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Abstract

We study the problem of learning data representations that are private yet informa-
tive, i.e., providing information about intended “ally” targets while obfuscating sen-
sitive “adversary” attributes. We propose a novel framework, Exclusion-Inclusion
Generative Adversarial Network (EIGAN), that generalizes adversarial private
representation learning (PRL) approaches to generate data encodings that account
for multiple (possibly overlapping) ally and adversary targets. Preserving privacy
is even more difficult when the data is collected across multiple distributed nodes,
which for privacy reasons may not wish to share their data even for PRL training.
Thus, learning such data representations at each node in a distributed manner (i.e.,
without transmitting source data) is of particular importance. This motivates us to
develop D-EIGAN, the first distributed PRL method, based on fractional parameter
sharing that promotes differentially private parameter sharing and also accounts
for communication resource limitations. We theoretically analyze the behavior
of adversaries under the optimal EIGAN and D-EIGAN encoders and consider
the impact of dependencies among ally and adversary tasks on the encoder per-
formance. Our experiments on real-world and synthetic datasets demonstrate the
advantages of EIGAN encodings in terms of accuracy, robustness, and scalability;
in particular, we show that EIGAN outperforms the previous state-of-the-art by a
significant accuracy margin (47% improvement). The experiments further reveal
that D-EIGAN’s performance is consistent with EIGAN under different node data
distributions and is resilient to communication constraints.

1 Introduction

Training machine learning (ML) models frequently requires sharing data among multiple parties,
e.g., cloud services aggregating data from multiple users to learn a global model. Such sharing
naturally raises privacy concerns in terms of exposing sensitive attributes in datasets. Even when
data is anonymized at the source, de-anonymization attacks are possible when coupled with auxiliary
datasets, as was famously shown in the Netflix challenge [1].

A widely used technique for obfuscating sensitive attributes in data is differential privacy (DP) [2], a
context-agnostic technique. DP introduces noise (e.g., Laplace) into a dataset to provide membership
security. However, noise injection can impact ML training/inference significantly. This makes such
context-agnostic privacy techniques unsuitable in scenarios where only a few attributes need to be
obfuscated. For example, upon sharing patient vitals for preventive healthcare [3], both privacy (e.g.,
gender, ethnicity anonymization) and predictivity (e.g., accurate diagnosis) are important.
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These drawbacks of context-agnostic privacy measures motivate private representation learning (PRL)
[4], which exploits existing knowledge of sensitive attributes in a dataset. PRL considers privacy and
predictivity as joint (and possibly competing) objectives, and learns a transformation on the data that
balances the goals of (i) obfuscating sensitive attributes of interest to an “adversary” (adv.) while (ii)
preserving predictivity on intended targets for an “ally”.

Conventionally, the literature on PRL assumes the existence of a single sensitive attribute and a
central dataset [4, 5, 6, 7]. However, most real-world datasets have multiple sensitive attributes and
are collected across multiple distributed nodes. Healthcare records, for example, are (i) spread across
hospitals in different regions, (ii) consist of potentially multiple sensitive attributes, such as mental
health, gender, and ethnicity that prevent sharing of source data, and (iii) governed by regulations
that vary from one region to another, e.g., while GDPR (in Europe) considers racial/ethnic origin
as sensitive information, HIPAA (in USA) does not. These challenges call for a generalized and
distributed PRL methodology that takes into account multiple sensitive attributes, trains on data
distributed across nodes, and learns representations that incorporate the privacy/predictivity goals
of each node. Communication-efficiency is also a key objective in distributed learning, particularly
when it is being deployed in network settings where nodes are restricted to communicate over
limited-bandwidth links [8], e.g., remote health analytics across user devices at the network edge.

Figure 1: (a) Architecture of a single EIGAN node, consisting
of an encoder, n ally, and m adversary networks. (b) D-EIGAN
system for distributed EIGAN training, consisting of K different
EIGAN nodes, each with their own subset of the full dataset. The
nodes must coordinate their local encodings via a parameter server.

In this paper, we propose a novel
PRL architecture called Exclusion-
Inclusion Generative Adversarial
Network (EIGAN), which addresses
the aforementioned challenges.
EIGAN is a generalized game-
theoretic PRL technique designed
to generate encodings “inclusive” of
signals that are of utility to a set of
allies, while “exclusive” of signals
that can be used by adversaries to
recover sensitive attributes. Further,
to address the privacy vulnerabilities
of pooling raw data, we develop
D-EIGAN (for Distributed-EIGAN),
where multiple EIGAN nodes train encoders on their local datasets and synchronize their model
parameters periodically, as depicted in Fig. 1. D-EIGAN implements distributed training without
noticeable model degradation compared to the centralized EIGAN, while accounting for realistic
factors of communication constraints and non-i.i.d data distributions across nodes.

Related work. Recent works in PRL [4, 5, 6] have proposed centralized architectures that jointly
maximize the loss in predicting sensitive attributes while minimizing the loss of target task prediction.
Specifically, [4] proposed a three-network encoder-ally-adversary architecture and showed that
the achievable tradeoff between the two objectives is better than that provided by DP. In [5], the
problem was formulated as a non-zero-sum game between the three networks to minimize information
leakage in encoded image representations. [6] experimentally outperform [5, 9, 10] using a minimax
optimization among three networks, and derive its closed-form solution when the networks are linear
maps. We demonstrate that EIGAN converges to the optimal performance obtained by these closed
form solutions. EIGAN also has computational advantages over [6] as it does not depend on matrix
inversions.

Other PRL works take an information-theoretic approach. [7] view PRL as minimization of the utility
lost in the learned representation, subject to an upper bound on mutual information between the output
representation and the sensitive attribute. Similarly, [11] formulate the minimax problem in terms of
KL-divergence. EIGAN, on the other hand, considers a log-loss PRL formulation, which promotes
interpretability and training stability over multiple objectives (discussed in Sec. 2.1). Furthermore,
our experiments show that EIGAN significantly outperforms the state-of-the-art [7] in the single
ally/adversary case. Distinct from all prior work in PRL, we consider multiple sensitive attributes
and distributed learning.

It is worth mentioning two other directions in adversarial learning related to PRL. One addresses
privacy-preservation through synthetic data generation [12], which differs from EIGAN’s goal of
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learning a data transformation. The other is fair representation learning [13, 14], which seeks
representations that are intrinsically fair in the sense of promoting demographic parity on a single
attribute [15].

Contributions. Our contributions are summarized below:

1. We introduce EIGAN (Sec. 2.1), generalizing PRL to account for multiple potentially overlapping
target and sensitive attributes. We prove that EIGAN’s encoder utility is maximized if the adversary
outputs follow a uniform distribution, and consider the effect of correlations between ally and
adversary objectives (Prop. 1).

2. To the best of our knowledge, D-EIGAN (Sec. 2.2) is the first technique for distributed training
of PRL models. We show that when the nodes engaged in the training possess i.i.d. datasets, the
objective of D-EIGAN exhibits similar properties to EIGAN (Prop. 3).

3. Our experiments (Sec. 3) reveal that EIGAN significantly outperforms the state-of-the-art in PRL
(Tab. 1, Fig. 4) and is robust to the choice of adversary architectures (Tab. 2). We also demonstrate
that D-EIGAN matches the performance of EIGAN even as the number of nodes increases (Fig. 7),
and is robust even when nodes have different objectives (Fig. 8). We further show the resilience of
D-EIGAN to non-i.i.d data distributions across nodes, and under communication restrictions that
require partial parameter sharing and delayed model aggregations in the system (Fig. 9).

2 EIGAN Formulation and Model Learning

Overview. Our PRL methodology consists of two phases: training and testing. In the training phase,
EIGAN – knowing the sensitive/target labels of interest to adversary/ally on the train dataset – aims
to learn the encoder by simulating allies and adversaries. Each of the allies, adversaries, and encoder
independently maximize their own utilities by updating their local model parameters. The selfish
maximization by each player naturally leads to the minimax optimization in (2). In the testing phase,
the test data undergoes a transformation through the trained encoder. The transformed data is used
for conventional training and inference by the actual allies and adversaries on their respective tasks of
interest.

In Sec. 2.1, we present the EIGAN formulation for centralized model training, and derive properties
of the solution. Then, we extend it to the distributed learning case, D-EIGAN, in Sec. 2.2. Refer to
App. A for the proofs of the propositions.

2.1 EIGAN: Centralized Model Architecture

We first consider a system consisting of n allies, indexed by A1, ..., An; and m adversaries, indexed
by V1, ..., Vm. Ally Ai is characterized by model parameters θAi

and a set of target attributes/labels
YAi

following distribution Y
Ai

. Ai aims to associate each input sample with its corresponding target
attribute in YAi

. Similarly, adversary Vj parameterized by θVj
wishes to associate input samples with

a set of (known) sensitive attributes/labels YVj
following distribution YVj

.

The goal of EIGAN is to learn an encoder E parameterized by θE that maximizes the performance of
A1, ..., An while minimizing the performance of V1, ..., Vm. The encoder uses a centrally-located
dataset X consisting of N samples, where each sample is represented as a d-dimensional feature
vector xj ∈ Rd, j = 1, ..., N . We let E(x; θE) denote the output of the encoder for a data sample x
realized via the parameters θE . E(x; θE) : Rd → Rl is in general a non-linear differentiable function
(e.g., a neural network), where l is the dimension of the representation output by the encoder, and
typically l ≤ d.

For a sample x ∈ X , the encoded representation E(x; θE) is what the allies A1, ..., An and adver-
saries V1, ..., Vm are provided with for their tasks, as depicted in Fig. 1(a). We quantify the utility
functions of the allies and adversaries as:

u
Ai

= EY∼Y
Ai

[
log
(
p

Ai
(Y |E(X ; θE))

)]
, 1 ≤ i ≤ n,

u
Vj

= EY∼Y
Vj

[
log
(
p

Vj
(Y |E(X ; θE))

)]
, 1 ≤ j ≤ m,

(1)
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Adult Dataset Facescrub Dataset

Objective Ally Adversary Ally Adversary
(identity) (gender) (income) (gender)

Unencoded 0.85 0.85 0.98 0.99
Linear-ARL 0.84 0.67 - -
Kernel-ARL 0.84 0.67 - -
Bertran-PRL 0.82 0.67 0.56 0.68

EIGAN 0.84 0.67 0.82 0.68

% Improv. Matches closed Controlled 47.01% Controlled
form solution to be equal to be equal

Table 1: Performance comparison between EIGAN,
[6] (Linear-ARL, Kernel-ARL), and [7] (Bertran-
PRL) on the Adult & FaceScrub datasets considered in
those works. For the same adv. performance, EIGAN
obtains a notable improvement over [7] (ally improve-
ment of 47.01%). It also reaches the optimal closed
form solution of [6].

Figure 2: (a) Synthetic dataset with eight groups
of points, two allies, and one adversary. The allies
are interested in separating the color pairs (the two
horizontal axes), and the adversary is interested in
classifying shapes (the vertical axis). (b) EIGAN’s
encoding has collapsed the adversary dimension while
preserving the allies.

where p
Ai

(Y |E(X ; θE)) and p
Vj

(Y |E(X ; θE)) denote the probabilities of successful inference of
target labels Y ∼ YAi and sensitive labels Y ∼ YVj for ally Ai and adversary Vj , respectively, over
the outputs that the encoder E provides for the dataset X . This leads to our minimax game among
three types of players, in which two (the encoder and allies) are colluding against the third (the
adversary). Specifically, we formulate the optimization problem:

min
θV ={θVj

}mj=1

max
θE ,θA={θAi

}ni=1

U(θE , θA, θV ), (2)

where

U(θE , θA, θV ) =

n∑
i=1

α
Ai
u

Ai
−

m∑
j=1

α
Vj
u

Vj
. (3)

Here, α
Ai
, α

Vj
> 0 denote normalized importance parameters placed on each objective such that∑n

i=1 αAi
+
∑m
j=1 αVj

= 1. Similar to the encoder, we assume that the ally and adversary are
non-linear, differentiable functions. The encoder in (2) seeks to maximize the achievable utility of
the allies while minimizing those of the adversaries, operating in conjunction with the allies in the
inner max layer of (2). The adversaries then operate on the encoder result in the outer min layer,
where each adversary Vj aims to maximize its utility u

Vj
by updating θ

Vj
, as it cannot access other

ally/adversary’s parameters directly.

It is worth noting that, similar to the formulation based on mutual information in [7], our analysis on
the expected posterior distribution of the predictions in EIGAN map directly to interpretable metrics
such as accuracy [16] and generalization error [17], instead of the worst case guarantees provided by
context-agnostic privacy frameworks such as DP.

Intuitively, the encoder will attempt to diminish the adversary predictions to a random guess, i.e.,
to a uniform distribution over its target labels. However, this may be difficult to achieve when the
interests of the allies and adversaries are related, which makes the weights α

Ai
, α

Vj
important to the

minimax solution in (2) formalized in the proposition below:
Proposition 1. Let O denote the set of all (i, j) pairs of allies Ai and adversaries Vj for which
YAi
∩ YVj

6= ∅, i.e., overlapping interests. Given a fixed encoder E in EIGAN architecture, if
O = ∅, the overall score in (2) is maximized when the adversaries’ output predictions follow a
uniform distribution. On the other hand, if O 6= ∅, then for each overlapping label, the architecture
proposed by (2) considers the utility of the attributes that have the higher importance weight, i.e., Ai
if αAi > αVj and Vj if αAi < αVj .

Prop. 1 shows that given an encoded representation, if the allies and adversaries possess non-
overlapping interests, then a uniform prediction distribution among the sensitive parameters of
interest to the adversaries is adopted by the optimal solution. This resembles the initial GAN result
in [18] obtained for a two-network architecture. In App. D.3, we consider an experiment with such
overlapping interests and equal importance weights, and find that EIGAN is unable to balance the
objectives.

In practice, coincidental overlaps between ally and adversary interests would be relatively rare, but
could nonetheless occur. In such cases, EIGAN must balance predictivity and privacy, which leads to
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different ally and adversary outputs described in Prop. 1. We further analyze EIGAN’s characteristics
when there is a linear relationship between the target distribution of an ally and an adversary (see
Prop. 2 in App. A.2).

Model training. We train the encoder and the allies/adversaries in EIGAN by alternately updating
their parameters using stochastic gradient descent (SGD) to minimize their log-loss functions. For
the encoder, we define the log-loss LE for a single training instance as a weighted combination of the
predictive capability of the allies and adversaries as

LE =

n∑
i=1

−〈yAi
, log ŷAi

〉︸ ︷︷ ︸
log-loss of allyAi , LAi

−α ·
m∑
j=1

−〈yVj
, log ŷVj

〉︸ ︷︷ ︸
log-loss of adversary Vj , LVj

, (4)

where 〈., .〉 denotes inner product, and log is applied element-wise. yAi
and yVj

are the binary vector
representations of the true class labels for ally Ai and adversary Vj , respectively, while ŷAi

and
ŷVi

are the vectors of soft predictions (i.e., probabilities) for each class. Here, we have made the
simplifications α

Ai
= α/n ∀i and α

Vj
= (1 − α)/m ∀j, where α ∈ (0, 1) is tuned to emphasize

either predictivity (higher α) or privacy (lower α). It can be seen that the minimization of loss LE
is equivalent to the maximization of utility defined by (3). In each epoch, we average LE over a
minibatch of size J to obtain an estimate of (1), and update θE based on the gradient. Then, we
update the θAi

and θVi
according to (4). For the full algorithm, see Alg. A1 in App. B.

Alternative objectives to (4) can be found in PRL literature. In particular, recent works [19, 11, 7]
formulate the adversarial loss using KL divergence. Our choice of log-loss over KL-divergence is
based on the facts that: (i) KL divergence fails to give meaningful value under disjoint distributions
[20], and thus is less interpretable, and (ii) log-loss is more stable under varying priors during training,
which is important in the EIGAN scenario since training data is affected by mini-batches, non-i.i.d
distributions, and the evolving representations. Our experimental results in Tab. 1 validate our choice
of formulation in terms of obtaining improvements over the state-of-the-art that uses KL divergence
(discussed further in Sec. 3.1).

Visual demonstration. Fig. 2 is a visual demonstration of EIGAN’s trained representation on a
synthetic dataset. There are two allies A1 and A2 which are each interested in separating data points
along one of the horizontal axes, and an adversary V that is interested in separation along the vertical
axis. We see in (b) that the EIGAN encoding collapses the data along the vertical axis while retaining
separability in the other two dimensions. Other illustrations are given in App. C.

2.2 D-EIGAN: Distributed Adversarial Learning

The distributed setting for EIGAN (D-EIGAN) is depicted in Fig. 1(b). There are K nodes in the
system, denoted E(1), ..., E(K), and a parameter server for model synchronization. Each node E(k)

has a set of allies, denoted A(k)
1 , ..., A

(k)
n(k) with target label sets YA(k) = {Y

A
(k)
1
, ..., Y

A
(k)

n(k)

}, a set

of adversaries, denoted V (k)
1 , ..., V

(k)
m(k) with target sets YV (k) = {Y

V
(k)
1
, ..., Y

V
(k)

m(k)

}, and a subset

Xk ⊂ X of Nk datapoints from the overall dataset X of N samples. These local datasets are in
general non-overlapping, and may differ in size. While the specific allies and adversaries may differ at
each node, the goal is to train encoder models that maximize all allies’ and minimizes all adversaries’
performances, so that the encodings are meaningful throughout the system. Since sharing the raw
datasets could potentially leak sensitive information, each node E(k) will train its own local encoder
E(k)(x; θE(k)), and the server in Fig. 1(b) will periodically aggregate the locally-trained models.

The utility function for node E(k) is defined as

U (k)(θE(k) , θA(k) , θV (k)) =

n∑
i=1

α
A

(k)
i
u
A

(k)
i
−

m∑
j=1

α
V

(k)
j
u
V

(k)
j
, (5)

where θA(k) =
{
θ
A

(k)
i

}n(k)
i=1

and θV (k) =
{
θ
V

(k)
j

}m(k)

j=1
denote the sets of ally and adversary pa-

rameters at node E(k), and u
A

(k)
i
, u
V

(k)
j

denote the utility functions of A(k)
i , V

(k)
j defined analo-
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Algorithm 1 D-EIGAN training
Notation:

1: θE denotes the global parameter vector
2: Qk denotes uniformly random choice of indices at node E(k)
3: θ̃E(k) denotes the parameter vector recovered at the server for encoder E(k), with its qth element denoted
θ̃E(k)(q).

4: φ denotes the fraction of parameters shared
5: δ denotes the number of epochs between aggregations
6: (·)j denotes the value for the jth minibatch
7: L

A
(k)
i

and L
V

(k)
i

denote the loss of ally A(k)
i and adversary V (k)

i at node E(k)

8: ηE , ηA , and ηV denote the learning rates
Aggregation at Parameter Server:

9: Initialize parameter θE
10: for each update round do
11: Update parameter vector: θE ←

∑K
k=1

Nk
N
θ̃E(k)

12: end for
Local Training at Node E(k):

13: Initialize
{
θ
A

(k)
i

}n(k)

i=1
and

{
θ
V

(k)
j

}m(k)

j=1

14: Download initial θE from parameter server
15: for number of training epochs do
16: After δ epochs, update φ · |θE(k) | chosen parameters from parameter

server: θE(k)(q) = θE(q) if q ∈ Q
17: Sample a minibatch J of datapoints from local dataset Xk
18: Update encoder: θE(k) ← θE(k) − ηE · ∇θE(k)

LE(k)

19: Update ally/adversary parameters:
θ
A

(k)
i

← θ
A

(k)
i

− ηA · ∇θ
A

(k)
i

L
A

(k)
i

,

θ
V

(k)
i

← θ
V

(k)
i

− ηV · ∇θ
V

(k)
i

L
V

(k)
i

20: After δ epochs, upload φ · |θE(k) | encoder parameters:
θ̃E(k)(q) = θE(k)(q) if q ∈ Qk, else θ̃E(k)(q) = 0

21: end for

gously to (1). α
A

(k)
i
, α

V
(k)
j

> 0 denote the normalized importance parameters for node E(k), where∑n
i=1 αA(k)

i
+
∑m
j=1 αV (k)

j
= 1. This leads to the following minimax game for the distributed case:

min
SV

max
SE ,SA

1

K

K∑
k=1

U (k)(θE(k) , θA(k) , θV (k))

s.t. θE(k) = θE(k′) , k 6= k′, 1 ≤ k, k′ ≤ K,

(6)

where SV = {θV (k)}Kk=1 ,SE = {θE(k)}Kk=1 ,SA = {θA(k)}Kk=1. The constraint in (6) ensures that
the optimal encoder is the same across all nodes, even though each node may have different allies and
adversaries. In this way, an encoded datapoint E(k)(x; θE) at node k could be transferred to another
node k′ and applied to a task A(k′)

i privately, e.g., for anonymized user data sharing during single
sign-ons.

Distributed model training. While solving (6) in a distributed manner, we learn both a global model
(encoder) and individual (personalized) local models (allies and adversaries) [21], unlike standard
Federated Learning (FL).

Our algorithm consists of two iterative steps. The first is local update: each E(k) conducts a series
of δ SGD iterations. For each minibatch in SGD, training proceeds as in the centralized case, with
the encoder, allies’, and adversaries’ parameters updated via SGD to minimize the log-losses L(k)

E ,
L(k)
Ai

, and L(k)
Vj

defined as in (4) but in this case for each node. The second step is global aggregation,
in which each E(k) uploads its locally-trained encoder to the parameter server to construct a global
version, after every δ SGD iterations. We introduce a sparsification technique here in which each node
selects a fraction φ of its parameters at random to upload for each aggregation. Letting Qk be the
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Model Ally (accuracy) Adv. (accuracy)
Resnet152 Unencoded 0.99 0.99

Resnet152 0.85 0.45
ResNext101 0.86 0.42
Resnet101 0.88 0.64
Resnet50 0.87 0.56

WideResnet101 0.85 0.42
VGG19 0.77 0.42

Table 2: Accuracy of various architectures used
to infer ally (even/ odd) and adversary (digits 0-9)
objectives on MNIST encoded using ResNet152-
trained EIGAN. We see that the ally accuracies
are consistent across network architectures, and
the adversary accuracies remain significantly be-
low the performance on the unencoded data.

Figure 3: Predictivity and privacy comparison between
EIGAN and baselines on MIMIC. (a) On the adversary pre-
diction (gender, solid lines and race, dashed lines), EIGAN
matches DP’s performance (by tuning DP’s noise). (b) On
the ally prediction (survival), EIGAN achieves noticeable
improvement over the baselines.

indices chosen by E(k), then the vector recovered at the server is θ̃E(k) , where θ̃E(k)(q) = θE(k)(q)
if q ∈ Qk and 0 otherwise. With this, the global aggregation becomes the weighted average
θE =

∑
k
Nk

N θ̃E(k) . Then, the server also selects a fraction φ of indices at random to synchronize
each node k with on the downlink. Letting Q be these indices, each node k sets θE(k)(q) = θE(q)
if q ∈ Q, and makes no change to the qth parameter otherwise. The pseudo-code of the training
procedure is given in Alg. 1.

The synchronization frequency δ and sparsification factor φ are directly related to the amount of data
transferred through the system: as δ increases, uplink transfers to the server occur less frequently; as
φ decreases, each uplink/downlink transmission requires fewer communication resources. This is an
important consideration in networking applications where the nodes communicate over a resource-
constrained channel [22]. Fractional parameter sharing, similar to pruning (both choose a subset of
parameters), mimics the additive-noise DP mechanism [23] on model weights, reducing associated
leakage [24] to any untrusted entity with access to the system. We study the effect of δ and φ on
D-EIGAN performance in Sec. 3.2.

In D-EIGAN, the allies and adversaries may differ at each node, and each node trains an individual
local encoder. Since the encoder parameters are globally synchronized, however, the local encoder
implicitly trains using global union of allies/adversaries across nodes. In the case that the nodes have
same objectives and i.i.d. datasets, we show that D-EIGAN yields the same properties as Prop. 1:

Proposition 3. Given a set of fixed encoders in the D-EIGAN architecture, if all the nodes have
the same number of allies and adversaries with the same sets of target labels YA(k) = YA(k′) and
YV (k) = YV (k′) , 1 ≤ k, k′ ≤ K, then Prop. 1 holds for all the allies and adversaries belonging to
different nodes if the local datasets at each node are i.i.d.

When the nodes have different objectives, we can show that the importance of each objective is
proportional to the number of nodes implementing it; see Prop. 4 in App. A.4.

3 Experimental Evaluation and Discussion

We now turn to an experimental evaluation of our methodology. We analyze EIGAN’s convergence
characteristics and compare its performance with relevant baselines in Sec. 3.1, and evaluate D-
EIGAN compared to the centralized case and as the system characteristics change in Sec. 3.2.

Datasets. We consider four datasets: MNIST [25], MIMIC-III [26], Adult [27], and FaceScrub [28].
MNIST consists of 60,000 handwritten digits with labels 0-9. MIMIC has medical information
for hospital admissions with attributes, such as patient vitals and medication; we obtain a dataset
consisting of 58,976 admission data points by joining multiple tables on patient IDs. Adult consists
of 45,223 records extracted from the 1994 census data. Facescrub is a dataset comprising over 22,000
images of celebrities with identity and gender labels.

In MIMIC, we consider survival (2-class) as the ally objective, and gender (2-class) and race (3-class)
as adversary objectives. In the FaceScrub dataset, as in [7], the ally objective is user identity (200-
class), and the adversary objective is gender (2-class). In MNIST, we consider whether a digit is even
or odd (2-class) as the ally objective, and the label of the digit (10-class) as the adversary objective.
In Adult, as in [6], the ally objective is an annual income classification (more or less than 50K) and
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Figure 4: Effect of varying the ally class overlap (by
changing the variances of synthetic Gaussian data) on
the performance of EIGAN, [7], and the unencoded
data. (a) and (b) plot the achieved accuracies of the
adv. and ally objectives, respectively. EIGAN is able
to consistently outperform both baselines on the ad-
versary objective, and obtains performance close to
the unencoded data for the ally.

Figure 5: EIGAN’s effect of the number of (a) adver-
saries, and (b) allies on the testing loss for MIMIC-III.
The ally/adversary objectives are chosen as different
attributes from the source. The achievable loss is rea-
sonably constant and is not affected by addition of
addition of more allies/adversaries.

the adversary objective is gender. We also generate synthetic Gaussian datasets to analyze the effect
of ally/adversary class overlap in some experiments.

Implementation. We employ fully connected networks (FCNs) for the encoder, allies, and ad-
versaries in the experiments on MIMIC and the synthetic datasets. The FCN encoder uses ReLU
activation for the hidden layers and tanh activation for the final fully-connected layer, whereas the
ally and adversaries use sigmoid activation in the final layer. We use dropout and L2-regularization to
prevent network overfitting. For FaceScrub, we employ U-Net [29] for the encoder and Xception-Net
[30] for the ally/adversary, as in [7]. For Adult, we employ linear FCN as in [6]. Unless other-
wise stated, we set α = 0.5 (i.e., equal privacy/predictivity importance). We train to minimize
cross-entropy loss over 70/30 training/test splits on a system with 8GB GPU memory and 64 GB
RAM.

Baselines. We consider six baselines: principal component analysis (PCA), autoencoders [31],
differential privacy (DP), and the methods in [6], [7]. Autoencoders and PCA preserve information
content and do not have explicit privacy objectives; they are expected to give encoded data that has
good predictivity. PCA chooses the number of components retaining 99% of the variance, and we
train the autoencoder to transform data to the same dimensional space as PCA. As discussed in
Sec. 1, DP is widely used for context-agnostic privacy. For DP, we employ the Laplace mechanism
[4]. [7] is the most recent state-of-the-art in adversarial PRL; in this case, we use their open-source
implementation and compare on the setting described in their paper. We also compare against the
closed form optimal solution of [6] for linear maps on their Adult dataset use case.

All of our code and trained models are available at https://github.com/shams-sam/
PrivacyGANs. For each experiments, we report log-loss and/or accuracy from the testing step
of PRL as discussed in Sec. 2.

3.1 Centralized EIGAN

Performance comparison. We first compare the ally and adversary losses over training epochs
between EIGAN, autoencoder, PCA, and DP on the MIMIC dataset in Fig. 3. Note that the recent
baselines [6, 7] cannot handle multiple adversary objectives. It is observed in (a) that EIGAN is
able to match the adversary losses of DP, while in (b) the EIGAN ally loss matches that of PCA
and autoencoder while outperforming DP by a significant margin. Thus, EIGAN is capable of
achieving private representations while simultaneously maintaining the predictivity of the encoded
representations.

Next, we compare EIGAN with [6] and [7] on the Adult and Facescrub dataset settings considered in
these works, respectively. Note that the linearity requirement in [6] impedes its usage on non-linear
models like the U-Net and Xception-Net employed for Facescrub by [7]. For comparison, we adjust
α in (4) to equalize the resulting adversary performances between the models. Tab. 1 gives the results:
EIGAN matches the performance of [6]’s optimal closed-form solution on Adult. On the Facescrub
dataset, it displays a 47% improvement in the ally’s task of identity recognition when compared to [7].
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Figure 6: Effect of EIGAN’s encoding di-
mension on the number of training epochs
required to reach within 1% of training loss
convergence (left axis) and the achieved fi-
nal testing loss (right axis) for MIMIC-III.
The achieved loss decreases as the dimen-
sion increases, emphasizing a tradeoff be-
tween model quality and the memory needed
(dashed curves show moving average).

Figure 7: Comparison of (a) adversary and (b) ally perfor-
mance as the number of nodes in the system is increased from
K = 2 to 10, for D-EIGAN (φ, δ = 1), EIGAN, and unen-
coded. Node k’s data, k = 1, ...,K is generated from four
Gaussians centered on a unit square, each with σ2 = 0.1k,
i.e., increasing variance, e.g., (c) visualizes the ally (reds vs.
blues) and adv. (x’s vs. o’s) objectives on the data for node
k = 3. As expected, the ally performs worse with higher K,
but D-EIGAN is able to match EIGAN’s performance.

This validates our choice of optimization using cross-entropy loss in (4) for PRL over the technique
of optimization using KL divergence that is common in recent PRL literature [7, 19, 11].
Robustness of learned representation. We next consider the robustness of EIGAN’s learned
representation to ally and adversary architectures that deviate from the one used for training. Tab. 2
shows the performance of varying architectures (ResNet [32], ResNext [33], etc.) for allies and
adversaries applied to the data encoded using EIGAN trained with ResNet152 adversary on MNIST.
We see that the representations learned by EIGAN are able to obfuscate adversary targets from the
other networks. Adversary accuracy remains significantly below the performance on the unencoded
data, validating the robustness to differences between simulated and actual adversaries.
Varying ally/adversary overlap. Next, we consider the effect of class overlap for the ally/adversary
objectives on model performance. To do this, we generate a 2D dataset consisting of four Gaussians
with means at (x, y) = (1, 1), (1, 2), (2, 1), (2, 2), each corresponding to one class. The variance of
these Gaussian-distributed classes is adjusted to achieve varying degrees of overlap. Fig. 7(c) shows
an instance of this dataset: the ally is interested in differentiating color, while the adversary wants to
differentiate shape. Fig. 4 shows the effect of the ally label variance on the resulting accuracies for
EIGAN, the method in [7], and the unencoded data. As the ally variance increases, we observe that (a)
the accuracy of the adversary for EIGAN remains consistently lower than that of the others, while (b)
the accuracy on the ally objective for EIGAN remains higher than that of [7] and is comparable to the
unencoded case. Similar results are observed when changing the adversary variance (see App. D.1).
Varying system dimensions. We also considered the impact of the encoding dimension l and the
number of allies/adversaries on EIGAN’s performance using MIMIC. We summarize our key findings
here: (i) We observe (in Fig. 5) that the final testing loss obtained by an adversary (ally) under varying
number of allies (adversaries) stays reasonably constant. (ii) We find (in Fig. 6) that as encoding
dimension l is increased, the training requires fewer epochs to converge, and is able to achieve a
lower testing loss, even as l exceeds the input dimension. Thus, EIGAN encodings are robust to the
number of objectives that are included in the system.

3.2 Distributed EIGAN (D-EIGAN)

Varying number of nodes. For the distributed case, we first study the effect of increasing the number
of training nodes K. We use synthetic Gaussian data and generate non-i.i.d. data distributions across
the nodes by increasing the variance of the Gaussians at each subsequent node k (Fig. 7(c) shows
the distribution for k = 3). Fig. 7(a)&(b) show the resulting ally and adversary accuracies obtained
when trained on D-EIGAN, on (centralized) EIGAN, and on the unencoded data. As K increases,
the ally performance degrades in each case, due to the higher variance for each class exhibited in the
overall dataset X . Overall, we see that D-EIGAN matches the performance of the centrally-trained
EIGAN in both metrics, which shows that distributed learning can yield a comparable solution when
all parameters (φ = 1) are synchronized frequently (δ = 1). See App. E.1 for similar observations on
i.i.d. data across nodes.

Varying objectives across nodes. Next, we study the effect of varying ally and adversary objectives
across nodes. For this, we consider the MIMIC dataset and allocate the dataset across K = 10 nodes
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Figure 8: Performance of ally and adversary trained
on D-EIGAN (K = 10, φ = 0.8, δ = 2, non-i.i.d) for
MIMIC in the cases: (a) all nodes have all three objec-
tives, and (b) each node has all the ally but only one of
the adversaries. The distribution of objectives across
the nodes does not affect the resulting accuracies.

Figure 9: Effect of (a) aggregation frequency δ
(φ = 0.8) and (b) sparsification factor φ (δ = 2) on
ally/adv. performance on D-EIGAN for the non-i.i.d
case in Fig. 8(a). The robust performance shows
that D-EIGAN can be applied in communication-
constrained environments.

randomly so that each has a different distribution of patient data. In Fig. 8, we show the accuracies
achieved by D-EIGAN on the one ally and two adversary objectives for two cases: (a) when each
node has all three objectives, and (b) when each node has the ally objective, but half have one
adversary objective and half have the other. The EIGAN performance on the full dataset is included
for comparison. The dataset is non-i.i.d distributed, i.e., non-uniformly sampled across nodes. We
see that D-EIGAN in (a) only has a slight improvement over (b) in the case of the gender adversary,
which indicates that D-EIGAN is robust to varying node objectives, even though the aggregation
period has increased (δ = 2) and the fraction of parameters shared has decreased (φ = 0.8) from
Fig. 7. The implication of this is that once a data sample is encoded at a node via D-EIGAN, it can
be transferred to another node with different objectives and securely applied to ally tasks there, e.g.,
referring to the healthcare use case in Sec. 1, if a patient moves to a different hospital with different
health regulations. Similar conclusions are drawn when the data is i.i.d across nodes (see App. E.2).

Varying synchronization parameters. Finally, we consider the impact of the aggregation period δ
and the sparsification factor φ on D-EIGAN. This has implications for the communication resources
between the nodes and the server required for training, as discussed in Sec. 2.2. For this experiment,
we use the setting from the experiment in Fig. 8(a), i.e., with non-i.i.d data and all nodes having
all three objectives. In Fig. 9, we show the performance of D-EIGAN as (a) δ increases and (b) φ
increases (EIGAN shown for comparison). In (a), we see that D-EIGAN is robust to the number of
training epochs between aggregations, implying that it can be increased to limit the frequency of
transmissions to and from the server. In (b), we similarly observe generally robust performance as
the fraction of sharing changes, though surprisingly, the performance noticeably decreases once φ
reaches 1 and all are shared. A similar effect was observed by [34], that in the case of distributed
model training over non-i.i.d datasets, sparsification actually can enhance performance because it
minimizes the effect of data bias at each node on the global model. Indeed, in the i.i.d case, we
do not observe this effect (see App. E.3). Thus, we conclude that D-EIGAN is well suited for
communication-constrained environments.

4 Conclusion

We developed the first methodology for generalized and distributable PRL. EIGAN accounts for the
presence of multiple allies and adversaries with potentially overlapping objectives, and D-EIGAN
addresses privacy concerns and resource constraints in scenarios with decentralized data. We proved
that for an optimal encoding, the adversary’s output from EIGAN follows a uniform distribution,
and that dependencies between ally and adversary interests requires careful balancing of objectives
in encoder optimization. Our experiments showed that EIGAN outperforms six baselines in jointly
optimizing predictivity and privacy on different datasets and system settings. They also showed that
D-EIGAN achieves comparable performance to EIGAN with different numbers of training nodes and
as the training parameters vary to account for communication constraints.
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A Propositions and Proofs

A.1 Proof of Proposition 1

Suppose ŶAi
= p

Ai
(Y |E(X )) and ŶVj

= p
Vj

(Y |E(X )), where p
Ai

(Y |E(X )) and p
Vj

(Y |E(X ))
denote the posterior probabilities of successful inference of target labels Y ∼ YAi

and sensitive
labels Y ∼ YVj

for ally Ai and adversary Vj , respectively, given the outputs encoder E provides for
the dataset X . Then, the utilities in (1) can be expressed as

u
Ai

= EY∼Y
Ai

[
log ŶAi

]
;u

Vj
= EY∼Y

Vj

[
log ŶVj

]
, (7)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let HQ = H(P,Q) denote the cross-entropy of Q with respect to
P defined as HQ = H(P,Q) = Ex∼P [− logQ], then (7) can be re-stated as:

u
Ai

= −HAi
= −H(Y ∼ YAi

, ŶAi
), 1 ≤ i ≤ n,

u
Vj

= −HVj
= −H(Y ∼ YVj

, ŶVj
), 1 ≤ j ≤ m.

(8)

The maximization of ally utilities uAi and minimization of adversary utilities uVj ∀i, j in the
optimization objective (3) can be re-written as minimization of its negative given by,

U
′
= −

n∑
i=1

αAi
uAi

+

m∑
j=1

αVj
uVj

=

n∑
i=1

αAi
HAi

−
m∑

j=1

αVj
HVj

. (9)

Through (9), it can be observed that the minimization occurs when entropy of allies
∑n
i=1 αAi

HAi

is minimized while that of adversaries
∑m
j=1 αVj

HVj
is maximized. Using the definition of entropy,

each of the allies and adversaries has a global optimum and can be optimized separately if their
labels are non-overlapping. Note that ally and adversary entropies are non-negative, and given a
fixed encoder E, the sum of ally entropies is minimized when individual entropies are minimized.
For each ally, individual entropy HAi is minimized when ŶAi takes the value of 1 ∀i as every ally
label is then predicted correctly. Similarly for adversaries, each individual entropy HVj is maximized
when ŶVj

= 1/|YVj
| is the uniform distribution. Thus, it can be seen that, at the optimal solution,

the adversaries’ output follows a uniform distribution, as it minimizes the overall entropy in (9), or
equivalently maximizes the utility in (3).

Given that (Ai, Vj) ∈ O is the set of all (i, j) pairs of allies Ai and adversaries Vj for which
YAi ∩ YVj 6= ∅, the ally and adversary objectives in (9) are overlapping if O 6= ∅. Given that the
encoder is fixed, for allies/adversaries not included in O, the associated utilities can be independently
optimized. We are thus left with the maximization of the following:

UO =
∑

(Ai,Vj)∈O

αAi
· uAi

− αVj
· uVj

. (10)

For the kth element inO, (Ai(k), Vj(k)), we have YAi(k)
(c) = YVj(k)

(c) ∀c ∈ Ck ∀k;, where Ck is the
set of indices of elements in YAi(k)

∩YVj(k)
6= ∅. Separating the indices c for which the ally/adversary

try to predict the same label (i.e. uAi
(c) = uVj

(c)), we can express (10) as follows:

UO =
∑
k

( ∑
c∈Ck

(αAi − αVj )uAi(c)︸ ︷︷ ︸
utility w.r.t. overlapping labels, UO+

+
∑
c/∈Ck

αAiuAi(c)− αVjuVj (c)︸ ︷︷ ︸
utility w.r.t. non-overlapping labels,UO−

)
.

(11)

The utilities in (11) reward only one of the two discriminators (Ai, Vj) ∈ O predicting on overlapping
label c ∈ C if αAi

6= αVj
. If αAi

= αVj
for (Ai, Vj) ∈ O, then UO+ = 0, and no optimization

occurs w.r.t. the overlapping labels in Y ∼ YAi
.

A.2 Proposition 2

Proposition 2. Assume that the number of labels of interest is the same among all the allies and
adversaries. For any adversary Vj , the distribution of its prediction over its set of labels of interest
does not follow a uniform distribution if sufficient weight is given to the ally utilities (i.e., αAi , ∀Ai,
is sufficiently large) and the distribution of prediction of one ally Ai, can be defined as a linear
combination of the distribution of predictions of Vj and that of other allies/adversaries.
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Proof. Without loss of generality, consider a system with one ally network with a scalar output
ŶA and m adversary networks with scalar outputs ŶVj for 1 ≤ j ≤ m. The true distribution of
each predicted output is YA for the ally and YVj for the adversaries, and YA and YVj are the actual
labels drawn from those distributions respectively. The true values and predictions between that of
the ally and the adversaries have the relation, YA =

∑m
j=1 wjYVj

, and ŶA =
∑m
j=1 wj ŶVj

where
wj is scaling weight. The cross entropy of the entire system is given by U = αAYA log(ŶA) −∑m
j=1 αVj

YVj
log(ŶVj

). Optimizing for the output of a specific adversary Vn, we obtain:

ŶVn =

∑
j 6=n wj ŶVj

αAYAwn

(
1

αVnYVn

− 1

αAYA

)−1
. (12)

Notably, ŶVn
only returns a non-uniform distribution when αVn

YVn
< αAYA. If the weight αA is

not large enough to maintain the inequality, the value of ŶVn
cannot be obtained via (12) and will

have a uniform distribution. If αVn
YVn

= αAYA, then the cross entropy U = 0 and no optimization
occurs.

A.3 Proof of Proposition 3

Given that the global encoder is the average of the local encoders in the federated learning procedure
for a single synchronization across K local nodes, the maximization of the expectation in (6) can be
described as the maximization of ally utilities and minimization of adversary utilities given by:

U =
1

K

K∑
k=1

n(k)∑
i=1

α
A

(k)
i
u
A

(k)
i
−
m(k)∑
j=1

α
V

(k)
j
u
V

(k)
j

 . (13)

In (13), A(k)
i and V (k)

i refer to the ith ally or adversary of the kth local node. Since data at each node
is i.i.d, the distributions Y are the same at each node, and thus each node has the same objective
function. Using the result of Prop. 1 and assuming that A(k1)

i , V
(k1)
j = A

(k2)
i , V

(k2)
j ∀i, j, k1, k2 (i.e.,

the ally and adversary labels are same across all nodes), the output of the adversaries at each node
follow a uniform distribution.

The ally and adversary objectives in (13) are overlapping if O 6= ∅ given that (Ai, Vj) ∈ O is
the set of all Ai, Vj pairs for which YAi

= YVj
. Since each of the local nodes have the same

overlapping ally/adversary labels with potentially different weights α
A

(k)
i

and α
V

(k)
j

, their utilities
can be expressed using entropy as in (8). The final optimization of the distributed system can be
expressed as the minimization of following:

UO =
∑

(Ai,Vj)∈O

(
K∑
k=1

(α
A

(k)
i
− α

V
(k)
j

) · uAk
i

)
. (14)

The entropy values given in (14) reward only one of the two discriminators predicting label YAi
if∑K

k=1 αA(k)
i
6=
∑k
k=1 αV (k)

i
. If
∑K
k=1 αA(k)

i
=
∑K
k=1 αV (k)

i
, these two networks have no contribu-

tion to UO, and no optimization occurs..

A.4 Proposition 4

Proposition 4. If the allies and adversaries located at the K nodes of D-EIGAN have non-
overlapping target sets, i.e., YA(k) 6= YA(k′) and YV (k) 6= YV (k′) , 1 ≤ k, k′ ≤ K, then individual
encoders under D-EIGAN consider the union of these local allies,

⋃K
k=1 YA(k) , and adversaries

,
⋃K
k=1 YV (k) for optimization as a result of the global aggregation step. The weights α

A
(k)
i

and α
V

(k)
i

associated with the allies/adversaries are scaled by the ratio of the number of nodes that implement
them locally to the total number of nodes.

Proof. Without loss of generality, consider a two network D-EIGAN. Let node 1 have 2 allies and
1 adversary with objectives: YAc

, YA1
, and YV1

, and node 2 have 2 allies and 1 adversary with
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objectives: YAc , YA2 and YV2 . Here, objective YAc is common among them, while the rest are
different. Utilities of individual nodes can be calculated using (3):

U (1) = αAc · uAc + αA1 · uA1 − αV1 · uV1 , (15)

U (2) = αAc
· uAc

+ αA2
· uA2

− αV2
· uV2

. (16)

Under federated training, the equivalent loss function that is optimized by the D-EIGAN can be
calculated using (6):

U = αAc
· uAc

+
αA1

2
· uA1

− αV1

2
· uV1

+
αA2

2
· uA2

− αV2

2
· uV2

, (17)

which shows that the overall objective under D-EIGAN considers all the objectives, but the associated
weights are lower for non-common allies/adversaries. In contrast to a D-EIGAN where all allies and
adversaries are common across nodes, the difference is the weights associated with objectives.

B Pseudocode of EIGAN

Algorithm A1 EIGAN training
1: Notations:
2: (·)j denotes the value for the jth minibatch
3: LAi denotes the loss of ally Ai
4: LVi denotes the loss of the adversary Vi
5: ηE , ηA , ηV : learning rates of the encoders, allies and adversaries

6: Training:
7: initialize α used in loss function (4)
8: initialize θAi ’s and θVj ’s and θE to start the training
9: for number of training epochs do

10: Sample a minibatch set J of data points
11: Compute encoder loss using (4): LE = 1

|J|
∑
j∈J (LE)j

12: Update encoder parameters: θE ← θE − ηE · ∇θELE
13: Compute allies/adversaries losses using (4):

LAi = − 1
|J|
∑
j∈J (LAi)j , LVi = − 1

|J|
∑
j∈J (LVi)j

14: Update local allies/adversaries parameters:
θAi ← θAi − ηA · ∇θAi

LAi , θVi ← θVi − ηV · ∇θVi
LVi

15: end for

C Additional Visualizations

Figure A10: (a) Circle dataset with 4 types of
points, one ally and one adversary. Ally classes
(reds vs blues) are not linearly separable unlike
adversary classes (x’s vs o’s). (b) EIGAN learns
a transformation that makes the ally’s classes lin-
early separable.

Figure A11: (a) Octant dataset with eight groups of
points, one ally, and two adversaries. The ally is inter-
ested in classifying reds/blues while the adversaries are
interested in separation along other axes. (b) EIGAN col-
lapses the two adversary dimensions while maintaining
separability for the ally.
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D Additional EIGAN Experiments

D.1 Comparison with the Method in [7]

Figure A12: Effect of change in adversary overlap (a-b) on the performance of EIGAN, and its comparison
with the unencoded data as well as the method in Bertran et al. [7]. EIGAN is able to consistently outperform
both baselines on the adversary objective, and obtains performance close to the unencoded data for the ally.

D.2 Comparison on MIMIC-III

Figure A13: Predictivity and privacy comparison between EIGAN and the baselines across one ally and two
adversaries on the MIMIC-III dataset. (a) On the adversary objectives (gender prediction, solid lines and race
prediction, dashed lines) EIGAN matches DP’s performance (by design of the experiment, as determined by
the selection of the DP ε parameter). Hence, the red and the khaki colored curves overlap. (b) On the ally
objective (survival prediction), EIGAN achieves noticeable improvement over the baselines. (c) EIGAN training
converges after initial oscillations corresponding to the minimax game.

D.3 Comparison on MNIST

Figure A14: Comparison across one ally and two adversaries on the MNIST dataset. The (a) adversary
objective (odd-even prediction, a binary classification with virtually identical trends) converge to roughly the
same loss for each algorithm, and (b) ally objective (digit prediction, 10-class classification). With dependencies
(in particular, partial overlaps) between the ally and adversary objectives, EIGAN training in (c) is unable to
fully converge, consistent with Prop. 2.
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E Additional D-EIGAN Experiments

E.1 Varying Number of Nodes

Figure A15: Comparison of (a) adversary and (b) ally performance using synthetic Gaussian data while
increasing the number of nodes and sharing all the model weights (φ = 1) after every minibatch (δ = 1) during
federated training. The data is i.i.d. across the nodes, which is obtained by generating Gaussian data with
constant mean and variance across nodes. It can be observed that EIGAN and D-EIGAN converge to similar
performances regardless of the number of nodes.

E.2 Varying Objectives across Nodes

Figure A16: Comparison of D-EIGAN (K = 2 nodes) with centralized EIGAN. Survival is the ally objective,
and gender and race are the chosen adversary objectives for the experiment. (a) Training of distributed EIGAN
involves same adversary objectives, i.e., obfuscating gender and race across the both the nodes. (b) Each node
has a different adversary objective, while they share the same ally objective.

E.3 Varying Synchronization Parameters

Figure A17: Effect of varying (a) frequency of sync (δ, number of epochs between parameter sharing) and (b)
fraction of parameters uploaded/downloaded (φ) in D-EIGAN consisting of K = 2 nodes with i.i.d data using
MIMIC-III. The results show that as φ is varied, the performance of the system on hiding the sensitive variable
is not affected considerably (in contrast to Fig. 9 with non-i.i.d data).
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