
ATOC: Automated Test Oracle Construction
Based on Large Language Models

Xinyang Yin
Department of Electronics and Information Science,

Xi’an Jiaotong University, China
Email: yinxinyang@stu.xjtu.edu.cn

Abstract—Deep learning (DL) frameworks are now becoming
more and more popular due to their wide applications in society,
while testing DL frameworks presents immense obstacles despite
their required high reliability. Current DL framework testing still
focuses on assessing the models or APIs by running themselves
using various fuzzing tools, neglecting the application of large
language models (LLMs) which may assist in constructing test
oracles automatically.

To the best my knowledge, it’s the first time to try to generate
test oracles for DL Libraries automatically based on LLMs. A
pivotal challenge in DL framework testing is accurately giving
out the expected test oracles for a given input, which demands
profound understanding of both the DL frameworks and its
internal operating limitations. Traditional testing approaches,
relying on manually coding test cases and test oracles, fall short
when meeting with the complexity and extensive using of current
DL frameworks. However, LLMs can simplify the process.

Thus, I propose ATOC, an innovative strategy that utilizes
LLMs to automatically construct test oracles for DL frame-
works. By utilizing LLMs’ advanced natural language processing
abilities, ATOC analyzes and comprehends DL frameworks,
facilitating automated test oracle generation and expected output
determination. To evaluate the effectiveness of my approach, I
apply ATOC on testing Pytorch framework with 1500 APIs, and
the results demonstrate that ATOC is effective in detecting bugs
and inconsistencies, especially on crashes (100.0%), flaky (75.0%)
and hangs (66.7%).

Index Terms—Test Oracle, Large Language Models, Automa-
tion.

I. INTRODUCTION

In recent years, the application of artificial intelligence (AI)
technology in the field of network security has become in-
creasingly widespread, especially in automated testing, threat
detection and response. By automating the construction of
corresponding test oracles through AI technology, not only
can testing costs be reduced and testing coverage improved,
but potential security vulnerabilities can also be discovered
in a timely manner, ensuring the security and stability of the
system.

Currently, AI technology is gradually integrating into var-
ious fields of cybersecurity, especially in automated testing.
Through advanced technologies such as DL and natural lan-
guage processing, AI can automatically generate test cases,
simulate attack behavior, and analyze system responses in
real-time, thereby improving the efficiency and accuracy of
testing. In the future, with the continuous development of AI
technology, its application in cybersecurity testing will become
more extensive and in-depth.

To evaluate the effectiveness of ATOC, I answer the follow-
ing research questions:

RQ1: Can ATOC detect bugs and inconsistencies in deep
learning frameworks?

RQ2: Can ATOC qualitatively give out test oracles on code
performance when certain parameters change?

RQ3: Can ATOC explain the test oracles and give out a
confidence score?

In this paper, I make the following contributions:
• A new approach to testing DL frameworks by clearing

and connecting API documentation with test cases;
• The first approach to qualitatively determining changes

in various code performance on DL Libraries by LLMs;
and

• A further evaluation of testing modules on DL frame-
works with the newest stable version.

II. BACKGROUND

In this section, I demonstrate the background of this pa-
per from three aspects: DL Frameworks, DL APIs, and DL
Framework Testing.

A. DL Frameworks

DL have emerged as essential tools in the field of Machine
learning, while DL frameworks are the foundation for im-
plementing DL algorithms, providing various APIs that make
it easier for developers to code and train DL models. These
frameworks abstract the complex mathematical details of DL,
such as gradient computations and so on, which allows DL
frameworks to efficiently promote the training process and
significantly enhance the model performance.

Besides, more and more popular DL frameworks, such as
PyTorch [1], TensorFlow [2], CNTK [3], and Theano [4], offer
abstraction of implementation logic, enabling DL developers
to train and run DL models more freely, without needing to
dig deep into the logic of code implementation or understand
the steps to implement the algorithms.

B. DL APIs

As is demonstrated in the former part, DL frameworks
offer abstraction of implementation logic, which is integrated
into several APIs. DL APIs offer access to calling operation
functions defined inside the frameworks. Taking Pytorch [1] as
a typical example, such operations include Tensor Operations

(e.g. torch.add for add operation), Neural Network Layers (e.g.
torch.nn for the base of complex neural network architecture),
Optimizers (e.g. torch.optim for multiple optimization algo-
rithms), and so on. With the correct parameters given to the
APIs, they can run independently without the interference of
developers, which provides a lot of convenience for developers
to focus more on the approaches and algorithms instead of how
the APIs will run inside.

C. DL Framework Testing

DL framework testing constructs test oracles of several
input test cases, checking the framework itself by confirming
whether those test oracles meet the developer expectations.
Sometimes developers use assertions to check the correctness
of the exact codes, or maybe they will calculate the result
in other methods to check whether these two results are
close or not (e.g. torch.allclose in Pytorch [1]. Through these
steps, developers can check for bugs or inconsistencies in DL
frameworks and then report them to the framework developers,
making contributions to the community.

III. APPROACH

In this section, I describe how I validate the effectiveness of
the approach and how ATOC works to detect and qualitatively
give the expected results.

A. Document Crawler

The Document Crawler is essential in my approach to
systematically collecting API documents from specified DL
frameworks [5]. This step ensures that I have comprehensive
documentation to work with and that references can be pro-
vided for later test cases.

The document crawler operates by browsing through the
structured documentation on PyTorch, collecting all of the
necessary details about the APIs. This process involves parsing
HTML content, extracting relevant data such as function name,
parameter descriptions, return types, and usage examples. The
selected version should meet with the environment I have built,
which is crucial as it ensures that my analysis aligns with the
current version of the frameworks.

After collecting the API documents, a significant pre-
processing phase is undertaken to provide convenience for
LLMs. The raw documents often contain HTML tags and
other formatting contents that can interfere with the model’s
understanding and processing capabilities. Therefore, I take a
series of cleaning steps to remove messy codes, fix garbled
text areas, and standardize the formats across all documents.
This involves removing unnecessary HTML tags and ensuring
a consistent layout for better understanding by the LLMs.

Furthermore, the preprocessed documents are stored in a
structured format, i.e. plain text files, providing convenience
for accessing and generating accurate outputs by LLMs.
Through these methods, I can enhance their ability to un-
derstand and answer complex questions related to PyTorch
functions.

B. Effectiveness Validation

Figure 1 illustrates the validation process applied to GitHub
issues [1], [6] in order to assess the capability of LLMs
in identifying and understanding bugs and inconsistencies
within popular DL frameworks. The validation method is
designed to test the LLM’s abilities in both finding bugs and
inconsistencies within minified repros and telling why bug
happened based on bug reports.

In this effectiveness validation, I first gathered several bug
issues reported for the framework on GitHub, for their wide
acknowledge in the community. These issues are meticulously
selected to ensure they represented a diverse range of bug and
inconsistency types, providing better testing datasets for the
LLMs.

The collected bug issues are then divided into two parts:
minified repros and detailed bug reports. Minified repros are
simplified versions of the original bug-inducing codes, which
are designed to isolate the issue and minimize extraneous
details, making them easier for both humans and models
to analyze. Bug reports typically include a more detailed
description of the bugs and inconsistencies, detailing the steps
leading to the bug, expected status and actual behavior, and
any other relevant logs or error messages.

Before I feed these inputs into the LLMs, a cleaning process
is essential to ensure the clarity of the inputs. This involves
removing irrelevant comments and formatting inconsistencies.
This step is essential as it helps LLMs to focus more attention
on the relevant parts of the codes, enhancing its ability to
accurately generate the results.

Next, the cleaned repros, along with the corresponding
API documents of the DL frameworks, will be fed into the
LLMs. The objective here is to assess the LLM’s ability to
analyze the code, understand the context provided by the API
documentation, and accurately identify the presence of the
bugs or inconsistencies within the repro. This capability is
essential for automated test oracle construction, as it allows
for quick and precise prediction of codes’ behavior without
running.

C. Dataset Training

Figure 2 shows how I train the LLM with fuzzing. Training
codes is developed to mix code generation together with
confidence validation and result checking.

1) Code Generation: To generate test cases of frameworks,
code generator is coded based on TitanFuzz [7]. TitanFuzz
uses Codex to automatically create high-quality seed programs
and runs InCoder to obtain mutations by filling the code. To
perfectly match with the whole program, it’s necessary to
extensively rewrite and customize TitanFuzz.

The primary modifications involve refining the strategy of
code generation. Specifically, the generator is enhanced to
include essential import statements necessary for the context
of the testing frameworks. Additionally, the testing phase
after generation is omitted, which is originally designed to

CleanPytorch Issue Clean Repro

Bug Reports LLM

Repro Based Output

API Document Clean
Clean Document

Bug Based Output

Fig. 1. Validate Process on Issue

Original Seed Mutation Test Case

API Document Clean
Clean Document

LLM Test Oracle

Feedback Based On

Oracle Confidence

Fig. 2. Train Process on Fuzzing

immediately validate the mutated code within TitanFuzz. This
decision is made to simplify the process, as my focus is on
generating a diverse set of test cases rather than immediately
testing their validity. The generated test cases will be fed into
the LLMs for outputs of test oracles.

The code generator operates on an original set of seed
codes provided, which serve as the foundation upon generating
various test cases. For the original seed provided, the generator
mutate them and generate more different test cases, which can
help the LLM to enlarge the train datasets, exploring various
potentially problematic paths that maybe appear when using
the API.

The diversity of the generated test cases is crucial because it
allows the LLMs to learn from a wider range of datasets, which
can assist the models to deal with various cases that might
happen during actual deployment. Furthermore, extending
datasets enhances the generalization abilities of LLMs, making
it more reliable in constructing test oracles of the test cases.

2) Prompt: To facilitate the model training process more
effectively, I set up a prompt template. This template serves
as a structured guide for the model to understand every part
in the prompt and what needs to be predicted. Given the
documentation of the critical API in the needed version, the
model will need to construct test oracles in the desired format
under several limitations.

First of all, there is a test case that the model needs

to analyze and predict the output for. Next, for the clear
understanding of context, there is some explanation about the
API that is crawled before. Based on the test case and the
API explanation, the model needs to answer in the structured
format. By following the structured prompt template, the
model can provide clear, concise, and accurate responses that
meet with the expected format and requirements.

This prompt template includes the following parts:
Result: The model needs to predict the output of test

cases and provide concise and accurate results under the
requirements based on the explanation of the API.

Score: The model needs to provide a confidence score about
the result it gives out of the test cases, which should be a
number between 0 and 100.

Final answer: The final answer of the model should be a
summary of its prediction and confidence score, which is a
final result based on the value of the confidence score and
threshold provided.

Explanation: In this section, the model needs to explain the
reasons for its predictions and evaluations. It should explain
what it find between the test case and API documentation and
how it gains the final answer, citing specific content from the
test case and API documentation as its support.

3) Evaluator: To evaluate the result of LLMs and reduce
the probability of hallucinations, which refer to the generation
of factually incorrect or unreliable information, I utilize a

confidence score within the evaluator. The confidence score
ranges from 0 to 100, providing a quantitative measure of the
reliability of the LLM’s outputs [8]. To significantly minimize
the false alarm rate, I choose a sufficiently large threshold
value of 90 for the confidence score [9]. This strict criterion
helps in filtering out less reliable responses.

However, only relying on a single confidence score gener-
ated by the LLMs might not always construct the most precise
results. Therefore, to achieve a more accurate confidence score
evaluation, I adopt a multi-run approach. Specifically, I execute
the LLMs multiple times with the same input and calculate
the occurrences of each unique output. The confidence of a
particular result is defined as the proportion of times that result
appears among all runs, rather than relying on the single output
of the LLMs. This approach takes advantage of statistics to
provide a more reliable confidence score.

Mathematically, the confidence score can be defined as
follows [8]:

confidence =

n
max
i=0

timesi

n∑
j=0

timesj

(1)

timesi represents the number of times the i-th unique result
is generated in several runs of the LLMs. The numerator of
the equation identifies the times most frequent result appears,
while the denominator sums the total occurrences of all unique
results. This ratio provides a clear indication of the probability
that the most common output is accurate and reliable, therefore
reducing the probability of hallucinations in the final evalua-
tion.

D. Experimental Settings

1) Framework: The whole experiment is running on Py-
torch framework, although when I generate the test cases, both
Pytorch and TensorFlow are frameworks I considered.

2) Trained Model: The training is based on Llama-3.1,
which provides test oracles of various test cases [10].

3) Hardware and Infrastructure: I utilize multiple Ana-
conda environments to switch among generator, evaluator and
different backends. I run all experiments on Ubuntu 20.04.6
LTS with 251Gi of Mem and eight NVIDIA GPUs. For the
convenience of performance analysis, I run the whole program
utilizing a single GPU.

IV. RESULTS

A. RQ1: Can ATOC detect bugs and inconsistencies in deep
learning frameworks?

The primary objective of this research question is to assess
the capability of ATOC in detecting bugs and inconsistencies
within DL frameworks. The results presented in Table I and
Table II offer a comprehensive overview of ATOC’s perfor-
mance in this regard.

Table I details the findings from the validation process, indi-
cating that ATOC successfully detected 1041 inconsistenciess
out of the 3897 test cases that are pre-identified in the DL

frameworks under investigation of GitHub. These bugs are se-
lected because they cause unique errors that could potentially
impact the performance and reliability of ATOC. Notably, in
the samples built from data above, 421 inconsistencies out
of 1800 test cases are highlighted for study in Table II. This
suggests that ATOC demonstrates a strong ability to identify
bugs, although there is still room for improvement in its
coverage and accuracy.

The types of bugs and inconsistencies that are used in the
validation process are diverse, including a range of issues
such as Type Issues, Incorrect Algorithm Implementations,
API Incompatibilities, and others. This variety ensures that
the validation is thorough and can represent the types of issues
that may arise in practice. It is worth noting that as the train-
ing phase progressed, the types of bugs and inconsistencies
detected by ATOC will expand [11].

To further analyze the results, as is shown in Table II, I
studied the FP Error in the above test cases. I classified them
into 3 classes with each class having its own classifications.
It’s notable that most FP Error is happened due to the abilities
of LLMs, so it’s essential to select the generating LLMs with
better confidence.

TABLE I
RESULTS OF DETECTION (FIRST APPROACH)

Unknown Tag True False
Label None True False

Sample 388 991 421

Total 518 2338 1041

Overall, the results of this validation demonstrate that ATOC
has the potential to be a valuable tool for detecting bugs and
inconsistencies in DL frameworks. However, the presence of
undetected bugs and inconsistencies highlights the need for
improvements in detection process. Future research could ex-
plore ways to better enhance ATOC’s accuracy and coverage,
such as utilizing more advanced DL techniques or expanding
the types of bugs and inconsistencies that it is trained to detect.

B. RQ2: Can ATOC qualitatively give out test oracles on code
performance when certain parameters change?

I explore the capability of ATOC to qualitatively assess code
performance and provide test oracles when specific parameters
changes. This assessment is essential for understanding how
well ATOC can identify bugs and inconsistencies in codes’
behavior, particularly under different parameter conditions.

The code generation process within my testing includes
six distinct status: crash, exception, flaky, hangs, notarget,
and valid. Among these status, ’notarget’ is not viewed as
a bug or inconsistency. The status ’exception’ is not detected
in the testing. ’Valid’ status, however, indicates a correctly
functioned test case, which has no need to use for detecting
bugs and inconsistencies.

My primary focus, therefore, falls on the remaining three
status: crash, flaky, and hangs. Each of these status represents

TABLE II
FP ERROR STUDY

Error Type Details Explanation / Examples

Prediction Error

Type Misunderstand Regular/Cloned Tensor is different from Tensor
Relative Parameters Parameter atol and rtol must be either specified or omitted
Added Limitations Think dtype: torch.int32 is not supported but actually supported
Reason Dismatched Move tensor to cpu will decrease the time use

Value Misunderstand Think input data.clone().clone() is different from input data
Think Only About Change No concern about the accuracy of the program’s status
Not Care About Context TypeError: can’t convert cuda:0 device type tensor to numpy

Generations Dismatch

New Program Change But Dismatch Generation is different from the new codes
New Program No Change Parameter Changed but Program Not Changed

Changed More/Less Than Needed Other parameter changed also
Existed Changed Parameter Added For high, torch.randint(2, (5, 3), dtype=torch.int64, high=10)

Import Deleted/Added torch.nn is not defined
Dismatch Implicit Calls Parameter value judge error

Messy Codes New program full of messy codes
Misunderstand Of Documentation Think parameter A impacts the use of funcs

Original Code Error
Original Code With No This API Original code only includes import words

Original Code With Multi-API Can’t judge the change of the parameter

a significant deviation from expected behavior and could have
significant influence on the reliability of the LLMs.

After conducting a series of experiments using ATOC, I
observe that its accuracy in detecting test cases in the ’crash’
status is quite high, as is shown in Table III, approximating
100.0%. This indicates that ATOC is highly effective in
identifying situations where the code terminates abnormally
due to an unhandled bugs or inconsistencies.

However, when I focus on the ’flaky’ and ’hangs’ status,
ATOC’s accuracy decreases. Specifically, for ’flaky’ test cases,
ATOC’s accuracy drops to 75.0% in Table III. This decrease
suggests that while ATOC can identify some of flakiness, it
sometimes couldn’t judge well when codes meet with ’flaky’
phenomenon.

Similarly, for ’hangs’ status, where the code fails to com-
plete execution within a reasonable timescale, Table III shows
that ATOC’s accuracy further decreases to 66.7% when I focus
on ’hangs’ status. This lower accuracy may be attributed to the
complexity involved in detecting hangs, which includes the
threshold of ’hangs’, background processes and other system-
level factors.

TABLE III
RESULTS ON PARAMETER CHANGE (FIRST APPROACH)

Crash Flaky Hangs
Accuracy 100.0% 75.0% 66.7%

Contributions are made to report these bugs or inconsis-
tencies in the community on GitHub. Take the series of
torch.addbmm() as an example [12]. It is described in the
official documentation that if beta is 0, then input will be
ignored, and nan and inf in it will not be propagated, which
means that whether input is an expected matrix or not, there

shouldn’t be an error happened for the misuse of input. Instead,
it should ignore this just like input doesn’t exist. But now
when beta is set to 0, with input of unexpected size, which is
shown in Figure 3, it will raise error. This bug is now fixed
by changing the description into ignoring the content of input,
which also proved the validation of ATOC.
Figures.md 2025-03-01

1 / 1

import torch
import numpy as np
x1 = torch.tensor(np.random.randn(10, 10))
x2 = torch.tensor(np.random.randn(10))
vec1 = torch.tensor(np.random.randn(100, 3, 4))
vec2 = torch.tensor(np.random.randn(100, 4, 5))
vec3 = torch.tensor(np.random.randn(3, 4))
vec4 = torch.tensor(np.random.randn(4, 5))
vec5 = torch.tensor(np.random.randn(4))
Below shows 4 usage in 4 funcs with: beta==0 && input of unexpected size
out1 = torch.addbmm(x1, vec1, vec2, beta=0) # (1) torch.addbmm()
out2 = torch.baddbmm(x1, vec1, vec2, beta=0) # (2) torch.baddbmm()
out3 = torch.addmm(x1, vec3, vec4, beta=0) # (3) torch.addmm()
out4 = torch.addmv(x2, vec3, vec5, beta=0) # (4) torch.addmv()

Fig. 3. Issue Example

Despite these limitations, the results demonstrate that ATOC
has pretty potential in qualitative assessment of code per-
formance, particularly in identifying critical failures such as
crashes. The challenges observed in detecting flaky and hangs
status highlight areas for future improvement. Overall, these
findings provide valuable insights into ATOC’s strengths and
weaknesses, guiding future research and development efforts
in automated test oracle construction.

C. RQ3: Can ATOC explain the test oracles and give out a
confidence score?

As demonstrated in RQ1, during the training phase of
ATOC, I broaden the types of bugs and inconsistencies it could
detect. This includes a diverse range of issues such as Type

Issue, Tensor Shape Misalignment, Incorrect Algorithm Imple-
mentation, Environment Incompatibility, API Incompatibility,
API Misuse, Incorrect Assignment, Incorrect Exception Han-
dling, Misconfiguration, Numerical Issue, Concurrency Issue,
Dependent Module Issue and so on [11]. This comprehensive
coverage is designed to ensure that ATOC could effectively
identify and address widely potential problems in the DL
frameworks. Figure 4 shows the loss change in the training
phase.

Fig. 4. Training Loss

When integrating LLMs into ATOC to generate confidence
scores and reasoning, I observe an impressive accuracy rate of
up to 76.4%. This high accuracy highlights the efficiency of
ATOC in not only generating test oracles but also explaining
them and providing a qualitative measure of the code perfor-
mance.

The confidence score, generated from the LLM’s analysis
of the test cases and its corresponding context, serves as an
indication of the probability of correctness. This confidence
score can be particularly useful that by generating this addi-
tional information, ATOC can make decisions more wisely,
constructing more reliable test oracles for users.

Moreover, the ability to explain the test oracles through
reasoning is pretty useful when constructing test oracles au-
tomatiacally, which can help ATOC to better understand test
cases and enhance the overall reliability of the test oracles.

So the findings from RQ3 demonstrate that ATOC is capable
of not only generating test oracles but also explaining them
and providing a confidence score to assess their reliability. This
comprehensive approach to construct test oracles automatically
may continue to evolve and improve in the future.

V. LIMITATIONS AND THREATS TO VALIDATION

Since I focus more on the bugs and inconsistencies in
DL frameworks, the model may lack precision in locating
and fixing bugs and inconsistencies. Based on fine-tuning
pre-trained models, the effectiveness of the model may be
affected. Therefore, I have strengthened training and prompt

engineering to limit the output as much as possible, which can
make the results more credible.

My approach is based on LLM, which results in poor
interpretability of the output. And also, some complex DL
frameworks may contain non deterministic layers, so the
output may differ slightly when given the same input. Alterna-
tively, I can use various LLMs for cross training and validation,
which remains as future work.

VI. RELATED WORK

To the best my knowledge, I’m the first to generate test
oracles for DL Libraries automatically based on LLMs.

Automatically testing machine learning libraries: Auto-
matic testing of machine learning libraries has become active
in the past several years. Dutta et al. [13] use ProbFuzz
to test probabilistic programming systems. Srisakaokul et al.
[14] detect inconsistencies between several implementations
of common machine learning algorithms. Dwarakanath et al.
[15] detect inconsistencies in machine learning libraries by
transforming between training and testing datasets. All of them
are focusing on the machine learning libraries.

Classification of bugs on DL frameworks: Makkouk et al.
[16] study the performance and non performance deficiencies
of the DL frameworks, comparing them quantitatively and
qualitatively and classifying the reasons for the performance
deficiencies. Guo et al. [17] propose Audee to automatically
test logical errors, crashes, and NaN errors in DL frameworks,
which can identify inconsistencies between DL frameworks
and locate layers that cause inconsistencies or bugs. Chen et
al. [11] propose TenFuzz, which is a prototype DL framework
testing tool that provides a classification of the primary causes
and symptoms of DL framework errors. TenFuzz proposes a
promising direction that we may shorten the training process
by simplifying models’ structures and reducing the amount
of training datasets. These classification methods can help
me better understand DL frameworks and validate program
effectiveness more efficiently.

Generating test cases on DL frameworks: Deng et al.
[7] generate TitanFuzz to directly utilize LLMs to generate
input programs for fuzzing DL libraries, using Codex to
automatically create high-quality seed programs for evolution-
arily fuzzing algorithms, and running InCoder to fill code to
obtain mutations. TitanFuzz executes the generated differential
testing programs on different backends finally to detect bugs
in DL libraries. Georgescu et al. [18] study the effectiveness
of differential testing on identifying bugs in Kotlin compiler,
generating random test cases based on language features.
However, these prior works focus on generating test cases only
and don’t construct test oracles later.

Constructing test oracles on DL frameworks: Zhang et
al. [6] develop Citadel to collect existing error reports, identify
problematic APIs, and generate test cases more effectively for
testing, calling the stack to find similar APIs. Deng et al.
[19] propose DeepREL to collect all API descriptions from
documents and compare them using SBEncoder encoding, au-
tomatically inferring all possibly relational APIs based on API

syntax and semanteme. None of these techniques construct test
oracles by using LLMs.

VII. CONCLUSION

In this paper, I propose ATOC, a new approach to automati-
cally construct test oracles of DL frameworks based on LLMs.
ATOC operates by gathering API documents of specified
DL frameworks using the document crawler, which serves
as resources for LLMs to learn more about the exact API.
Then, ATOC employs LLMs to detect and understand bugs
and inconsistencies within DL frameworks. Its effectiveness
in identifying the test cases is confirmed through meticulous
experimental validation.

Furthermore, ATOC extends beyond mere bug detection.
It can qualitatively assess code performance changes upon
parameter adjustments and clarify test oracles, generating
confidence scores to its predictions. This capability to generate
confidence scores and reasons improves the efficiency and
reliability of DL framework testing.

This paper calls for more attention for testing DL frame-
works through LLMs not just by generating test oracles
manually. It is noted that there are limitations to ATOC’s
accuracy in locating and fixing bugs with poor interpretability
of models. Future work includes strengthening training and
prompt engineering. Exploring the use of various LLMs for
cross-training and validation may work as well. Overall, ATOC
represents a significant step forward in automated test oracle
construction and has the potential to improve the accuracy and
reliability of testing in DL frameworks.

ACKNOWLEDGMENT

I would like to extend my heartfelt thanks to Minnan Luo
and Heng Wang for their invaluable cultivation and support
throughout this course. Additionally, I am immensely grateful
to Xiaohong Guan, Chao Shen, Chenhao Lin and Xiaoyu
Zhang for their meticulous guidance and assistance during
the project. Their extensive professional knowledge, rigorous
academic approach, and genuine concern for students’ devel-
opment have significantly enhanced my learning experience
and deepened my understanding. I’m truly appreciative of their
efforts and support.

REFERENCES

[1] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski et al., “Pytorch 2: Faster machine
learning through dynamic python bytecode transformation and graph
compilation,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2024, pp. 929–947.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[3] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining, 2016, pp. 2135–2135.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. P. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu
and gpu math compiler in python.” in SciPy, 2010, pp. 18–24.

[5] “Pytorch documentation - pytorch 2.5 documentation.” [Online].
Available: https://pytorch.org/docs/2.5/

[6] X. Zhang, J. Zhai, S. Ma, S. Wang, and C. Shen, “Citadel: Context
similarity based deep learning framework bug finding,” arXiv preprint
arXiv:2406.12196, 2024.

[7] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proceedings of the 32nd ACM SIGSOFT interna-
tional symposium on software testing and analysis, 2023, pp. 423–435.

[8] Z. Lin, S. Trivedi, and J. Sun, “Generating with confidence: Uncertainty
quantification for black-box large language models,” arXiv preprint
arXiv:2305.19187, 2023.

[9] J. Chen, J. Yoon, S. Ebrahimi, S. O. Arik, T. Pfister, and S. Jha,
“Adaptation with self-evaluation to improve selective prediction in llms,”
arXiv preprint arXiv:2310.11689, 2023.

[10] “Hugging face – the ai community building the future.” [Online].
Available: https://huggingface.co/

[11] J. Chen, Y. Liang, Q. Shen, J. Jiang, and S. Li, “Toward understanding
deep learning framework bugs,” ACM Transactions on Software Engi-
neering and Methodology, vol. 32, no. 6, pp. 1–31, 2023.

[12] “Fix ignore description in torch.addbmm(), torch.addmm(),
torch.addmv() and torch.baddbmm().” [Online]. Available: https:
//github.com/pytorch/pytorch/issues/146611

[13] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing probabilis-
tic programming systems,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018, pp. 574–586.

[14] S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T. Xie, “Multiple-
implementation testing of supervised learning software.” in AAAI Work-
shops, 2018, pp. 384–391.

[15] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. J. C. Bose,
N. Dubash, and S. Podder, “Identifying implementation bugs in ma-
chine learning based image classifiers using metamorphic testing,” in
Proceedings of the 27th ACM SIGSOFT international symposium on
software testing and analysis, 2018, pp. 118–128.

[16] T. Makkouk, D. J. Kim, and T.-H. P. Chen, “An empirical study on per-
formance bugs in deep learning frameworks,” in 2022 ieee international
conference on software maintenance and evolution (icsme). IEEE, 2022,
pp. 35–46.

[17] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee:
Automated testing for deep learning frameworks,” in Proceedings of
the 35th IEEE/ACM international conference on automated software
engineering, 2020, pp. 486–498.

[18] C. Georgescu, M. Olsthoorn, P. Derakhshanfar, M. Akhin, and
A. Panichella, “Evolutionary generative fuzzing for differential testing
of the kotlin compiler,” in Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering,
2024, pp. 197–207.

[19] Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning
libraries via automated relational api inference,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 44–
56.

https://pytorch.org/docs/2.5/
https://huggingface.co/
https://github.com/pytorch/pytorch/issues/146611
https://github.com/pytorch/pytorch/issues/146611

	Introduction
	Background
	DL Frameworks
	DL APIs
	DL Framework Testing

	Approach
	Document Crawler
	Effectiveness Validation
	Dataset Training
	Code Generation
	Prompt
	Evaluator

	Experimental Settings
	Framework
	Trained Model
	Hardware and Infrastructure

	Results
	RQ1: Can ATOC detect bugs and inconsistencies in deep learning frameworks?
	RQ2: Can ATOC qualitatively give out test oracles on code performance when certain parameters change?
	RQ3: Can ATOC explain the test oracles and give out a confidence score?

	Limitations and Threats to Validation
	Related Work
	Conclusion
	References

