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Abstract

We study the asymptotic generalization of an overparameterized linear model for
multiclass classification under the Gaussian covariates bi-level model introduced in
Subramanian et al. (2022), where the number of data points, features, and classes all
grow together. We fully resolve the conjecture posed in Subramanian et al. (2022),
matching the predicted regimes for generalization. Furthermore, our new lower
bounds are akin to an information-theoretic strong converse: they establish that the
misclassification rate goes to 0 or 1 asymptotically. One surprising consequence of
our tight results is that the min-norm interpolating classifier can be asymptotically
suboptimal relative to noninterpolating classifiers in the regime where the min-norm
interpolating regressor is known to be optimal.
The key to our tight analysis is a new variant of the Hanson-Wright inequality which
is broadly useful for multiclass problems with sparse labels. As an application, we
show that the same type of analysis can be used to analyze the related multilabel
classification problem under the same bi-level ensemble.

1 Introduction

In this paper, we directly follow up on a specific line of work initiated by Subramanian et al. (2022);
Wu and Sahai (2023). For the sake of self-containedness, we briefly reiterate the context, directing
the reader to Subramanian et al. (2022) and the references cited therein for more. A broader story can
be found in Bartlett et al. (2021); Belkin (2021); Dar et al. (2021); Oneto et al. (2023).

Classical statistical learning theory intuition predicts that highly expressive models, which can
interpolate random labels (Zhang et al., 2016; 2021), ought not to generalize well. However, deep
learning practice has seen such models performing well when trained with good labels. Resolving
this apparent contradiction has recently been the focus of a multitude of works, and this paper builds
on one particular thread of investigation that can be rooted in Bartlett et al. (2020); Muthukumar
et al. (2020) where the concept of benign/harmless interpolation was crystallized in the context of
overparameterized linear regression problems and conditions given for when this can happen. In
Muthukumar et al. (2021), a specific toy "bi-level model" with Gaussian features was introduced to
study overparameterized binary classification and show that successful generalization could happen
even beyond the conditions for benign interpolation for regression. Following the introduction of
the corresponding multi-class problem in Wang et al. (2021) with a constant number of classes, an
asymptotic setting where the number of classes can grow with the number of training examples was
introduced in Subramanian et al. (2022) where a conjecture was presented for when minimum-norm
interpolating classifiers will generalize. We are now in a position to state our main contributions;
afterwards, we expand on the related works.
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Our contributions

Our main contribution is crisply identifying the asymptotic regimes where an overparameterized
linear model which performs minimum-norm interpolation does and does not generalize for multiclass
classification under a Gaussian features assumption, thus resolving the main conjecture posed by
(Subramanian et al., 2022). We improve on the analysis of Subramanian et al. (2022); Wu and Sahai
(2023), covering all regimes with the asymptotically optimal misclassification rate. When the model
generalizes, it does so with a misclassification rate o(1), and we show a matching "strong converse"
establishing when it misclassifies, it does so with rate 1 − o(1), where the explicit rate is nearly
identical to that of random guessing. The critical component of our analysis is a new variant of the
Hanson-Wright inequality, which applies to bilinear forms between a vector with subgaussian entries
and a vector that is bounded and has soft sparsity, a notion we will define in Section 4.2. We show
how this tool can be used to analyze other multiclass problems, such as multilabel classification.

1.1 Brief treatment of related work

Our thread begins with a recent line of work that analyzes the generalization behavior of overparame-
terized linear models for regression (Hastie et al., 2022; Mei and Montanari, 2022; Bartlett et al., 2020;
Belkin et al., 2020; Muthukumar et al., 2020). These simple models demonstrate how the capacity
to interpolate noise can actually aid in generalization: training noise can be harmlessly absorbed
by the overparameterized model without contaminating predictions on test points. In effect, extra
features can be regularizing (in the context of descent algorithms’ implicit regularization (Soudry
et al., 2018; Ji and Telgarsky, 2019; Engl et al., 1996; Gunasekar et al., 2018)), but an excessive
amount of such regularization causes regression to fail because even the true signal will not survive
the training process. Although works in this thread focus on very shallow networks, Chatterji and
Long (2023) established that deeper networks can behave similarly. Note that recently, Mallinar et al.
(2022) called-out an alternative regime (behaving like 1-nearest-neighbor learning) called "tempered"
overfitting in which training noise is not completely absorbed but the true signal does survive training.

The thread continues in a line of work that studies binary classification (Muthukumar et al., 2021;
Chatterji and Long, 2021; Wang and Thrampoulidis, 2021) in similar overparameterized linear models.
While confirming that the basic story is similar to regression, these works identify a further surprise:
binary classification can work in some regimes where the corresponding regression problem would
not work1 due to the regularizing effect of overparameterization being too strong. Just as in the
regression case, the results here are sharp in toy models: we can exactly characterize where binary
classification using an interpolating classifier asymptotically generalizes.

With binary classification better understood, the thread continues to multiclass classification. After all,
the current wave of deep learning enthusiasm originated in breakthrough performance in multiclass
classification, and we have seen a decade of ever larger networks trained on ever larger datasets with
ever more classes Kaplan et al. (2020). Using similar toy models (Muthukumar et al., 2020; 2021;
Wang et al., 2022), the constant number of classes case was studied in Wang et al. (2021) to recover
results similar to binary classification and subsequently generalized to general convex losses with
regularization in Loureiro et al. (2021) and student-teacher networks in Cornacchia et al. (2023).

Subramanian et al. (2022) further introduced a model where the number of classes grows with the
number of training points and proved an achievability result on how fast the number of classes can
grow while still allowing the interpolating classifier to asymptotically generalize. While Subramanian
et al. (2022) gave a conjecture for what the full region should be, there was no converse proof, and
they could not show generalization in entire conjectured region. Wu and Sahai (2023) proved a partial
weak converse; they showed that the misclassification rate is bounded away from 0 — rather than
tending to 1 — in some of the predicted regimes.

The model, formally defined in the following section, is a stylized version of the well-known spiked
covariance model (Johnstone, 2001; Donoho et al., 2018). On the theoretical front, it is related to
several problems such as PCA variants (Montanari and Richard, 2015; Richard and Montanari, 2014)

1Regression failing in the overparameterized regime is linked to the empirical covariance of the limited
data not revealing the spiked reality of the underlying covariance (Wang and Fan, 2017). See Appendix J of
Subramanian et al. (2022). When regression doesn’t generalize, we also get "support-vector proliferation"
in classification problems (Muthukumar et al., 2021; Hsu et al., 2021) which is also intimately related to the
phenomenon of "neural collapse" (Papyan et al., 2020) as discussed, for example, in Xu et al. (2023).
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and community detection in the stochastic block model (Abbe, 2017). These models have also been
applied in practice for climate studies and functional data analysis (Johnstone, 2001). At a high level,
spiked covariance models can be interpreted as a linearized version of the manifold hypothesis.

2 Problem setup

The following exposition is lifted from Subramanian et al. (2022), which we include for the sake of
staying consistent and self-contained. In Appendix K, we include an alternative high level framing of
the problem which readers may find helpful for intuition.

We consider the multiclass classification problem with k classes. The training data consists of n pairs
{xi, ℓi}ni=1 where xi ∈ Rd are i.i.d standard Gaussian vectors2. We assume that the labels ℓi ∈ [k]
are generated as follows.

Assumption 1 (1-sparse noiseless model). The class labels ℓi are generated based on which of the
first k dimensions of a point xi has the largest value,

ℓi = argmax
m∈[k]

xi[m]. (1)

Let us emphasize at this point that the classifier that we analyze only observes the training data, and
does not use any of the data-generating assumptions.

For a vector x, we index its jth entry with x[j]. Hence, under Assumption 1, xi[m] can be interpreted
as how representative of class m the ith training point is.

For clarity of exposition in the analysis, we make explicit a feature weighting that transforms the
training points:

xwi [j] =
√
λjxi[j] ∀j ∈ [d]. (2)

Here λ ∈ Rd contains the squared feature weights. The feature weighting serves the role of favoring
the true pattern, something that is essential for good generalization. Again, we emphasize that the
classifier does not do any reweighting of features; this explicit step is purely syntactic. 3

The weighted feature matrix Xw ∈ Rn×d is given by

Xw = [xw1 · · · xwn ]
⊤
=
[√

λ1z1 · · ·
√
λdzd

]
(3)

where we introduce the notation zj ∈ Rn to contain the jth feature from the n training points. Note
that zj ∼ N(0, In) are i.i.d Gaussians. We use a one-hot encoding for representing the labels as the
matrix Y oh ∈ Rn×k

Y oh =
[
yoh
1 · · · yoh

k

]
, where yoh

m [i] =

{
1, if ℓi = m

0, otherwise
. (4)

Since we consider linear models, we center the one-hot encodings and define

ym ≜ yoh
m − 1

k
1. (5)

2Following previous work, we are staying within a Gaussian features framework. However, recent develop-
ments have confirmed that these models are actually predictive when the features arise from nonlinearities in a
lifting, as long as there is enough randomness underneath (Hu and Lu, 2022; Lu and Yau, 2022; Goldt et al.,
2022; Misiakiewicz, 2022; McRae et al., 2022; Pesce et al., 2023; Kaushik et al., 2023).

3Our weighted feature model is equivalent to other works (e.g. Muthukumar et al. (2021)) that assume that
the covariates come from a d−dimensional anisotropic Gaussian with a covariance matrix Σ that favors the
truly important directions (Wei et al., 2022). These directions do not have to be axis-aligned — we make that
assumption only for notational convenience. In reality, the optimizer will never know these directions a priori.
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Our classifier consists of k coefficient vectors f̂m for m ∈ [k] that are learned by minimum-norm
interpolation (MNI) of the zero-mean one-hot variants using the weighted features:4

f̂m = argmin
f

∥f∥2 (6)

s.t. Xwf = ym. (7)

We can express these coefficients in closed form as

f̂m = (Xw)⊤
(
Xw(Xw)⊤

)−1
ym. (8)

On a test point xtest ∼ N(0, Id) we predict a label as follows: First, we transform the test point
into the weighted feature space to obtain xwtest where xwtest[j] =

√
λjxtest[j] for j ∈ [d]. Then we

compute k scalar “scores” and assign the class based on the largest score as follows:

ℓ̂ = argmax
1≤m≤k

f̂⊤
mxwtest. (9)

By assumption, a misclassification event Eerr occurs whenever

argmax
1≤m≤k

xtest[m] ̸= argmax
1≤m≤k

f̂⊤
mxwtest. (10)

We study where the MNI generalizes in an asymptotic regime where the number of training points,
features, classes, and feature weights all scale according to the bi-level ensemble model5:
Definition 1 (Bi-level ensemble). The bi-level ensemble is parameterized by p, q, r and t where
p > 1, 0 ≤ r < 1, 0 < q < (p − r) and 0 ≤ t < r. Here, parameter p controls the extent of
overparameterization, r determines the number of favored features, q controls the weights on favored
features and t controls the number of classes. The number of features (d), number of favored features
(s), and number of classes (k) all scale with the number of training points (n) as follows:

d = ⌊np⌋, s = ⌊nr⌋, a = n−q, k = ck⌊nt⌋, (11)

where ck is a positive integer. Define the feature weights by

√
λj =


√

ad
s , 1 ≤ j ≤ s√
(1−a)d
d−s , otherwise

. (12)

We introduce the notation λF ≜ ad
s and λU ≜ (1−a)d

d−s to distinguish between the (squared) favored
and unfavored weights, respectively.

We visualize the bi-level model in Fig. 1, reproduced from Subramanian et al. (2022). Intuitively,
the bi-level ensemble captures a simple family of overparameterized problems where learning can
succeed. Although there are d = np features where d ≫ n, there is a low dimensional subspace of
favored, higher weight features of dimension s = nr, and s ≪ n. From this perspective, the bi-level
model can be viewed as a parameterized version of an approximate linear manifold hypothesis.
Depending on the signal strength, the noise added from the d− s unfavored features can either help
generalization (“benign overfitting”) or overwhelm the true signal and cause the classifier to fail.

3 Main results

In this section we state our main results and compare them to what was known and conjectured
previously. Subramanian et al. (2022) use heuristic calculations to conjecture necessary and sufficient
conditions for the bi-level model to generalize; we restate the conjecture here for reference.

4The classifier learned via this method is equivalent to those obtained by other natural training methods (SVMs
or gradient-descent with exponential tailed losses like cross-entropy) under sufficient overparameterization
(Wang et al., 2021; Kaushik et al., 2023). Recently, Lai and Muthukumar (2023) showed via an extension of Ji
and Telgarsky (2021) that a much broader category of losses also asymptotically result in convergence to the
same MNI solution for sufficiently overparameterized classification problems.

5Such models are widely used to study learning even beyond this particular thread of work. For example,
Tan et al. (2023) uses this to understand the privacy/generalization tradeoff of overparameterized learning.
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Figure 1: Bi-level feature weighting model. The first s features have a higher weight and are favored
during minimum-norm interpolation. These can be thought of as the square-roots of the eigenvalues
of the feature covariance matrix Σ in a Gaussian model for the covariates as in Bartlett et al. (2020).

Conjecture 3.1 (Conjectured bi-level regions). Under the bi-level ensemble model (Definition 1),
when the true data generating process is 1-sparse (Assumption 1), as n → ∞, the probability of
misclassification Pr[Eerr] for MNI as described in Eq. (6) satisfies

Pr[Eerr] →
{
0, if t < min {1− r, p+ 1− 2max {1, q + r}}
1, if t > min {1− r, p+ 1− 2max {1, q + r}} . (13)

Our main theorem establishes that Conjecture 3.1 indeed captures the correct generalization behavior
of the overparameterized linear model.
Theorem 3.2 (Generalization for bi-level-model). Under the bi-level ensemble model (Definition 1),
when the true data generating process is 1-sparse (Assumption 1), Conjecture 3.1 holds.

For comparison, we quote the best known previous positive and negative results for the bi-level model,
which only hold in the restricted regime where regression fails (q + r > 1).
Theorem 3.3 (Generalization for bi-level model (Subramanian et al., 2022)). In the same setting as
Conjecture 3.1, in the regime where regression fails (q + r > 1), as n → ∞ we have Pr[Eerr] → 0 if

t < min {1− r, p+ 1− 2(q + r), p− 2, 2q + r − 2}. (14)

Theorem 3.4 (Misclassification in bi-level model (Wu and Sahai, 2023)). In the same setting as
Conjecture 3.1, in the regime where regression fails (q + r > 1), as n → ∞ we have Pr[Eerr] ≥ 1

2 if

t > min {1− r, p+ 1− 2(q + r)}. (15)

Let us interpret the different conditions in Conjecture 3.1. To interpret the condition t < 1− r, first
rearrange it to t+ r < 1. Recall that the parameter r controls the number of favored features, and
hence is a proxy for the “effective dimension” of the problem. On the other hand, the parameter t
controls the number of classes, so in a loose sense there are nt+r parameters being learned. From
this perspective, the condition t+ r < 1 says that the problem is “effectively underparameterized”.

The other condition on p+1− 2max {1, q + r} comes from looking at the noise from the unfavored
features. To see why, recall that the squared favored feature weighting is λF = np−q−r. So for fixed
p, the quantity q + r controls the level of favored feature weighting. When q + r > 1, the favored
feature weighting is small enough that regression fails, and the empirical covariance becomes flat.
In this case, the condition becomes t < p + 1 − 2(q + r) = (p − q − r) + 1 − (q + r). As q + r
increases, the amount of favoring decreases, making it harder to generalize.

For ease of comparison between our main result and Theorems 3.3 and 3.4, we visualize the regimes
in Fig. 2, as in Subramanian et al. (2022); Wu and Sahai (2023). In particular, the blue starred and
dashed regions in Fig. 2 indicate how Theorem 3.3 only applies where regression fails. In contrast,
our new result holds regardless of whether regression fails or not, as in the the green diamond region
and light blue triangle regions. The regions are also completely tight; the looseness between the prior
Theorem 3.3 and our result can be seen in the light blue square region.
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The weak converse in the prior Theorem 3.4 captures some of the correct conditions for misclassifica-
tion, but again only when q+ r > 1. As depicted in the maroon X region for r < 0.25 in Fig. 2b, our
main theorem gives a strong converse, whereas Theorem 3.4 has nothing to say because q + r < 1.
Theorem 3.4 also only proves that the misclassification rate is asymptotically at least 1

2 . In the red
circle and maroon X regions, we illustrate how our result pushes the misclassification rate to 1− o(1),
which requires a more refined analysis. We elaborate on this further in Section 4.

We remark that it is simpler to analyze the case where regression fails, as the random matrices that
arise in the analysis are flat, i.e. approximately equal to a scaled identity matrix. However, in the
regime where regression works, the same matrices have a spiked spectrum, which complicates the
analysis. To smoothly handle both cases, we leverage a new variant of the Hanson-Wright inequality
to show concentration of certain sparse bilinear forms; see Section 4.1 for more details.

Figure 2: Example of regimes for multiclass/binary classification and regression. The white regions
correspond to invalid regimes under the bi-level model. The entirety of 2b and all the light blue
regions are new to this paper, as is showing that the error tends to 1 in the maroon regions.

4 Technical overview

We now sketch out the proof for our main theorem. As in Subramanian et al. (2022); Wu and Sahai
(2023), the starting point is writing out the necessary and sufficient conditions for misclassification.

Assume without loss of generality that the test point xtest ∼ N(0, Id) has true label α for some
α ∈ [k]. Let xwtest be the weighted version of this test point. From (10), an equivalent condition for
misclassification is that for some β ̸= α, β ∈ [k], we have f̂⊤

α xwtest < f̂⊤
β xwtest, i.e. the score for β

outcompetes the score for α. Define the Gram matrix A ≜ Xw(Xw)⊤, the relative label vector
∆y ≜ yα−yβ ∈ {−1, 0, 1}n, and the relative survival vector ĥα,β ∈ Rd which compares the signal
from α and β:

ĥα,β [j] ≜ λ
−1/2
j (f̂α[j]− f̂β [j]) (16)

= z⊤
j A

−1∆y, (17)

where to obtain the last line we have used (8). By converting the misclassification condition into the
unweighted feature space we see that we will have errors when

λαĥα,β [α]xtest[α]− λβĥβ,α[β]xtest[β] <
∑

j /∈{α,β}

λjĥβ,α[j]xtest[j]. (18)

Define the contamination term CNα,β :

CNα,β ≜
√ ∑
j /∈{α,β}

λ2
j (ĥβ,α[j])

2. (19)

Note that CNα,β normalizes the RHS of (18) into a standard Gaussian. Indeed, define

Z(β) ≜
1

CNα,β

∑
j /∈{α,β}

λjĥβ,α[j]xtest[j] ∼ N(0, 1). (20)

6



Since α, β ∈ [k] are favored, we have λα = λβ = λF . Hence, an equivalent condition for
misclassification is that there exists some β ̸= α, β ∈ [k] such that

λF
CNα,β

(ĥα,β [α]xtest[α]− ĥβ,α[β]xtest[β]) < Z(β). (21)

We now translate the above criterion into sufficient conditions for correct classification and misclassi-
fication and analyze these two cases separately.

Correct classification: For correct classification, it suffices for the minimum value of the LHS of
Eq. (21) to outcompete the maximum value of the RHS, where the max is taken over β ∈ [k], β ̸= α.
Some algebra, as in Subramanian et al. (2022), shows that we correctly classify if

minβ λF ĥα,β [α]

maxβ CNα,β︸ ︷︷ ︸
SU/CN ratio

(
min
β

(xtest[α]− xtest[β])︸ ︷︷ ︸
closest feature margin

− max
β

|xtest[β]|︸ ︷︷ ︸
largest competing feature

·max
β

∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣︸ ︷︷ ︸
survival variation

)

> max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (22)

We will show that under the conditions specified in Conjecture 3.1, with high probability, the relevant
survival to contamination ratio SU/CN grows at a polynomial rate nv for some v > 0, whereas the
term in the parentheses shrinks at a subpolynomial rate ω(n−δ) for any δ > 0. Further, by standard
subgaussian maximal inequalities, the magnitudes of the normalized contamination is no more than
O(
√
log(nk)) with high probability. Thus, with high probability the LHS outcompetes the RHS,

leading to correct classification. See Section 4.1 for more discussion on how we prove tight bounds
on the survival-to-contamination ratios.

Misclassification: On the other hand, for misclassification it suffices for the maximum abso-
lute value of the LHS of Eq. (21) to be outcompeted by the maximum value of the RHS. Some
manipulations yield the following sufficient condition for misclassification:

maxβ λF

(∣∣∣ĥα,β [α]∣∣∣+ ∣∣∣ĥβ,α[β]∣∣∣)
minβ CNα,β︸ ︷︷ ︸

SU/CN ratio

· max
γ∈[k]

|xtest[γ]|︸ ︷︷ ︸
largest label-defining feature

< max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (23)

We show that within the misclassification regimes in Conjecture 3.1, the survival-to-contamination
ratio SU/CN shrinks at a polynomial rate n−w for some w > 0. By standard subgaussian maximal
inequalities, the largest label-defining feature is O(

√
log(nk)) with high probability. Gaussian

anticoncentration implies that for some β ̸= α, β ∈ [k], Z(β) outcompetes the LHS with probability at
least 1

2 − o(1). Hence, we conclude that the model will misclassify with rate at least 1
2 asymptotically.

Let us now describe how to boost the misclassification rate to 1 − o(1). Notice that the above
argument only considered the competition between the LHS of Eq. (23) and one of the Z(β)’s on
the RHS instead of the maximum Z(β). It’s not hard to see from the definition of Z(β) in Eq. (20)
that the Z(β) are jointly Gaussian. For intuition’s sake, assuming the Z(β) were independent, then
maxβ Z

(β) would outcompete with probability ( 12 − o(1))k−1.

In reality, the Z(β) are correlated, but we are able to show that the maximum correlation between the
Z(β) is 1

2 + o(1) with high probability. An application of Slepian’s lemma (Slepian (1962)) and some
explicit bounds on orthant probabilities (Pinasco et al. (2021)) implies that maxβ Z

(β) > 0 with
probability at least 1− 1

k1+o(1) . Another application of anticoncentration implies that maxβ Z
(β) >

n−w with probability 1− o(1), which finishes off the proof.

4.1 Bounding the survival-to-contamination ratio

Note that the critical survival-to-contamination ratio appears in both Eqs. (22) and (23). The most
involved part of the proof is nailing down the correct order of growth of the survival to contamination
ratio; a similar analysis tightly bounds the survival variation and the correlation structure of the Z(β).
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To understand the relative survival and contamination, we must analyze the bilinear forms ĥα,β [j] =
z⊤
j A

−1∆y. Similarly, to control the correlation of the Z(β), we must understand the correlation
between the ĥα,β vectors, which reduces to understanding the bilinear forms z⊤

j A
−1yα for j ∈

[d], α ∈ [k]. The main source of inspiration for bounding these bilinear forms is the heuristic style of
calculation carried out in Appendix K of Subramanian et al. (2022) that leads to Conjecture 3.1.

To simplify the discussion, we temporarily restrict to the regime where regression fails (q + r > 1).
However, our main technical tool seamlessly generalizes to the regime where regression works
(q + r < 1). In the regime where regression fails, A−1 turns out to have a flat spectrum: A−1 ≈ αI
for some constant α > 0. Assume for now that A−1 is exactly equal to a scaled identity matrix.
Then the survival is proportional to z⊤

α∆y, which is a random inner product. Similarly, to bound the
contamination terms we must control the random inner product z⊤

j ∆y for j ̸∈ {α, β}.

Since ∆y is a sparse vector — it only has 2n
k nonzero entries in expectation — a quick computation

reveals that E[z⊤
α∆y] = Õ(nk ) and E[z⊤

j ∆y] = 0. The deciding factor, then, is how tightly these
quantities concentrate around their means. A naïve application of Hoeffding implies a concentration
radius of order Õ(

√
n), which would lead to looseness in the overall result. The hope is to exploit

sparsity to get a concentration radius of order Õ(
√

n/k). This is where our new technical tool
Theorem 4.1 comes in, which may be of independent interest; we present it in the following section.

4.2 A new variant of the Hanson-Wright inequality

In reality, even in the regime where regression fails, A−1 is not actually perfectly flat. Even worse,
in the regime where regression works, A−1 is actually spiked. Thus, we cannot simply reduce the
bilinear form z⊤

j A
−1∆y to an inner product. Instead, we turn to the well-known Hanson-Wright

inequality (Rudelson and Vershynin, 2013), which tells us that quadratic forms of random vectors with
independent, mean zero, subgaussian entries concentrate around their mean. It was used extensively
to study binary classification (Muthukumar et al., 2021), and multiclass classification (Subramanian
et al., 2022; Wu and Sahai, 2023).

However, just as Hoeffding is loose, so too is the standard form of Hanson-Wright, because it also
does not exploit sparsity. This motivates a new variant of Hanson-Wright which fully leverages the
(soft) sparsity inherent to multiclass problems with an increasing number of classes. We now formally
define the notions of soft and hard sparsity.
Definition 2 (Soft and hard sparsity). For π ≤ 1, we say that random vector y = (Yi)

n
i=1 has soft

sparsity at level π if |Yi| ≤ 1 almost surely and Var(Yi) ≤ π for all i. On the other hand, we say
that y has hard sparsity at level π if at most a π fraction of the Yi are nonzero.

In particular, our variant Theorem 4.1 below requires that one of the vectors in the bilinear form has
soft sparsity at level π. Throughout, one should think of π = o(1), and for us indeed π = O( 1k ). One
can check that a bounded random vector y with hard sparsity level π must also have soft sparsity at
level O(π), so soft sparsity is more general for bounded random vectors. In Table 1 we compare our
variant with several variants of Hanson-Wright which have appeared in the literature, some of which
involve hard sparsity.

Define the subgaussian norm ∥ξ∥ψ2
(Vershynin, 2018) as

∥ξ∥ψ2
= inf
K>0

{
K : E exp

(
ξ2/K2

)
≤ 2
}
, (24)

Theorem 4.1 (Hanson-Wright for bilinear forms with soft sparsity). Let x = (X1, . . . , Xn) ∈ Rn
and y ∈ (Y1, . . . , Yn) ∈ Rn be random vectors such that (Xi, Yi) are independent pairs of (possibly
correlated) centered random variables such that ∥Xi∥ψ2

≤ K and Yi has soft sparsity at level π, i.e.
|Yi| ≤ 1 almost surely, and E[Y 2

i ] ≤ π. Assume that conditioned on Yj , ∥Xj∥ψ2
≤ K. Then there

exists an absolute constant c > 0 such that for all M ∈ Rn×n and ϵ ≥ 0 we have

Pr
[
|x⊤My − E[x⊤My]| > ϵ

]
≤ 2 exp

(
−cmin

{
ϵ2

K2π∥M∥2F
,

ϵ

K∥M∥2

})
. (25)

The full proof of Theorem 4.1 is deferred to Appendix G. The main proof techniques are heavily
inspired by those of Rudelson and Vershynin (2013); Zhou (2019); Park et al. (2022). However, the
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Variant Assumptions on y Concentration radius

Classic quadratica: x⊤Mx same as x Õ(∥M∥F )
Sparse bilinearb: x⊤M(γ ◦ y) γi ∼ Ber(π), indep. of Xi but not Yi Õ(

√
π∥M∥F )

Sparse bilinearc: x⊤M(γ ◦ y) γi ∼ Ber(π), indep. of Yi but not Xi Õ(
√
π∥M∥F )

Theorem 4.1: x⊤My |Yi| ≤ 1 a.s., EY 2
i ≤ π Õ(

√
π∥M∥F )

Table 1: Comparison of different variants of the Hanson-Wright inequality. In all variants, we assume
that (x,y) = (Xi, Yi)

n
i=1 are subgaussian, centered, and the pairs (Xi, Yi) are independent across i.

We use ◦ to denote elementwise multiplication, which allows us to express hard sparsity with the
sparsity mask γ ∈ {0, 1}n. The concentration radius corresponds to the size of typical fluctuations
guaranteed by the concentration inequality, i.e. the ϵ needed for high probability guarantees.
a (Rudelson and Vershynin, 2013, Theorem 1.1); b (Park et al., 2022, Theorem 1); c (Wu and Sahai, 2023,
Theorem 4)

proof of Theorem 4.1 is actually simpler than in Park et al. (2022); Wu and Sahai (2023), as bounded
with soft sparsity turns out to be easier to work with than subgaussian with hard sparsity. We refer
readers to Wu and Sahai (2023) for a more in-depth discussion of how these new “sparse” variants
overcome the limitations of previous proof techniques used to study classification problems.

We briefly illustrate how Theorem 4.1 can be used to get tighter results throughout our analysis. A
quick calculation reveals that the label vectors ∆y and yα both have soft sparsity at level π = O(1/k).
However, yα does not have hard sparsity as required by the variants in Park et al. (2022); Wu and
Sahai (2023). Since ∥M∥2F ≤ n∥M∥22, we obtain a concentration radius ϵ which scales like

√
n/k

rather than
√
n (obtained via vanilla Hanson-Wright) or n/

√
k (obtained via Cauchy-Schwarz). This

gain is crucial to tightly analyzing the survival, contamination, and correlation structure.

4.3 Completing the proof sketch

Theorem 4.1 and the above insights about sparsity and independence allow us to prove the following
bounds on the relative survival and contamination terms which are tight up to log factors; see the
Appendix for more details. For brevity’s sake, we introduce the notation µ ≜ nq+r−1.

Proposition 4.2 (Bounds on relative survival). Suppose we are in the bi-level model. With probability
at least 1−O(1/n),

λF ĥα,β [α] = min
{
µ−1, 1

}
Θ(n−min{t, 12})

√
log k.

Next, we state our bounds on contamination.

Proposition 4.3 (Bounds on contamination). Suppose we are in the bi-level model. Then with
probability at least 1−O(1/n), the contamination satisfies

CNα,β = min
{
µ−1, 1

}
Θ(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Θ(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

. (26)

Translating the parameters in Propositions 4.2 and 4.3 we see that (i) the relative survival is diminished
by a factor 1/k as long as k = o(

√
n), and a factor 1/

√
n for k = Ω(

√
n) (this looseness ends up

being negligible for the final result) and (ii) the contamination is diminished by a factor of 1/
√
k.

This essentially matches the expected behavior from the heuristic calculation in Subramanian et al.
(2022). Together with some straightforward algebra, Propositions 4.2 and 4.3 allow us to compute
the regimes where the survival-to-contamination ratio SU/CN grows or decays polynomially. This
yields the stated regimes in Conjecture 3.1; see Appendix A.1 for more details.

For technical reasons, the analogous bounds in Subramanian et al. (2022) are loose, giving rise to
unnecessary conditions for good generalization such as t < p− 2 and t < 2q + r − 2. Moreover, we
are able to give both upper and lower bounds on the survival and contamination terms, whereas they
only give one-sided inequalities for each quantity.
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5 Discussion

In this paper we resolve the main conjecture of Subramanian et al. (2022), identifying the exact
regimes where an overparameterized linear model succeeds at multiclass classification. Our tech-
niques also lay the foundation for investigating related generalization for other multiclass tasks and
nonlinear algorithms. We hope that by bringing the rigorous proofs closer to the heuristic style of
calculation, we open the path for analyzing more complicated and realistic models.

An important next step is to extend our results to more realistic spiked covariance models. For
example, one typically observes power-law decay for the extreme eigenvalues in applications. We
expect that the bi-level model can be relaxed to allow for constant deviations in the weightings for
the favored, non-label defining features and power law decay for the unfavored features. The former
change would likely only affect constants in certain areas of the argument that do not crucially depend
on the exact constants involved, whereas the latter would likely just change the effective degree of
overparameterization (Bartlett et al., 2020). However, even constant fluctuations in weighting for
the label-defining features can lead to significant subtleties, as these constant deviations manifest as
polynomially large variations in the number of examples of each class. Such heterogeneity between
label-defining directions would likely lead to significantly messier conditions for generalization.

Another future direction is to move beyond Gaussian features. It is plausible that similar results
would hold for vector subgaussian features which are rotationally invariant, allowing us to rotate into
the basis where the features have diagonal covariance. One place where Gaussianity is crucially used
is to obtain an explicit lower bound on the margin between the features.

As an example application, we sketch out how our proof techniques imply precise conditions for
a variant of the learning task called multilabel classification. In a simple model for multilabel
classification, each datapoint can have several of k possible labels — corresponding to the positive
valued features — but in the training set only one such correct label is provided at random for each
datapoint. We deem that the model generalizes if for any queried label it successfully labels test
inputs as positive or negative. We can use the MNI approach here to learn classifiers.

Some thought reveals that the main difference between multilabel classification and multiclass
classification from a survival and contamination perspective is that positive features no longer need
to outcompete other features. Thus, the main object of study would be the bilinear forms z⊤

j A
−1yα,

which is possible thanks to Theorem 4.1. The survival and contamination terms are only affected by
the expected values of these bilinear forms, but the expected values match the multiclass behavior up
to log factors, which do not affect the regimes where SU/CN will grow or shrink polynomially. A
similar analysis thus reveals that MNI will generalize in exactly the same regimes as in Conjecture 3.1.
Here, the model generalizes in the sense that with high probability over the labels the model will
correctly classify, and failure to generalize means that the model will do no better than a coin toss.

Perhaps surprisingly, resolving Conjecture 3.1 also implies that MNI is asymptotically suboptimal
compared to a natural non-interpolative approach: simply make f̂m equal to the average6 of all
positive training examples of class m. A straightforward analysis, detailed in the supplementary
material, reveals this scheme fails to generalize exactly when t < min {1− r, p+ 1− 2(q + r)},
even in the regime where regression succeeds (q + r < 1). This is particularly interesting because
we have shown that in the regime where regression succeeds, MNI generalizes only when t <
min {1− r, p− 1}, which is a smaller region. In light of this gap, it would be interesting to identify
the information-theoretic barrier for multiclass classification, especially within the broader context of
statistical-computation gaps (see e.g. Wu and Xu (2021); Brennan and Bresler (2020)).
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A Preliminaries and notation

For positive integers n, we use the shorthand [n] ≜ {1, . . . , n}. For a vector v ∈ Rn, ∥v∥2 always
denotes the Euclidean norm. We index entries by using square brackets, so v[j] denotes the jth
entry of v. For any matrix M ∈ Rm×n, we denote its ijth entry by mij , ∥M∥2 denotes the spectral
norm, and ∥M∥F = Tr

(
M⊤M

)
denotes the Frobenius norm. We use σmax (M) and σmin (M) to

denote the maximum and minimum singular values of M , respectively. If M ∈ Rn×n is symmetric,
we write µ1(M) ≥ µ2(M) ≥ . . . ≥ µn(M) to denote the ordered eigenvalues of M . Given two
vectors v,u ∈ Rn, we write v ◦ u ∈ Rn to denote the entrywise product of v and u.

We make extensive use of big-O notation. In this paragraph, c refers to a positive constant which
does not depend on n, and all statements hold for sufficiently large n. If f(n) = O(g(n)), then
f(n) ≤ cg(n) for some c. If f(n) = Õ(g(n)), then f(n) ≤ cg(n) poly log(n) for some c. If f(n) =
o(g(n)), then for all c > 0 we have f(n) ≤ cg(n). We write f(n) = Ω(g(n)) if f(n) ≥ cg(n)
for some c. Finally, we write f(n) = Θ(g(n)) if there exists positive constants c1 and c2 such that
c1g(n) ≤ f(n) ≤ c2g(n).

Table 2: Notation
Symbol Definition Dimension Source

k Number of classes Scalar Sec. 2
n Number of training points Scalar Sec. 2
d Dimension of each point — the total number of features Scalar Sec. 2
s The number of favored features Scalar Def. 1
a The constant controlling the favored weights Scalar Def. 1
p Parameter controlling overparameterization (d = np) Scalar Def. 1
r Parameter controlling the number of favored features (s = nr) Scalar Def. 1
q Parameter controlling the favored weights (a = n−q) Scalar Def. 1
t Parameter controlling the number of classes (k = ckn

t) Scalar Def. 1
ck The number of classes when t = 0 (k = ckn

t) Scalar Def. 1
λj Squared weight of the jth feature Scalar Def. 1
xi ith training point (unweighted) Length-d vector Sec. 2
ℓi Class label of ith training point Scalar Eqn. 1
wi ith training point (weighted) Length-d vector Eqn. 2
Xw Weighted feature matrix (n× d)-matrix Eqn. 3
zj The collected jth features of all training points Length-n vector Eqn. 3
yoh
m One-hot encoding of all the training points for label m Length-n vector Eqn. 4

Y oh One-hot label matrix (n× k)-matrix Eqn. 4
ym Zero-mean encoding of the training points for label m Length-n vector Eqn. 5
f̂m Learned coefficients for label m using min-norm interpolation Length-d vector Eqn. 8
xtest A single test point Length-d vector Sec. 2
xwtest A single weighted test point Length-d vector Sec. 2
A Gram matrix A = Xw(Xw)⊤ (n× n)-matrix Sec. 4
µi(A) The ith eigenvalue of matrix A, sorted in descending order Scalar App. A
λF Squared favored feature weights: λF = ad

s Scalar Def. 1
λU Squared unfavored feature weights: λF = (1−a)d

d−s Scalar Def. 1
ĥα,β Relative survival ĥα,β [j] = λ

−1/2
j (f̂α[j]− f̂β [j]) Length-d vector Eqn. 16

CNα,β Normalizing factor CNα,β =

√(∑
j /∈{α,β} λ

2
j (ĥβ,α[j])

2
)

Scalar Eqn. 19

∥·∥ψ2
The subgaussian norm of a scalar random variable Scalar Eqn. 24

∥·∥ψ1
The subexponential norm of a scalar random variable Scalar Eqn. 51

µ Factor controlling whether regression works, µ ≜ nq+r−1 Scalar App. A.1
ZT Unweighted subset of favored features, where T ⊆ [s] (n× |T |)-matrix App. B.2
WT Weighted subset of favored features, WT =

√
λFZT (n× |T |)-matrix App. B.2

A−T Leave-T -out Gram matrix, where T ⊆ [s], A−T = A−WTW
⊤
T (n× n)-matrix Eqn. 74

Hk Hat matrix, Hk = WkA
−1
−kWk (k × k)-matrix Eqn. 53
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Let us now describe the organization of the appendix. In Appendix A.1, we give a more detailed
proof sketch and introduce the main propositions that complete the proof of Theorem 3.2. In
Appendix B, we introduce the main tools that allow us to prove that the critical bilinear forms
z⊤
j A

−1∆y concentrate: our new variant of the Hanson-Wright inequality, the Woodbury inversion
formula, and Wishart concentration to bound the spectra of the relevant random matrices that appear.
In Appendix C we apply these tools to bound some useful quantities that repeatedly appear in the rest
of the proofs. After that, we proceed to bound the survival, contamination, and correlation structure
in Appendices D to F. In Appendix J, we present the analysis for the averaging scheme described in
Section 5. Finally, we prove our new variant of Hanson-Wright (Theorem 4.1) in Appendix G.

A.1 Proof of Theorem 3.2

In this section, we fill in some of the details of the proof sketch of Theorem 3.2. After recalling the
beginning of the proof, we will split up the proof into two subtheorems: one for the positive result
where MNI generalizes (Theorem A.2), and another for the negative result where MNI misclassifies
(Theorem A.4).

Assume without loss of generality that the test point xtest ∼ N(0, Id) has true label α for some
α ∈ [k]. Let xwtest be the weighted version of this test point. From (10), an equivalent condition for
misclassification is that for some β ̸= α, β ∈ [k], we have f̂⊤

α xwtest < f̂⊤
β xwtest, i.e. the score for β

outcompetes the score for α. Define the Gram matrix A ≜ Xw(Xw)⊤, the relative label vector
∆y ≜ yα−yβ ∈ {−1, 0, 1}n, and the relative survival vector ĥα,β ∈ Rd which compares the signal
from α and β:

ĥα,β [j] ≜ λ
−1/2
j (f̂α[j]− f̂β [j]) (27)

= z⊤
j A

−1∆y, (28)

where to obtain the last line we have used the explicit formula for the MNI classifiers (8). By
converting the misclassification condition into the unweighted feature space we see that we will have
errors when

λαĥα,β [α]xtest[α]− λβĥβ,α[β]xtest[β] <
∑

j /∈{α,β}

λjĥβ,α[j]xtest[j]. (29)

Define the contamination term CNα,β :

CNα,β ≜
√ ∑
j /∈{α,β}

λ2
j (ĥβ,α[j])

2. (30)

Note that CNα,β normalizes the RHS of (29) into a standard Gaussian. Indeed, define

Z(β) ≜
1

CNα,β

∑
j /∈{α,β}

λjĥβ,α[j]xtest[j] ∼ N(0, 1). (31)

Since α, β ∈ [k] are favored, we have λα = λβ = λF . Hence an equivalent condition for misclassifi-
cation is that there exists some β ̸= α, β ∈ [k] such that

λF
CNα,β

(ĥα,β [α]xtest[α]− ĥβ,α[β]xtest[β]) < Z(β). (32)

We will translate the above criterion into sufficient conditions for correct classification and misclassi-
fication and analyze these two cases separately.

First, let us present our tight characterization of the survival and contamination terms, which will
be useful for both sides of the theorem. Recall our definition of µ ≜ nq+r−1; whether this quantity
polynomially shrinks or decays directly determines if regression works or fails.
Proposition 4.2 (Bounds on relative survival). Suppose we are in the bi-level model. With probability
at least 1−O(1/n),

λF ĥα,β [α] = min
{
µ−1, 1

}
Θ(n−min{t, 12})

√
log k.

18



Proposition 4.3 (Bounds on contamination). Suppose we are in the bi-level model. Then with
probability at least 1−O(1/n), the contamination satisfies

CNα,β = min
{
µ−1, 1

}
Θ(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Θ(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

. (26)

We defer the proof of Proposition 4.2 to Appendix D and the proof of Proposition 4.3 to Appendix E.
Combining Propositions 4.2 and 4.3 yields the following sufficient conditions for when the SU/CN
ratio grows or shrinks polynomially.
Proposition A.1 (Regimes for survival-to-contamination). Under the bi-level ensemble model (Def-
inition 1), when the true data generating process is 1-sparse (Assumption 1), as n → ∞, with
probability at least 1−O(1/n), the survival-to-contamination ratio satisfies

minβ λF ĥα,β [α]

maxβ CNα,β
≥ nv for some v > 0 if t < min {1− r, p+ 1− 2max {1, q + r}} (33)

maxβ λF

∣∣∣ĥα,β [α]∣∣∣
minβ CNα,β

≤ n−w for some w > 0 if t > min {1− r, p+ 1− 2max {1, q + r}} (34)

Here, the max and min are being taken over β ̸= α, β ∈ [k].

Proof. We do casework on whether we want to prove an upper bound or lower bound
on SU/CN. First, suppose we want to prove the lower bound, so assume t <
min {1− r, p+ 1− 2max {1, q + r}}. Since t < r by the definition of the bi-level ensemble
(Definition 1), we have that t < 1

2 . So by union bounding over β, Proposition 4.2 implies that with
probability 1−O(1/n)

min
β

λF ĥα,β [α] ≥ min
{
µ−1, 1

}
Ω(n−t)

√
log k. (35)

Then from Proposition 4.3, by union bounding over β we see that with probability 1−O(1/n),

max
β

CNα,β ≤ min
{
µ−1, 1

}
Õ(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Õ(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

.

Let us combine these two bounds. If we compare the survival to the contamination coming from
favored features, we obtain

min
{
µ−1, 1

}
n−t√log k

min {µ−1, 1}Õ(n
r−t−1

2 )
≥ n−t− r−t−1

2

log(nsk)
(36)

≥ n
1−r−t

2

log(nsk)
, (37)

where we have included the explicit poly log factors for precision. Hence, if t < 1 − r, the
numerator grows polynomially and dominates the denominator. Now let’s compare the survival to
the contamination coming from unfavored features. This yields

min
{
µ−1, 1

}
n−t√log k

Õ(n
1−t−p

2 )
≥

min
{
µ−1, 1

}
n−t− 1−t−p

2

log(nsk)
(38)

≥ n−max {q+r−1,0} · n
p−t−1

2

log(nsk)
(39)

≥ n
p+1−2max {1,q+r}−t

2

log(nsk)
. (40)

Hence, by union bounding, we see that with probability 1−O(1/n),

min
β

λF ĥα,β [α]

CNα,β
≥ nv, (41)
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where v ≜ 1
4 (min {1− r, p+ 1− 2max {1, q + r}} − t) > 0 by assumption.

For the upper bound, suppose t > min {1− r, p+ 1− 2max {1, q + r}}. Hence t > 0, and by
union bounding we conclude that with probability at least 1−O(1/n),

max
β

λF

∣∣∣ĥα,β [α]∣∣∣ ≤ min
{
µ−1, 1

}
O(n− 1

2 )
√
log k (42)

and

min
β

CNα,β ≥ min
{
µ−1, 1

}
Ω(n

r−t−1
2 ) + Ω(n

1−t−p
2 ). (43)

Combining these and union bounding yields that with probability 1−O(1/n),

min
β

λF ĥα,β [α]

CNα,β
≤ n−w, (44)

where w ≜ 1
4 (t−min {1− r, p+ 1− 2max {1, q + r}}) > 0 by asssumption.

We now sketch out a proof of both the positive and negative sides of Theorem 3.2. We point out that
the regimes for generalization and misclassification exactly match the regimes above for where the
SU/CN ratio grows or shrinks polynomially.
Theorem A.2 (Positive side of Theorem 3.2). Under the bi-level ensemble model (Definition 1),
when the true data generating process is 1-sparse (Assumption 1), as n → ∞, the probability of
misclassification for MNI satisfies Pr[Eerr] → 0 if

t < min {1− r, p+ 1− 2max {1, q + r}}.

Proof sketch. For correct classification, it suffices for the minimum value of the LHS of Eq. (32) to
outcompete the maximum value of the RHS, where the max is taken over β ∈ [k], β ̸= α. Some
algebra, as in Subramanian et al. (2022), shows that we correctly classify if

minβ λF ĥα,β [α]

maxβ CNα,β︸ ︷︷ ︸
SU/CN ratio

(
min
β

(xtest[α]− xtest[β])︸ ︷︷ ︸
closest feature margin

− max
β

|xtest[β]|︸ ︷︷ ︸
largest competing feature

·max
β

∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣︸ ︷︷ ︸
survival variation

)

> max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (45)

By our lower bound on the survival to contamination ratio (Proposition A.1), assuming t <

min {1− r, p+ 1− 2(q + r)}, then with probability at least 1−O(1/n) we have that λF ĥα,β [α]
CNα,β

≥
nu for some constant u > 0. By Lemmas B.2 and B.3 in Subramanian et al. (2022) for every ϵ > 0,
with probability at least 1− ϵ, we have minβ xtest[α]− xtest[β] ≥ Ω( 1√

log k
).

Next, by standard subgaussian maxima tail bounds we have that |xtest[β]| ≤ 2
√
log(nk) and

Z(β) ≤ 2
√
log(nk) with probability at least 1−O(1/nk). Finally, applying our upper bound on the

relative survival variance (Proposition A.3, which we prove below), the survival variation is at most a
polynomially decaying n−w with probability at least 1−O(1/nk).

By union bounding, we see that with probability at least 1−O(1/n)− ϵ, the LHS outcompetes the
RHS, implying that the model correctly classifies.

In fact, given Proposition 4.2, it is straightforward to bound the survival variation.
Proposition A.3 (Upper bound on the survival variation). Suppose that t < 1− r. With probability
at least 1− 2/n, we have ∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣ ≤ c1n
−w, (46)

where c1 and w are both positive constants.
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Proof. Since we have ĥα,β [α] = z⊤
αA

−1∆y, the survival variation is

ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]
=

z⊤
αA

−1∆y + z⊤
β A

−1∆y

z⊤
αA

−1∆y

Since t < 1− r and t < r by definition, we know that t < 1
2 ,and we can apply Proposition 4.2 to see

that with probability at least 1− 2/n we have

z⊤
αA

−1∆y = max
{
µ−1, 1

}
n−t(1±O(n−κ5))

√
log k = −z⊤

β A
−1∆y

Hence we have ∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣ ≤ c1n
−κ5 (47)

where c1 is an appropriately defined positive constant.

Theorem A.4 (Negative side of Theorem 3.2). Under the bi-level ensemble model (Definition 1),
when the true data generating process is 1-sparse (Assumption 1), as n → ∞, the probability of
misclassification for MNI satisfies Pr[Eerr] → 1 if

t > min {1− r, p+ 1− 2max {1, q + r}}.

Proof sketch. On the other hand, for misclassification it suffices for the maximum absolute value of
the LHS of Eq. (32) to be outcompeted by the maximum value of the RHS. Some manipulations yield
the following sufficient condition for misclassification:

maxβ λF

(∣∣∣ĥα,β [α]∣∣∣+ ∣∣∣ĥβ,α[β]∣∣∣)
minβ CNα,β︸ ︷︷ ︸

SU/CN ratio

· max
γ∈[k]

|xtest[γ]|︸ ︷︷ ︸
largest label-defining feature

< max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (48)

Within the misclassification regimes in Conjecture 3.1, Proposition A.1 implies that the survival-
to-contamination ratio SU/CN shrinks at a polynomial rate n−w for some w > 0. By standard
subgaussian maximal inequalities, the largest label-defining feature is O(

√
log(nk)) with high

probability. Gaussian anticoncentration implies that for some β ̸= α, β ∈ [k], Z(β) outcompetes the
LHS, which is bounded above by n−w, with probability at least 1

2 − o(1). Hence, we conclude that
the model will misclassify with rate at least 1

2 asymptotically.

Let us now describe how to boost the misclassification rate to 1 − o(1). Notice that the above
argument only considered the competition between the LHS of Eq. (48) and one of the Z(β)’s on
the RHS instead of the maximum Z(β). It’s not hard to see from the definition of Z(β) in Eq. (31)
that the Z(β) are jointly Gaussian. For intuition’s sake, assuming the Z(β) were independent, then
maxβ Z

(β) would outcompete with probability ( 12 − o(1))k−1.

In reality, the Z(β) are correlated, but we are able to show that the maximum correlation between
the Z(β) is 1

2 + o(1) with high probability. An application of Slepian’s lemma (Slepian (1962)) and
some explicit bounds on orthant probabilities (Pinasco et al. (2021)) implies that maxβ Z

(β) > 0
with probability at least 1 − 1

k1+o(1) . An application of anticoncentration for Gaussian maxima
(Chernozhukov et al., 2015) implies that maxβ Z

(β) > n−w with probability 1−o(1), which finishes
off the proof.

To fill in the details of the above proof sketch, we will prove the following proposition in Appendix F.

Proposition A.5 (Correlation bound). Assume we are in the bi-level ensemble model (Definition 1),
the true data generating process is 1-sparse (Assumption 1), and the number of classes scales with n
(i.e. t > 0). Then for every ϵ > 0, we have

Pr

[
max

β∈[k],β ̸=α
Z(β) > n−u

]
≥ 1−Θ

(
1

k1+o(1)

)
− ϵ (49)

for sufficiently large n and any u > 0.
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B Main tools

In this section we introduce our suite of technical tools that allow us to prove the desired rates of
growth for survival, contamination, and correlation.

B.1 Hanson-Wright Inequality

As established in Section 4, we need to use the Hanson-Wright inequality to prove our tight character-
ization of generalization. For the sake of precision, we explicitly state our definitions of subgaussian
and subexponential which we use throughout the rest of the paper.

The subgaussian norm ∥ξ∥ψ2 of a random variable ξ is defined as in Rudelson and Vershynin (2013),

∥ξ∥ψ2
= inf
K>0

{
K : E exp

(
ξ2/K2

)
≤ 2
}
. (50)

The sub-exponential norm ∥ξ∥ψ1
is defined as in Vershynin (2018, Definition 2.7.5):

∥ξ∥ψ1
= inf
K>0

{K : E exp(|ξ|/K) ≤ 2}. (51)

We will occassionally need to use the following variant of Hanson-Wright for nonsparse bilinear
forms, first proved in Park et al. (2021).
Theorem B.1 (Hanson-Wright for bilinear forms without sparsity). Let x = (X1, . . . , Xn) ∈
Rn and y ∈ (Y1, . . . , Yn) be random vectors such that the pairs (Xi, Yi) are all independent of
each other (however Xi and Yi can be correlated). Assume also that E[Xi] = E[Yi] = 0 and

max
{
∥Xi∥ψ2

, ∥Yi∥ψ2

}
≤ K. Then there exists an absolute constant c > 0 such that for all

M ∈ Rn×n and ϵ ≥ 0 we have

Pr
[
|x⊤My − E[x⊤My]| > ϵ

]
≤ 2 exp

(
−cmin

{
ϵ2

K4∥M∥2F
,

ϵ

K2∥M∥2

})
. (52)

Finally, we restate our new version of Hanson-Wright for bilinear forms with soft sparsity, which we
prove in Appendix G.
Theorem 4.1 (Hanson-Wright for bilinear forms with soft sparsity). Let x = (X1, . . . , Xn) ∈ Rn
and y ∈ (Y1, . . . , Yn) ∈ Rn be random vectors such that (Xi, Yi) are independent pairs of (possibly
correlated) centered random variables such that ∥Xi∥ψ2

≤ K and Yi has soft sparsity at level π, i.e.
|Yi| ≤ 1 almost surely, and E[Y 2

i ] ≤ π. Assume that conditioned on Yj , ∥Xj∥ψ2
≤ K. Then there

exists an absolute constant c > 0 such that for all M ∈ Rn×n and ϵ ≥ 0 we have

Pr
[
|x⊤My − E[x⊤My]| > ϵ

]
≤ 2 exp

(
−cmin

{
ϵ2

K2π∥M∥2F
,

ϵ

K∥M∥2

})
. (25)

B.2 Gram matrices and the Woodbury formula

In order to apply Hanson-Wright to the bilinear form x⊤My, we need to have a deterministic matrix
M such that the hypotheses are satisfied. However, in our setting we study bilinear forms such
as z⊤

j A
−1∆y. Here, the inverse Gram matrix A−1 is not independent of zj or ∆y, so we cannot

simply condition on A−1. The way around this is to cleverly decompose A−1 using the so-called
Woodbury inversion formula (stated formally below), which generalizes the leave-one-out trick and
Sherman-Morrison used to study binary classification in Muthukumar et al. (2021). To that end, we
will explicitly decompose the Gram matrix A ≜

∑
j∈[d] λjzjz

⊤
j based on whether the features zj

are favored or not.

We now introduce some notation to keep track of which matrices contain or leave out which indices.
In general, we use subscripts to denote which sets of features we preserve or leave out; we use a
minus sign to signify leaving out. The k label-defining features are represented with a subscript k,
whereas the s− k favored but not label defining features are represented with a subscript F . The rest
of the d− s unfavored features are represented with a subscript U .
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For notational convenience, we introduce some new notation for the weighted features, as the
superscript w to denote weighted features is rather cumbersome. We denote the weighted label-
defining feature matrix by Wk ≜ [w1 · · · wk] ∈ Rn×k , where the vectors wi ≜

√
λizi ∈ Rn

denote the weighted observations for feature i. Define the unweighted label-defining feature matrix
Zk ≜ [z1 · · · zk] ∈ Rn×k. Similarly, define WF ≜ [wk+1 · · · ws] ∈ Rn×(s−k), which
contains the rest of the weighted favored features and the corresponding unweighted version ZF .

Let A−k ≜
∑
i ̸∈[k] wiw

⊤
i denote the leave-k-out Gram matrix which removes the k label-defining

features. Similarly, let A−F ≜
∑
i ̸∈[s]\[k] wiw

⊤
i ∈ Rn×n to denote leave-(s− k)-out Gram matrix

which removes the favored but not label-defining features. Finally, let AU ≜
∑
i̸∈[s] wiw

⊤
i ∈ Rn×n

denote the leave-s-out matrix which only retains the unfavored features. We will also sometimes
write A−s instead of AU to emphasize that the s favored features have all been removed.

Define the so-called hat matrices by

Hk ≜ W⊤
k A−1

−kWk ∈ Rk×k (53)

HF ≜ W⊤
F A−1

−FWF ∈ R(s−k)×(s−k). (54)

These hat matrices appear in the Woodbury inversion formula. For the sake of notational compactness,
define

Mk ≜ Wk(Ik +Hk)
−1W⊤

k ∈ Rn×n (55)

MF ≜ WF (Is−k +HF )
−1W⊤

F ∈ Rn×n. (56)

The Woodbury inversion formula yields

A−1 = (WkW
⊤
k +A−k)

−1 (57)

= A−1
−k −A−1

−kWk(Ik +Hk)
−1W⊤

k A−1
−k (58)

= A−1
−k −A−1

−kMkA
−1
−k. (59)

Left multiplying (58) by W⊤
k yields

W⊤
k A−1 = W⊤

k A−1
−k −Hk(Ik +Hk)

−1W⊤
k A−1

−k (60)

= (Ik −Hk(Ik +Hk)
−1)W⊤

k A−1
−k (61)

= (Ik +Hk)
−1W⊤

k A−1
−k. (62)

We can derive completely analogous identities using A−1
−F instead of A−1

−k. The above exposition is
summarized by the following lemma.

Lemma B.2. We have

W⊤
k A−1∆y = (Ik +Hk)

−1W⊤
k A−1

−k∆y (63)

W⊤
F A−1∆y = (Is−k +HF )

−1W⊤
F A−1

−F∆y. (64)

Lemma B.2 is quite powerful. Indeed, consider the action of the linear operator W⊤
k A−1 : Rn → Rk

on ∆y. The action is identical to that of the linear operator W⊤
k A−1

−k : Rn → Rk, up to some
invertible transformation. This new linear operator is nice because A−1

−k is independent of Wk and
∆y, as it removes all of the label-defining features. Reclaiming independence sets the stage for using
our variant of Hanson-Wright.

How does the invertible operator (Ik +Hk)
−1 act? Our general strategy is to show that Hk is itself

close to a scaled identity matrix, i.e. Hk ≈ νIk for an appropriately defined ν. Then for any i ∈ [k],
we have that

w⊤
i A

−1∆y ≈ (1 + ν)−1w⊤
i A

−1
−k∆y.

Of course, there will be some error in this approximation, as Hk is not exactly equal to νIk.
Nevertheless, we can bound away the error that arises from this approximation.
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B.3 Concentration of spectrum

As foreshadowed in the previous section, we will leverage the fact that the hat matrices such as Hk

are close to a scaled identity. To formalize this, we appeal to random matrix theory and show that the
spectra of various random matrices are very close to being flat (i.e. all eigenvalues are within 1+ o(1)
of each other). To that end, we present the following standard characterization of the spectrum of a
standard Wishart matrix, which is Equation 2.3 in Rudelson and Vershynin (2010).

Lemma B.3 (Concentration of spectrum for Wishart matrices). Let M ∈ RM×m with M > m be a
real matrix with iid N(0, 1) entries. Then for any ϵ ≥ 0, we have with probability at least 1−2e−ϵ

2/2

that √
M −

√
m− ϵ ≤ σmin (M) ≤ σmax (M) ≤

√
M +

√
m+ ϵ. (65)

In other words, the singular values of M satisfy subgaussian concentration.

Since µm(M⊤M) = σmin (M)2 and µ1(M
⊤M) = σmax (M)2, we can conclude that if m =

o(M), then for any ϵ > 0 we have

M−2
√
Mm−ϵ+o(

√
Mm) ≤ µm(M⊤M) ≤ µ1(M

⊤M) ≤ M+2
√
Mm+ϵ+o(

√
Mm), (66)

with probability at least 1− 2e−ϵ
2/2.

On the other hand, consider MM⊤ ∈ RM×M . Its spectrum is just that of M⊤M ∈ Rm×m with
an additional M −m zeros corresponding to the fact that m < M .

We can use Lemma B.3 to prove concentration of the spectrum of the various matrices introduced in
Appendix B.2. Let us summarize some convenient forms of these results; their proofs are deferred to
Appendix H.

Proposition B.4 (Gram matrices have a flat spectrum). Recall that AU = A−s =
∑
j>s λjzjz

⊤
j ∈

Rn×n is the unfavored Gram matrix and A−k =
∑
j>k λjzjz

⊤
j ∈ Rn×n is the leave-k-out Gram

matrix.

Then the following hold with probability at least 1− 2e−n − 2e−
√
n,

(a) For all i ∈ [n], we have µi(AU ) = np(1±O(n−κ7)).

(b) For all i ∈ [s− k], we have

µi(A−k) = (1 + µ−1)np(1±O(n−κ9)), (67)

where κ9 is a positive constant. Moreover, for all i ∈ [n] \ [s− k], we have

µi(A−k) = np(1±O(n−κ7)), (68)

where κ7 is a positive constant.

As a simple corollary, we can obtain the following cruder bounds on the trace and spectral norm of
A−1

−k and A−1
−s.

Corollary B.5 (Trace and spectral norm of A−1
−k). In the bi-level model, with probability at least

1− 2e−n, we have

Tr
(
A−1
U

)
= n1−p(1±O(n−κ7))

√
log k (69)

Tr
(
A−1

−k
)
= n1−p(1±O(n−κ3))

√
log k (70)

and
max

{∥∥A−1
−k
∥∥
2
,
∥∥A−1

U

∥∥
2

}
≤ c2n

−p, (71)

where c2, κ7, and κ3 are all positive constants.

Proof. We prove the claim for A−1
−k; the proof for A−1

U is similar or easier because A−1
U has a flat

spectrum (Proposition B.4).
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If q + r < 1, the upper bound for the spectral norm similarly follows. For the trace bounds, we can
apply Proposition B.4, we have

Tr
(
A−1

−k
)
= (n− nr + nt)n−p(1±O(n−κ7)) + (nr − nt) · (1 + µ−1)n−p(1±O(n−κ9)) (72)

= n1−p(1±O(n−κ1)) (73)

where
κ1 = min {r − 1, 2− q − 2r} > 0,

as q + 2r < 2(q + r) < 2 by assumption.

On the other hand, the claim is obviously true when q + r > 1, as the entire spectrum of A−1
−k is

(1 ± O(n−κ2))n−p with an appropriately defined positive constant κ2. The spectral norm bound
follows by defining c2 to be any positive constant greater than 1 which absorbs the o(1) deviation
terms in the spectrum.

The proof concludes by setting κ3 = min {κ1, κ2}.

Finally, we have the following proposition which controls the spectrum of hat matrices such as
Hk ≜ W⊤

k A−1
−kWk ∈ Rk×k. The intuition is that even though the spectrum of A−1

−k may be spiked,
the spectrum of W⊤

k A−1
−kWk is ultimately flat because we are taking an extremely low dimensional

projection which is unlikely to see significant contribution from the spiked portion of A−1
−k.

In fact, we can prove a more general statement, which will be useful for us in the proof. Let
∅ ̸= T ⊆ S ⊆ [s]; here T and S index nonempty subsets of the s favored features. Then we can
define WT to be the matrix of weighted features in T and the leave-T -out Gram matrix

A−T ≜
∑
j ̸∈T

λjzjz
⊤
j . (74)

Now define the (T, S) hat matrix as HT,S ≜ W⊤
T A−1

−SWT . Evidently we have Hk = H[k],[k], so
our notion is more general. The full proof is deferred to Appendix H.
Proposition B.6 (Generalized hat matrices are flat). Assume we are in the bi-level ensemble Defini-
tion 1. For any nonempty T ⊆ S ⊆ [s], with probability at least 1− 2e−

√
n − 2e−n, we have all the

eigenvalues tightly controlled:

µi((I|T | +HT,S)
−1) = min {µ, 1} (1± cT,Sn

−κ11). (75)

where cT,S and κ11 are positive constants that depend on |T | and |S|.

C Utility bounds: applying the tools

Wishart concentration allows us to tightly bound the hat matrix and pass to studying bilinear forms of
the form w⊤

i A
−1
−k∆y rather than w⊤

i A
−1∆y. Since A−1

−k is independent of Wk and ∆y, we can
condition on A−1

−k and then apply Hanson-Wright (Theorem 4.1) to these bilinear forms for every
realization of A−1

−k. In this section, we will explicitly calculate the scaling of the typical value of
these bilinear forms using the bi-level ensemble scaling; these will prove to be useful throughout the
rest of the paper.

We first state the following proposition which bounds the correlation between the relevant label-
defining features and the label vectors; it is a combination of Propositions D.5 and D.6 in (Subrama-
nian et al., 2022).
Proposition C.1. For any distinct α, β ∈ [k], we have

1√
π ln 2

· n
k
·
√
ln k ≤ E[z⊤

α yα] ≤
√
2 · n

k
·
√
ln k (76)

and

−
√
2 · n

k
· 1

k − 1
·
√
ln k ≤ E[z⊤

α yβ ] ≤ − 1√
π ln 2

· n
k
· 1

k − 1
·
√
ln k (77)
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With the above proposition in hand, we can prove the following lemma which gives concentration of
the bilinear forms that we study.
Lemma C.2. Let i ∈ [d] and ∆y = yα − yβ where α, β ∈ [k] and β ̸= α. Let M ∈ Rn×n be a
(random) matrix which is independent of zi and ∆y. Then conditioned on M , with probability at
least 1− 1/nk, ∣∣z⊤

i M∆y − E[z⊤
i M∆y|M ]

∣∣ ≤ c3

√
n

k
∥M∥2

√
log(nk),

and the same holds with ∆y replaced with yα. Here, c3 is an appropriately chosen universal positive
constant.

Moreover, we have

(1) For any distinct α, β ∈ [k], we have

E[z⊤
αM∆y|M ] = c7

√
log k

k
tr(M) = −E[z⊤

β M∆y] (78)

E[z⊤
αMyα|M ] = c4

√
log k

k
tr(M), (79)

where c7 and c4 are positive constants.

(2) For i ∈ [d] \ {α, β}, we have

E[z⊤
i M∆y|M ] = 0. (80)

(3) For i ∈ [d] \ {α}, we have

E[z⊤
i Myα|M ] = −c5

√
log k

k(k − 1)
, (81)

where c5 is a positive constant.

Proof. Let us check the conditions for our new variant of Hanson-Wright with soft sparsity (The-
orem 4.1). We want to apply it to the random vectors (zi,∆y) = (zi[j],∆y[j])nj=1. Some of the
hypotheses are immediate by definition. Evidently, (zi[j],∆y[j]) are independent across j, and are
mean zero. Since zi[j] ∼ N(0, 1), it is subgaussian with parameter at most K = 2. For the bounded
and soft sparsity assumption, we clearly have |∆y[j]| ≤ 1 and yα[j] ≤ 1 almost surely. Also, since
∆y[j]2 ∼ Ber( 2k ), we have E[∆y[j]2] = 2

k . Similarly, E[yα[j]2] = 1
k (1−

1
k )

2 + (1− 1
k )

1
k2 ≤ 2

k .

The more complicated condition is the subgaussianity of zi[j] conditioned on the value of ∆y[j] or
yα[j]. Regardless of whether we’re conditioning on ∆y or yα, it suffices to instead prove that zi[j]
is subgaussian conditioned on whether feature i won the competition for datapoint j. First, suppose
i won, i.e. yoh

i [j] = 1. Then the Borell-TIS inequality (Adler et al., 2007, Theorem 2.1.1) implies
that zi[j] satisfies a subgaussian tail inequality. By the equivalent conditions for subgaussianity
Vershynin (2018, Proposition 2.5.2), it follows that zi[j] − E[zi[j]|yoh

i [j] = 1] conditionally has
subgaussian norm bounded by some absolute constant K. If i doesn’t win (or doesn’t participate in the
competition), then Proposition D.2 in Subramanian et al. (2022) implies that zi[j]−E[zi[j]|yoh

i [j] =
0] conditionally has subgaussian norm bounded by 6.

Finally, since M is independent of zi and ∆y, we can condition on M and apply Theorem 4.1 to
the bilinear form for every realization of M .

Hence, we conclude that with probability at least 1− 1/nk we have∣∣z⊤
i M∆y − E[z⊤

i M∆y|M ]
∣∣ ≤ c3

√
n

k
∥M∥2

√
log(nk), (82)

where c3 is an appropriately chosen absolute constant based on K and the constant c defined in
Theorem 4.1.

Now we can compute E[z⊤
i M∆y|M ] to prove the rest of the theorem. If i = α, we have

E[z⊤
αM∆y|M ] = tr

(
ME[∆yz⊤

α ]
)
.
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Let us now compute E[∆yz⊤
α ]. From Eq. (76) in Proposition C.1, we have E[yαz⊤

α ] = c4
√
log k
k In,

where 1√
π log 2

≤ c4 ≤
√
2. Similarly, we have E[yβz⊤

α ] = −c5
√
log k

k(k−1)In where 1√
π log 2

≤ c5 ≤
√
2.

It follows that E[∆yz⊤
α ] = Θ

(√
log k
k

)
In.

For i ∈ [d] \ {α, β}, by symmetry we obtain E[yαz⊤
i ] = E[yβz⊤

i ]. This implies E[∆yz⊤
i ] =

E[yαz⊤
i ]− E[yβz⊤

i ] = 0, so we obtain

E[z⊤
i M∆y|M ] = tr

(
ME[∆yz⊤

i ]
)

(83)

= 0. (84)

Plugging in the bi-level scaling, we obtain the following corollary.
Corollary C.3 (Asymptotic concentration of bilinear forms). In the bi-level model, for any i ∈ [k],
we have with probability at least 1−O(1/nk) that∣∣z⊤

i A
−1
−k∆y − E[z⊤

i A
−1
−k∆y]

∣∣ ≤ c6n
1−t
2 −p

√
log(nk).

Moreover, we have

(1) For any distinct α, β ∈ [k],

E[z⊤
αA

−1
−k∆y] = c7n

1−t−p(1±O(n−κ3))
√
log k = −E[z⊤

β A
−1
−k∆y] (85)

The same statements hold (with different constants) if we replace A−1
−k with A−1

−s.

Proof. From Corollary B.5, we have
∥∥A−1

−k
∥∥
2
≤ c6n

−p, where c6 is an appropriately chosen
universal positive constant based on c3. Recall that A−k is obtained by removing the k label-defining
features, so in particular A−1

−k is independent of (zi,∆y) for i ∈ [k]. Hence, the conditions for
Lemma C.2 are satisfied. Then applying the union bound for the spectral norm bound on A−1

−k, we
see that with probability at least 1− O(1/nk), the deviation term from Hanson-Wright is at most
c6n

1
2−p
√
log(nk).

We now turn to calculating the asymptotic scalings for the expectations. From Lemma C.2, we know
that E[z⊤

αA
−1
−k∆y|A−1

−k] = c7
√
log k
k tr

(
A−1

−k
)
. Applying the high probability bound on tr

(
A−1

−k
)

from Corollary B.5, we obtain that with probability at least 1−O(1/nk) that

−E[z⊤
β A

−1
−k∆y] = E[z⊤

αA
−1
−k∆y] = c7n

−tn1−p(1±O(n−κ3))
√
log k (86)

= c7n
1−t−p(1±O(n−κ3))

√
log k (87)

where in the second line we have applied Corollary B.5 and c7 is an appropriately chosen positive
constant. This proves (85).

With Corollary C.3 in hand, we are now in a position to do some straightforward calculations and
bound some quantities which will pop up in the survival and contamination analysis.
Proposition C.4 (Worst-case bound based on Hanson-Wright). Let T ⊆ [s] be a subset of favored
features such that {α, β} ⊆ T . Assume that |T | = nτ for some τ ≤ r. Then with probability at least
1−O(1/nk), we have∥∥Z⊤

T A
−1
−T∆y

∥∥
2
≤ c8(n

1−t−p + n
1+τ−t

2 −p)
√

log(nk|T |). (88)

Proof. WLOG, suppose α = 1 and β = 2. By Corollary C.3 we have with probability at least
1− 1/n that

∣∣Z⊤
T A

−1
−T∆y

∣∣ ≤


c7n
1−t−p√log k

c7n
1−t−p√log k

c6n
1−t
2 −p

√
log(nk)

...
c6n

1−t
2 −p

√
log(nk)

. (89)
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Hence, the norm of this vector is at most∥∥Z⊤
T A

−1
−T∆y

∥∥
2
≤ 2c7n

1−t−p
√
log k + n

τ
2 c6n

1−t
2 −p

√
log(nk) (90)

≤ c8(n
1−t−p + n

1+τ−t
2 −p)

√
log(nk), (91)

where c8 is a positive constant.

D Bounding the survival

Recall that the relative survival was defined to be λF ĥα,β [α] = λFz
⊤
αA

−1∆y. The strategy is to
apply our variant of Hanson-Wright to z⊤

αA
−1∆y. Unfortunately, A−1 is not independent of zα

or ∆y, so we need to use Woodbury to extract out the independent portions and bound away the
dependent portion. As we’ll see shortly, the error from the dependent portions can also be controlled
using Hanson-Wright. Let us now recall Proposition 4.2 for reference.
Proposition 4.2 (Bounds on relative survival). Suppose we are in the bi-level model. With probability
at least 1−O(1/n),

λF ĥα,β [α] = min
{
µ−1, 1

}
Θ(n−min{t, 12})

√
log k.

Proof. Recall that ĥα,β [α] = z⊤
αA

−1∆y. We first observe that for i ∈ [k], the dependence between
A−1 and zi as well as A−1 and ∆y only comes through the k label defining features. Hence, we
can use the Woodbury identity to extract out the independent portions of A−1.

Indeed, our “push through” lemma for Woodbury (Lemma B.2) and concentration of the hat matrix
(Proposition B.6) implies that with extremely high probability

Z⊤
k A

−1∆y = (Ik +Hk)
−1Z⊤

k A
−1
−k∆y (92)

= min {µ, 1} (Ik +E)Z⊤
k A

−1
−k∆y, (93)

where ∥E∥2 = O(n−κ11).

Let uα ∈ Rk denote the αth row vector in E, and let u−
α ∈ Rk−1 denote the subvector of uα without

index α. By reading off the αth row of Eq. (93), we see that

z⊤
αA

−1∆y = min {µ, 1} (z⊤
αA

−1
−k∆y +

〈
uα,Z

⊤
k A

−1
−k∆y

〉
) (94)

Since ∥uα∥2 ≤ ∥E∥2 = O(n−κ11), it follows from Cauchy-Schwarz that∣∣z⊤
αA

−1∆y −min {µ, 1}z⊤
αA

−1
−k∆y

∣∣ ≤ min {µ, 1}O(n−κ11)
∥∥Z⊤

k A
−1
−k∆y

∥∥
2
. (95)

Let us pause for a moment and interpret Eq. (95). The term min {µ, 1} is merely capturing the
difference in behavior when regression works and fails; if regression works (q + r < 1) then it
becomes µ, and if regression fails (q + r > 1), then it becomes 1. This behavior should be expected:
in the regression works case, we expect the effect of interpolation to be a regularizing one: the signals
are attenuated by a factor of µ. The RHS of Eq. (95) is an error term, capturing how differently
z⊤
αA

−1∆y behaves from the expected behavior min {µ, 1}z⊤
αA

−1
−k∆y.

Let us now bound the error term. From Proposition C.4 we have with probability at least 1−O(1/nk)
that ∥∥Z⊤

k A
−1
−k∆y

∥∥
2
≤ c8(n

1−t−p + n
1
2−p)

√
log(nk2). (96)

Let us do casework on t. For t < 1
2 , we have 1

2 − p < 1− t− p, so we conclude that the error term
is min {µ, 1}O(n1−t−p · n−κ4)

√
log(nk2), where κ4 is a positive constant.

On the other hand, our Hanson-Wright calculations imply (Corollary C.3) that with probability at
least 1−O(1/nk) that∣∣∣z⊤

αA
−1
−k∆y − c7n

1−t−p(1±O(n−κ3))
√
log k

∣∣∣ ≤ c6n
1
2−p
√

log(nk).
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Again, since t < 1
2 , the deviation term is o(n1−t−p)

√
log k.

Hence we conclude that with probability 1−O(1/nk) we have

z⊤
αA

−1∆y = c7 min {µ, 1}n1−t−p(1±O(n−κ5))
√

log k,

where κ5 is a positive constant.

Completely analogous logic handles the bounds for z⊤
β A

−1∆y. Let us now return back to the
quantity of interest, λF ĥα,β [α]. We can compute

λFz
⊤
αA

−1∆y = np−q−r · c7 min {µ, 1}n1−t−p(1±O(n−κ5))
√
log k

= c7µ
−1 min {µ, 1}n−t(1±O(n−κ5))

√
log k

= c7 min
{
1, µ−1

}
n−t(1±O(n−κ5))

√
log k.

On the other hand, if t ≥ 1
2 the error terms all dominate, and we replace n1−t−p with n

1
2−p

everywhere. We conclude that with probability at least 1−O(1/nk),∣∣z⊤
αA

−1∆y
∣∣ ≤ c9 min {µ, 1}n 1

2−p
√
log(nk), (97)

where c9 is a positive constant. Plugging in the scaling for λF yields the desired result.

E Bounding the contamination

In this section we give a tight analysis of the contamination term. First, we rewrite the squared
contamination term and separate it out into the contamination from the k − 2 label-defining features
which are not α or β, the rest of the s − k favored features, and the remaining d − s unfavored
features. From Eq. (30), we have

CN2
α,β =

∑
j∈[d]\{α,β}

λ2
j (z

⊤
j A

−1∆y)2 (98)

= ∆y⊤A−1

 ∑
j∈[d]\{α,β}

λ2
jzjz

⊤
j

A−1∆y (99)

= ∆y⊤A−1

 ∑
j∈[k]\{α,β}

λ2
jzjz

⊤
j

A−1∆y

︸ ︷︷ ︸
≜CN2

α,β,L

+∆y⊤A−1

 ∑
j∈[s]\[k]

λ2
jzjz

⊤
j

A−1∆y

︸ ︷︷ ︸
≜CN2

α,β,F

(100)

+∆y⊤A−1

∑
j>s

λ2
jzjz

⊤
j

A−1∆y

︸ ︷︷ ︸
≜CN2

α,β,U

. (101)

Here, CNα,β,L corresponds to contamination from label defining features, CNα,β,F corresponds to
contamination from favored features, and CNα,β,U corresponds to contamination from unfavored
features. The reason for separating out the contamination into these three subterms is that we will
need slightly different arguments to bound each of them, although Hanson-Wright and Woodbury are
central to all of the arguments. In Appendix E.1 we prove the upper bound on CNα,β,L+CNα,β,F ; in
Appendix E.2 we prove the lower bound. Finally, in Appendix E.3 we bound CNα,β,U . After putting
these bounds together, we will obtain the main bounds on the contamination, which we restate here
for reference.
Proposition 4.3 (Bounds on contamination). Suppose we are in the bi-level model. Then with
probability at least 1−O(1/n), the contamination satisfies

CNα,β = min
{
µ−1, 1

}
Θ(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Θ(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

. (26)
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E.1 Upper bounding the contamination from label-defining+favored features

In this section, we upper bound the contamination coming from the s− 2 favored features which are
not α or β. This culminates in the following lemma.
Lemma E.1. In the same setting as Proposition 4.3, we have with probability 1−O(1/nk) that

CN2
α,β,L + CN2

α,β,F ≤ c212 min
{
1, µ−2

}
nr−t−1 log(nsk)

2
,

where c12 is a positive constant.

Proof. Let WR ∈ Rn×(s−2) as the weighted feature matrix which includes all of the s− 2 favored
features aside from α, β. We can then define A−R ≜ A − WRW

⊤
R and HR = W⊤

RA−1
−RWR.

Using Woodbury, an analogous computation to Lemma B.2 implies that

WRA
−1∆y = (Is−2 +HR)

−1WRA
−1
−R∆y. (102)

The contamination from all of the s− 2 favored features that are not α or β satisfies

CN2
α,β,L + CN2

α,β,F = λF∆y⊤A−1
∑

j∈[s]\{α,β}

wjw
⊤
j A

−1∆y

= λF∆y⊤A−1WRW
⊤
RA−1∆y

= λF∆y⊤A−1
−RWR(Is−2 +HR)

−2W⊤
RA−1

−R∆y.

Since Proposition B.6 implies that µ1((Is−2 + HR)
−2) ≤ c10 min

{
µ2, 1

}
with extremely high

probability where c10 is a positive constant, we know the contamination is with extremely high
probability upper bounded by the following quadratic form:

c10 min
{
µ2, 1

}
λF∆y⊤A−1

−RWRW
⊤
RA−1

−R∆y (103)

= c10 min
{
µ2, 1

}
λ2
F

∑
j∈[s]\{α,β}

〈
zj ,A

−1
−R∆y

〉2
. (104)

We still cannot apply Hanson-Wright, because A−1
−R is not independent of ∆y. However, we can use

Woodbury again to take out zα, zβ from A−1
−R.

Define Wα,β = [wα wβ ] and H
(s)
α,β = W⊤

α,βA
−1
−sWα,β . Then Woodbury implies that

A−1
−R = A−1

−s −A−1
−sWα,β(I2 +H

(s)
α,β)

−1W⊤
α,βA

−1
−s. (105)

Hence

z⊤
j A

−1
−R∆y = z⊤

j A
−1
−s∆y − z⊤

j A
−1
−sWα,β(I2 +H

(s)
α,β)

−1W⊤
α,βA

−1
−s∆y. (106)

We will use Hanson-Wright and Cauchy-Schwarz to argue that the second term in Eq. (106)
above will be dominated by the first term. Indeed, Corollary C.3 implies that z⊤

j A
−1
−s∆y ≤

c6n
1−t
2 −p

√
log(nsk) with probability at least 1−O(1/nsk), so it suffices to show that the other term

is dominated by n
1−t
2 −p. We will show that its contribution for each j is min

{
1, µ−1

}
Õ(n

1
2−t−p).

By Cauchy-Schwarz, the magnitude of the second term of Eq. (106) is at most∥∥(I2 +Hα,β)
−1
∥∥
2

∥∥W⊤
α,βA

−1
−szj

∥∥
2

∥∥W⊤
α,βA

−1
−s∆y

∥∥
2

(107)

≤ c11λF min {µ, 1}n 1
2−p
√

log(nsk) · n1−t−p
√
log k (108)

≤ c11 min
{
1, µ−1

}
n

1
2−t−p log(nsk), (109)

where c11 is a positive constant. In the second line, we have used Proposition B.6 to upper bound∥∥∥(I2 +H
(s)
α,β)

−1
∥∥∥
2
≤ O(min {µ, 1}) and we have used Theorem B.1 and Proposition B.4 to deduce

that that
∣∣z⊤
j A

−1
−sza

∣∣ ≤ O(n
1
2−p)

√
log(nsk) with probability at least 1−O(1/nsk). Similarly, we

used the scaling from Corollary C.3 to deduce that
∣∣z⊤
αA

−1
−s∆y

∣∣ ≤ O(n1−t−p)
√
log k, and similarly

for β.

30



Hence z⊤
j A

−1
−R∆y is O(n

1−t
2 −p) log(nsk) with probability 1 − O(1/nsk). By union bounding

over j and plugging our upper bound back into Eq. (104), we conclude that with probability at least
1−O(1/nk)

CN2
α,β,L + CN2

α,β,F ≤ c10 min
{
µ2, 1

}
λ2
Fn

r ·O(n1−t−2p) log(nsk)
2 (110)

= µ−2 min
{
µ2, 1

}
O(nr−t−1) log(nsk)

2 (111)

≤ c212 min
{
1, µ−2

}
nr−t−1 log(nsk)

2
, (112)

where c12 is a positive constant, concluding the proof.

E.2 Lower bounding the contamination from label-defining+favored features

In this section, we upper bound the contamination coming from the s− 2 favored features which are
not α or β. This culminates in the following lemma.
Lemma E.2. In the same setting as Proposition 4.3, if t > 0, with probability at least 1−O(1/nk),
we have

CN2
α,β,L + CN2

α,β,F ≥ c214 min
{
1, µ−2

}
nr−t−1,

where c14 is a positive constant.

Proof. Following the beginning of the proof of Lemma E.1 and what we know about the flatness of
the spectra of hat matrices from Proposition B.6, we can deduce that there is some positive constant
c13 such that with extremely high probability

CN2
α,β,L + CN2

α,β,F ≥ c13 min
{
µ2, 1

}
λ2
F

∑
j∈[s]\{α,β}

〈
zj ,A

−1
−R∆y

〉2
. (113)

We will further lower bound this by throwing out all label-defining j. In other words, the goal now is
to lower bound ∑

j∈[s]\[k]

〈
zj ,A

−1
−R∆y

〉2
=
〈
Z⊤
FA

−1
−R∆y,Z⊤

FA
−1
−R∆y

〉
. (114)

The main idea is to use Bernstein’s inequality, but unfortunately A−1
−R is not independent of ∆y, so

we will again resort to Woodbury to take out zα and zβ . As in the proof for upper bounding the
favored contamination, we have Wα,β = [wα wβ ] and H

(s)
α,β = W⊤

α,βA
−1
−sWα,β . Then we can

deduce from another application of Woodbury that

z⊤
j A

−1
−R∆y = z⊤

j A
−1
−s∆y − z⊤

j A
−1
−sWα,β(I2 +Hα,β)

−1W⊤
α,βA

−1
−s∆y. (115)

Again, we can argue that with probability 1 − O(1/nsk), the second term is upper bounded in
magnitude by

min
{
1, µ−1

}
n

1
2−t−p log(nsk) = min

{
1, µ−1

}
O(n

1−t
2 −p · n−κ6), (116)

where κ6 is a positive constant because t > 0. Since Hanson-Wright (Corollary C.3) implies that
z⊤
j A

−1
−s∆y = Õ(n

1−t
2 −p), this implies that z⊤

j A
−1
−R∆y = Õ(n

1−t
2 −p), and similarly for β. Hence

we have

(z⊤
j A

−1
−R∆y)2 = (z⊤

j A
−1
−s∆y +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6))2 (117)

= (z⊤
j A

−1
−s∆y)2 +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6)Õ(n

1−t
2 −p) (118)

= (z⊤
j A

−1
−s∆y)2 +min

{
1, µ−1

}
o(n1−t−2p). (119)

We are now in a position to analyze the contribution from the first term of Eq. (119) to Eq. (114):
its contribution is

〈
Z⊤
FA

−1
−s∆y,Z⊤

FA
−1
−s∆y

〉
. This does have all the independence required to

apply Bernstein, because (A−1
−s,∆y) are independent of ZF . Hence conditioned on A−1

−s and ∆y,〈
Z⊤
FA

−1
−s∆y,Z⊤

FA
−1
−s∆y

〉
is a sum of s − k subexponential variables, and by Lemma 2.7.7 of

Vershynin (2018) each of these random variables conditionally has subexponential norm at most∥∥A−1
−s∆y

∥∥2
2

and conditional mean
〈
A−1

−s∆y,A−1
−s∆y

〉
.
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We can use Hanson-Wright (Theorem 4.1) to bound both of these quantities. Indeed, it implies that
with probability at least 1−O(1/nk),∥∥A−1

−s∆y
∥∥2
2
≤ O(n1−t−2p). (120)

Let us now compute the Hanson-Wright bound for
〈
A−1

−s∆y,A−1
−s∆y

〉
. Note that A−1

−s is indepen-
dent of ∆y, so we can condition on A−1

−s and conclude that with probability at least 1−O(1/nk)〈
A−1

−s∆y,A−1
−s∆y

〉
≥ E[

〈
A−1

−s∆y,A−1
−s∆y

〉
|A−1

−s]−O(n
1−t
2 )
∥∥A−2

−s
∥∥
2

√
log(nk) (121)

= Tr
(
A−2

−sE[∆y∆y⊤]
)
−O(n

1−t
2 )
∥∥A−2

−s
∥∥
2

√
log(nk) (122)

=
2

k
Tr
(
A−2

−s
)
−O(n

1−t
2 )
∥∥A−2

−s
∥∥
2

√
log(nk), (123)

where we have used the fact that ∆y is mean zero and ∆y[i]2 ∼ Ber( 2k ).

From Proposition B.4, we obtain the scaling for Tr
(
A−2

−s
)

and
∥∥A−2

−s
∥∥
2
. This implies that with

probability at least 1−O(1/nk)〈
A−1

−s∆y,A−1
−s∆y

〉
≥ Ω(n1−t−2p)−O(n

1−t
2 −2p)

√
log(nk) (124)

≥ Ω(n1−t−2p). (125)

as t < 1.

Bernstein and the union bound implies that with probability at least 1−O(1/nk),

〈
Z⊤
FA

−1
−s∆y,Z⊤

FA
−1
−s∆y

〉
≥

 ∑
j∈[s]\[k]

Ω(n1−t−2p)

−O(n
r
2+1−t−2p) (126)

≥ Ω(nr+1−t−2p), (127)

as r > 0.

To wrap up, we will need to upper bound the contribution of the error term in Eq. (119). Its contribution
from summing over j ∈ [s] \ [k] is min

{
1, µ−2

}
o(nr+1−t−2p), which is negligible compared to the

Bernstein term, which as we just proved is Ω(nr+1−t−2p). Hence
〈
Z⊤
FA

−1
−R∆y,Z⊤

FA
−1
−R∆y

〉
≥

Ω(nr+1−t−2p) with high probability, and inserting this back into our lower bound Eq. (113), we see
that

CN2
α,β,L + CN2

α,β,F ≥ c13 min
{
µ2, 1

}
λ2
FΩ(n

r+1−t−2p) (128)

= c13µ
−2 min

{
µ2, 1

}
Ω(nr−t−1) (129)

≥ c214 min
{
1, µ−2

}
nr−t−1, (130)

where c14 is a positive constant.

E.3 Bounding the unfavored contamination

Finally, we wrap up the section by proving matching upper and lower bounds for the unfavored
contamination CNα,β,U .

Lemma E.3 (Bounding unfavored contamination). In the same setting as Proposition 4.3, if t > 0,
with probability 1−O(1/nk), the contamination from the unfavored features satisfies

CN2
α,β,U = c215(1± o(1))n1−t−p,

where c15 is a positive constant.

On the other hand, if t = 0, then with probability 1−O(1/nk), the unfavored contamination satisfies

CN2
α,β,U ≤ c216 min

{
1, µ−1

}
n1−t−p log(nsk).
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Proof. By Woodbury, we have

A−1 = A−1
U −A−1

U MsA
−1
U , (131)

where

Ms ≜ Ws(Is +Hs)
−1W⊤

s , (132)

and Hs ≜ W⊤
s A−1

−sWs.

Now we have

CN2
α,β,U = ∆y⊤A−1AUA

−1∆y (133)

= ∆y⊤(A−1
U −A−1

U MsA
−1
U )AU (A

−1
U −A−1

U MsA
−1
U )∆y (134)

= ∆y⊤
(
A−1
U − 2A−1

U MsA
−1
U +A−1

U MsA
−1
U MsA

−1
U

)
∆y. (135)

By Theorem 4.1, we have with probability at least 1−O(1/nk)

∆y⊤A−1
U ∆y = c215(1± o(1))n1−t−p, (136)

where c15 is a positive constant.

On the other hand, we have that

MsA
−1
U Ms = Ws(Is +Hs)

−1W⊤
s A−1

U Ws(Is +Hs)
−1W⊤

s

= Ws(Is +Hs)
−1Hs(Is +Hs)

−1W⊤
s

= Ws(Is − (Is +Hs)
−1)(Is +Hs)

−1W⊤
s

= Ws((Is +Hs)
−1 − (Is +Hs)

−2)W⊤
s

Due to Proposition B.6, µi((Is + Hs)
−1) = min {µ, 1} (1± o(1)) for all i with very high

probability. Hence to handle the error terms that are not ∆y⊤A−1
U ∆y, it suffices to asymp-

totically bound ∆y⊤A−1
U MsA

−1
U ∆y. In turn, we can couple this to the quadratic form

min {µ, 1} (1± o(1))∆y⊤A−1
U WsWsA

−1
U ∆y. By Proposition C.4, we have with probability at

least 1−O(1/nk)

min {µ, 1} (1± o(1))∆y⊤A−1
U WsWsA

−1
U ∆y (137)

≤ c28λF min {µ, 1} (1± o(1))(n2−2t−2p + nr+1−t−2p) log(nsk) (138)

≤ c28 min
{
1, µ−1

}
(1± o(1))(n1−2t−p + nr−t−p) log(nsk) (139)

For t > 0, we claim that the term in Eq. (139) is o(n1−t−p), because 1 − 2t − p < 1 − t − p and
r − t − p < 1 − t − p. Hence if t > 0 then by union bound we have with probability at least
1−O(1/nk) that

CN2
α,β,U = c215(1± o(1))n1−t−p, (140)

as desired.

On the other hand, if t = 0, we only have an issue if q + r < 1, so that min
{
1, µ−1

}
= 1. In this

case, the deviation term n1−2t−p = n1−t−p. However, this won’t affect the fact that the upper bound
on contamination will still be Õ(n1−t−p). More precisely, this bound concludes by arguing that

CN2
α,β,U ≤ c216 min

{
1, µ−1

}
n1−t−p log(nsk), (141)

where c16 is an appropriately defined positive constant.

It turns out we don’t have to worry about this edge case at all for the lower bound on CNα,β,U ,
because the stated conditions for misclassification imply that t > 0 anyway. This completes the proof
of the lemma.
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F Obtaining tight misclassification rate

In this section, we will prove Proposition A.5. Let us restate the main proposition and sketch out its
proof more formally.
Proposition A.5 (Correlation bound). Assume we are in the bi-level ensemble model (Definition 1),
the true data generating process is 1-sparse (Assumption 1), and the number of classes scales with n
(i.e. t > 0). Then for every ϵ > 0, we have

Pr

[
max

β∈[k],β ̸=α
Z(β) > n−u

]
≥ 1−Θ

(
1

k1+o(1)

)
− ϵ (49)

for sufficiently large n and any u > 0.

Proof sketch. Note that the Z(β)’s that must outcompete the decaying survival to contamination ratio
are jointly Gaussian, as they are projections of a standard Gaussian vector xtest ∈ Rd. Hence if we
want to study the probability that maxβ Z

(β) outcompetes n−u, we have to understand the correlation
structure of the Z(β)’s.

We will argue that for β, γ ∈ [k] with α, β, γ pairwise distinct, the correlation between Z(β) and
Z(γ) is 1

2 ± o(1) with high probability. To that end, we want to look at the correlation (inner product)

between the vectors
{
λjĥα,β [j]

}
for j ̸∈ {α, β} and

{
λjĥα,γ [j]

}
for j ̸∈ {α, γ}. However, note

that by independence of the components of xtest from every other random variable and the fact that
they are mean zero, we have

E[ĥα,β [γ]xtest[γ]ĥα,γ [β]xtest[β]] = 0.

Hence it suffices to look at the correlation for j ̸∈ {α, β, γ}.

We assume WLOG that α = 1, β = 2, γ = 3. Let

Λα,β ≜ diag(1− 1j=α − 1j=β)j∈[d] ◦ diag(λj)j∈[d] ∈ Rd×d

represent the diagonal matrices containing the squared feature weights with indices α, β zeroed out.
Next, let vα,β ∈ Rd denote the vector with vα,β [α] = vα,β [β] = 0 and vα,β [j] = λjĥα,β [j] for
j ∈ [d], j ̸∈ {α, β}. Hence vα,β = Λ

1/2
α,β(f̂α − f̂β). Since Z(β) = ⟨vα,β ,xtest⟩, in order to analyze

the correlations between Z(β) and Z(γ), it suffices to analyze vα,β . Indeed, we will show that the
weighted halfspaces Λ1/2

α,β f̂α ∈ Rd and Λ
1/2
α,β f̂β ∈ Rd are asymptotically orthogonal.

In other words, we need to show that〈
Λ
1/2
α,β f̂α,Λ

1/2
α,β f̂β

〉
∥∥∥Λ1/2

α,β f̂α

∥∥∥
2

∥∥∥Λ1/2
α,β f̂β

∥∥∥
2

= o(1)

with probability at least 1−O(1/nk); we can then union bound against all choices of β. This is the
most technically involved part of the proof, and is the content of Proposition F.1.

This in turn will imply (see Lemma F.2) that the maximum (and minimum) correlation between the
vα,β for different β is 1

2 ± o(1). Let (Zβ)β∈[k],β ̸=α be equicorrelated gaussians with correlation
ρ = 1

2 + o(1), and (Zβ)β∈[k],β ̸=α be equicorrelated gaussians with correlation ρ = 1
2 − o(1). By

Slepian’s lemma, for any u > 0, the probability of maxβ Z
(β) losing to n−u is sandwiched as

Pr

[
max
β

Zβ ≤ n−u
]
≤ Pr

[
max
β

Z(β) ≤ n−u
]
≤ Pr

[
max
β

Zβ ≤ n−u
]
,

where we have adopted the shorthand maxβ to denote maxβ∈[k],β ̸=α.

Theorem 2.1 of Pinasco et al. (2021) shows that jointly gaussian vectors in Rk with equicorrelation ρ
lie in the positive orthant with probability Θ(k1−1/ρ). In particular, applied to Zβ , with correlation
ρ = 1

2 + o(1), we find that

Pr

[
max
β

Zβ ≤ 0

]
= Θ(k−1+o(1)),
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and similarly for Zβ . Anticoncentration for Gaussian maxima (Chernozhukov et al., 2015,
Corollary 1) implies that we can transfer over the bound on Pr

[
maxβ Zβ ≤ 0

]
to a bound on

Pr
[
maxβ Zβ ≤ n−u] to show that for every ϵ > 0, we have

Θ(k−1−o(1))− ϵ ≤ Pr

[
max
β

Z(β) ≤ n−u
]
≤ Θ(k−1+o(1)) + ϵ (142)

for sufficiently large n. Taking the complement of the above event concludes the proof.

F.1 Main results for tight misclassification rates

The main result in this section is the following proposition, which states that the halfspace predictions
are asymptotically orthogonal. Its proof is deferred to the subsequent sections.

Proposition F.1. Assume we are in the bi-level ensemble model (Definition 1), the true data generating
process is 1-sparse (Assumption 1), and the number of classes scales with n (i.e. t > 0).

For any distinct α, β ∈ [k], with probability at least 1−O(1/nk), we have〈
Λ
1/2
α,β f̂α,Λ

1/2
α,β f̂β

〉
∥∥∥Λ1/2

α,β f̂α

∥∥∥
2

∥∥∥Λ1/2
α,β f̂β

∥∥∥
2

= o(1).

Given Proposition F.1, we can show that the Z(β) have correlations that approach 1
2 . The intuitive

reason that this correleation approaches 1
2 is that the contribution from α is common. The following

lemma formalizes this intuition.

Lemma F.2 (Correlation of relative differences of almost orthogonal vectors). Suppose that we have
n unit vectors x1, . . . ,xn ∈ Rd such that |⟨xi,xj⟩| ≤ γ for γ > 0. Then for any distinct i, j, k ∈ [n],
we have ∣∣∣∣ ⟨xj − xi,xi − xk⟩

∥xj − xi∥∥xi − xk∥
− 1

2

∣∣∣∣ ≤ 2γ

1− γ
.

Proof. For any i ̸= j, we have ∥xi − xj∥2 = 2− 2 ⟨xi,xj⟩. Hence we have

2− 2γ ≤ ∥xi − xj∥2 ≤ 2 + 2γ.

Also

2− 2γ ≤ ∥xj − xk∥2

= ∥xi − xj∥2 + ∥xi − xk∥2 − 2 ⟨xj − xi,xi − xk⟩
≤ 4 + 4γ − 2 ⟨xj − xi,xi − xk⟩ .

Since ∥xi − xj∥ ≥
√
2− 2γ, we can rearrange and obtain that

⟨xj − xi,xi − xk⟩
∥xj − xi∥∥xi − xk∥

≤ 1 + 3γ

2− 2γ
.

Similarly we can reverse the inequalities and get

2 + 2γ ≥ 4− 4γ − 2 ⟨xj − xi,xi − xk⟩ ,

so
⟨xj − xi,xi − xk⟩
∥xj − xi∥∥xi − xk∥

≥ 1− 3γ

2 + 2γ
.

Combining Proposition F.1 with Lemma F.2 yields the following formal statement about the correla-
tions between the Z(β).
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Lemma F.3 (Asymptotic correlation of relative survivals). For any distinct α, β, β′ ∈ [k], under the
same assumptions as Proposition F.1, as n → ∞, with probability at least 1−O(1/n), we have∣∣∣∣E[Z(β)Z(β′)]− 1

2

∣∣∣∣ ≤ o(1).

As a consequence, the asymptotic correlation between the relative survivals approaches 1
2 at a

polynomial rate.

Proof. Plugging in the result of Proposition F.1 into Lemma F.2, we obtain the stated result.

F.2 Lower bounding the denominator

Let us now begin to prove Proposition F.1. The first step is to bound the denominator of the normalized
correlation. Writing out the definitions, we have∥∥∥Λ1/2

α,β f̂α

∥∥∥2 =
∑

j ̸∈{α,β}

λ2
jy

⊤
αA

−1zjz
⊤
j A

−1yα

= λ2
F

∑
j ̸∈{α,β},j∈[s]

y⊤
αA

−1zjz
⊤
j A

−1yα + λ2
U

∑
j>s

y⊤
αA

−1zjz
⊤
j A

−1yα

Note that these two terms are respectively analogous to CN2
α,β,L+CN2

α,β,F and CN2
α,β,U . In fact, the

proofs of the lower bounds for contamination essentially transfer over verbatim to the lower bounds
on the denominator, because Hanson-Wright implies that we can show that

∥∥A−1
−syα

∥∥
2

concentrates
the same way that

∥∥A−1
−s∆y

∥∥
2

does. In essence, we are able to show the following proposition.

Proposition F.4 (Lower bound on norm of scaled halfspaces). Under the same assumptions as
Proposition F.1, for any α, β ∈ [k], with α ̸= β, with probability at least 1−O(1/nk), we have∥∥∥Λ1/2

α,β f̂α

∥∥∥2 ≥ min
{
1, µ−2

}
Ω(nr−t−1) + Ω(n1−t−p).

F.3 Upper bounding the numerator: the unnormalized correlation

We now turn to the more involved part of the bound: proving an upper bound on the numerator. As
before, we can bound the split up the numerator into favored and unfavored terms. For each term, we
will show that it is dominated by the denominator, in the precise sense that each term is

o(min
{
1, µ−2

}
nr−t−1 + n1−t−p).

Now, let’s look at the numerator, which is the bilinear form

λ2
F

∑
j ̸∈{α,β},j∈[s]

y⊤
αA

−1zjz
⊤
j A

−1yβ + λ2
U

∑
j>s

y⊤
αA

−1zjz
⊤
j A

−1yβ . (143)

= λ2
F

〈
Z⊤
LA

−1yα,Z
⊤
LA

−1yβ
〉︸ ︷︷ ︸

corα,β,L

+λ2
F

〈
Z⊤
FA

−1yα,Z
⊤
FA

−1yβ
〉︸ ︷︷ ︸

corα,β,F

+λ2
U

∑
j>s

y⊤
αA

−1zjz
⊤
j A

−1yβ︸ ︷︷ ︸
corα,β,U

(144)

We refer to the the first term as the label defining correlation corα,β,L, the second term as the
favored correlation corα,β,F , and the last term as the unfavored correlation corα,β,U . Here, we abuse
terminology slightly and refer to these inner products as correlations, even though strictly speaking,
they are unnormalized.

F.3.1 Bounding the favored correlation

We now bound the correlation coming from the favored features; we will ultimately show that its
contribution is min

{
1, µ−2

}
o(nr−t−1). Recall that WR ∈ Rn×(s−2) is the weighted feature matrix
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for the s − 2 favored features aside from α and β. Then the label-defining+favored correlation
corα,β,L + corα,β,F can be written succinctly as

λ2
F

〈
Z⊤
RA

−1yα,Z
⊤
RA

−1yβ
〉
. (145)

Why should we be able to bound this better than Cauchy-Schwarz? Intuitively, although there is a
mild dependence between yα and yβ , it is not strong enough to cause Z⊤

RA
−1yα and Z⊤

RA
−1yβ to

point in the same direction.

To formalize this argument, we will first follow the strategy to bound the favored contamination. In
particular, using the push-through form of Woodbury (Lemma B.2) we see that〈

Z⊤
RA

−1yα,Z
⊤
RA

−1yβ
〉
= y⊤

αA
−1
−RZR(Is−2 +HR)

−2Z⊤
RA

−1
−Ryβ . (146)

Now, we can apply Proposition B.6 to replace (Is−2 +HR)
−2 with min

{
µ2, 1

}
(Is−2 +E), where

∥E∥2 = O(n−κ11) with extremely high probability. Cauchy-Schwarz yields that〈
Z⊤
RA

−1yα,Z
⊤
RA

−1yβ
〉

(147)

≤ min
{
µ2, 1

} 〈
Z⊤
RA

−1
−Ryα,Z

⊤
RA

−1
−Ryβ

〉
(148)

+min
{
µ2, 1

}
∥E∥2

∥∥Z⊤
RA

−1
−Ryβ

∥∥
2

∥∥Z⊤
RA

−1
−Ryα

∥∥
2
. (149)

The term in Eq. (149) can be bounded in the same way that we bounded the favored contamina-
tion. Indeed, since we can swap in yα and yβ with ∆y, the argument that proved the bounds on∥∥Z⊤

RA
−1
−R∆y

∥∥
2

port over immediately. After using the scaling for λF and the fact that ∥E∥2 =

O(n−κ11), we conclude that this Cauchy-Schwarz error term is at most min
{
1, µ−2

}
o(nr−t−1)

with probability at least 1−O(1/nk).

Let us now turn to the term in Eq. (148). As in the proof for the lower bound for favored contamination
Lemma E.2, to get better concentration than Cauchy-Schwarz, we want to use Bernstein. We can
rewrite it suggestively as ∑

j∈[s]\{α,β}

(z⊤
j A

−1
−Ryα)(z

⊤
j A

−1
−Ryβ) (150)

We cannot immediately power through with the calculation, because A−1
−R is not independent of yα

or yβ . The main idea is to again use Woodbury and show that the dependent portions contribute
negligibly to z⊤

j A
−1
−Ryα. Therefore the dependent contributions get dominated by the lower bound

on the correlation.

As in the proof for bounding the favored contamination, we can further define Wα,β = [wα wβ ]

and H
(s)
α,β = W⊤

α,βA
−1
−sWα,β . Then we can deduce from another application of Woodbury that

z⊤
j A

−1
−Ryα = z⊤

j A
−1
−syα − z⊤

j A
−1
−sWα,β(I2 +Hα,β)

−1W⊤
α,βA

−1
−syα. (151)

Again, we can argue that the second term is bounded in magnitude by

min
{
1, µ−1

}
n

1
2−t−p log(ns) = min

{
1, µ−1

}
O(n

1−t
2 −p · n−κ6), (152)

because t > 0. Since Hanson-Wright (Corollary C.3) implies that z⊤
j A

−1
−syα = Õ(n

1−t
2 −p), this

implies that z⊤
j A

−1
−Ryα = Õ(n

1−t
2 −p), and similarly for β. Hence we have

(z⊤
j A

−1
−Ryα)(z

⊤
j A

−1
−Ryβ) (153)

≤ (z⊤
j A

−1
−syα +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6))(z⊤

j A
−1
−syβ +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6))

(154)

≤ (z⊤
j A

−1
−syα)(z

⊤
j A

−1
−syβ) + min

{
1, µ−1

}
O(n

1−t
2 −p−κ6)Õ(n

1−t
2 −p) (155)

≤ (z⊤
j A

−1
−syα)(z

⊤
j A

−1
−syβ) + min

{
1, µ−1

}
o(n1−t−2p). (156)

This implies that we can rewrite Eq. (150) as ∑
j∈[s]\{α,β}

(z⊤
j A

−1
−syα)(z

⊤
j A

−1
−syβ)

±min
{
1, µ−1

}
o(nr+1−t−2p). (157)
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Let us argue that the second term in Eq. (157) will be negligible compared to the denominator, which
is min

{
1, µ−2

}
Ω(nr−t−1). Tracing back up the stack, we see that its contribution to the favored

correlation will be at most

λ2
F min

{
µ2, 1

}
·min

{
1, µ−1

}
o(nr+1−t−2p) ≤ µ−2 min

{
µ2, µ−1

}
o(nr−t−1) (158)

≤ min
{
1, µ−3

}
o(nr−t−1) (159)

≤ min
{
1, µ−2

}
o(nr−t−1). (160)

Turning back to the first term, we are now in a position to apply Bernstein. Note that (A−1
−s,yα,yβ)

are independent of ZR. Hence conditioned on A−1
−s,yα, and yβ ,

〈
Z⊤
RA

−1
−syα,Z

⊤
RA

−1
−syβ

〉
is a sum

of s− 2 subexponential variables, and by Lemma 2.7.7 of Vershynin (2018) each of these random
variables conditionally has subexponential norm at most

∥∥A−1
−syα

∥∥
2

∥∥A−1
−syβ

∥∥
2

and conditional
mean

〈
A−1

−syα,A
−1
−syβ

〉
.

We can use Hanson-Wright (Theorem 4.1) to bound both of these quantities. Indeed, it implies that
with probability at least 1−O(1/nk),∥∥A−1

−syα
∥∥
2

∥∥A−1
−syβ

∥∥
2
≤ O(n1−t−2p). (161)

Let us now compute the Hanson-Wright bound for
〈
A−1

−syα,A
−1
−syβ

〉
. Note that A−1

−s is independent
of yα and yβ , so we can condition on A−1

−s and conclude that with probability at least 1−O(1/nk)〈
A−1

−syα,A
−1
−syβ

〉
≤ E[

〈
A−1

−syα,A
−1
−syβ

〉
|A−1

−s] + c6n
1−t
2

∥∥A−2
−s
∥∥
2

√
log(nk). (162)

We can rewrite the expectation as

Tr
(
A−2
s E[yβy⊤

α ]
)
. (163)

Clearly, E[yβy⊤
α ] is diagonal, and each diagonal entry is equal to . Let ρ = 1

k . Then since yα = 1−ρ
implies yβ = −ρ and vice versa, we get

E[yα[i]yβ [i]] = 2(1− ρ)(−ρ) Pr[yα[i] = 1− ρ] + (−ρ)2 Pr[yα[i] = yβ [i] = −ρ] (164)

≤ −2ρ2(1− ρ) + ρ2 Pr[yα[i] = −ρ] (165)

≤ −ρ2(1− ρ). (166)

In other words, the expectation is negative, so we can neglect it in our upper bound.

On the other hand, the deviation term is with very high probability at most

c6n
1−t
2

∥∥A−2
−s
∥∥
2

√
log(nk) ≤ c6n

1−t
2 −2p

√
log(nk). (167)

Combining all of our bounds, Bernstein yields

〈
Z⊤
RA

−1
−syα,Z

⊤
RA

−1
−syβ

〉
≤

 ∑
j∈[s]\{α,β}

c6n
1−t
2 −2p

√
log(nk)

+ n
r
2+1−t−2p (168)

≤ nr+
1−t
2 −2p

√
log(nk) + n

r
2−t+1−2p. (169)

Again, let’s trace all the way back to Eq. (148) and then the favored correlation bound. We have
shown that

〈
Z⊤
RA

−1
−syα,Z

⊤
RA

−1
−syβ

〉
’s contribution to the favored correlation is at most

c17λ
2
F min

{
µ2, 1

}
(nr+

1−t
2 −2p

√
log(nk) + n

r
2−t+1−2p) (170)

= c17µ
−2 min

{
µ2, 1

}
(nr−

1+t
2 −1

√
log(nk) + n

r
2−t−1) (171)

≤ c17 min
{
1, µ−2

}
(nr−

1+t
2 −1

√
log(nk) + n

r
2−t−1) (172)

≤ c17 min
{
1, µ−2

}
o(nr−t−1), (173)

where the last line follows becuase 0 < t < r < 1, and c17 is a positive constant.
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F.3.2 Bounding the unfavored correlation

Now, let us show that the unfavored correlation corα,β,U is negligible; more precisely, we’ll show
that it’s min

{
1, µ−2

}
o(nr−t−1) + o(n1−t−p). We can rewrite corα,β,U as

λUy
⊤
αA

−1AUA
−1yβ ,

and play the same game with using Woodbury to replace A−1 with A−1 −A−1
U MsA

−1
U , where we

recall that
Ms ≜ Ws(Is +Hs)

−1W⊤
s ∈ Rn×n.

This yields

y⊤
αA

−1
U yβ − 2y⊤

αA
−1
U MsA

−1
U yβ + y⊤

αA
−1
U MsA

−1
U MsA

−1
U yβ . (174)

Let us first focus on the first term of Eq. (174). Hanson-Wright implies that with probability at least
1−O(1/n), ∣∣y⊤

αA
−1
U yβ − E[y⊤

αA
−1
U yβ |A−1

U ]
∣∣ ≤ n

1−t
2

∥∥A−1
U

∥∥
2

√
log n. (175)

Also, E[y⊤
αA

−1
U yβ |A−1

U ] = Tr
(
A−1
U E[yβy⊤

α ]
)

= Θ(n1−2t−p) with high probability, and∥∥A−1
U

∥∥
2
≤ n−p with extremely high probability. Hence we see that y⊤

αA
−1
U yβ ≤ O(n

1−t
2 −p) ≤

o(n1−t−p) as t > 0.

Next, let’s turn to the second and third terms of Eq. (174). We claim that only the second term will be
relevant to bound asymptotically, and moreover that they are both min

{
1, µ−2

}
o(nr−t−1). Since

MsA
−1
U Ms = Ws(Is +Hs)

−1Hs(Is +Hs)
−1W⊤

s

= Ws((Is +Hs)
−1 − (Is +Hs)

−2)W⊤
s ,

the second and third term can be rewritten as

− 2y⊤
αA

−1
U Ws(Is +Hs)

−1W⊤
s A−1

U yβ

+ y⊤
αA

−1
U Ws((Is +Hs)

−1 − (Is +Hs)
−2)W⊤

s A−1
U yβ .

As we are going to use Hanson-Wright to bound the entries of Z⊤
s A

−1
U yα, it follows that only the

second term of Eq. (174) is relevant asymptotically.

To bound the second term, we will use Cauchy-Schwarz. We see that

y⊤
αA

−1
U MsA

−1
U yβ ≤ λF

∥∥(Is +Hs)
−1
∥∥
2

∥∥Z⊤
s A

−1
U yα

∥∥
2

∥∥Z⊤
s A

−1
U yβ

∥∥
2

(176)

≤ λF min {µ, 1}O(nr−t+1−2p) log(ns) (177)

≤ µ−1 min {µ, 1}O(nr−t−p) log(ns) (178)

≤ min
{
1, µ−1

}
O(nr−t−p) log(ns), (179)

where in the second line we have used Proposition B.6.

Now, note that if regression works, this yields an upper bound of O(nr−t−p) log(ns). But since
p > 1, this is o(nr−t−1), which means this contribution is dominated by the denominator.

On the other hand, if regression fails, then the upper bound is now µ−1O(nr−t−p) log(ns), which
we claim is o(µ−2nr−t−1). Indeed, from the definition of the bi-level ensemble Definition 1, we
have p > q + r, so

min
{
1, µ−1

}
nr−t−p ≤ µ−1nr−t−1 · n1−p

≤ µ−1o(nr−t−1 · n1−q−r)

= µ−2o(nr−t−1),

as desired.

Let us now go back to Eq. (174) and combine our two bounds. Since λU = O(1), we have just shown
that

corα,β,U ≤ min
{
1, µ−2

}
o(nr−t−1) + o(n1−t−p), (180)

as desired.

39



G A new variant of the Hanson-Wright inequality with soft sparsity

In this section, we prove Theorem 4.1. First, we outline a high level idea of the proof. The starting
point of the proof is to explicitly decompose the quadratic form into diagonal and off-diagonal terms

x⊤My − E[x⊤My] =
∑
i,j

mijXiYj −
∑
i

miiE[XiYi] (181)

=
∑
i

mii(XiYi − E[XiYi])︸ ︷︷ ︸
≜Sdiag

+
∑
i ̸=j

mijXiYj︸ ︷︷ ︸
≜Soffdiag

(182)

where in the first line we have used the fact that for i ̸= j, Xi and Yj are independent and mean zero
to conclude that E[XiYj ] = 0.

We can start with the upper tail inequality P[x⊤My − E[x⊤My] > t] and conclude the lower tail
inequality by replacing M with −M . To bound Sdiag and Soffdiag, we will proceed by explicitly
bounding the MGF and applying Chernoff’s inequality.

G.1 Diagonal terms

For the diagonal terms, we want to bound the MGF of Sdiag =
∑
imii(XiYi − E[XiYi]). For

λ2 < 1
2C1K2 maxim2

ii
, we obtain

E exp(λSdiag) =

n∏
i=1

EXi,Yi
exp(λmii(XiYi − E[XiYi])) (183)

≤
n∏
i=1

EYiEXi [exp(λmiiYi(Xi − E[Xi|Yi]))|Yi] (184)

≤
n∏
i=1

EYi exp
(
C1λ

2m2
iiK

2Y 2
i

)
(185)

where we have applied Jensen’s inequality in the second line and the subgaussian assumption on Xi

conditioned on Yi in the last line. Here, C1 is a universal positive constant relating the equivalent
formulations of subgaussianity Vershynin (2018). Continuing with our calculation, we have

E exp(λSdiag) ≤
n∏
i=1

EYi [1 + 2C1λ
2m2

iiK
2Y 2
i ] (186)

≤
n∏
i=1

(1 + 2C1πλ
2K2m2

ii) (187)

≤ exp

(
2C1πλ

2K2
n∑
i=1

m2
ii

)
. (188)

where in the first line we have used the inequality exp(x) ≤ 1 + 2x valid for x ≤ 1
2 , in the second

line we have used the soft sparsity assumption on Yi, and in the last line we have used the inequality
1 + x ≤ exp(x), valid for all x.

Now Markov’s inequality yields for ϵ > 0 that

Pr[Sdiag > ϵ] ≤ E exp(λSdiag)

exp(λϵ)
(189)

≤ exp

(
−λϵ+ 2πC1K

2λ2
n∑
i=1

m2
ii

)
, (190)

and optimizing λ in the region λ2 ≤ 1
2C1K2 maxim2

ii
yields

λ = min

{
ϵ

2C1K2π
∑n
i=1 m

2
ii

,
1

2C1Kmaxi |mii|

}
. (191)
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Plugging in this value of λ into the Markov calculation yields the desired upper tail bound. We can
repeat the argument with −M to get the lower tail bound. A union bound completes the proof.

G.2 Offdiagonal terms

Following Rudelson and Vershynin (2013), for the offdiagonal terms we can decouple the terms in the
sum. More precisely, the terms in Soffdiag involving indices i and j are precisely mijXiYj+mjiYiXj .
The issue is that Yi can be correlated with Xi, which complicates the behavior of this random variable.
Decoupling ensures that for any j ∈ [n] we will have exactly one term which involves either Xj or
Yj , so in particular we will regain independence of the terms, allowing us to bound the MGF more
easily.

Let {δi}i∈[n] denote iid Bernoulli’s with parameter 1/2, which are independent of all other random
variables.

Let
Sδ ≜

∑
i̸=j

mijδi(1− δj)XiYj .

Since E[δi(1− δj)] =
1
4 , we have

Soffdiag = 4Eδ[Sδ],

Hence, Jensen’s inequality yields

Ex,y exp(λSoffdiag) ≤ Ex,y,δ exp(4λSδ),

where we have used the independence of δ and all other random variables. It follows that it suffices
to upper bound the MGF of Sδ .

Define the random set Λδ = {i ∈ [n] : δi = 1} to denote the indices selected by δ. For a vector
u ∈ Rn we also introduce the shorthand uΛδ

to denote the subvector of u where δi = 1 and uΛc
δ

to
denote the subvector of u where δi = 0.

Hence, we can rewrite Sδ ≜
∑
i∈Λδ,j∈Λc

δ
mijXiYj . For |λ| ≤ 1

2C1K∥M∥2
, we have

E exp(λSoffdiag) ≤ E exp(4λSδ) (192)

≤ Eδ
∏

i∈Λδ,j∈Λc
δ

ExΛδ
,yΛc

δ
[exp(λmijXiYj)] (193)

Now we can use the fact that the Xi and Yj are mean zero and independent because i ∈ Λδ and
j ∈ Λcδ , to show that∏

i∈Λδ,j∈Λc
δ

ExΛδ
,yΛc

δ
[exp(λmijXiYj)] ≤

∏
i∈Λδ,j∈Λc

δ

EyΛc
δ
[exp

(
C1λ

2K2m2
ijY

2
j

)
] (194)

≤
∏

i∈Λδ,j∈Λc
δ

EyΛc
δ
[1 + 2C1λ

2K2m2
ijY

2
j )] (195)

≤
∏

i∈Λδ,j∈Λc
δ

(1 + 2πC1λ
2K2m2

ijY
2
j ) (196)

≤
∏

i∈Λδ,j∈Λc
δ

exp
(
2πC1λ

2K2m2
ijY

2
j

)
(197)

≤ exp
(
2πC1λ

2K2∥M∥2F
)
. (198)

In the first line, we have used the subgaussianity of Xi; in the second line, we have used the
assumption on λ, in the third line, we have used the variance bound on Yj .

Again, we can apply Markov’s inequality and to see that for ϵ > 0,

Pr[Sdiag > ϵ] ≤ E exp(λSdiag)

exp(λϵ)
(199)

≤ exp
(
−λϵ+ 2πC1K

2λ2∥M∥2F
)
, (200)
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Picking

λ = min

{
ϵ

2C1K2π∥M∥2F
,

1

2C1K∥M∥2

}
(201)

yields the desired result.

H Proofs of main lemmas for concentration of spectrum

The goal of this section is ultimately to prove Proposition B.6, which asserts that for valid (T, S),
the hat matrix HT,S is a flat matrix whose spectrum is min {µ, 1} (1 + o(1)) with extremely high
probability. First, let us recall some notation. For any ∅ ̸= T ⊆ S ⊆ [s], we can define the (T, S)

hat matrix as HT,S ≜ W⊤
T A−1

−SWT . Here, WT is the n× |T | matrix of weighted features in T , and
A−T = A−WTW

⊤
T is the leave-T -out Gram matrix.

First, Wishart concentration applied to W⊤
T WT yields the following result.

Lemma H.1. Recall that µ ≜ nq+r−1 and W⊤
T WT ∈ R|T |×|T |. For any nonempty T ⊆ [s], with

probability at least 1− 2e−
√
n we have that for all i ∈ [|T |],

µi(W
⊤
T WT ) =

(
1± cT

√
|T |
n

)
µ−1np (202)

Proof. We can apply Lemma B.3 with M = ZT ∈ Rn×|T |, with M = n, m = |T | = o(n), and
ϵ = n

1
4 = o(

√
n|T |). Hence we have

n− 2
√

n|T |+ o(
√

n|T |) ≤ µ|T |(Z
⊤
T ZT ) ≤ µ1(Z

⊤
T ZT ) ≤ n+ 2

√
n|T |+ o(

√
n|T |).

Pluagging in the scaling λF = np−q−r and dividing through by n yields the desired result. Here, we
define cT to be an appropriately defined positive constant which only depends on |T | (as the favored
features are identically distributed).

Next, we can use Wishart concentration to bound the spectrum of AU .
Lemma H.2 (Concentration of spectrum for unfavored Gram matrix). Throughout this theo-
rem, assume we are in the bi-level model (Definition 1). Define µ ≜ nq+r−1. Recall AU =
λU
∑
j>s zjz

⊤
j ∈ Rn×n. With probability at least 1− 2e−n, for i ∈ [n] we have

µi(AU ) = (1± c18n
κ7)np, (203)

where c18 and κ7 are positive constants. In other words, the spectrum of the unfavored Gram matrix
AU is flat.

Proof. Note that AU = λU
∑
j>s zjz

⊤
j . Under the bi-level model, λU = 1 + o(1). Now we can

apply Lemma B.3 with M =
∑
j>s zjz

⊤
j , M = d− s = np − nr, m = n = o(d), and ϵ =

√
2n to

conclude that with probability at least 1− 2e−n, we have

d− 2
√
dn+ n−

√
2n ≤ µn(

∑
j>s

zjz
⊤
j ) ≤ µ1(

∑
j>s

zjz
⊤
j ) ≤ d+ 2

√
dn+ n+

√
2n. (204)

We can obtain the spectrum of AU by multiplying through by

λU =
(1− a)d

d− s
(205)

= 1 + nmax {−q,r−p} + o(nmax {−q,r−p}), (206)

where in the last line we have used the power series expansion for 1
1−x = 1 + x+ o(x). Preserving

only first order terms for λU and the spectrum of
∑
j>s zjz

⊤
j in Eq. (204) yields

µi(AU ) = (1± c18n
max{ 1−p

2 ,r−p,−q})np. (207)
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In fact, we know 1−p
2 > 1− p > r− p, since r < 1 and p > 1. This means we can neglect the r− p

term in the max, define κ7 = min
{
p−1
2 ,−q

}
> 0 and c18 to be an appropriately defined positive

constant.

Since A−T = AU +W[s]\TW
⊤
[s]\T , we can apply Lemmas H.1 and H.2 to control the spectrum

of A−T . We show that there is a (potentially) spiked portion of the spectrum corresponding to the
s− |T | favored features which were not taken out, whereas the rest of the n− s+ |T | eigenvalues
are flat.

Lemma H.3. Recall that A−T ∈ Rn×n. For any nonempty T ⊆ [s], with probability at least
1− 2e−

√
n − 2e−n, we have that for all i ∈ [s− |T |],

µi(A−T ) =

(
1± cT

√
|T |
n

)
µ−1np +

(
1± c18n

−κ7
)
np. (208)

For all i ∈ [n] \ [s− |T |], we have

µi(A−T ) =
(
1± c18n

−κ7
)
np. (209)

Proof. We can write

A−T = W[s]\TW
⊤
[s]\T +AU . (210)

Weyl’s inequality (Horn and Johnson, 2012, Corollary 4.3.15) implies that for any i ∈ [n], we have

µi(W[s]\TW
⊤
[s]\T ) + µn(AU ) ≤ µi(A−T ) ≤ µi(W[s]\TW

⊤
[s]\T ) + µ1(AU ). (211)

Then applying Lemmas H.1 and H.2, for i ∈ [s− |T |] we conclude that

µi(A−T ) =

(
1± cT

√
|T |
n

)
µ−1np +

(
1± c18n

−κ7
)
np.. (212)

which proves Eq. (208).

For i > s− |T |, applying Lemma H.2 and the fact that µi(W[s]\TW
⊤
[s]\T ) = 0 to Eq. (211) yields

µi(A−T ) =
(
1± c18n

−κ7
)
np. (213)

which proves Eq. (209).

By inverting the bounds proved above, we can also control the spectrum of A−1
−T .

Corollary H.4. Recall that A−T ∈ Rn×n. For any nonempty T ⊆ [s], with probability at least
1− 2e−

√
n − 2e−n, we have that for all i ∈ [n− s+ |T |],

µi(A
−1
−T ) = (1± c19n

−κ7)n−p (214)

For all i ∈ [n] \ [n− s+ |T |], we have

µi(A
−1
−T ) = min {µ, 1} (1± c20n

−κ8)n−p. (215)

where κ8 is a positive constant depending on |T |.

Proof. By inverting the bounds in Lemma H.3, using the fact that µi(A−1
−T ) =

1
µn−i+1(A−T ) we see

that for i ∈ [n− s+ |T |],

µi(A
−1
−T ) =

1

1± c18n−κ7
n−p (216)

= (1± c19n
−κ7)n−p, (217)

where we have used the power series expansion 1
1−x = 1 + x+ o(x2) and c19 is a positive constant.
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On the other hand, for i > n− s+ |T |, we get

µi(A
−1
−T ) =

1(
1± cT

√
|T |
n

)
µ−1 + (1± c18n−κ7)

n−p (218)

= min {µ, 1} (1± c20n
−κ8)n−p, (219)

where c20 and κ8 are positive constants defined as follows. If q + r < 1, i.e. regression works,

then µ−1 = ω(1), so the denominator becomes µ−1

(
1± cT

√
|T |
n + µ(1± c18n

−κ7)

)
. Then, since

|T | ≤ s = nr, we see that we can pick

κ8 = min

{
1− r

2
, 1− q − r

}
.

On the other hand, if q + r > 1, i.e. regression fails, then µ−1 = o(1), and so we can define

κ8 = min {κ7, q + r − 1}.

Hence to cover both cases we can pick

κ8 = min

{
1− r

2
, κ7, |1− q − r|

}
.

The choice of c20 is picked by again using the power series expansion for 1
1−x .

Note that Corollary H.4 immediately implies Proposition B.4, with κ9 defined based on picking
T = [k]. We are now in a position to prove that the generalized hat matrices HT,S , and hence the
Woodbury terms (I|T | +HT,S)

−1 have a flat spectrum as well.
Proposition B.6 (Generalized hat matrices are flat). Assume we are in the bi-level ensemble Defini-
tion 1. For any nonempty T ⊆ S ⊆ [s], with probability at least 1− 2e−

√
n − 2e−n, we have all the

eigenvalues tightly controlled:

µi((I|T | +HT,S)
−1) = min {µ, 1} (1± cT,Sn

−κ11). (75)

where cT,S and κ11 are positive constants that depend on |T | and |S|.

Proof. We seek to control the spectrum of the hat matrix HT,S = W⊤
T A−1

−SWT . We cannot directly
use naive eigenvalue bounds to bound the minimum and maximum eigenvalue, as this does not rule
out the possibility that HT,S has a spike. Instead, we control the spectrum from first principles.

The spectrum of HT,S is flat: Since A−1
−S is symmetric, it has an eigendecomposition V DV ⊤,

where V is an orthogonal matrix. Because WT is a weighted subset of only the (equally) favored
features, its law is rotationally invariant. Furthermore, since A−1

−S is independent of WT (as T ⊆ S),
we can absorb the rotation V into WT to reduce to the case where A−1

−S = D. Here, we have

D ≜

[
Dflat

Dspiked

]
∈ Rn×n =

µ1(A
−1
−S)

. . .
µn(A

−1
−S)

, (220)

where Dflat ∈ R(n−s+|T |)×(n−s+|T |) and Dspiked ∈ R(s−|T |)×(s−|T |) correspond to the flat and
(downwards) spiked portions of the spectrum of A−1

−S . We can also correspondingly decompose

ZT =

[
BT

CT

]
, (221)

where BT ∈ R(n−s+|T |)×|T | and CT ∈ R(s−|T |)×|T |. Note that each entry of these matrices are
i.i.d. N(0, 1) variables.
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By direct computation we have

Z⊤
T DZT = B⊤

TDflatBT +C⊤
T DspikedCT (222)

We thus have by using standard eigenvalue inequalities that

µ|T |(Z
⊤
T DZT ) ≥ µ|T |(B

⊤
TDflatBT ) + µ|T |(C

⊤
T DspikedCT ) (223)

≥ µ|T |(B
⊤
TBT )µn−s+|T |(A

−1
−S) + µ|T |(C

⊤
T CT )µn(A

−1
−S) (224)

≥ µ|T |(B
⊤
TBT )µn−s+|T |(A

−1
−S), (225)

where in the last line we have used µn(A
−1
−S) ≥ 0.

Since n > s, we have n− s+ |T | > |T |, so we can apply Wishart concentration (Lemma B.3) to
B⊤
TBT to obtain that with probability at least 1− 2e−

√
n we have

µ|T |(B
⊤
TBT ) ≥ n− s+ |T | − 2

√
(n− s+ |T |)|T |+ o(

√
(n− s+ |T |)|T |) (226)

≥ n(1− nr−1 − c21

√
|T |
n ), (227)

where c21 is a positive constant.

On the other hand, we can deduce that

µ1(Z
⊤
T DZT ) ≤ µ1(Z

⊤
T ZT )µ1(A

−1
−S). (228)

Lemma H.1 implies that with probability at least 1− 2e−
√
n

µ1(Z
⊤
T ZT ) ≤ n(1 + cT

√
|T |
n ) (229)

Similarly, Corollary H.4 implies that with probability at least 1 − 2e−n − 2e−
√
n, µ1(A

−1
−S) and

µn−s+|T |(A
−1
−S) are both (1 ± c20n

κ8)n−p. Since |T | ≤ s = nr, Eqs. (227) and (229) together
demonstrate that for all i ∈ [|T |],

µi(Z
⊤
T DZT ) = n1−p(1± c22n

−κ10). (230)

Here, c22 and κ10 are positive constants defined as follows. Since |T | ≤ s = nr. Then κ10 =
min

{
1− r, 1−r

2 , κ8

}
, and c22 is a constant chosen appropriately based on c20 and c21. Plugging in

the scaling λF = np−q−r, we conclude that with extremely high probability, for all i ∈ [|T |],
µi(HT,S) = µ−1(1± c22n

−κ10). (231)

From here, it is easy to compute the spectrum of (I|T | +HT,S)
−1. Indeed, reading off our result

from Eq. (231) yields

µi((I|T | +HT,S)
−1) =

1

1 + µn−i+1(HT,S)
(232)

= min {µ, 1} (1± cT,Sn
−κ11). (233)

Here, the positive constant cT,S is picked appropriately and κ11 = min {κ10, |1− q − r|} > 0. This
completes the proof.

I Miscellaneous lemmas

Lemma I.1 (Coupling of quadratic forms). Let B ∈ Rn×m be an arbitrary real matrix and
M ∈ Rn×n be a PSD matrix. Then for any vector x ∈ Rm, we have

λn(M)x⊤B⊤Bx ≤ x⊤B⊤MBx ≤ λ1(M)x⊤B⊤Bx. (234)

Proof. For any PSD matrix C, the matrix B⊤CB is PSD. In particular, C has a unique square root
C1/2 ∈ Rn×n with C1/2C1/2 = (C1/2)⊤C1/2 = C. We thus have

x⊤B⊤CBx = x⊤B⊤C1/2C1/2Bx (235)

=
∥∥∥C1/2Bx

∥∥∥2
2
≥ 0. (236)
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Hence

λ1(M)x⊤B⊤Bx− x⊤B⊤MBx = x⊤B⊤(λ1(M)In −M)Bx. (237)

Since M ⪯ λ1(M)In by definition, λ1(M)In−M is a PSD matrix. Hence by applying Eq. (236),
we conclude that

λ1(M)x⊤B⊤Bx− x⊤B⊤MBx ≥ 0, (238)

which gives the upper bound in Eq. (234).

Similarly, M ⪰ λn(M)In, so an analogous argument

λn(M)x⊤B⊤Bx− x⊤B⊤MBx ≤ 0, (239)

which gives the lower bound in Eq. (234).

Next, we prove the elementary anti-concentration result that we will need.
Proposition I.2 (Gaussian anticoncentration). Let x ∼ N(0, Id) be a standard Gaussian vector, and
let v ∈ Rd be arbitrary deterministic vector. Then

Pr[|⟨x,v⟩| ≤ ϵ] ≤ 2ϵ√
2π∥v∥2

.

Proof. Note that ⟨x,v⟩ is a linear projection of a standard multivariate Gaussian, so it is itself a
one-dimensional Gaussian. It is also clearly zero mean, and its variance is just give by the squared
norm of v. So ⟨x,v⟩ ∼ N(0, ∥v∥22). Now we have

Pr[|⟨x,v⟩| ≤ ϵ] =
1√

2π∥v∥2

∫ ϵ

−ϵ
exp

(
− x2

∥v∥22

)
dx ≤ 2ϵ√

2π∥v∥2
.

J Comparison to the straightforward non-interpolative scheme

In this section, we quickly give calculations for how well a straightforward non-interpolating scheme
for learning classifiers can work asymptotically. However, a similar analysis using the tools developed
to prove our main results should give a rigorous proof of the below derivation.

This scheme simply uses the sum/average of all positive training examples of a class as the vector we
take an inner-product with to generate scores for classifying test points. For m ∈ [k], define

f̂m =
∑
i:ℓi=m

xwi . (240)

To understand how well this will do asymptotically, it is easy to see that the for the true label-
defining direction, the positive exemplars in the bi-level model will be tightly concentrating around√
2 log k

√
λF which, keeping only the polynomial-order scaling, will be like n

p−q−r
2 . There will be

roughly n
k = n1−t positive examples for every class with high probability. For simplicity, let us just

look at m = 1 and consider k
n f̂1 = nt−1f̂1. We see

nt−1f̂1[1] = Θ(n
p−q−r

2 ). (241)

For the other directions that are not true-label defining, we will just have random Gaussians. The
favored directions will be Gaussian with variance λF = np−q−r while the unfavored directions will
essentially be Gaussian with unit variance. By averaging over n1−t examples, those variances will
be reduced by that factor. This means that for the s = nr favored directions, the variance of the
average will be np−q−r−(1−t) each and for the essentially np unfavored directions, the variance of
the average will be nt−1 each.

On a test point, we are going to take the inner product of nt−1f̂m with an independent random
draw of xwtest. For classification to succeed, we need this inner product to be dominated by the true
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m-th feature-defining direction. When that happens, the correct label will win the comparison. One
can easily see that the contribution from the true feature-defining direction will be a Gaussian with
mean 0 and variance λF · (n

p−q−r
2 )2 = λ2

F = n2p−2q−2r. Meanwhile, the s favored features will
have their scaled variances sum up in the score to give a total variance of nr · λF · np−q−r−(1−t) =
n2p−2q−r−(1−t). And finally, the unfavored features will also have their variances sum up in the
score to give a total variance of np · 1 · nt−1 = np+t−1.

For the true-feature-defining direction to dominate the contamination from other favored directions,
we need

2p− 2q − 2r > 2p− 2q − r − (1− t) (242)

which immediately gives the condition t < 1− r.

For the true-feature-defining direction to dominate the contamination from other unfavored directions,
we need

2p− 2q − 2r > p+ t− 1 (243)

which gives the condition t < p+ 1− 2(q + r).

Here, there is no difference between regimes in which regression works or does not work. The
condition for classification to asymptotically succeed is t < min(1− r, p+ 1− 2(q + r)).

Notice that when MNI regression does not work q+r > 1, this is identical to the tight characterization
given for MNI classification in (13). But in the regime where MNI regression does work q + r < 1,
this is different. For MNI classification, (13) tells us that we require t < min(1− r, p− 1). Consider
q = 0.1, r = 0.5 and p = 1.1. MNI classification can only allow t < 0.1. Meanwhile, the non-
interpolating average-of-positive-examples classifier will work as long as t < 0.5. This demonstrates
the potential for significant suboptimality (in terms of the number of distinct classes that can be
learned) of MNI classifiers in this regime of benign overfitting for regression.

K Alternative framing of bi-level ensemble

In this section we provide an alternative exposition for the bi-level ensemble, which may be more
intuitive for some readers.

The high level conceptual picture of the setup is as follows. The learner simply observes high
dimensional jointly Gaussian zero-mean features with some unknown covariance Σ ∈ Rd×d. It then
performs min-norm interpolation of (essentially) one-hot-encoded labels to learn the score functions
for the k different classes. These score functions are used at test-time to do multiclass classification.

Note that the learning algorithm has no knowledge of Σ, nor does it even know that the features are
jointly Gaussian — all it has is the training data. For analysis purposes, we parameterize Σ. In the
spirit of spiked covariance models, where a low-dimensional subspace has higher variance, we study
the case that the eigenvalues of Σ follow the simplified bi-level model parameterized by (p, q, r).

The bi-level model stipulates that (i) the number of features is d = np and (ii) there are two discrete
variance levels for the Gaussian features. The higher variance component resides in a low-dimensional
subspace of dimension s = nr. For this bi-level model, we are able to prove sharp phase-transition
style results telling us when successful generalization will happen. Here, the number of classes also
matters, and that is where the parameter t enters.

To simplify notation for analysis in the paper, Subramanian et al. (2022) just assume that Σ is diagonal
to begin with, instead of explicitly rotating coordinates to the eigenbasis of a general Σ. Because
Gaussianity is preserved under rotations and min-norm interpolation only cares about norms, this
transformation is without loss of generality. We reiterate that the learner is agnostic to all of these
choices and does not know Σ at any point.
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