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Abstract

Boosting methods often achieve excellent classification accuracy, but can experi-
ence notable performance degradation in the presence of label noise. Existing
robust methods for boosting provide theoretical robustness guarantees for cer-
tain types of label noise, and can exhibit only moderate performance degradation.
However, previous theoretical results do not account for realistic types of noise
and finite training sizes, and existing robust methods can provide unsatisfactory
accuracies, even without noise. This paper presents methods for robust minimax
boosting (RMBoost) that minimize worst-case error probabilities and are robust
to general types of label noise. In addition, we provide finite-sample performance
guarantees for RMBoost with respect to the error obtained without noise and with
respect to the best possible error (Bayes risk). The experimental results corrobo-
rate that RMBoost is not only resilient to label noise but can also provide strong
classification accuracy.

1 Introduction

Boosting methods provide excellent predictive performance in numerous practical scenarios (see
e.g., [1]). These methods determine a linear combination of base-rules through a sequential opti-
mization process that minimizes a certain functional (often the empirical average of a convex poten-
tial). After the introduction of AdaBoost in [2], multiple boosting methods have been presented [3]
together with highly-efficient implementations [4, 5]. Unfortunately, it has been widely observed
that the performance of boosting methods can be significantly affected by the presence of label
noise (see e.g., [6–8]). Certain boosting methods such as LogitBoost and GentleBoost provide an
improved resilience to noise by using alternative convex potentials or optimization approaches [3,9].
However, as shown in [10], any boosting method that minimizes empirical averages of a convex and
bounded potential can lead to poor performances in the presence of label noise (even if only a very
small portion of labels are incorrect). Such a result posed a serious concern on boosting methods, as
label noise is often unavoidable in practice and its extent is typically hard to quantify. For instance,
in cases where an adversary intentionally modifies some labels, the machine learning practitioner
may be entirely unaware of the resulting noise in the training data.

Multiple alternative boosting methods have been proposed to bypass the negative result of Long
and Servedio in [10] by minimizing empirical averages of non-convex or unbounded potentials [11–
15]. These robust methods can result in performances that are only mildly affected by label noise.
Notably, previous theoretical results show that methods based on specific potentials (e.g., unhinged,
quadratic, and sigmoid) are provably robust to certain types of label noise [13–15]. Specifically, the
accuracy of these methods is not degraded by symmetric and uniform label noise for large enough
training sizes. However, previous theoretical results do not show how the performance of boosting
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methods is affected by more realistic types of label noise and finite training sizes. In addition,
existing robust methods do not provide theoretical guarantees with respect to the best possible error
(Bayes risk). Indeed, certain robust methods have shown to achieve unsatisfactory classification
performance [13, 16], since their accuracy can be low even without noise.

This paper presents robust minimax boosting (RMBoost) methods that eliminate the need to select
a potential function by directly minimizing worst-case error probabilities. Our results demonstrate
that RMBoost is robust to general types of label noise with finite training sizes, and can also provide
strong classification performance. The main contributions presented in the paper are as follows.

• We show how RMBoost rules can be learned by solving a linear optimization problem with
optimum value that corresponds to RMBoost minimax risk.

• We provide finite-sample performance guarantees for RMBoost with respect to the error
obtained without noise and with respect to the Bayes risk.

• We present efficient algorithms for RMBoost learning that greedily obtain a sequence of
linear combinations of base-rules with decreasing minimax risks.

• The experiments show that RMBoost can outperform existing methods in the presence of
noisy labels and also achieve strong classification accuracies without noise.

Notations: Calligraphic letters represent sets; bold lowercase letters represent vectors; sign(·) de-
notes the sign of its argument; ‖ · ‖1 and ‖ · ‖∞ denote the 1-norm and the infinity norm of its
argument, respectively; ( · )+ and [ · ]⊤ denote the positive part and the transpose of its argument,
respectively; 1 denotes the vector with all components equal to 1; � and � denote vector inequal-
ities; and Ep{ · } and Varp{ · } denote, respectively, the expectation and variance of its argument
with respect to distribution p.

2 Preliminaries

This section first recalls the setting for boosting methods and states the notation used in the paper.
Then, we further describe related methods and results.

2.1 Problem formulation

Classification rules assign instances in a Borel set X ⊂ R
d with labels in a finite set Y . As is com-

monly done in the boosting literature, in the following we consider binary classification problems,
i.e., Y = {−1,+1}. We denote by ∆(X × Y) the set of probability distributions on X × Y , en-
dowed with a suitable sigma-algebra, while the set of classification rules (both deterministic and
randomized) is denoted by T(X ,Y). For p ∈ ∆(X × Y), we denote by px ∈ ∆(X ) the marginal
distribution over X and by p(y|x) the conditional probability of label y ∈ Y given x ∈ X . For a
classification rule h ∈ T(X ,Y), we denote by h(y|x) the probability with which instance x ∈ X is
assigned the label y ∈ Y (note that h(y|x) ∈ {0, 1} if h is a deterministic rule). With a slight abuse
of notation we denote by h(x) the label assignment provided by the rule h for instance x, which is a
random variable if h is a randomized classifier.

Supervised classification methods use training samples to obtain a classification rule h with small
error probability R(h), referred to as risk. If p∗ ∈ ∆(X × Y) is the underlying distribution of
instance-label pairs, the error probability of a classification rule h ∈ T(X ,Y) is its expected 0-1
loss, that is, R(h) = Ep∗{ℓ0-1(h, (x, y))}, where

ℓ0-1(h, (x, y)) = P{h(x) 6= y} = 1− h(y|x) (1)

is the 0-1 loss of rule h at instance-label pair (x, y).

The n training samples (x1, y1), (x2, y2), . . . , (xn, yn) available for learning may be affected by
label noise. We consider general types of label noise, namely, for each instance x ∈ X the la-
bel y is flipped to −y with a probability 0 ≤ ρy(x) ≤ 1 for which no assumptions are imposed.
Noise-less cases correspond to ρ+1(x) = ρ−1(x) = 0 ∀ x ∈ X , symmetric noise corresponds to
ρ+1(x) = ρ−1(x) ∀ x ∈ X , and uniform noise corresponds to ρy(x) = ρy(x

′) ∀ x, x′ ∈ X , y ∈ Y .
In practice, it is expected that the noise probabilities of most instances are rather small or zero, while
those of other instances are non-negligible and unknown.
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The label noise considered in the paper covers arbitrary forms of label corruption in the training
samples. In particular, the results in the paper even account for deliberate manipulations of labels,
where an adversary may consistently modify the labels of specific instances (ρ+1(x) or ρ−1(x) may
be 1 for certain instances x ∈ X that the adversary deems most influential to learning). With noisy
labels, the distribution of training samples ptr ∈ ∆(X ×Y) is different to the underlying distribution
p∗. Specifically, the marginals coincide ptr

x = p∗x while the label conditionals satisfy

ptr(y|x) = (1 − ρy(x))p
∗(y|x) + ρ−y(x)p

∗(−y|x). (2)

Boosting methods obtain classification rules given by combinations of base-rules in a set
H = {~1, ~2, . . . , ~T } ⊂ T(X ,Y). The set of base-rules considered often contains an extremely
large number T of simple rules, e.g., all the decision trees with a bounded number of nodes given
by components of instances in the training set. Often, base-rules are themselves classification rules,
i.e., ~(x) ∈ {−1, 1} for any x ∈ X . We only assume the common case in which the base-rules are
bounded measurable functions ~(x) ∈ [−1, 1] for any x ∈ X , and that −~ ∈ H if ~ ∈ H.

2.2 Related work

Most of boosting methods can be interpreted as empirical risk minimization (ERM) techniques that
learn classification rules by solving the optimization problem

min
µ

1

n

n∑

i=1

φ
(
yi~~~(xi)

⊤µ
)

(3)

where the vector ~~~(x) = [~1(x), ~2(x), . . . , ~T (x)]
⊤ is given by predictions of the base-rules in

H. Then, the classification rule is given by h(x) = sign(~~~(x)⊤µ∗) with µ∗ a solution of (3).
The function φ(·) in (3) is referred to as potential function and its argument yi~~~(xi)

⊤µ is re-
ferred to as the margin of sample (xi, yi) for parameters µ (see e.g., [6]). Each potential function
gives rise to a different boosting method (see e.g., [3, 6]). For instance, AdaBoost corresponds
to the potential function φ(z) = exp(−z), and LogitBoost corresponds to the potential function
φ(z) = log(1 + exp(−z)). In particular, the resilience to noise of LogitBoost is attributed to the
lower values taken by the logistic potential for z < 0.

The results in [10] showed that even a very small fraction of noisy labels can lead to poor
performances using any convex and bounded potential (i.e., φ(z) convex, φ′(0) < 0, and
limz→∞ φ(z) = 0). Multiple methods have been proposed to bypass the negative result in [10] by
using non-convex or unbounded potentials, such as the sigmoid potential φ(z) = (1 + exp(z))−1,
the quadratic potential φ(z) = (1 − z)2, and the unhinged potential φ(z) = 1 − z. These potential
functions have been shown to result in methods that are robust to noise in the sense that the corre-
sponding optimization (3) is not affected by symmetric and uniform label noise for large enough
training sizes [13, 14, 17]. Specifically, for some potentials including sigmoid and unhinged, the
expected potential with symmetric and uniform noise is proportional to that without noise [14]. For
the quadratic potential, minimizers of the expected potential with symmetric and uniform noise are
equivalent to those without noise [17]. On the other hand, it has been shown that such potential
functions can lead to poor classification performances, even without noise [13, 16].

The existing robustness results do not show how the performance is affected by more realistic types
of noise and finite training sizes. Only the results in [14] go beyond symmetric and uniform cases
and provide certain extensions of the above-described results to cases with symmetic non-uniform
noise (ρ+1(x) = ρ−1(x) varying with x). Furthermore, existing robustness results do not provide
finite-sample generalization guarantees since they analyze the potential’s actual expectation, not
cases with empirical averages. In boosting methods, results for finite-sample empirical averages
cannot be derived from those for actual expectations because performance bounds based on the
convergence of the potential averages are inadequate for boosting (see e.g., Sec. 4.1 in [6]).

The following presents boosting methods that avoid the need to select a potential function by directly
minimizing worst-case error probabilities.
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3 Minimax boosting

RMBoost methods learn classification rules by solving the minimax problem

min
h∈T(X ,Y)

max
p∈U

Ep

{
ℓ0-1(h, (x, y))

}
. (4)

Such an optimization considers general classification rules T(X ,Y), probability distributions in a
subset U ⊂ ∆(X × Y) referred to as uncertainty set, and expected 0-1 losses (i.e., error probabili-
ties). Minimax approaches such as that in (4) are commonly known as robust risk minimization or
distributionally robust techniques [18–22]. Unlike an ERM approach, the optimization in (4) con-
siders multiple distributions beyond the empirical distribution of training samples, so that RMBoost
methods can achieve enhanced robustness as shown in the following. In addition, the optimal value
of (4) referred to as the minimax risk R can be used to assess RMBoost classification error.

Unlike other distributionally robust methods, RMBoost considers uncertainty sets defined by the set
of base-rules H. Specifically, the uncertainty set of distributions U in (4) is given by the training
samples and the base-rules H as

U =
{
p ∈∆(X × Y) s.t.

∥∥Ep{y~~~(x)} −
1

n

n∑

i=1

yi~~~(xi)
∥∥
∞ ≤ λ

}
(5)

where the vector ~~~(x) = [~1(x), ~2(x), . . . , ~T (x)]
⊤ is given by the predictions of base-rules in

H as in (3). The parameter λ > 0 accounts for the error in the finite-sample average in (5) and
can be selected using standard cross-validation approaches. This selection can be enhanced taking
into account the family of base-rules used or prior knowledge on the amount of label noise. In
particular, more complex families of base-rules or increased levels of noise can benefit from higher
values for λ. A simple default value for such parameter is λ = 1/

√
n, which is the value used in all

the experimental results in the paper (Appendix H.5 further analyzes the sensitivity of the proposed
methods to the choice of that hyperparameter).

The uncertainty set in (5) comprises probability distributions over instance-label pairs that are sim-
ilar to the empirical distribution of training samples, as is commonly done in distributionally ro-
bust methods. While most existing methods define this similarity in terms of metrics such as the
Kullback-Leibler divergence or the Wasserstein distance [18], the proposed approach defines sim-
ilarity in terms of the set of base-rules considered (e.g., the set of decision trees with t decision
nodes). Specifically, two distributions are regarded as similar if, for any base-rule h ∈ H, the ex-
pected value of yh(x) changes only slightly when computed under either distribution. This notion
of similarity offers two key advantages: it can yield quite restricted uncertainty sets (since common
sets of base-rules are fairly expressive), and provides strong theoretical guarantees (since common
sets of base-rules facilitate the fast and uniform convergence of empirical expectations).

The minimax formulation in (4) followed by RMBoost methods is particularly suitable to obtain
robust classification rules since it minimizes worst-case error probabilities. However, the minimax
problem in (4) may seem to be computationally prohibitive in practice. The next result shows that
RMBoost classification rules can be obtained by solving the convex optimization problem

min
µ

F (µ) :=
1

2
− 1

n

n∑

i=1

yi~~~(xi)
⊤µ+ λ‖µ‖1 (6)

s.t. − 1

2
≤ ~~~(x)⊤µ ≤ 1

2
, ∀x ∈ X .

Theorem 1. If µ∗ is a solution of (6), the classification rule hµ∗ ∈ T(X ,Y) given by

hµ∗(y|x) = y~~~(x)⊤µ∗ + 1/2 (7)

is a solution of the minimax problem in (4). In addition, the minimax risk R coincides with the
optimum of (6), that is R = F (µ∗).

Proof. See Appendix C.
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The result above shows that the minimax problem in (4) is equivalent to the convex optimization
problem in (6). This equivalence not only provides a tractable formulation for RMBoost learning
but also enables the interpretation of RMBoost methods in terms of margins. In particular, the
formulation in (6) reveals that RMBoost maximizes the average margin while enforcing both upper
and lower margin constraints. As a result of these constraints, an increased average margin leads
to an overall increase in the distribution of margins (an average margin near 1/2 pushes all the
margins to be near 1/2). In contrast, methods that only aim to maximize the average margin may
result in instances with very low margins since others are allowed to have large margins. Hence,
in existing methods the average margin is often maximized while simultaneously minimizing the
margin variance [23, 24]. Other methods such as LPBoost [25] and Arc-Gv [26] that maximize
the minimum margin often lead to poor classification performance since they only account for the
minimum margin and not for the distribution of margins [27]. The interpretation of RMBoost in
terms of margins also provides further insights for its robustness to noise. In conventional boosting
methods, a sample with an incorrect label can highly impact the learning process if its margin takes
a large negative value because it would result in a large potential value in (3). For methods based on
quadratic or unhinged potentials, even samples with large positive margins can significantly impact
the learning process because they would also result in large potential values. Such type of effects
are not present in the methods proposed because the margins are bounded due to the constraints in
the optimization problem (6).

Theorem 1 shows that the classification rule with the minimum worst-case error probability is given
by a linear combination of base-rules. This minimax classification rule can be learned by solving
the optimization (6), which carries out an L1-regularization (term λ‖µ‖1) leading to a sparse com-
bination of base-rules. The methods proposed in [28] also minimize worst-case error probabilities
using a combination of base-rules. However, such work considers a transductive scenario and aims
to combine a reduced set of base-rules using prior knowledge of their classification errors.

The classification rule hµ∗ that minimizes the worst-case error probability randomly assigns labels
with probabilities given by the predictions of base-rules, as shown in (7). Similarly to other methods
(e.g., PAC-Bayes techniques [29]), it is often preferred in practice to use the corresponding deter-
ministic classifier denoted by hd

µ∗ which assigns the label corresponding to the highest probability,
i.e., hd

µ∗(x) = sign(~~~(x)⊤µ∗). The error probability of the deterministic classifier is ensured to
satisfy R(hd

µ∗) ≤ 2R(hµ∗) (see e.g., [19, 29]) and often satisfies R(hd
µ∗) ≤ R(hµ∗) in practice.

Efficient learning algorithms for RMBoost can be developed by leveraging general-purpose opti-
mization techniques. Using as variables the positive and negative parts of µ, the optimization prob-
lem (6) is equivalent to a linear program that often has sparse solutions, as described above. There-
fore, highly efficient algorithms for large-scale linear optimization can be utilized for RMBoost
learning. In particular, Section 5 presents an efficient learning algorithm that address (6) using
column generation methods. In addition, we next show that RMBoost does not require to solve
the optimization in (6) with high accuracy, for instance the presented methods only need that the
expected constraint violation in (6) is small.

As described above, the formulation of RMBoost by means of the optimization problem (6) enables
to develop effective learning algorithms and also to interpret RMBoost methods in terms of margins.
As shown in the following, the equivalent formulation of RMBoost in (4) as a minimax method
enables to obtain performance guarantees for general types of label noise.

4 Generalization and robustness guarantees

This section characterizes RMBoost generalization performance with respect to the performance
obtained without noise and the best possible error probability.

As shown in Theorem 1, the classification rule given by (7) minimizes the worst-case error probabil-
ity if the parameter µ∗ is a solution of (6). Any other µ can be similarly used to define classification
rules as

hµ(y|x) =
[
y~~~(x)⊤µ+

1

2

]1
0
, hd

µ(x) = sign(~~~(x)⊤µ) (8)

where [ · ]10 denotes the clip function [ z ]10 = (min(z, 1))+.
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The usage of efficient optimization algorithms for (6) can lead to suboptimal solutions that result
in a value larger than the minimax risk R or fail to satisfy all the constraints. We say that µ is an
εopt-solution of (6) if the sum of the value suboptimality and the expected constraint violation is at
most εopt, that is

(
F (µ)−R

)
+ Ep∗

x

(
|~~~(x)⊤µ| − 1

2

)

+
≤ εopt. (9)

The next theorem provides generalization bounds for RMBoost with respect to the error obtained by
an ideal RMBoost learned without label noise and with infinite training samples.

Theorem 2. Let Pnoise be the probability with which a label is incorrect at training, i.e.,
Pnoise = Ep∗{ρy(x)}, and εest be a bound for the concentration of training averages of base-rules,
that is

∣∣∣Eptr{y~(x)} − 1

n

n∑

i=1

yi~(xi)
∣∣∣ ≤ εest, ∀ ~ ∈ H. (10)

If µ is an εopt-optimal solution of (6) corresponding to n training samples, andµo is an exact solution
of (6) using the exact expectation without noise Ep∗{y~~~(x)} instead of (1/n)

∑n

i=1 yi~~~(xi). Then,
we have

R(hµ) ≤R(hµo
) + εopt + (εest + 2Pnoise + λ)‖µ− µo‖1. (11)

In addition, if Pnoise < 1/2, we have

R(hµ) ≤R(hµo
) +

εopt

1− 2Pnoise
+

εest + 2
√
Varp∗{ρy(x)} + λ

1− 2Pnoise
‖µ− µo‖1. (12)

Proof. See Appendix D.

The result above shows how RMBoost error is affected by the usage of: training samples with noisy
labels (Pnoise), finite training sizes (εest), and suboptimal learning algorithms (εopt). The probability
Pnoise = Ep∗{ρy(x)} is rather small in common situations where most of the training labels are
correct. The error term εest due to the finite number of training samples can be bounded with high-
probability using conventional concentration bounds (see e.g., [6, 30]). In particular, if R and D
are, respectively, the Rademacher complexity and VC dimension of the family of base-rules H, with
probability at least 1− δ we have

εest ≤ 2R+

√
log 2/δ

2n
≤ 2

√
2D log(3n/D)

n
+

√
log 2/δ

2n
(13)

so that the sample error εest generally decreases with the training size at a rate O(
√

(logn)/n). The
error term εopt remains small when appropriate algorithms for large-scale linear optimization are
employed. Although problem (6) involves a large number of constraints, small expected constraint
violations are sufficient to ensure a low εopt. In particular, the algorithm presented in the next Section
achieves an εopt of order O(

√
(log n)/n) by solving a sequence of low-dimensional linear programs.

The bound in (12) further describes how RMBoost error is affected by the non-uniformity and asym-
metry of the label noise. In particular, in cases with uniform and symmetric label noise we have
Varp∗{ρy(x)} = 0, so that the bound (12) shows that RMBoost is robust to uniform and symmetric
label noise. Specifically, the error of RMBoost is not affected by the presence of uniform and sym-
metric label noise for a large enough training size (in that case, εopt, εest, and λ can be taken to be
much smaller than 1− 2Pnoise).

Differently from existing results, Theorem 2 provides performance bounds that account for finite
training sizes and describe the effect of general types of label noise, including the effect due to
deviations from uniform and symmetric cases (term Varp∗{ρy(x)}). The next result provides per-
formance guarantees for RMBoost in terms of the best possible error (Bayes risk).
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Theorem 3. Let hBayes be the Bayes rule and µB be a parameter that satisfies

sup
x∈X

∣∣hBayes(x)− 2~~~(x)⊤µB

∣∣ ≤ εapprox. (14)

If µ is an εopt-optimal solution of (6) corresponding to n training samples possibly affected by noise,
we have

R(hµ) ≤ R(hBayes) + εopt + εapprox + (εest + 2Pnoise + λ)(‖µ− µB‖1 + ‖µB‖1). (15)

Proof. See Appendix E.

The result above shows that RMBoost error probability can be near the best possible performance.
In particular, the bound in (15) shows that RMBoost methods are Bayes consistent in cases where
combinations of base-rules can accurately approximate the Bayes rule, i.e., εapprox = 0. Such an
assumption is also required to achieve consistency with other boosting methods, as AdaBoost [31,
32], and is satisfied using common families of base-rules. For instance, any measurable function in
R

d can be accurately approximated using trees with d+ 1 terminal nodes [31].

The results presented in this section show that RMBoost is both robust to general label noise and
capable of providing near-optimal performance in common situations. The next section presents
efficient algorithms for RMBoost learning.

5 Efficient sequential learning for RMBoost

The learning stage of RMBoost obtains parametersµ by (approximately) solving the linear optimiza-
tion problem (6). As described above, general-purpose techniques for large-scale linear optimization
can be borrowed for RMBoost learning, and the following presents an efficient algorithm based on
column generation methods (see e.g., [33]). These methods sequentially increase the number of
variables considered and are specially effective for large-scale linear optimization since they can
maintain a reduced number of variables and exploit warm-starts.

5.1 Learning algorithm

Algorithm 1 details the pseudocode of the presented algorithm that learns base-rules
~1, ~2, . . . , ~t ∈ H, RMBoost parameters µ∗ ∈ R

t, and the corresponding minimax risk R. As
in other boosting methods, the algorithm greedily selects base-rules in multiple rounds.

At each round k ∈ {1, 2, . . . ,K}, the algorithm uses a base learner to select a new base-rule that best
fits a set of weighted samples obtained from the training samples (Step 3 in the algorithm). Then,
the coefficients for the current set of selected base-rules and the weighted samples for the next round
are obtained by solving the linear optimization problem (16) (Step 7 in the algorithm). In particular,
the primal solution provides the coefficients for them minimax rule, the dual solution provides the
next round weights, and the optimal value provides the worst-case error probability (minimax risk).

min
µ+,µ

−

1

2
− 1

n

n∑

i=1

yiu
⊤
i (µ+ − µ−) + λ1⊤(µ+ + µ−)

s.t. − 1

2
≤ u⊤

i (µ+ − µ−) ≤
1

2
µ+,µ− ∈ R

tk ,µ+ � 0,µ− � 0

for i = 1, 2, . . . , n (16)

max
α,β

1

2

(
1− 1⊤(α+ β)

)

s.t. − λ ≤ v⊤
j

(
α− β − y/n

)
≤ λ

α,β ∈ R
n,α � 0,β � 0

for j = 1, 2, . . . , tk (17)

where vectors ui ∈ R
tk for i = 1, 2, . . . , n are given by ui = [~

(k)
1 (xi), ~

(k)
2 (xi), . . . , ~

(k)
tk

(xi)]
⊤,

vectors vj ∈ R
n for j = 1, 2, . . . , tk are given by vj = [~

(k)
j (x1), ~

(k)
j (x2), . . . , ~

(k)
j (xn)]

⊤,

H(k) = {~(k)1 , ~
(k)
2 , . . . , ~

(k)
tk

} are the tk base-rules selected at round k, and vector y ∈ R
n is given

by y = [y1, y2, . . . , yn]
⊤.

The new base-rule selected at each round (column generated in the primal) corresponds to a violated
dual constraint. Specifically, each base-rule ~ ∈ H corresponds to the dual constraints

−λ ≤ [~(x1), ~(x2), . . . , ~(xn)](α− β − y/n) ≤ λ.
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Hence, the most violated constraint corresponds to the base-rule that achieves

max
~∈H

n∑

i=1

wiỹi~(xi) = −min
~∈H

n∑

i=1

wiỹi~(xi) (18)

where the weights {wi}ni=1 and labels {ỹi}ni=1 are given by

wi =
∣∣∣
yi
n

− (αi − βi)
∣∣∣, ỹi = sign

(yi
n

− (αi − βi)
)
. (19)

Similarly to other boosting methods, (18) is addressed by using a base learner that returns a base-rule
with small training error for samples (xi, ỹi) and weights wi, for i = 1, 2, . . . , n.

Algorithm 1 RMBoost learning algorithm

Input: Training samples {(xi, yi)}
n
i=1,

parameters λ, K
Output: µ∗ ∈ R

t, ~1, ~2, . . . , ~t, R

1: H(0) ← ∅, R(0) ← 1/2, w← 1/n, ỹ ← y

2: for k = 1, 2 . . . ,K do
3: ~← BaseLearner

(
H, {(xi, ỹi, wi)}

n
i=1

)

4: H(k) ←H(k−1)

5: If
n∑

i=1

wiỹi~(xi) ≤ λ BREAK for

6: Add toH(k) the base-rule ~
(k)
tk
← ~

and assign it zero coefficient
7: Solve (16) (warm-start µ+,µ−

)
8: µ+,µ−

← solution primal
9: α,β ← solution dual

10: R(k) ← optimal value
11: µ(k) ← µ+ − µ

−

12: w← |y/n− (α− β)|

13: ỹ← sign(y/n− (α− β))

14: for j = 1, 2, . . . , |H(k)| do

15: if
n∑

i=1

wiỹi~
(k)
j (xi) < λ then

16: remove ~
(k)
j fromH(k)

17: R← R(k), µ∗ ← µ(k), {~i} ← {~
(k)
i }

Computational cost: Algorithm 1 has running time
and memory requirements that can be directly com-
pared with existing boosting methods based on col-
umn generation. The complexity of Algorithm 1 is
very similar to that of LPBoost [25] that also solves
a linear optimization problem. Specifically, Algo-
rithm 1 solves in each round a linear program with
2tk variables and 2(tk + n) constraints for tk the
number of base-rules in round k, while LPBoost
solves in each round a linear program with n + tk
variables and 2n + tk constraints [25]. In addition,
the complexity of Algorithm 1 is lower than other
methods based on column generation [34–36] that
address more complicated optimization problems at
each round. The complexity per round in Algo-
rithm 1 is higher than methods such as AdaBoost
or LogitBoost that do not require to solve an opti-
mization problem in each round. However, the al-
gorithm presented can solve such optimization prob-
lems very efficiently by leveraging the properties of
column generation methods for linear problems. In
particular, the previous solution can provide a valid
warm-start (basic feasible solution), and previously
selected base-rules can be safely removed if they cor-
respond with strictly satisfied dual constraints [33].
The experiments in Appendix H further show that
the running times of the presented method are com-
parable to those of existing techniques.

5.2 Theoretical analysis

The next result provides performance guarantees for the sequence of classification rules determined
by Algorithm 1.

Theorem 4. Let µ(k) and R(k) be the parameter and minimax risk determined by Algorithm 1 at
round k. With probability at least 1− δ, the error probability of the RMBoost rule at the k-th round
satisfies

R(hµ(k)) ≤ R(k) + ε(δ) + (εest + 2Pnoise − λ)‖µ(k)‖1 (20)

where ε(δ) = 0 if ‖µ(k)‖1 ≤ 1/2, and for ‖µ(k)‖1 > 1/2, ε(δ) is given by

ε(δ) = 2‖µ(k)‖1
√

2D log(3n/D)

n
+
(
‖µ(k)‖1 −

1

2

)
√

log(1/δ)

2n
(21)

for D the VC-dimension of the base-rules H. In addition, if Algorithm 1 stops at round k in Step 5
and the base learner accurately solves (18), then µ(k) is an ε(δ)-optimal solution of optimization (6)

Proof. See Appendix F.
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Table 1: Average classification error in % ± standard deviation for RMBoost and state-of-the-art methods.
The right sub-table shows cases affected by uniform and symmetric label noise with Pnoise = 10%.

Dataset AdaB LogitB XGB-Q RMB Minmax AdaB LogitB XGB-Q RMB Minmax

Titanic 20±3.2 21±3.7 21±3.7 22±3.5 20±0.3 22±4.1 23±4.5 22±3.9 22±3.6 24±0.8
German 24±4.2 24±4.5 25±3.4 27±2.8 26±0.6 30±4.2 29±4.4 27±4.1 27±5.0 29±0.8
Blood 24±4.4 27±4.3 22±3.9 20±5.4 24±0.6 27±3.9 28±4.3 23±3.4 22±3.9 28±0.9
Credit 14±3.9 14±4.0 22±5.6 14±5.6 16±0.4 18±4.5 19±4.5 24±4.8 16±3.8 21±0.8
Diabet 27±4.9 26±5.3 34±4.6 26±4.5 25±0.8 31±5.2 29±5.1 34±4.5 27±5.1 28±1.1
Raisin 15±2.7 15±2.6 16±3.8 12±3.6 14±0.6 19±3.9 19±4.1 20±3.4 14±2.4 19±1.0
QSAR 14±3.1 14±3.1 23±3.5 15±3.1 17±0.5 19±3.5 18±3.5 26±4.7 20±3.3 23±0.8
Climat 8.5±2.0 8.5±2.0 8.4±2.0 7.5±2.0 9.3±0.4 12±2.8 10±2.9 10±3.2 9.5±2.8 15±0.8

The result above shows that the error of RMBoost rules learned by Algorithm 1 is bounded by the
minimax risk obtained in each round (R(k)) together with terms that account for optimization and
estimation errors (ε(δ) and εest) as well as the effect of noisy labels (Pnoise). Due to the bound in (13),
the two terms due to optimization and estimation errors decrease with the number of samples as
O(

√
(logn)/n) and increase with the VC-dimension of the set of base rules H. Notice that the

VC-dimension of decision trees can be bounded as D ≤ (2t + 1) log2(d + 2) for t the number
of decision nodes, and d the instances’ dimensionality (see e.g., [37]), leading to bounds of order
O(

√
(t log d logn)/n).

For other boosting methods like AdaBoost, the performance bounds that rely on VC-dimension
arguments, exhibit a similar dependence on the number of samples and the VC-dimension, but
increase with the number of boosting rounds (see Section 4.1 in [6]). Interestingly, the bound in (20)
for RMBoost grows with ‖µ(k)‖1 which can be significantly smaller than the number of rounds k
due to the L1-regularization imposed by λ > 0.

Theorem 4 also describes the performance guarantees of RMBoost rules determined by Algorithm 1
in terms of the results presented in Section 4. In particular, all the results in that section can be
directly applied by plugging in ε(δ) as εopt in cases where Algorithm 1 stops in Step 5. For general
cases, Appendix G shows that the suboptimality of Algorithm 1 is increased by a term that accounts
for a possible early termination and for the suboptimality of the base learner in practice.

The performance guarantees presented above reliably represent RMBoost error in practice. In par-
ticular, the experimental results below show that the minimax risk R obtained by Algorithm 1 can
serve to assess RMBoost prediction error.

6 Numerical results

The experiments compare the classification performance obtained by RMBoost with that of 8 boost-
ing methods: the 4 state-of-the-art techniques AdaBoost [2], LogitBoost [3], GentleBoost [9], and
LPBoost [25] together with the 4 robust methods RobustBoost [12], BrownBoost [11], XGBoost [4]
with quadratic potential (XGB-Quad), and Robust-GBDT [38], which are specifically designed for
scenarios with noisy labels. Multiple cases of label noise are evaluated using the conventional sym-
metric and uniform label noise ( ∀x, ρ+1(x) = ρ−1(x) = Pnoise), and also using an adversarial
type of label noise (ρy(x) = 1 for the Pnoise-fraction of training samples with the largest margin,
ρy(x) = 0 for the other samples). This adversarial noise corresponds to label corruptions designed
to maximally hinder learning by altering the most influential samples.

Due to the extensive theoretical results presented, this section remains necessarily concise. The
code implementing the methods presented and reproducing the experiments can be found at
https://github.com/MachineLearningBCAM/RMBoost-NeurIPS-2025. The supplementary
materials provide additional details and results in Appendix H, including running times assessments
and the results of all the boosting methods in all label noise cases.

Table 1 shows the classification error achieved by the most representative methods with 8 common
datasets in noiseless cases and with symmetric and uniform label noise. The results in the table show
that RMBoost can obtain state-of-the-art performance in noiseless situations and provide improved
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Figure 1: Trade-off classification performance vs ro-
bustness to noise in the 8 datasets (uniform and sym-
metric noise with Pnoise = 10%).
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Figure 2: Performance degradation of AdaBoost and
RMBoost methods for increased levels of noise in
‘Credit’ dataset.

robustness to label noise. The table also shows that the minimax risk optimized at learning is often
near the RMBoost error in practice. Figure 1 summarizes the trade-off between classification per-
formance and robustness to noise for the 9 methods in the 8 datasets. Specifically, the vertical axis
describes classification performance in terms of the average ranking in the noiseless case, while the
horizontal axis describes robustness to noise in terms of the average difference between the error in
noisy and noiseless cases. The figure shows that RMBoost is a robust method that can also provide
a strong classification performance near that of AdaBoost method.

Figure 2 further illustrates the classification performance and robustness to noise of RMBoost in
comparison with AdaBoost. While Adaboost is able to achieve slightly better error with clean la-
bels, its performance quickly deteriorates for increasing probabilities of noise, especially for adver-
sarial noise. On the other hand, RMBoost provides strong classification accuracy on clean data that
only mildly deteriorates with general types of label noise, in line with the performance guarantees
presented.

7 Conclusion

The paper presents methods for robust minimax boosting (RMBoost) that minimize worst-case error
probabilities and are robust to label noise. Differently from existing techniques, we provide finite-
sample performance guarantees that describe the effect of general types of label noise as well as the
Bayes consistency of RMBoost methods. In addition, the paper presents and analyzes an efficient
algorithm for RMBoost learning, and experimentally shows the effectiveness of RMBoost in prac-
tice. The results in the paper show that the boosting methodology presented can enable to achieve
increased levels of robustness to label noise together with strong classification performance.

Limitations: The column generation approach presented in Section 5 can be directly compared
with other methods such as LPBoost. However, as described above, the complexity of approaches
based on column generation scales poorly with the number of training samples, compared to other
methods such as AdaBoost or LogitBoost (see also experimental running times in Appendix H.3).
The methodologies proposed can be implemented using alternative optimization approaches for
large-scale optimization that may be more convenient computationally. The present paper focuses on
the new boosting methodology proposed and the theoretical analysis of its noise robustness. Hence,
we leave for future work the development of more efficient learning algorithms.
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Appendices

A Strong duality lemma

Some of the proofs for the results in the paper make use of Fenchel duality for linear optimization
problems over probability measures. The next lemma provides the strong duality result needed for
such proofs.

Lemma 5. Let U be an uncertainty set given by (5) with λ > 0. For any h ∈ T(X ,Y), we have

max
p∈U

Ep{ℓ0-1(h, (x, y))}

= min
µ∈RT

1− 1

n

n∑

i=1

yi~~~(xi)
⊤µ+ λ‖µ‖1 + sup

x∈X ,y∈Y

{
y~~~(x)⊤µ− h(y|x)

}
. (22)

Proof. In the first step of the proof, we show that the right-hand-side in (22) is the Fenchel dual
of the left-hand-side. Then, the result is obtained by showing that strong duality is satisfied for the
uncertainty sets used in the paper.

Let M(X × Y) be the set of signed Borel measures over X × Y with bounded total variation, and
A be the linear mapping

A : M(X × Y) → R
2T+1

p 7→
[ ∫

y~~~(x)dp(x, y),−
∫
y~~~(x)dp(x, y),

∫
dp(x, y)

]
.

(23)

A is bounded and its adjoint operator transforms µ1,µ2, ν ∈ R
2T+1 to measurable functions over

X × Y , as A∗(µ1,µ2, ν)(x, y) = y~~~(x)⊤(µ1 − µ2) + ν.

Then, we have

max
p∈U

Ep{ℓ0-1(h, (x, y))} = max
p∈U

1−
∫

h(y|x)dp(x, y) = 1− min
p∈M(X×Y)

f(p) + g(A(p)) (24)

where f and g are the lower semi-continuous convex functions

g : R
2T+1 → R ∪ {∞}

(a1, a2, b) 7→
{

0 if a1 � τ + λ1, a2 � −τ + λ1, b = 1
∞ otherwise

(25)

for τ = 1
n

∑n

i=1 yi~~~(xi), and

f : M(X × Y) → R ∪ {∞}
p 7→

{ ∫
h(y|x)dp(x, y) if p is nonnegative

∞ otherwise.
(26)

Then, the Fenchel dual (see e.g., [39]) of (24) is

1− sup
µ1,µ2,ν

−f∗(A∗(µ1,µ2, ν)) − g∗(−µ1,−µ2,−ν) (27)

where f∗ and g∗ are the conjugate functions of f and g. If w is a measurable function over X × Y ,
we have

f∗(w) = sup
p�0

∫
(w(x, y) − h(y|x))dp(x, y)

=

{
0 if w(x, y) ≤ h(y|x), ∀x, y ∈ X × Y
∞ otherwise

and g∗(−µ1,−µ2,−ν) is given by

sup −a⊤1 µ1 − a⊤2 µ2 − ν
s.t. a1 � τ + λ1, a2 � −τ + λ1

=

{
−(τ + λ1)⊤µ1 + (τ − λ1)⊤µ2 − ν if −µ1 � 0,−µ2 � 0

∞ otherwise.
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Hence, the dual problem (27) becomes

inf
µ1,µ2,ν

1− (τ + λ1)⊤µ1 − (−τ + λ1)⊤µ2 − ν

s.t. y~~~(x)⊤(µ1 − µ2) + ν ≤ h(y|x), ∀(x, y) ∈ X × Y
−µ1 � 0,−µ2 � 0

= inf
µ+,µ

−
,ν

1 + (τ + λ1)⊤µ− + (−τ + λ1)⊤µ+ − ν

s.t. y~~~(x)⊤(µ+ − µ−) + ν ≤ h(y|x), ∀(x, y) ∈ X × Y
µ+ � 0,µ− � 0

(28)

= inf
µ,ν

1− τ⊤µ+ λ‖µ‖1 − ν

s.t. y~~~(x)⊤µ+ ν ≤ h(y|x), ∀(x, y) ∈ X × Y
(29)

= inf
µ

1− τ⊤µ+ sup
(x,y)∈X×Y

{
y~~~(x)⊤µ− h(y|x)

}
+ λ‖µ‖1 (30)

where we have taken µ+ = −µ2, µ− = −µ1, and µ = µ+ − µ−. The equality in (29) is obtained
from (28) because in (28) we can consider only pairs µ+,µ− such that µ+ + µ− = |µ+ − µ−|
because for any pair µ+,µ− feasible in (28), we have µ̃+ = (µ+−µ−)+, µ̃− = (µ− −µ+)+ is a
feasible pair since µ̃+−µ̃− = µ+−µ−, and we also have that λ‖µ̃+−µ̃−‖1 = λ1⊤(µ̃++µ̃−) ≤
λ1⊤(µ+ + µ−). The expression in (30) is obtained since for any feasible (µ, ν) in (29) we have
(µ, ν̃) is feasible if

ν̃ = inf
(x,y)∈X×Y

{
h(y|x)− y~~~(x)⊤µ

}

and ν̃ ≥ ν.

Then, we get that (30) is at least maxp∈U Ep{ℓ0-1(h, (x, y))} by using weak duality, next we show
that strong duality (and hence equality) is achieved. Specifically, in the following we show that
strong duality holds because 0 ∈ int(dom g − Adom f) (see e.g., Chapter 4 in [39]), where dom
denotes the set where an extended-valued function takes finite values, and int denotes the interior of
a set.

We show that if 0 < ε < λ/(λ+1+
√
T ) < 1, the ball B(0, ε) with radius ε centered in 0 ∈ R

2T+1

satisfies B(0, ε) ⊂ (dom g − Adom f) ⊂ R
2T+1. For any z ∈ B(0, ε) ⊂ R

2T+1, there exist
ξ1, ξ2 ∈ B(0, λ) ⊂ R

T such that
(
z(1), z(2), . . . , z(T )

)
= Epn

{y~~~(x)} + ξ1 − (1− z(2T+1))Epn
{y~~~(x)}

(
z(T+1), z(T+2), . . . , z(2T )

)
= −Epn

{y~~~(x)} + ξ2 + (1− z(2T+1))Epn
{y~~~(x)}

z(2T+1) = 1− (1− z(2T+1))

for pn ∈ U the empirical distribution of the n training samples. Such equalities are obtained because
we have

‖
(
z(1), z(2), . . . , z(T )

)
− z(2T+1)

Epn
{y~~~(x)}‖2 ≤ ε(1 + ‖Epn

{y~~~(x)}‖2) < λ

‖
(
z(T+1), z(T+2), . . . , z(2T )

)
+ z(2T+1)

Epn
{y~~~(x)}‖2 ≤ ε(1 + ‖Epn

{y~~~(x)}‖2) < λ

since |~(x)| ≤ 1 for any ~ ∈ H.

Then, the result is obtained observing that
(
Epn

{y~~~(x)} + ξ1,−Epn
{y~~~(x)} + ξ2, 1

)
∈ dom g

because Epn
y~~~(x) = τ . In addition, we have

(
(1− z(2T+1))Epn

{y~~~(x)},−(1− z(2T+1))Epn
{y~~~(x)}, (1 − z(2T+1))

)
∈ A dom f

because |z(2T+1)| ≤ ε < 1 and hence (1− z(2T+1)) pn is a nonnegative measure.

Finally, since strong duality holds and U is not empty (pn ∈ U) we get that the optimal value in (22)
is finite and hence the optimal in the dual is attained [39] and the ‘inf’ in (30) becomes ‘min’.
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B Auxiliary Lemmas

The next lemmas provide properties that are used multiple times in the proofs below.

Lemma 6.

-For any classification rule hµ given by (8), we have

R(hµ) ≤
1

2
− Ep∗y~~~(x)⊤µ+ Ep∗

x

(
|~~~(x)⊤µ| − 1

2

)

+
. (31)

-If ptr is the distribution of training samples with label noise probabilities ρy(x), for any function
f : X → R we have

Eptr{yf(x)} = Ep∗{yf(x)(1− 2ρy(x))}. (32)

Proof. The result in (31) is obtained because

hµ(y|x) =
[
y~~~(x)⊤µ+

1

2

]1
0
= y~~~(x)⊤µ+

1

2
− y

(
~~~(x)⊤µ− 1

2

)

+
+ y

(
− ~~~(x)⊤µ− 1

2

)

+

as a consequence of the definition of hµ in (8). Therefore, we have

hµ(y|x) ≥ y~~~(x)⊤µ+
1

2
−
(
|~~~(x)⊤µ| − 1

2

)

+
, ∀x ∈ X , y ∈ Y (33)

that directly leads to (31) since R(hµ) = Ep∗{1− h(y|x)}.

The result in (32) is directly obtained because using (2) we get

Eptr{yf(x)} = Ep∗

x
{f(x)

(
(1− ρ+1(x))p

∗(+1|x) + ρ−1(x)p
∗(−1|x)

)
}

+ Ep∗

x
{−f(x)

(
(1− ρ−1(x))p

∗(−1|x) + ρ+1(x)p
∗(+1|x)

)
}

= Ep∗{yf(x)(1− 2ρy(x))}.

Lemma 7. Let εest be given as in (10) and Pnoise be the probability with which a label is incorrect at
training. If µ is an εopt-solution of (6), we have

R(hµ) ≤ R+ εopt + (εest + 2Pnoise − λ)‖µ‖1. (34)

Proof. Using (31) in Lemma 6 above, we get

R(hµ) ≤ F (µ) + Ep∗

x

(
|~~~(x)⊤µ| − 1

2

)

+
− λ‖µ‖1 +

(
τ − Ep∗y~~~(x)

)⊤
µ

≤ R+ εopt + |Ep∗y~~~(x)− τ |⊤|µ| − λ‖µ‖1
after adding and subtracting λ‖µ‖1 and τ⊤µ with τ = 1

n

∑n

i=1 yi~~~(xi). Therefore, the result is
obtained by using Hölder’s inequality because we have

‖Ep∗y~~~(x) − τ‖∞ ≤
∥∥∥Eptry~~~(x)− 1

n

n∑

i=1

yi~~~(xi)
∥∥∥
∞

+
∥∥∥Ep∗y~~~(x) − Eptry~~~(x)

∥∥∥
∞

(35)

≤ εest + 2Ep∗{ρy(x)} = εest + 2Pnoise (36)

by using (32) in Lemma 6 and the fact that |~(x)| ≤ 1 ∀~ ∈ H.
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C Proof of Theorem 1

Using Lemma 5 in Appendix A and taking τ = 1
n

∑n

i=1 yi~~~(xi), we have

min
h∈T(X ,Y)

max
p∈U

Ep{ℓ0-1(h, (x, y))} = min
h,µ

1− τ⊤µ+ λ‖µ‖1 + sup
x∈X ,y∈Y

{y~~~(x)⊤µ− h(y|x)}

= min
µ

1− τ⊤µ+ λ‖µ‖1 +min
h

sup
x∈X ,y∈Y

{y~~~(x)⊤µ− h(y|x)}

(37)

and

min
h

sup
x∈X ,y∈Y

{y~~~(x)⊤µ− h(y|x)} = min
h,ν

ν

s.t. y~~~(x)⊤µ− h(y|x) ≤ ν, ∀x ∈ X , y ∈ Y.
In addition, we have

y~~~(x)⊤µ− h(y|x) ≤ ν, ∀x ∈ X , y ∈ Y ⇒ ν ≥ sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}

since h(y|x) ≤ 1 and h(1|x) + h(−1|x) = 1 for any x ∈ X , y ∈ Y . For each µ, we first prove that
there exists a classification rule h satisfying

h(y|x) ≥ y~~~(x)⊤µ− sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}
. (38)

Clearly, we have

sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}
≥ −1

2

sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}
≥ y~~~(x)⊤µ− 1, ∀x ∈ X , y ∈ Y.

Therefore, there exists a classification rule satisfying (38) because
∑

y∈Y

(
y~~~(x)⊤µ− sup

x∈X
max

{
~~~(x)⊤µ−1,−~~~(x)⊤µ−1,−1

2

})
≤

∑

y∈Y
y~~~(x)⊤µ+

1

2
= 1, ∀x ∈ X

and

y~~~(x)⊤µ− sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}
≤ 1, ∀x ∈ X , y ∈ Y.

Then, such rules are solutions of

min
h

sup
x∈X ,y∈Y

{y~~~(x)⊤µ− h(y|x)} = sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}

because for any h ∈ T(X ,Y) we have

sup
x∈X ,y∈Y

{y~~~(x)⊤µ− h(y|x)} = sup
x∈X

max{~~~(x)⊤µ− h(1|x),−~~~(x)⊤µ− h(−1|x)}

≥ sup
x∈X

max
{
~~~(x)⊤µ− h(1|x),−~~~(x)⊤µ− h(−1|x),−1

2

}

≥ sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}

since

−1

2
=

1

2

(
~~~(x)⊤µ− h(1|x)

)
+

1

2

(
− ~~~(x)⊤µ− h(−1|x)

)

≤ max{~~~(x)⊤µ− h(1|x),−~~~(x)⊤µ− h(−1|x)}
and if h satisfies (38), we get

sup
x∈X ,y∈Y

{y~~~(x)⊤µ− h(y|x)} ≤ sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}
.
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Therefore, we have that (37) becomes

min
h∈T(X ,Y)

max
p∈U

Ep{ℓ0-1(h, (x, y))} = min
µ

1− τ⊤µ+ λ‖µ‖1 (39)

+ sup
x∈X

max
{
~~~(x)⊤µ− 1,−~~~(x)⊤µ− 1,−1

2

}

and the result is obtained by observing that if µ∗ is a solution of (39), it has to satisfy

−1

2
≤ ~~~(x)⊤µ∗ ≤ 1

2
, ∀x ∈ X .

Otherwise, we would have that

sup
x∈X

max
{
~~~(x)⊤µ∗−1,−~~~(x)⊤µ∗−1,−1

2

}
= sup

x∈X
max

{
~~~(x)⊤µ∗−1,−~~~(x)⊤µ∗−1} =

C

2
−1

with C > 1. Then taking µ̃ = µ∗/C the objective of (39) at such µ̃ would become

−τ⊤µ∗

C
+ λ

∥∥∥
µ∗

C

∥∥∥
1
+max

{
sup
x∈X

max{~~~(x)⊤µ∗

C
,−~~~(x)⊤µ∗

C
}, 1

2

}

= −τ⊤µ∗

C
+ λ

∥∥∥
µ∗

C

∥∥∥
1
+max

{ 1

C
sup
x∈X

max{~~~(x)⊤µ∗,−~~~(x)⊤µ∗}, 1
2

}

=
1

C

(
− τ⊤µ∗ + λ‖µ∗‖1 +

C

2

)

and hence the value at µ̃ would be smaller than that at µ∗ since C > 1 and the optimum value in
(39) is positive, which is in contradiction with µ∗ being a solution of (39). Then, hµ∗ in (7) and
R = F (µ∗) are, respectively, a solution and the optimum value of (4) as a direct consequence of
(37).

D Proof of Theorem 2

Using (31) in Lemma 6 above, we have

R(hµ) ≤
1

2
− Ep∗{y~~~(x)⊤µ} − F (µ) +R+ εopt

so that, using the definition of the minimax risk R and the function F (µ) in (6), we get

R(hµ) ≤ εopt +
1

n

n∑

i=1

yi~~~(xi)
⊤µ−Ep∗{y~~~(x)⊤µ}− λ‖µ‖1 +

1

2
− 1

n

n∑

i=1

yi~~~(xi)
⊤µo +λ‖µo‖1

hence, adding and subtracting Ep∗{y~~~(x)⊤µo}, we get

R(hµ) ≤ R(hµo
) + εopt +

( 1

n

n∑

i=1

yi~~~(xi)− Ep∗{y~~~(x)}
)⊤

(µ− µo)− λ‖µ‖1 + λ‖µo‖1

since R(hµo
) = 1/2− Ep∗{y~~~(x)⊤µo}. Therefore, the result in (11) is obtained using the reverse

triangular inequality together with Hölder’s inequality and the fact that
∥∥∥Ep∗{y~~~(x)} − 1

n

n∑

i=1

yi~~~(xi)
∥∥∥
∞

≤
∥∥∥Eptr{y~~~(x)} − 1

n

n∑

i=1

yi~~~(xi)
∥∥∥
∞

+ ‖Ep∗{y~~~(x)} − Eptr{y~~~(x)}‖∞

≤ εest + 2Pnoise

using (32) in Lemma 6.

For the second result, we have

R(hµ) ≤
1

2
− Ep∗{y~~~(x)⊤µ}+ Ep∗

(
|~~~(x)⊤µ| − 1

2

)

+
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using (31) in Lemma 6. Then, adding and subtracting (R− 1/2)/(1− 2Pnoise) we get

R(hµ) ≤− Ep∗{y~~~(x)⊤µ}+ Ep∗

(
|~~~(x)⊤µ| − 1

2

)

+
− 1

n

n∑

i=1

yi~~~(xi)
⊤µo

1− 2Pnoise
+

λ

1− 2Pnoise
‖µo‖1

+
1

2
+

1

n

n∑

i=1

yi~~~(xi)
⊤µ

1− 2Pnoise
− λ

1− 2Pnoise
‖µ‖1 +

εopt

1− 2Pnoise
−

Ep∗

(
|~~~(x)⊤µ| − 1

2

)

+

1− 2Pnoise

(40)

using the definition of µ and µo and the fact that

− R− 1/2

1− 2Pnoise
≤ εopt

1− 2Pnoise
−

Ep∗

(
|~~~(x)⊤µ| − 1

2

)

+

1− 2Pnoise
+

−F (µ) + 1/2

1− 2Pnoise
.

Grouping terms in (40) and using the fact that R(hµo
) = 1/2− Ep∗{y~~~(x)⊤µo}, we get

R(hµ) ≤ R(hµo
) +

εopt

1− 2Pnoise
+
( 1

n

n∑

i=1

yi~~~(xi)

1− 2Pnoise
− Ep∗{y~~~(x)}

)⊤
(µ− µo)

+
λ

1− 2Pnoise
(‖µo‖1 − ‖µ‖1)

so that the result is obtained using the reverse triangular inequality together with Hölder’s inequality
and the bound

∥∥∥
Eptr{y~~~(x)}
1− 2Pnoise

− Ep∗{y~~~(x)}
∥∥∥
∞

=
∥∥∥2

Ep∗{y~~~(x)(ρy(x)− Pnoise)}
1− 2Pnoise

∥∥∥
∞

≤ 2

√
Varp∗{ρy(x)}
1− 2Pnoise

that follows using (32), Pnoise = Ep∗{ρy(x)}, Jensen inequality, and the fact that |~(x)| ≤ 1 ∀~ ∈ H.

E Proof of Theorem 3

Using (31) in Lemma 6, we have

R(hµ) ≤
1

2
− Ep∗{y~~~(x)}⊤µ− F (µ) +R+ εopt.

If C = max(1, supx∈X |2~~~(x)⊤µB|), the vectorµB/C is feasible for (6), so that using the definition
of the minimax risk R and the function F (µ) in (6), we get

R(hµ) ≤ εopt+
1

n

n∑

i=1

yi~~~(xi)
⊤µ−Ep∗{y~~~(x)}⊤µ−λ‖µ‖1+

1

2
− 1

n

n∑

i=1

yi~~~(xi)
⊤µB

C
+

λ

C
‖µB‖1.

Hence, adding and subtracting Ep∗{yhBayes(x)}/2 and Ep∗{y~~~(x)}⊤µB/C, we get

R(hµ) ≤R(hBayes) + εopt +
( 1

n

n∑

i=1

yi~~~(xi)− Ep∗{y~~~(x)}
)⊤

(µ− µB

C
)− λ‖µ‖1

+
λ

C
‖µB‖1 + Ep∗

{yhBayes(x)

2
− y~~~(x)⊤µB

C

}
(41)
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since R(hBayes) = 1/2− Ep∗{yhBayes(x)}/2. For the last term in (41), we have

∣∣∣Ep∗

{yhBayes(x)

2
− y~~~(x)⊤

µB

C

}∣∣∣ =
∣∣∣
∫ (hBayes(x)

2
− ~~~(x)⊤

µB

C

)
ydp∗(x, y)

∣∣∣

≤ 1

2
sup
x∈X

∣∣∣hBayes(x)−
2~~~(x)⊤µB

C

∣∣∣

≤ 1

2
sup
x∈X

|hBayes(x) − 2~~~(x)⊤µB|

+
1

2
sup
x∈X

∣∣∣
2~~~(x)⊤µB

C
− 2~~~(x)⊤µB

∣∣∣

≤ εapprox

2
+

1

2
sup
x∈X

|2~~~(x)⊤µB|
(
1− 1

C

)

=
εapprox

2
+

1

2
(C − 1) ≤ εapprox (42)

where (42) is obtained because C = 1 or

C = sup
x∈X

|2~~~(x)⊤µB| ≤ sup
x∈X

|2~~~(x)⊤µB − hBayes(x)| + sup
x∈X

|hBayes(x)| ≤ εapprox + 1.

For the third term in (41), using Hölder’s inequality we get

( 1

n

n∑

i=1

yi~~~(xi)− Ep∗{y~~~(x)}
)⊤

(µ− µB

C
) ≤

∥∥∥Ep∗{y~~~(x)} − 1

n

n∑

i=1

yi~~~(xi)
∥∥∥
∞

∥∥∥µ− µB

C

∥∥∥
1

≤
∥∥∥Eptr{y~~~(x)} − 1

n

n∑

i=1

yi~~~(xi)
∥∥∥
∞

∥∥∥µ− µB

C

∥∥∥
1

+ ‖Ep∗{y~~~(x)} − Eptr{y~~~(x)}
∥∥∥
∞

∥∥∥µ− µB

C

∥∥∥
1

≤(εest + 2Pnoise)
∥∥∥µ− µB

C

∥∥∥
1
.

Then, the result in (15) is obtained using the reverse triangular inequality and the fact that
∥∥∥µ− µB

C

∥∥∥
1
≤ ‖µ− µB‖1 + (1 − 1

C
)‖µB‖1 ≤ ‖µ− µB‖1 + ‖µB‖1

because C ≥ 1.

F Proof of Theorem 4

If ‖µ(k)‖1 ≤ 1/2, we have Ep∗

x

(
|[~1(x), ~2(x), . . . , ~tk(x)]µ(k)| − 1/2)+ = 0 because

~(x) ∈ [−1, 1] for any ~ ∈ H. Hence, µ(k) is a ε
(k)
opt -optimal solution of (6) with ε

(k)
opt = R(k) − R,

so that the bound in (20) is obtained as a direct consequence of the bound (34) in Theorem 7.

For the case where ‖µ(k)‖1 > 1/2, let F be the family of functions

F = {f(x) = [~1(x), ~2(x), . . . , ~tk(x)]µ for some ~1, ~2, . . . , ~tk ∈ H, ‖µ‖1 = C}.

Using common properties of Rademacher complexity (see e.g., Chapter 26 in [40]), we get that the
Rademacher complexity of F is equal to CR. Specifically, F is given by convex combinations of
functions in H scaled by C because µ in the definition of F can be taken to be positive since we are
considering sets of base-rules H such that −~ ∈ H whenever ~ ∈ H. Hence, the family of functions

G = {g(x) =
(
|f(x)| − 1/2

)
+

for some f ∈ F}

has Rademacher complexity upper bounded by CR, using Talagrand’s contraction Lemma (see e.g.,
Chapter 26 in [40]) and the fact that function h(s) =

(
|s| − 1/2

)
+

is 1−Lipschitz. In addition,
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g(x) ∈ [0, (C − 1/2)+] for any g ∈ G so that with probability at least 1− δ we have

Ep∗

x

(
|[~1(x), ~2(x), . . . , ~tk(x)]µ(k)| − 1

2

)

+
≤ 1

n

n∑

i=1

(
|[~1(xi), ~2(xi), . . . , ~tk(xi)]µ

(k)| − 1

2

)

+

+ 2‖µk‖1R+
(
‖µ(k)‖1 −

1

2

)
√

log(1/δ)

2n

= 2‖µk‖1R+
(
‖µ(k)‖1 −

1

2

)
√

log(1/δ)

2n
= ε(δ)

(43)

using uniform concentration bounds based on Rademacher complexity (see e.g., Chapter 3 in [30]).

Hence, µ(k) is an ε
(k)
opt -optimal solution of (6) with ε

(k)
opt = R(k) − R + ε(δ), so that the bound in

(20) is obtained as a direct consequence of the bound (34) in Lemma 7 in Appendix B.

For the last result, if Algorithm 1 stops at round k in Step 5, we have

max
~∈H

1

n

n∑

i=1

wiỹi~(xi) ≤ λ.

Then, all the dual constraints are satisfied at round k and we have that R(k) ≤ R. Such inequality
is obtained because R(k) would be the optimal value of the primal in (16) using all the base-rules,
and (16) has the same objective and variables as (6) but with less constraints. Therefore, the result
is obtained because the suboptimality at round k satisfies εkopt = R(k) −R+ ε(δ) ≤ ε(δ).

G Effect in Algorithm 1 of the base learner suboptimality

The next result shows how the suboptimality of solutions found by Algorithm 1 is affected by a
possible early termination and the suboptimality of the base learner used in practice.

Theorem 8. If µ∗ is a solution of the optimization (16) using all the base-rules in H. Then, µ(k) is
an ε

(k)
op -optimal solution of optimization (6) in Section 3 for

ε
(k)
opt ≤

(
max
~∈H

1

n

n∑

i=1

wiỹi~(xi)− λ
)

+
‖µ∗‖1 + ε(δ) (44)

with weights {wi} and labels {ỹi} given by (19) using the dual solution at round k.

Proof. We first show that

R(k) ≤ R + εbase‖µ̃‖1 (45)

for

εbase =
(
max
~∈H

1

n

n∑

i=1

wiỹi~(xi)− λ
)

+
.

Let α,β be a dual solution of the optimization problem (16) solved at round k. By definition of
weights {wi}ni=1 and labels {ỹi}ni=1 in (19), for any ~ ∈ H we have

−εbase − λ ≤ [~(x1), ~(x2), . . . , ~(xn)](α− β − y/n) ≤ λ+ εbase.

In addition, the vectors µ∗
+ = (µ∗)+, µ∗

− = (−µ∗)+ are feasible for the optimization problem

min
µ+,µ

−

1

2
− 1

n

n∑

i=1

yi~~~(xi)
⊤(µ+ − µ−) + (λ+ εbase)1

⊤(µ+ + µ−)

s.t. − 1

2
≤ ~~~(xi)

⊤(µ+ − µ−) ≤
1

2
, i = 1, 2, . . . , n

µ+ � 0,µ− � 0. (46)
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where ~~~ is given by all the base-rules in H. Then, using weak duality we have

R(k) =
1

2

(
1− 1⊤(α+ β)

)
≤ 1

2
− 1

n

n∑

i=1

yi~~~(xi)
⊤(µ∗

+ − µ∗
−) + (λ+ εbase)1

⊤(µ∗
+ + µ∗

−)

because α,β is a feasible solution of the dual of (46). Then, if R̃ is the optimal value of (16) using
all the base-rules in H, we have

R(k) ≤ R̃+ εbase1
⊤(µ∗

+ + µ∗
−)

so that the bound in (45) is obtained since R̃ ≤ R because R̃ is the optimum value of an optimization
problem with the same objective and variables as (6) but with less constraints. Therefore, the bound
in (44) is obtained because

ε
(k)
opt = R(k) −R + ε(δ) ≤ εbase‖µ∗‖+ ε(δ).

The theorem above bounds the suboptimality of RMBoost rules determined at any round by Algo-
rithm 1. The bound in (44) accounts for the error due to the usage of relaxed constraints correspond-
ing to the training samples through the term ε(δ). In addition, the first term in (44) accounts for
the error due to a possible early termination as well as for the suboptimality in practice of the base
learner used to solve (18). Notice that such suboptimality of the base learner affects any boosting
method [6] and is not a significant problem for Algorithm 1 that only requires to find a violated
constraint in the dual (not necessarily the most violated).

H Implementation details and additional experimental results

In the following we provide further implementation details and describe the datasets used in Sec-
tion 6. Then, we complement the results in the main paper by including the results obtained using
multiple types of label noise, assessing the running times of the methods presented, and evaluat-
ing the sensitivity to parameter λ. In the first set of additional results, we evaluate the classifica-
tion performance of the proposed method in comparison with existing boosting methods in cases
with uniform and symmetric label noise as well as adversarial noise; in the second set of addi-
tional results, we further show the robustness to noise of RMBoost in comparison with AdaBoost;
in the third set of additional results, we compare the running times of RMBoost with AdaBoost
and LPBoost; in the fourth set of additional results, we further show the performance improve-
ment of RMBoost using large datasets; and, in the fifth set set of additional results, we show
that RMBoost has little sensitivity to the choice of hyperparameter λ. In addition, the Github
https://github.com/MachineLearningBCAM/RMBoost-NeurIPS-2025 provides the code of
the proposed RMBoost method with the setting used in the numerical results.

H.1 Implementation details and datasets utilized

We utilize 11 publicly available datasets that have been often use as benchmark for boosting meth-
ods: Diabetes, German Numer, Credit, Blood transfusion, Titanic, Raisin, QSAR, Climate, Susy,
Higgs, and Forest covertype. These datasets can be found in the UCI repository [41] and in
www.kaggle.com. The main characteristics of the datasets used is provided in Table 2.

The proposed RMBoost method is evaluated using multiple cases of label noise: the conventional
symmetric and uniform label noise (∀x, ρ+1(x) = ρ−1(x) = Pnoise) with Pnoise = 10% and
Pnoise = 20%, and also an adversarial type of label noise with Pnoise = 10% and Pnoise = 20%.
This adversarial type of noise is implemented by flipping the labels of training instances that can be
classified with high margin. Specifically, we flip the labels of the instances with the largest margins
for a reference rule found with the LogitBoost method using clean labels. This type of label noise
is addressed by the theoretical results presented in the paper and corresponds with non-uniform and
non-symmetric noise in which ρy(x) = 1 if yh(x) is large and ρy(x) = 0 otherwise, where h is the
reference rule. Such type of noise describes practical situations in which an adversary chooses to
change the labels in the examples that can result in the highest damage.
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Table 2: Datasets characteristics

Dataset Samples Instances dimensionality

Diabetes 768 8
German Numer 1,000 24
Credit 690 15
Blood transfusion 748 4
Titanic 891 8
Raisin 900 7
QSAR 1,055 41
Climate 540 18
Susy 5,000,000 18
Higgs 11,000,000 21
Forest covertype 581,012 54
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Figure 3: Trade-off classification performance vs robustness to uniform and symmetric noise as well as adver-
sarial noise.

The proposed RMBoost method is compared with 8 boosting methods: the 4 state-of-the-art tech-
niques AdaBoost, LogitBoost, GentleBoost, and LPBoost together with the 4 robust methods Ro-
bustBoost, BrownBoost, XGBoost with quadratic potential (XGB-Quad), and Robust-GBDT, specif-
ically designed for scenarios with noisy labels. RMBoost and all the methods used for comparison
are implemented using default values for hyper-parameters and the code in standard libraries or
provided by the authors. Methods RobustBoost, AdaBoost, LogitBoost, GentleBoost, and LPBoost
are implemented using their Matlab codes, methods XGB-Quad and BrownBoost are implemented
using the Python libraries ‘XGBoost’ https://xgboost.readthedocs.io and ‘BrownBoost’
https://github.com/lapis-zero09/BrownBoost, respectively, and method Robust-GBDT is
implemented using the code provided by the authors [38]. The proposed RMBoost is implemented
by learning parameters µ∗ ∈ R

t and base-rules ~1, ~2, . . . , ~t using Algorithm 1, and by predicting
labels using the deterministic classifier hd

µ∗(x) = sign([~1(x), ~2(x), . . . , ~t(x)]µ∗). In particu-
lar, we use simplex-based solvers for linear optimization with tolerances for constraints and dual
feasibility of 10−3, and we take λ = 1/

√
n in all the numerical results.

H.2 Additional experimental results

In the first set of additional experimental results, we further compare the classification error of
RMBoost with existing boosting methods. The results in Table 1 in the paper as well as Table 3
below are obtained carrying out 100 random and stratified train/test partitions with 10% test samples.
Table 1 in the paper shows the classification error obtained by the most representative methods
with clean labels and with symmetric and uniform label noise with Pnoise = 10%. Table 3 shows
the classification error obtained by the 9 boosting methods with clean labels, with symmetric and
uniform label noise with Pnoise = 10% and Pnoise = 20%, as well as with adversarial noise with
Pnoise = 10% and Pnoise = 20%. Over multiple datasets and types of label noise, Table 1 together
with Table 3 show that the minimax risks obtained at learning are often near the prediction error
and that RMBoost can obtain top accuracies in comparison with existing boosting methods both in
noise-less and noisy cases.
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Table 3: Average classification error in % ± st. dev. for RMBoost and state-of-the-art boosting methods.

Method Titanic German Blood Credit Diabetes Raisin QSAR Climate

N
oi

se
-l

es
s

RobustBoost 21±3.7 25±4.6 26±4.4 15±4.7 28±5.6 16±3.4 16±3.5 9.1±2.9
AdaBoost 20±3.2 24±4.2 24±4.4 14±3.9 27±4.9 15±2.7 14±3.1 8.5±2.0
LPBoost 32±5.7 28±2.4 32±5.8 16±4.3 29±5.5 16±3.2 16±3.1 8.3±2.0
LogitBoost 21±3.7 24±4.5 27±4.3 14±4.0 26±5.3 15±2.6 14±3.1 8.5±2.0
GentleBoost 22±3.7 25±4.6 26±4.1 14±4.2 27±5.2 15±2.9 14±3.1 8.7±2.3
BrownBoost 20±3.7 25±3.6 25±3.3 15±4.1 34±5.0 15±3.9 14±3.4 11±2.4
Robust-GBDT 23±3.9 24±3.4 24±3.6 23±4.8 33±4.4 16±3.6 16±3.8 11±2.7
XGB-Quad 21±3.7 25±3.4 22±3.9 22±5.6 34±4.6 16±3.8 23±3.5 8.4±2.0
RMBoost 22±3.5 27±2.8 20±5.4 14±5.6 26±4.5 12±3.6 15±3.1 7.5±2.0
Minimax risk 20±0.3 26±0.6 24±0.6 16±0.4 25±0.8 14±0.6 17±0.5 9.3±0.4

P
no

is
e
=

1
0
%

RobustBoost 21±4.2 29±3.9 26±4.2 19±4.5 31±5.3 20±3.9 19±4.0 15±4.2
AdaBoost 22±4.1 30±4.2 27±3.9 18±4.5 31±5.2 19±3.9 19±3.5 12±2.8
LPBoost 35±6.1 34±5.4 36±5.7 22±4.7 32±5.7 21±4.1 20±3.5 12±3.6
LogitBoost 23±4.5 29±4.4 28±4.3 19±4.5 29±5.1 19±4.1 18±3.5 10±2.9
GentleBoost 24±4.5 29±4.2 29±4.3 19±4.7 30±4.9 19±4.0 18±3.5 10±2.9
BrownBoost 23±3.9 28±3.8 26±4.4 21±4.4 35±4.9 17±3.9 18±3.8 11±2.8
Robust-GBDT 24±3.9 25±3.3 25±3.2 26±5.6 34±4.1 20±4.1 19±3.5 20±2.9
XGB-Quad 22±3.9 27±4.1 23±3.4 24±4.8 34±4.5 20±3.4 26±4.7 10±3.2
RMBoost 22±3.6 27±5.0 22±3.9 16±3.8 27±5.1 14±2.4 20±3.3 9.5±2.8
Minimax risk 24±0.8 29±0.8 28±0.9 21±0.8 28±1.1 19±1.0 23±0.8 15±0.8

P
no

is
e
=

2
0
%

RobustBoost 24±4.0 33±5.1 28±4.8 25±5.0 34±5.6 25±4.9 25±4.3 20±5.9
AdaBoost 25±4.2 34±5.0 30±4.9 24±5.3 34±4.8 24±4.7 24±4.0 20±3.9
LPBoost 39±6.4 37±4.8 40±6.0 28±5.2 36±5.4 27±2.2 26±4.3 17±5.4
LogitBoost 28±4.4 33±4.8 32±4.7 24±6.0 32±5.3 23±4.6 24±3.8 14±4.2
GentleBoost 28±4.3 34±5.2 32±4.8 25±5.2 34±5.0 25±5.2 24±3.8 14±4.2
BrownBoost 28±4.8 31±4.6 30±5.0 25±4.8 38±5.3 21±4.0 23±4.4 15±4.1
Robust-GBDT 22±4.6 27±2.8 27±3.5 18±5.1 31±4.3 19±4.5 19±3.6 12±6.0
XGB-Quad 23±4.6 29±4.2 24±3.7 26±6.1 35±5.0 20±4.1 26±4.8 11±3.4
RMBoost 25±4.2 29±2.3 27±4.1 16±4.0 28±6.3 18±1.9 24±3.3 20±3.7
Minimax risk 30±1.1 32±0.8 33±0.8 27±0.9 30±1.4 25±1.1 27±0.6 20±1.1

A
dv

er
sa

ri
al
P

no
is

e
=

1
0
% RobustBoost 26±4.0 34±4.6 31±5.3 22±5.1 37±5.8 23±4.2 23±4.3 17±4.6

AdaBoost 26±3.9 34±5.0 32±4.9 22±4.8 36±6.2 23±3.8 24±3.6 14±3.2
LPBoost 38±5.7 38±4.6 40±5.8 25±5.5 38±5.6 24±4.4 25±4.1 13±3.5
LogitBoost 28±3.5 33±5.2 33±5.2 21±4.3 34±5.0 23±4.0 22±3.8 11±3.2
GentleBoost 28±3.9 33±4.7 34±5.1 22±4.6 35±5.1 23±3.7 22±3.7 11±3.1
BrownBoost 29±4.3 33±4.3 30±5.3 20±4.4 36±5.7 21±4.0 22±3.6 13±3.1
Robust-GBDT 28±3.8 31±3.9 28±4.1 23±4.7 31±4.8 25±4.4 22±3.4 24±6.2
XGB-Quad 25±4.5 30±5.1 26±3.2 17±4.8 29±4.7 19±3.8 24±5.0 10±3.1
RMBoost 25±5.4 27±3.9 26±3.1 19±5.1 22±3.6 16±3.7 23±3.8 11±2.2
Minimax risk 25±0.9 33±0.5 28±0.7 25±0.7 29±0.5 21±1.3 24±0.3 17±0.5

A
dv

er
sa

ri
al
P

no
is

e
=

2
0
% RobustBoost 30±4.6 44±5.6 36±5.7 33±5.2 46±5.6 33±4.1 26±4.7 30±5.9

AdaBoost 30±4.2 43±5.3 37±5.7 32±5.4 46±6.0 33±4.3 27±4.3 30±5.2
LPBoost 42±5.7 46±4.9 46±6.8 36±6.9 48±5.6 35±4.6 25±4.8 42±5.6
LogitBoost 33±4.5 43±5.2 39±5.9 32±5.6 45±5.8 33±4.1 22±4.5 33±5.2
GentleBoost 33±4.6 42±5.6 39±6.2 32±5.7 46±5.7 33±4.4 22±4.7 33±6.0
BrownBoost 33±4.6 43±5.4 33±5.4 29±5.0 46±5.7 31±4.0 22±4.8 33±5.2
Robust-GBDT 32±3.7 37±4.1 33±4.9 30±5.0 41±5.0 32±4.3 38±5.0 32±6.3
XGB-Quad 29±5.0 42±5.2 29±5.4 22±5.6 38±6.5 30±5.7 20±4.6 29±5.8
RMBoost 27±5.4 31±3.4 34±5.8 20±3.6 29±3.3 23±5.5 22±4.8 27±5.5
Minimax risk 28±0.9 35±0.3 33±0.9 29±0.6 31±0.6 27±1.6 19±0.6 28±0.7

Figure 1 in the paper as well as Figure 3 and Table 4 summarize the results in Tables 1 and 3 in terms
of the trade-off between classification performance and robustness to noise. The vertical axis of the
figures shows the classification performance in terms of the average ranking in the noise-less case,
while the horizontal axis shows the robustness to noise in terms of the average difference between
the error with noisy labels and that without noise. Figure 3 and Table 4 extend the results in the
main paper to uniform and symmetric label noise with Pnoise = 20% and with adversarial noise with
Pnoise = 10% and Pnoise = 20% complementing those with uniform and symmetric label noise with
Pnoise = 10% in Table 1 and Figure 1. Over multiple types of label noise, Figures 1 and 3 together
with Table 4 show that RMBoost is a robust method that can also provide a strong classification
performance near that of AdaBoost method.

In the second set of additional results, we further show the robustness to noise of RMBoost in com-
parison with AdaBoost. Figure 2 in the paper as well as Figures 4a and 4b are obtained computing
for each noise level the classification error over 500 random stratified partitions with 10% test sam-
ples. Figures 4a and 4b extend the results using ‘Diabetes’ and ‘Climate’ datasets completing those
in the main paper that show the results using Credit dataset. Figures 4a and 4b show similar behavior
to Figure 2 in the paper. In particular, the figures show that RMBoost method is significantly less
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Table 4: Classification performance and robustness to noise for RMBoost and state-of-the-art boosting methods.

Ranking without noise Error with noise - error without noise [%]

Method Average rank Noise 10% Noise 20% Adver. noise 10% Adver. noise 20%

RobustBoost 5.94 3.08 7.37 7.30 15.22
AdaBoost 2.38 3.88 8.78 8.11 16.37
LPBoost 6.94 4.39 8.97 8.01 18.12
LogitBoost 3.63 3.27 7.54 6.92 16.68
GentleBoost 4.69 3.38 7.88 7.19 16.16
BrownBoost 5.50 2.72 6.36 5.48 13.90
Robust-GBDT 6.63 2.82 3.75 5.75 13.26
XGB-Quad 6.00 1.65 2.83 3.53 9.42
RMBoost 3.31 1.71 4.10 3.88 10.82
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Figure 4: Performance degradation of AdaBoost and RMBoost methods for increased levels of noise.

affected by increased levels of noise. In particular, RMBoost performance only mildly deteriorates
with label noise, in accordance with the theoretical results shown in the paper.

H.3 Comparison in terms of running times

In the third set of additional results, we compare the running times of RMBoost with those of
AdaBoost and LPBoost. Figure 5 shows the relative running times of the methods varying the
training sizes using ‘Credit’ and ‘QSAR’ datasets (the absolute running times in all the methods are
in the order of seconds in a regular desktop machine). The vertical axis in the figure represents the
ratio between the learning running times for different training sizes divided by that achieved with
100 training samples averaged over 100 random partitions. In accordance with the discussion in Sec-

1

101

100 300 500

Training size

R
el

at
iv

e
ru

nn
in

g
ti

m
e

AdaBoost

LPBoost

RMBoost

(a) Credit dataset

1

101

102

100 400 700 1000

Training size

R
el

at
iv

e
ru

nn
in

g
ti

m
e

AdaBoost

LPBoost

RMBoost

(b) QSAR dataset

Figure 5: Comparison of relative running times vs training sizes for RMBoost, LPBoost, and AdaBoost.
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Table 5: Average classification error in % ± st. dev. for RMBoost and state-of-the-art boosting methods.

Dataset RobustB AdaB LPB LogitB GentleB BrownB GBDT XGB-Q RMB Minimax

N
oi

se
le

ss Susy 24±1.7 24±1.8 30±2.2 24±2.0 25±1.7 23±1.7 25±1.8 24±1.6 23±2.0 23±0.3

Higgs 34±1.8 33±2.0 38±3.1 33±1.9 34±2.1 34±1.9 37±2.0 37±2.4 35±2.1 33±0.3

Forestcov 20±1.8 20±1.8 27±1.7 17±1.1 20±1.7 20±1.5 26±2.0 33±1.7 22±1.6 22±0.2

1
0
%

Susy 26±2.2 24±1.8 35±3.4 27±1.9 28±1.8 24±1.8 26±1.8 24±1.8 23±1.9 28±0.4

Higgs 35±2.1 35±1.9 41±1.4 36±2.1 37±2.3 35±2.2 39±2.2 38±2.4 35±2.4 36±0.5

Forestcov 22±1.7 22±1.7 34±1.9 22±1.2 25±2.0 23±1.6 27±2.1 33±2.2 23±1.7 28±0.4

2
0
%

Susy 27±2.0 26±2.0 38±2.2 30±2.1 32±2.0 25±1.9 29±1.6 25±1.7 24±2.0 32±0.5

Higgs 37±2.3 37±2.0 46±3.3 38±2.3 39±2.4 37±2.3 41±2.9 39±2.7 36±2.2 39±0.6

Forestcov 24±1.8 24±1.8 38±2.3 25±1.5 29±1.9 25±1.9 32±2.1 34±2.7 23±2.0 32±0.4

A
dv

1
0
% Susy 32±2.0 32±2.1 43±2.7 34±2.0 35±2.0 31±3.3 34±1.6 33±2.9 32±2.3 28±0.5

Higgs 39±2.0 39±2.0 48±2.8 41±2.0 42±2.3 38±3.4 44±1.2 38±1.7 38±2.4 40±0.5

Forestcov 28±1.9 28±2.0 40±2.2 28±2.1 29±2.3 28±2.0 27±1.7 28±2.3 28±2.1 31±0.5

A
dv

2
0
% Susy 40±2.0 40±1.9 49±2.8 43±1.9 44±2.2 40±1.5 41±2.3 39±2.0 38±2.5 33±0.5

Higgs 49±2.1 50±2.2 49±3.4 49±2.7 49±2.4 49±2.8 49±0.7 49±4.1 48±3.3 46±0.6

Forestcov 39±2.5 39±2.4 47±3.8 38±2.2 40±2.2 39±2.1 38±1.4 36±2.7 36±2.6 36±0.7
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Figure 6: Performance of RMBoost method using multiple values of λ.

tion 5 of the main paper, the results depicted in the figure show that RMBoost can achieve similar
running times as LPBoost method, which also addresses a linear optimization problem at learning.
As expected, AdaBoost method results in lower running times since it does not require to solve an
optimization problem at each round. Nevertheless, the complexity increase required by RMBoost is
not significant and scales mildly with the training size.

H.4 Additional results with larger datasets

In the fourth set of additional results, we further compare the classification error of RMBoost with
existing boosting methods using large datasets. Table 1 in the paper and Table 3 in Appendix H.2
shows the classification error obtained by using small datasets (up to 1000 samples). The Table 5
shows the classification error obtained by using 5,000 randomly drawn training samples from the
‘Susy,’ ‘Higgs,’ and ‘Forest Covertype’ datasets. Such table shows the results with clean labels, with
symmetric and uniform label noise with Pnoise = 10% and Pnoise = 20%, as well as with adversarial
noise with Pnoise = 10% and Pnoise = 20%. The additional results in Table 5 show similar behavior
as those in Tables 1 and 3 using small datasets. The proposed methods achieve adequate performance
without noise together with improved robustness with noisy labels.

H.5 Hyperparameter sensitivity

In the fifth set of additional results, we asses the sensitivity of the RMBoost method to the choice
of hyperparameter λ. These numerical results are obtained computing for each noise level the clas-
sification error over 200 random stratified partitions with 10% test samples. Figure 6 shows the
classification error in 3 datasets obtained by varying the hyperparameter λ in cases without label
noise and with 10% and 20% uniform and symmetric noise. The figure shows that the performance
is not significantly affected by the choice of hyperparameter λ. Although better results can be ob-
tained by tuning the value of λ, the default value of 1/

√
n achieves adequate results in general.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in abstract and introduction accurately describe the paper contri-
butions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed over the paper. In particular the theorems state
the hypothesis required.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The detailed proofs appear in the appendices and the theorems state all the
assumptions made.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimentation carried out in the paper is described in Section 5 and
detailed in Appendix I together with the details needed to reproduce the results. In addition,
the supplementary material provides Matlab and Python code that implement the methods
presented in the experimental setting used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplementary materials and the data used is
publicly available through the UCI repository [42] and in www.kaggle.com, as described
in Appendix I.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings/details are described in Section 5, detailed in Ap-
pendix I, and in the code provided in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results provide error bars in terms of standard deviations
over different random partitions of the data.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental results in the paper can be carried out in a regular desktop
machine in few hours, as described in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted conform with such Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: The paper presents foundational research that is not tied to particular applica-
tions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper presents foundational research that is not tied to particular applica-
tions/datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper refers to all the relevant previous works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: The code provided is documented and easy to use.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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