are better than the base models (Yue et al., 2025; Hochlehnert et al.,
2025). A recent work by (Yue et al., 2025) suggests that RLVR primarily adjusts the model’s output distribution toward
high-reward responses, rather than eliciting new reasoning abilities beyond the base model. By adopting Pass@#k as metric,
they find that RL-trained models have inferior inference-time scaling performance than the base models. These findings
align with our findings that reinforcing correct samples hurts Pass@F£ at larger k. Another concurrent work by (Dang et al.,
2025) studies supervised fine-tuning (SFT), and finds that diversity collapse during SFT adversely affects inference-time
scaling performance. They show that SFT reduces generation diversity, leading to degraded Pass @k performance, and that
interpolating weights from early, potentially less overconfident checkpoints and later ones can effectively restore diversity
and improve both Pass@1 and Pass@*k.

In this work, we highlight the underestimated role of negative reinforcement in preserving and improving inference-time
scaling performance, and that the accuracy and diversity trade-off in RLVR can be effectively balanced by adjusting positive
and negative reward weights.

B. Gradient Derivation

Gradient of Equation (6). For simplicity of notation, let 7, := mg(v|®, y<¢), and we omit the constant % in the equation
which effectively scales the gradient magnitude.

oL _R. I(v=1y) eXp(Zyt) Zv/ev exp(zy) — eXp(ny,) exp(2y)

821; (ZU/EV exp(zv,))Q

13



The Surprising Effectiveness of Negative Reinforcement in LLM Reasoning

For the sampled token v = y,, the gradient simplifies to

oL - _R. eXp(ZU) Zvlev eXp(Zv/) — exp(zv)2
0z 3

v (Zv/ev exp(zv/))
R exp(zy) (3 ,ev €xp(20) — exp(zy))

(Cuevexp(z)

__p. exp(zo)  2wey ©XP(2v) — exp(z)
= f (ZU' cy exp(zv/) ZU' cy exp(zv/) )
= —R-m-(1-m)

For the unsampled token v # y;, the gradient simplifies to

oL R. — exp(zy, ) exp(zy)

92 (e oxp(z)”
el el
ey OXP(2)  Lyey exp(zv)
=R-my, -m,

In summary, the gradient of Equation (6) can be expressed as

oL J-R-m,-(1—-m,) ifv=y, (sampledtoken)
0z, | R-my- Ty, if v #y, (unsampled token)

Gradient of entropy regularization. Entropy regularization is also one way to induce a diverse output probability
distribution. We compute and analyze its gradient dynamics to reveal its difference from the NSR objective as follows. The
entropy loss is

IH(’”G) = - Z Ty log Ty,

v’ eV
and the gradient ascent direction to maximize entropy is

oH Oy
— = 1+ log
0z, v% 0z, ( )

==Y w0 (A =2) —m) (1 +logmy)

v’ eV
= - <7Tv(1 + log '/Tv) — Ty Z '/Tv’(l + 10g7rv’)>
v’ eV

= —7, | logm, — g Ty 1Og 7y
v €V

=0

It can be seen that the gradient sign and magnitude depend on how the log-probability of token v, log 7,,, compares to the
expected log probability £ over the vocabulary: when token v is significantly more probable than expected, it receives a
larger negative gradient, pushing its logit down more strongly. In contrast, when token v is less probable than average, it
receives a positive gradient that boosts its logit.

As a result, entropy maximization systematically flattens the output distribution by suppressing high-confidence tokens
and boosting low-confidence ones. This behavior can conflict with the model’s prior knowledge: confidently correct
tokens—such as syntactically or semantically appropriate completions—are penalized more for being too probable, while
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completely implausible tokens may be promoted simply because they are unlikely under the current policy.

C. RLVR vs. RL with Reward Models

Different from RLVR, many RL setups require training reward models to assign scalar values that indicate the quality of
generation (e.g., in RLHF (Ouyang et al., 2022)). During policy optimization, these rewards are often normalized within a
batch by subtracting the mean, so that a sample’s final reward depends on its relative ranking compared to others in the
same batch. As a result, a sample’s reward can change sign (from positive to negative or vice versa) depending on the
overall quality of the batch, making it difficult to interpret rewards as absolute indicators of positive or negative samples.
In contrast, RLVR applies a binary reward (4+1/—1). The signs of the rewards are inherently tied to the correctness of
individual sequences, as each token in a sequence receives the same reward and the batch average reward always remains
within [—1, 1], thus reward normalization will preserve the original sign. This inherent sign preservation in RLVR is critical
for our analysis, as it enables a clean and unambiguous separation into positive and negative learning paradigms based on
the reward signs.

D. Implementation Details

D.1. Objectives and Training Hyperparameters
The objectives of PPO, GRPO, PSR and NSR are as follows:

T
1 )
Lovo(6) = ~ &> min (wm,cnp (MJ_E,HE) A)
po Tola (YT, Y <) Tola (Y| T, Y <)
G T
1 1 To\Yi,t |12, Y, . To\Yi,t |, Y,
Loreo(0 1 1 mln( o(yitlx,y ,<z) Ai,t,chp( o(YitlT, Yy ,<t) ’17671+6> A¢7t>
G T~ Tola (Yi.t |2, Y; <) Told (Yi,t|T, Y <1)

- ﬁKL(ﬂ'G |7Tref)> 5

LPSR(Q) __ 1 Zm]n < W@(yt|w7y<t) 7Clip < W@(yilmyy<t) 71 —¢, 1 +6)) , r(w7y) =1

7TOld(yt‘mv'.'J<t) Wold(yt|a::y<t)

T
1 ) . )
ﬁNSR(e) = - E min <_M7 _ChP ( ﬂ—g(yt‘w y<i) 71 -6 1+ 6)) ) T((B,y) = _17

t=1 Tola (Ye| 2, Y ) Told (Yt |, Y1)

where € is the clip ratio, and /3 is the KL penalty coefficient. For PPO, the KL penalty is applied to the advantage. For
GRPO, the KL penalty is added to the final loss. Both PPO and GRPO use a KL penalty coefficient of 1e-3. For PSR and
NSR, we do not apply KL penalty, which we find to result in better performance. The learning rate of the critic model in
PPO is 1e-5. The clip ratio is set to 0.2. We also apply entropy bonus to all the above objectives, with a coefficient of 1e-4.
Our experiments are conducted over a single node with 8 NVIDIA H200 GPUs.

D.2. Prompt Templates

We adopt the prompt templates for Qwen models following (Zeng et al., 2025a), as shown in Tables 2 and 3.

Table 2: Prompt template for Qwen2.5-Math-7B.

<lim_startl>system

You are a helpful assistant.<lim_end|>

<lim_startl>user

{input}

Please reason step by step, and put your final answer within \boxed{ }.<lim_endI>
<lim_start/>assistant
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Table 3: Prompt template for Qwen3-4B non-thinking mode.

<lim_start/>system

You are a helpful assistant.<lim_end|>

<lim_startl>user

{input}

Please reason step by step, and put your final answer within \boxed{ }.<lim_endI>
<lim_start/>assistant

<think>

</think>

D.3. Advantage Normalization

The implementation of computing advantage in verl includes an advantage normalization. However, for PSR and NSR,
since we exclude the KL penalty, the advantage is equal to the raw reward (i.e., +1 for PSR and —1 for NSR). In this case,
applying normalization would cause the advantage to be zero, thus eliminating the learning signal. As a result, we disable
this normalization in PSR and NSR’s implementation. A recent work (Xiong et al., 2025) also suggests that the reward
normalization may not be necessary for certain settings.

E. Limitations

‘We discuss the limitations of our work and future work directions as follows.

1. Primary focus on Qwen models. To understand how PSR and NSR interact with and leverage strong model priors,
our experiments concentrate on Qwen2.5 and Qwen3 models that are known for their superior reasoning capabilities.
As different LMs possess varying levels of prior knowledge and inductive biases, an interesting future direction is to
investigate the learning dynamics of PSR, NSR, and W-REINFORCE across a broader range of model families.

2. Performance degradation with extended NSR training. We observe that extensive training with NSR (e.g., over
hundreds of gradient steps) leads to a noticeable decline in performance, whereas W-REINFORCE does not exhibit this
issue. This suggests that NSR’s implicit mechanism for preserving prior knowledge may be insufficient to ensure stable
training over the long term, and incorporating some degree of PSR may be necessary. Future work could explore more
sophisticated methods for integrating NSR and PSR to design more robust RL algorithms, and investigate NSR as a
potential warm-up phase before standard RL training given that it improves the full Pass@¥k spectrum.

3. Beyond sparse and binary rewards. In this work, we focus on the RLVR setup with sparse and binary outcome rewards.
However, many real-world tasks require dense reward signals that offer more fine-grained feedback (e.g., evaluating
intermediate reasoning steps or subjective tasks). It remains an open question how PSR, NSR, or W-REINFORCE
would perform in such settings, where the learning signals are continuous rather than discrete and potentially more
difficult to interpret.
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