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Abstract

Can we preserve the accuracy of neural models
while also providing faithful explanations of
model decisions to training data? We propose a
“wrapper box” pipeline: training a neural model
as usual and then using its learned feature repre-
sentation in classic, interpretable models to per-
form prediction. Across seven language models
of varying sizes, including four large language
models (LLMs), two datasets at different scales,
three classic models, and four evaluation met-
rics, we first show that predictive performance
of wrapper classic models is largely compara-
ble to the original neural models.

Because classic models are transparent, each
model decision is determined by a known set
of training examples that can be directly shown
to users. Our pipeline thus preserves the pre-
dictive performance of neural language mod-
els while faithfully attributing classic model
decisions to training data. Among other use
cases, such attribution enables model decisions
to be contested based on responsible training
instances. Compared to prior work, our ap-
proach achieves higher coverage and correct-
ness in identifying which training data to re-
move to change a model decision. To reproduce
findings, our source code is online at: https:
//github.com/SamSoup/WrapperBox.

1 Introduction
Opaque predictive models are challenging to trust
and reason about, prompting calls for greater trans-
parency and interpretability in automated decisions
(Langer et al., 2021; Shin, 2021). In critical sectors
like law, health, and finance, interpretability may
be essential to prevent catastrophic failures (Ah-
mad et al., 2018; Rudin, 2019; Bhatt et al., 2020).
Furthermore, interpretability may be required for
regulatory compliance (Kaminski, 2019). How-
ever, popular pre-trained language models (Devlin
et al., 2019; Lewis et al., 2020; Floridi and Chiriatti,
2020; Chung et al., 2022) are inscrutable, making

it difficult to explain model decisions (Adadi and
Berrada, 2018; Barredo Arrieta et al., 2020).

In contrast, classic “white box” methods such as
k-nearest neighbor (kNN) and decision tree (DT)
are inherently interpretable (Rudin, 2019): each
model decision is determined by a known set of
training examples that can be directly shown to
users. Nevertheless, classic models tend to under-
perform today’s neural models.

Recent work has pursued ways to blend the in-
terpretability of classic models with the predictive
performance of today’s neural models (Wang et al.,
2017, 2018; Papernot and McDaniel, 2018; Wallace
et al., 2018; Rajani et al., 2019; Rajagopal et al.,
2021). However, prior models face limitations in
efficiency and scalability, requiring training from
scratch or expensive computation and storage.

In addition, research on interpretable NLP has
largely focused on feature-style explanations, with
far less work on example-based explanations
(Keane and Kenny, 2019). Because people natu-
rally reason by analogy (Sørmo et al., 2005; Schank
et al., 2014; Kolodner, 2014), explaining predic-
tions to specific training data is intuitively appeal-
ing. Example-based explanations also connect to
work on case-based reasoning (Aamodt and Plaza,
1994) by relating new problem instances to similar
past ones, a problem-solving strategy people nat-
urally use in decision-making (Newel and Simon,
1972). Rudin et al. (2022) thus argues for devel-
oping modern case-based methods as one of the
grand challenges in interpretable machine learning.

In this work, we synthesize existing black-box
and white-box methods toward building (training
data) attributable-by-design models. Specifically,
we introduce the wrapper box pipeline to com-
bine the accuracy of modern neural models with
the faithful, example-based explanations of classic
models. Our approach effectively “wraps” a given
neural model with one or more transparent classic
models to maintain neural performance while im-
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Figure 1: Three wrapper boxes illustrated for toxic language detection (Hartvigsen et al., 2022). Red and blue dots
denote harmful vs. benign speech. Smaller dots represent examples, while larger dots represent clusters (e.g., DT
leaf nodes). A neural model’s penultimate layer provides the feature representation for the white wrapper boxes.
Our results show that classic models can achieve comparable performance to the underlying neural models while
also providing intuitive, example-based explanations (described in Section 4).

proving interpretability. Building on the tradition
of fitting fully connected layers on neural represen-
tations (Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2015; He et al., 2016; Devlin et al., 2019),
we fit white classic models on extracted neural rep-
resentations for inference. The reasoning process
of a classic wrapper model can then be faithfully ex-
plained by showing the specific training examples
that led to each prediction (Figure 1).

Note that wrapper boxes do not attempt to ap-
proximate the underlying neural model, i.e., wrap-
per box vs. neural model predictions can differ.
Our claim is that wrapper box predictions can be
faithfully explained and that the predictive perfor-
mance of wrapper boxes is largely comparable to
the underlying neural models (see below).

In contrast with prior techniques for generating
example-based explanations (Table 1), wrapper
box explanations are fully faithful to how the ac-
tual predictions are made and do not require addi-
tional neural training or high run-time stipulations.
The wrapper box concept is also quite general, as
we show across three pre-trained language models
(BART-large, DEBERTA-large, and Flan-T5-large)
and three classic models: kNN, DT, and k-means.

Our first evaluation assesses the predictive per-
formance of wrapper boxes on two classification
tasks with varying data scales: toxic speech detec-
tion (TOXIGEN) and natural language inference (E-
SNLI). We show that wrapper box predictive per-
formance is largely comparable to neural baselines.
While some statistically significant differences are
observed (12%– 27% across our datasets), this also
includes cases in which the wrapper box actually
performs significantly better than the base neural
model. In the few cases where performance is
worse, the value of interpretability may still justify
use, bolstered by the vast majority of cases where
no statistically significant difference is observed.

We also evaluate the effectiveness of wrapper

boxes using representations from modern large lan-
guage models (LLMs). Namely, we experiment
with Llama 2-7B Instruct (Touvron et al., 2023),
Llama 3-8B-Instruct (Dubey et al., 2024), Mistral-
7B Instruct (Jiang et al., 2023), and Gemma-7B
Instruct (Mesnard et al., 2024). Results show that
wrapper boxes using zero-shot LLM representa-
tions strongly outperform baseline LLM perfor-
mance across both tasks.

Next, we demonstrate the usefulness of example-
based explanations from wrapper boxes to attribute
model decisions to specific training data. Such
attribution supports intuitive model explanations
for end-users (Schank et al., 2014) and enabling
data-centric approaches for model developers, such
as data cleaning (Zylberajch et al., 2021).

Finally, we evaluate another use case: enabling
model decisions to be contested based on the train-
ing data responsible for those decisions. Specifi-
cally, we consider identifying which training data
needs to be removed to change a model decision
(Yang et al., 2023). This task offers a form of algo-
rithmic recourse (Karimi et al., 2022), which em-
phasizes providing actionable explanations to users
unfavorably treated by automated systems. Users
are provided a foundation for contesting model de-
cisions by attributing model decisions to specific
training data. Compared to Yang et al. (2023), we
show higher coverage and correctness in identify-
ing which training data to remove while also gener-
alizing beyond simple linear models and scaling to
more modern neural networks.

2 Related Work

Explainable Models Most work on interpretabil-
ity focuses on post hoc methods that explain a pre-
trained model retroactively (Madsen et al., 2022).
This includes input attribution (Ribeiro et al., 2016;
Wang et al., 2018; Mosca et al., 2022; Nielsen et al.,



Prototypes Full network training necessary.
(Das et al., 2022) Fully or partially faithful by retrieving examples closest to learned prototypes.

Concepts Full network training necessary.
(Rajagopal et al., 2021) Partially faithful with learned concepts in interpretability layers.

Influence functions No training but high runtime O(np2 + p3) (n: dataset size, p: model parameters).
(Koh and Liang, 2017) Not faithful (post-hoc estimate only) but agnostic to the underlying architecture.

DkNN No training but high runtime and storage requirements
(Papernot and McDaniel, 2018) Fully or partially faithful depending on nearest neighbors shown.

Wrapper Boxes No neural model retraining; classic wrapper box models are trained as appropriate.
(this work) Fully or partially faithful depending on examples shown, agnostic to representations.

Table 1: A comparison of this work among closest prior works in example-based explanations. Note that loss
in fidelity for wrapper boxes can only occur by conscious decision, e.g., if one chooses to show fewer training
examples than were used during inference to simplify explanations for end-users further (see Case II from Table 2).

2022) and attention-based (Serrano and Smith,
2019; Sun and Lu, 2020) methods. Others seek
to design inherently interpretable (Rudin, 2019;
Sudjianto and Zhang, 2021) models instead, such
as prototype networks (Das et al., 2022; Wen et al.,
2023). Post hoc methods are more versatile and
readily applicable but can lead to unfaithful or
misleading explanations (Basu et al., 2021; Zhang
et al., 2021). On the other hand, inherently inter-
pretable methods offer faithful explanations but
may sacrifice performance (Du et al., 2019).

Example-based Explanations Both input attri-
bution and example-based explanations seek to ex-
plain model predictions in relation to observable
data (i.e., inputs and training examples) rather than
latent representations. This allows feature represen-
tations to be optimized for predictive performance
without complicating explanations for end-users.

Unlike input attribution methods, example-based
explanations (Keane and Kenny, 2019) aim to iden-
tify similar training inputs as analogical justifica-
tion for model predictions. Early work (Caruana
et al., 1999) proposed treating the activation pat-
terns of hidden nodes in a multi-layer perceptron as
features for 1-nearest neighbor and decision trees.
Most prior work offers post hoc case-based reason-
ing via influence functions that show the training
points most critical to a specific prediction as ex-
planations (Koh and Liang, 2017; Han et al., 2020;
Wallace et al., 2020; Pruthi et al., 2020). Rajagopal
et al. (2021) offer an inherently interpretable model,
although derived concepts (non-terminal phrases)
for explanation are at best partially faithful. Ta-
ble 1 compares our work with the most similar
example-based approaches in prior work.

Prior work has consistently validated the signifi-
cance, utility, and effectiveness of example-based

explanations (Aamodt and Plaza, 1994; Sørmo
et al., 2005; Richter and Weber, 2016). Benefits
for users include increased model understanding
(simulatability), complementary performance, and
trust. (Yeh et al., 2018; Papernot and McDaniel,
2018; Cai et al., 2019; Hase and Bansal, 2020; Han
et al., 2020; Rajagopal et al., 2021; Das et al., 2022;
Suresh et al., 2022; Chen et al., 2023). For devel-
opers, tying inference to specific training examples
can uncover artifacts (Lertvittayakumjorn and Toni,
2021), errors (Koh and Liang, 2017), and gaps
(Khanna et al., 2019) in training data, which can
be addressed by label cleaning (Teso et al., 2021),
data augmentation (Feng et al., 2021), and other
data-centric techniques (Anik and Bunt, 2021).

These studies show that example-based expla-
nations are especially effective in the vision and
text domains, given the intuitive nature of images
and words (Carvalho et al., 2019). Furthermore,
in health and law, where decisions rely on his-
torical precedents, case-based reasoning can as-
sist users in developing intuitions for a model’s
inference procedure (Ayoub et al., 2021; Zhou
et al., 2021). Of course, if training data is private,
then example-based explanations are not possible
(Dodge, 2022). Section E further examines the
suitability of example-based explanations.

While some studies have reported other forms
of explanation being preferred over case-based ex-
planations (Binns et al., 2018; Dodge et al., 2019;
Wang and Yin, 2021), none of the case-based sys-
tems evaluated provided faithful explanations.

Deep kNN We build on Papernot and McDaniel
(2018)’s DKNN, which has been applied to text
classification (Wang et al., 2017; Wallace et al.,
2018; Rajani et al., 2020). Our work generalizes
DKNN both conceptually and empirically to a



broader suite of wrapper box models: decision trees
(DTs) and clustering-based classification alongside
kNN. This differs from prior approaches, which
rely on traditionally learned linear components
to forecast decisions (Koh and Liang, 2017; Ra-
jagopal et al., 2021; Das et al., 2022).

Our framework is arguably the easiest to un-
derstand, implement, and reproduce. We do not
modify the original model nor require additional
computation beyond fitting white boxes and addi-
tional pass over training data to extract representa-
tions (which may be done offline). We thus avoid
expensive operations required by prior work, such
as approximating inverted Hessian gradients (Koh
and Liang, 2017) or training a network from scratch
(Rajagopal et al., 2021; Das et al., 2022). Unlike
prior work, the wrapper box framework is designed
to be dataset, model, and task-agnostic.

Model Auditing/Algorithmic Recourse Model
auditing and algorithmic recourse are commonly
cited goals for fair and accountable AI systems and,
thus, are closely related to explainability (Deck
et al., 2024). Model auditing (Bandy, 2021; Brown
et al., 2021; Yang et al., 2023) involves systemat-
ically examining a model’s behavior to identify
problematic behaviors, potential biases, and er-
rors in the training data. A natural next step is
algorithmic recourse (Karimi et al., 2022), which
emphasizes providing actionable explanations and
recommendations to users unfavorably treated by
automated systems. By faithfully attributing model
decisions to specific training data, wrapper boxes
provide an avenue for contesting unjust decisions
to support algorithmic recourse.

3 Example-based Explanation Tradeoffs
We focus on interpretable predictive models that tie
inference directly to specific training examples, en-
abling each prediction to be faithfully explained via
those same training examples that determined the
model’s prediction. Appendix D further discusses
user perceptions of machine-retrieved examples.

To better elucidate the design space for working
with such models, this section illustrates possible
tradeoffs between three key variables of interest:
predictive performance, explanation faithfulness,
and explanation simplicity. Following Jacovi and
Goldberg (2020), we conceptually define faithful-
ness as how accurately presented explanations re-
flect the actual reasoning process of the inference
model. Concretely, we evaluate the faithfulness of

example-based explanations by completeness (Gu
et al., 2023), where derived examples are faithful
to the extent that all instances that support the test
prediction are selected. The simplicity of example-
based explanations can be intuitively quantified as
the number of presented instances (Nguyen and
Martínez, 2020).

Section 4 discusses how such tradeoffs can be
operationalized in practice for our specific wrapper
box models.

3.1 Conceptual Tradeoffs
Given an input, assume the prediction model con-
sults n training examples to make a prediction. Fur-
thermore, assume that m <= n of these train-
ing examples are shown to explain the prediction.
When m = n, this explanation is fully faithful to
the actual prediction. However, if n is very large,
showing all m = n of these training examples to
explain the prediction may induce cognitive over-
load, often also referred to as information overload
(Marois and Ivanoff, 2005; Abdul et al., 2020).

To simplify the explanation, one could reduce
it to a smaller subset of m < n of the training
examples used in prediction. However, this would
compromise explanation fidelity. Alternatively, the
number of training examples n used in prediction
could be reduced. With a smaller n, all m = n
examples could be shown, boosting explanation
simplicity while preserving fidelity, but possibly at
the cost of reduced performance.

Table 2 further illustrates the range of possible
tradeoffs by presenting three scenarios, Cases I-III.

Case I attains high predictive performance and
explanation fidelity, but sacrifices explanation sim-
plicity. Here, all relevant training examples are
used for both prediction and justification, thereby
optimizing performance while ensuring fully faith-
ful explanations. However, explaining model pre-
dictions via a large number of training examples
However, explaining model predictions via a large
number of training examples can induce informa-
tion overload, hurting explanation simplicity.

Case II achieves high predictive performance
and explanation simplicity but sacrifices explana-
tion fidelity. Like Case I, all relevant training exam-
ples are used to make the prediction, maximizing
performance. However, to simplify the explana-
tion, only a subset of the training examples used to
make the prediction is used to explain it. While this
simplifies the explanation for the user, it sacrifices
explanation fidelity to achieve this.



Case Influential Examples Explanation Examples Performance Faithfulness Simplicity

I All Relevant All Relevant ✓ ✓ ◦
II All Relevant Subset ✓ ◦ ✓
III Subset Subset ◦ ✓ ✓

Table 2: Case-based models permit tradeoffs between key outcome variables – predictive performance, explanation
faithfulness (or fidelity), and explanation simplicity – based on which (influential) training examples are used in
making a prediction vs. to explain that prediction. Note that for any given input, different models will naturally vary
in which training examples are influential in performing inference for that input.

Finally, Case III sacrifices predictive perfor-
mance to optimize explanation fidelity and simplic-
ity. In this case, only a subset of relevant training
examples is used to make the prediction, reducing
performance. However, the same subset used to
make the prediction is also used to explain it, yield-
ing a faithful explanation. The virtue of having
fewer training examples in the explanation is its
simplicity, making it easier to understand.

4 Wrapper Boxes
Our wrapper box pipeline essentially “wraps” a
given neural model with one or more white box
classic models fitted on extracted neural represen-
tations for inference. Note that the resultant classic
models do not attempt to approximate the underly-
ing neural model faithfully. While both classifiers
leverage learned linearly separable neural repre-
sentations, the underlying decision-making process
differs. Hence, derived example-based explana-
tions faithfully explain the inference procedure of
the wrapper boxes (interpretable classic models),
not the original neural model.

Post hoc methods evaluate fidelity for the neural
model they seek to explain (DeYoung et al., 2020;
Jacovi and Goldberg, 2020) since explanations can
diverge from actual model behavior. In contrast,
we leverage case-based classifiers where derived
example-based explanations by construction must
have been consulted during inference. Loss in fi-
delity can only occur intentionally if fewer training
examples are shown in the explanation to reduce
information overload.

4.1 Learning Feature Representations

As shown in Figure 1, we start with a fine-tuned
neural model that acts as a task-specific encoder
to learn high-quality embeddings for the input text.
Whereas traditional neural models often fit linear
classifiers on learned representations, we extract
these representations for use by various classic,
white box classifiers. This substitution thus enables
prediction supported by faithful, example-based ex-

planations and is agnostic to the neural architecture,
training procedure, and data used.

Our only assumption about the neural model is
the ability to extract hidden states (or some form
of encoded inputs). After training, another pass
is made through training data to extract hidden
states per token from the penultimate layer. For
our sentence-level prediction tasks, we mean pool
across tokens to obtain sentence-level representa-
tions. Because wrapper boxes rely on feature en-
codings for prediction, we store them in a format
providing fast access: in-memory Numpy arrays.

4.2 Wrapper Box Models

We consider three case-based models in which in-
ference is directly linked to training examples. This
means that, by design, model predictions can be
faithfully and intuitively attributed to specific rele-
vant training examples.

Building on the conceptual discussion of
example-based explanations in Section 3, assume
the classic model consults n training examples
to make a prediction for a given input and that
m <= n of these training examples are shown to
explain the prediction. When m < n (sacrificing
explanation fidelity to boost explanation simplic-
ity), a specific consideration is how each model
selects which subset of m examples to show. Intu-
itively, the m examples should be a representative
sample of the complete set of n examples to avoid
introducing bias and misleading users (Lakkaraju
and Bastani, 2020). Similarly, when n is reduced
(to simplify explanations while preserving m = n
explanation fidelity), how to select the smaller sub-
set n of training examples is also model-specific.

k Nearest Neighbors (kNN) kNN predicts the
class label for each input according to the dominant
class of the k most similar training examples. The
nearest neighbors consulted thus constitute faithful,
example-based explanations for model predictions.
The simplest, unweighted kNN model performs
majority voting, whereas weighted kNN weights
neighbors by proximity to the input instance.

https://numpy.org/


Explanations and Tradeoffs. kNN uses n = k
training examples to make a prediction. While we
observed relatively small performance differences
across the narrow range of k = n values considered
above, larger n generally improve predictive perfor-
mance, while smaller m will simplify explanations.
Because kNN inherently orders training examples
by proximity to the input, training examples can
be easily downsampled, either to make predictions
(reduced n) or explain them (m < n).

However, when m < n (reducing explanation
fidelity to simplify the explanation), the majority
label of the m nearest neighbors could differ from
that of the n nearest neighbors, making the expla-
nation inconsistent with the prediction. In this case,
it may be more intuitive to explain the prediction
by the m nearest neighbors whose majority label
matches that of the n nearest neighbors.

Decision Trees (DTs) Decision trees learn a set
of rules that act as hyperplanes. Given an input,
these rules specify a decision path from the root to
a given leaf node. Prediction is based on a majority
vote over all training examples assigned to that leaf
node. Once constructed, a DT requires the least
computation for prediction since decision rules are
just simple conditionals. One could even discard
all training data after DT construction since only
the majority label per leaf node and the final set of
rules are needed for inference. However, training
data must be kept if we wish to provide example-
based explanations (Caruana et al., 1999).

Explanations and Tradeoffs. Just as kNN labels
an input by a majority vote of the k nearest train-
ing examples, DT uses a similar vote of the given
leaf node’s training examples. In both cases, these
training instances constitute faithful example-based
explanations of the model’s prediction. However,
whereas kNN directly selects training examples by
similarity to the input, the similarity of leaf node
training examples to the input is less direct.

Because the number of training examples n used
to make a prediction (for a given leaf node) may be
large, faithfully showing all m = n of the training
examples may induce information overload. Just
as kNN downsampling would intuitively select the
training examples most similar to the input, DT
downsampling would also select the most central
training examples in the leaf node (to represent the
complete leaf set best). When m < n (reducing ex-
planation fidelity to boost simplicity), just as kNN
selects the m nearest neighbors whose majority

label matches the predicted label, DT selects the
m most central training examples whose majority
label similarly matches the prediction.

L-Means We hypothesize that instances with the
same class label may naturally cluster together, as-
suming a high-quality feature encoding of the do-
main (such as learned by a fine-tuned DNN).

Inference for L-means is the simplest of all wrap-
per boxes: given an input, we find the closest clus-
ter centroid and assign its label to the input. This
reduces the full training set to L representative clus-
ter centroids, which act as rudimentary prototypes
(Hase et al., 2019; Das et al., 2022). Like DT, in-
ference only requires the majority label of relevant
training examples; training data is no longer used
once cluster centroids and labels are known.

Explanations and Tradeoffs. As in ProtoTex
(Das et al., 2022), cluster centroids cannot be di-
rectly shown because they are latent. Instead, we
must explain model predictions via the training
examples that induce each centroid and whose ag-
gregated vote assigns the centroid label.

Like other models, when the number n of voting
training examples is large, showing all n examples
can induce information overload. Similar to how
DT downsampling selects the most central training
examples in the leaf node, L-Means downsampling
selects the most central training examples in the
cluster. When m < n (reducing explanation fi-
delity to boost simplicity), just as kNN selects the
m nearest neighbors whose majority label matches
the predicted label, L-Means selects the m most
central training examples in the cluster whose ma-
jority label likewise matches the prediction.

5 Evaluation: Prediction Performance

We first compare the predictive performance of
wrapper boxes vs. underlying neural models. Be-
cause neural models forecast via linear layers, we
expect wrapper boxes to benefit from this learned
linear separability and perform comparably. We
consider two tasks and datasets:

TOXIGEN (Hartvigsen et al., 2022) consists of of-
fensive and benign English statements generated
by GPT-3 (Brown et al., 2020). We use the 9,900
human-labeled instances, ignoring other instances
without gold labels. Each instance is assigned toxi-
city labels on a 5-point scale. We binarize labels by
mapping values 1-3 to non-toxic and 4-5 as toxic for
binary classification. Based on Hartvigsen et al.’s

https://huggingface.co/toxigen


BART-large DEBERTA-large Flan-T5-large
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

T
O

X
IG

E
N Original 80.85 67.69 70.07 68.86 82.77 70.47 73.94 72.16 81.38 72.43 61.97 66.79

KNN +0.74 +3.10 -3.52 -0.26 +0.96 +5.02 -5.63 -0.45 0.00 -0.71 +1.41 +0.50
DT +0.32 +5.08 -9.86 -2.96 -0.22 +5.62 -11.87 -4.07 -0.10 +0.26 -1.05 -0.51
L-Means -0.96 -2.01 0.00 -1.06 -0.53 +0.65 -4.58 -1.93 -0.21 -0.04 -1.06 -0.64

E
-S

N
L

I Original 90.28 90.27 90.27 90.27 91.75 91.84 91.76 91.78 90.85 90.82 90.82 90.82
KNN +0.11 +0.14 +0.12 +0.13 -0.77 -0.84 -0.79 -0.80 -0.62 -0.61 -0.61 -0.61
DT -0.92 -0.90 -0.91 -0.91 +0.18 +0.11 +0.17 +0.16 +0.01 +0.01 +0.01 +0.01
L-Means -2.82 -1.76 -2.75 -2.61 -0.84 -0.45 -0.83 -0.77 -0.12 -0.13 -0.12 -0.13

Table 3: % change in accuracy (acc.), precision (prec.), recall (rec.), and F1 (macro-averaged) from baseline
for wrapper boxes over various transformers, using only representation from the penultimate layer. Statistically
significant (see Appendix B.1 for procedure) wrapper box results are bolded, with positive results in blue and
negative results in red. Table 8 shows significant differences between the baseline transformers not displayed here.

90/10 train-test split, we section off a validation
set, resulting in a 70/20/10 train-eval-test split. The
dataset is highly skewed, with a 3:1 ratio of benign
vs. toxic speech. We employ stratified sampling to
maintain this ratio in each split.

E-SNLI (Camburu et al., 2018) adds crowd-
sourced natural language explanations for the
569,033 English premise-hypothesis pairs origi-
nally annotated in SNLI (Bowman et al., 2015).
We follow the predefined training-eval-test splits.
Each split contains a balanced label distribution.
Appendix G.2 compares wrapper box explanations
vs. those obtained via crowdsourcing.

Models We report on three language models:
BART-large (Lewis et al., 2020), DEBERTA-large
(He et al., 2021), and Flan-T5-large (Chung et al.,
2022), based on checkpoints from Huggingface
(Wolf et al., 2020). Representations are extracted
from the layer immediately preceding the linear
classification head for BART-large and DEBERTA-
large models. For Flan-T5, representations are ex-
tracted from the layer preceding the language gen-
eration head. Implementation details for neural and
white box models are discussed in Appendix A.

5.1 Results

Results are shown in Table 3. Our methodology
for significance testing is described in Appendix B.

Wrapper boxes perform largely comparable to
baseline transformers for both datasets. For TOXI-
GEN, across 48 results per dataset (3 transformers
x 4 wrapper boxes x 4 metrics), only 6 of the 48
(12.5%) differences are statistically significant. For
3 of the 6 cases, the wrapper box performs signifi-
cantly better than the baseline. For E-SNLI, while
13 of the 48 (27%) scores show statistically sig-
nificant differences, whether differences are large

enough to be noticeable by users is unclear (Ap-
pendix B.3). We observe no significant differences
at all with Flan-T5, though note that While DE-
BERTA is generally the best-performing model.

Perhaps most remarkable is that the simple L-
means formulation reduces the entire training set
to 2-3 examples that provide the basis for all model
predictions, yet still performs competitively.

Appendices F and G respectively visualize L-
means clusters and provide qualitative examples.

Results for large language models (LLMs) Ap-
pendix H conducts an ablation study that evaluates
the effectiveness of wrapper boxes using representa-
tions from modern LLMs. Namely, we experiment
with Llama 2-7B-Instruct (Touvron et al., 2023),
Llama 3-8B-Instruct (Dubey et al., 2024), Mistral-
7B-Instruct (Jiang et al., 2023), and Gemma-7B-
Instruct (Mesnard et al., 2024). Results show that
wrapper boxes using zero-shot LLM representa-
tions strongly outperform baseline LLM perfor-
mance across both tasks.

6 Evaluation: Training Data Attribution
The ability to attribute model decisions to specific
training data enables decisions to be contested on
the basis of the training data responsible. To evalu-
ate how well wrapper boxes support this use case,
we adopt Yang et al. (2023)’s task formulation of
finding a subset of training data St that, if removed,
would change the model decision for a given input.
We use the same two datasets but only with DE-
BERTA representations (best performing model).

Baselines Yang et al. (2023)’s two algorithms
are limited to convex linear classifiers (e.g., lo-
gistic regression). We report these as baselines.
Appendix C.5 details our reproduction of their re-
ported results, further validating the new results we

https://huggingface.co/datasets/esnli
https://huggingface.co/


TOXIGEN E-SNLI

Classifier Selector ↑Coverage% ↑Correctness% ↓Median ↑Coverage% ↑Correctness% ↓Median

LR Yang Fast 27.45 27.13 51.00 89.83 0.39 76,446.50
LR Yang Slow 27.45 26.49 33.00 89.83 0.11 2.00
DT Greedy 12.02 12.02 24.00 3.23 3.23 89.00
L-Means Greedy 100.00 100.00 6,377.00 100.00 100.00 140,523.00
KNN Greedy 100.00 100.00 211.00 100.00 100.00 77.50

Table 4: Benchmarking selectors to derive St. Coverage is the % of test inputs for which a St was proposed.
Correctness is the % of test inputs for which a St was proposed and verified that their removal and retraining led to
a prediction flip. Median is the median set cardinality across only the verified subsets that lead to prediction flip.

report with their methods on our own datasets.
Yang Fast (Algorithm 1) uses influence func-

tions to estimate expected change in output proba-
bility from removing subset St. A St is only output
if the expected change exceeds a threshold τ .

Yang Slow (Algorithm 2) starts with all training
data and seeks to iteratively reduce size of St by
approximating expected changes to model param-
eters θ upon removal. Like Yang Fast, St is only
found if the expected output change exceeds τ .

Of note, Yang et al. report on five binary datasets
in their work: three balanced, and two highly
skewed 9:1 (“hate” and “essays”). While results
are strong on the balanced datasets, coverage is low
on hate (67%) and very low on essays (11-12%).
Yang et al. remark upon hate’s severe label skew,
and to address it, select a post hoc τ = 0.25 for this
dataset only (using τ = 0.5 for all others). Oddly,
they do not note or address the same skew in essays,
which may lead the very low coverage reported.

Our Approach Algorithm 1 defines a greedy ap-
proach to derive St from wrapper box explanations.
For kNN, C tr includes all neighbors of the input,
ranked by proximity. For DT, C tr comprises all
examples in the same leaf, ranked by proximity.
For L-means, C tr consists of all points in the same
cluster, ranked by proximity to the cluster centroid.
Post-filtering, we remove examples in chunks until
a prediction flip is observed. St is then refined (iter-
atively or in chunks, depending on ϕ) until no size
reduction is possible. This encourages the derived
St to be minimal (but still leads to a prediction flip).
See Appendices C.1 and C.2 for further details and
an optimized algorithm for kNN (no training).

6.1 Results
Results in Table 4 report three key metrics: cov-
erage (% of test inputs for which a subset St was
proposed), correctness (% of test inputs for which
removing St correctly changed the model decision),
and the median size of correct St subsets found).

Algorithm 1 Greedy approach to derive St from
wrapper box explanations

Input: f : Model, C tr: Ranked set of candidate training
examples to select from, xt: Test input, yt: Test input label,
B: Number of bins, ϕ: Iterative threshold

Output: St, a subset of training points that flips yt (or ∅
if unsuccessful)
1: function FINDSUBSET(C tr, xt, yt, B)
2: b← ⌈ |L|

B
⌉ ▷ Bin size

3: L ← {(xi, yi) ∈ C tr | yi = yt} ▷ Filter candidates
to match prediction to reduce search complexity

4: for i← 1 to B do
5: C tr

i ← C tr \ {L[j] | j ≤ i ∗ b}
6: f̂ ← train_model(C tr

i )

7: ŷt ← f̂(xt)
8: if ŷt ̸= yt then
9: return {Lj | j ≤ i}

10: return ∅
11: St ← FINDSUBSET(C tr, xt, yt, B)
12: previous_size← 0
13: while |St| > 0 and |St| ̸= previous_size do
14: previous_size← |St|
15: if |St| < ϕ then
16: St ← FINDSUBSET(St, xt, yt, |St|)
17: else
18: St ← FINDSUBSET(St, xt, yt, B)
19: return St

Baselines. Yang et al.’s methods do not per-
form well. For TOXIGEN, we suspect the issue is
label skew (see discussion above). Classifying di-
rectly via DEBERTA vs. using logistic regression
(τ = 0.5) with DEBERTA representations yielded
comparable results (Table 6), so we use τ = 0.5
for Yang et al. (2023)’s methods on TOXIGEN.

For E-SNLI, Yang Fast/Slow propose St ∼ 90%
of the time, but removing St almost never changes
model decisions. Because they only consider bi-
nary classification tasks, their formulation with τ
likely does not make sense for multi-class tasks
like E-SNLI that typically involve predicting the
most probable class through softmax probabilities.

Wrapper boxes. Overall, kNN is the clear win-
ner, with perfect coverage and correctness and far
smaller St than L-means. While both kNN and
L-means achieve perfect coverage and correctness



on both datasets, St tends to be quite large for L-
means since clusters (see Appendix F) are mostly
homogeneous; many training supporting the model
decision must be removed before points with other
labels come to the fore to change the decision.

DT has low coverage because its subset candi-
date search space is so small, having only leaf ex-
amples. This contrasts sharply with kNN (all train-
ing examples) and L-means (all cluster points). By
the same token, when DT does find a St subset, it
tends to be far smaller than kNN or L-means.

7 Conclusion

We propose wrapper boxes to provides faithful,
example-based explanations for classic case-based
model predictions, attributing decisions to specific
training data. Our proposed pipeline is quite gen-
eral and agnostic to the underlying neural archi-
tecture, training procedure, and input data. After
training a neural model, the learned feature rep-
resentation is input to white-box case-based rea-
soning models for prediction. Because case-based
models tie inference directly to specific training
data, each prediction can be faithfully attributed to
the training examples responsible.

Our first evaluation showed that white case-
based models could deliver predictive performance
largely comparable to baseline transformers, as
seen across seven large pre-trained language mod-
els, two datasets of varying scale, three classic mod-
els, and four metrics.

In addition, we discussed how such attribution
enables automated decisions to be contested based
on the training data responsible for those decisions.
In comparison to prior work (Yang et al., 2023),
our approach achieves both higher coverage and
correctness in identifying which training data to
remove to change a model decision.

Beyond contesting model decisions, other use
cases include intuitively explaining decisions to
end-users based on past examples or supporting
data-centric AI operations for model developers
(e.g., training data augmentation and cleaning).

8 Limitations

8.1 Time and Space Requirements
Wrapper boxes require additional space to store
training instances to be presented as example-based
explanations. For example, while DT and L-means
models no longer require training data for inference
once trained, they must continue to store training

data to provide example-based explanations. For
DT, representative subsets of examples per leaf
node may be pre-computed and cached ahead of
time for fast explanation retrievals. L-means is sim-
ilar: since clusters are invariant across all predic-
tions, representative subsets of desired sizes may be
pre-computed and cached ahead of time for fast ex-
planation retrievals at inference time. In both cases,
storage demands vary depending on the number of
desired examples to present for explanations.

Different wrapper boxes will naturally vary in
computation time and space needs, with some mod-
els potentially resulting in slower or faster infer-
ence than the base neural model. Moreover, we
have used relatively simple implementations for
each wrapper box. More advanced schemes, e.g.,
dynamic k for kNN (Zhang et al., 2018), could
further increase the computational time or space
requirements. Generally, standard computational
requirements of classic models are carried forward
into our adoption of them as wrapper boxes.

8.2 Use-Cases for Training Data Attribution
The ability of wrapper boxes to faithfully attribute
model decisions to specific training data has a vari-
ety of applications. However, our study only eval-
uates how well wrapper boxes enable model deci-
sions to be contested based on the training data re-
sponsible for those decisions. More specifically, we
considered the task of identifying which training
data would need to be removed in order to change
a model decision (Yang et al., 2023) (Section 6).

Beyond contesting model decisions, other use-
cases include explaining decisions to end-users
based on known past examples (Schank et al.,
2014). Attribution could also support data-centric
AI operations for model developers to help uncover
artifacts (Lertvittayakumjorn and Toni, 2021), er-
rors (Koh and Liang, 2017), and gaps (Khanna
et al., 2019) in training data, addressed by label
cleaning (Teso et al., 2021; Northcutt et al., 2021)
data augmentation (Feng et al., 2021), and other
data-centric operations (Anik and Bunt, 2021).

Section 2 noted that prior work has consistently
validated the significance, utility, and effectiveness
of example-based explanations for users (Aamodt
and Plaza, 1994; Sørmo et al., 2005; Richter and
Weber, 2016). Benefits include increased model
understanding (simulatability), complementary per-
formance, and trust. (Yeh et al., 2018; Papernot and
McDaniel, 2018; Cai et al., 2019; Hase and Bansal,
2020; Han et al., 2020; Rajagopal et al., 2021; Das



et al., 2022; Suresh et al., 2022; Chen et al., 2023).
However, we have yet to actually evaluate any of
these benefits in the context of wrapper boxes.

For both use cases above – explaining model
decisions to end-users or supporting data-centric
AI for model developers – user studies would be
valuable to assess the utility of wrapper boxes.

Of particular interest, Section 3 discussed how
wrapper boxes permit thoughtful tradeoffs across
three key variables of interest: predictive perfor-
mance, explanation faithfulness, and explanation
simplicity. However, we have yet to investigate
these tradeoff space with real users. Future work
could conduct user studies to better elucidate how
different tradeoffs impact real user experience.

8.3 St Assumptions and Challenges

While Section 6 usefully investigates how model
decisions can change by counterfactually removing
a subset of training data St, many more counterfac-
tual conditions could be considered that would also
alter model decisions, such as the choice of model
and training regieme. Neither we nor Yang et al.
(2023) consider such counterfactual conditions that
would be more difficult for end-users to contest.

Similarly, we and Yang et al. both apply a clas-
sification model atop fixed feature representations,
without considering counterfactual data conditions
that would change feature representations. In Yang
et al.’s work, bag-of-words and BERT embeddings
are used off-the-shelf and counterfactual training
data conditions only impact the learned logistic re-
gression model. In our work, neural representations
are fine-tuned on all training data and counterfac-
tual training data conditions only impact wrapper
box inference atop neural representations.

As St grows, model auditing becomes more
difficult, akin to the cognitive overload of show-
ing many examples in a model explanation (Sec-
tion 3.1). However, prior work (Ilyas et al., 2022;
Yang et al., 2023) has shown that large St can also
indicate predictor robustness, since more training
data must be removed to change model decisions.
Future work could thus usefully explore tradeoffs
of benefits between small vs. large St subsets.
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Dataset Train Valid Test Ratio
TOXIGEN 6980 1980 940 3:1
E-SNLI 549361 9842 9824 balanced

Table 5: Dataset information. Ratio is the distribution of
labels in each split (same for all splits due to stratified
sampling).

A Implementation Details

All transformers are fine-tuned using the AdamW
optimizer (Loshchilov and Hutter, 2017) on Cross
Entropy loss over ten epochs, with early stopping
(Ji et al., 2021) if validation performance degrades
for two consecutive evaluations (every 100 steps).
All layers are fine-tuned. We use seed 42, a learn-
ing rate of 1e− 5, and a batch size of 16 for BART
and DEBERTA. Since Flan-T5 is larger, we use a
learning rate of 1e − 4 and a batch size of 8. No
hyperparameter search is conducted. All models
are fine-tuned on a single compute node with three
NVIDIA A100 GPUs and 256GB of DDR4 RAM
within one week of GPU hours.

Feature encodings are extracted from each
trained neural model for use by classic models
(i.e., wrapper boxes). We implement Logistic Re-
gression (LR), KNN, and L-means using Scikit-
Learn (Pedregosa et al., 2011). Early experi-
ments suggest that results were fairly compara-
ble across small values of k (1, 3, 5, 7, and 9)
for unweighted and weighted. For this reason,
we report unweighted KNN with k=5. We utilize
K-D trees (Bentley, 1975) for efficiently retriev-
ing nearest neighbors. For decision trees, we use
DecisionTreeClassifier from Scikit-Learn and
set max_depth = 3 to guard against over-fitting for
skewed TOXIGEN, though this value was not tuned.
For E-SNLI, since the Scikit-Learn implementa-
tion does not scale well, we opt for LightGBM (Ke
et al., 2017) with one classifier. For both trees, we
set the minimum number of samples in each leaf to
be 20. For L-means, we set algorithm=’elkan’
for more efficient computation since our clusters
are well-defined. We use τ = 0.5 for LR on TOX-
IGEN and set multi_class=multinomial for E-
SNLI. Similarity between data instances in the
feature space is measured via Euclidean distance.
All results are single-run with random seed 42.

The number of training points and the distribu-
tion of labels in each split is shown in Table 5.
TOXIGEN2 is skewed with a 3:1 skew for benign

2https://huggingface.co/toxigen

vs. toxic examples, respectively. E-SNLI3 is bal-
anced. For E-SNLI, we excluded 6 training pairs
containing blank hypotheses.

B Significance Testing

B.1 Procedure

We perform statistical testing to A/B test the per-
formance of baseline transformers vs. treatment
wrapper boxes. We also apply the same procedure
to compare baseline transformers to each other.
Specifically, correct vs. incorrect predictions by
each model yield separate binomial distributions.
Given relatively large sample sizes, we compute the
z-score as shown below (Casagrande et al., 1978):

z =
m̂1 − m̂2√

m̂− (1− m̂)( 1
n1

+ 1
n2
)

(1)

where m̂ = n1m̂1+n2m̂2
n1+n2

. We test the null hypoth-
esis that for some given metric m (e.g. accuracy),
there is no significant difference between the two
binomial distributions, baseline vs. treatment, or
m1 = m2 (alternatively m1 ̸= m2). We use
α = 0.05 where results with p < α are signifi-
cant. We bold and color code significantly different
results in Table 3. Each cell denotes a comparison
between a white wrapper box (row) with respect
to a baseline transformer (column category) for a
particular metric (column type). For transparency,
Appendix B.2 shows all significance test p-values.

B.2 Ablation Results

Table 8 displays the p-values for all pairwise com-
parisons between baseline transformers across four
metrics (accuracy, precision, recall, F1) on two
datasets (TOXIGEN, E-SNLI). Table 9 shows
the p-values for all comparisons between wrap-
per boxes (rows) and their corresponding baseline
transformers (column categories) for the four met-
rics (columns) on two datasets (row categories).

B.3 Are Significant Differences Noticeable?

In regard to the experimental practice of signif-
icance testing, we also wanted to raise a more
subtle point here. In system-centered evaluations,
we are accustomed to A/B testing of baseline vs.
treatment conditions and measuring the statistical
significance of observed differences. Indeed, we
followed this experimental paradigm in this work,

3https://huggingface.co/esnli

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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showing that wrapper boxes perform largely com-
parable to that of the underlying neural models.

This experimental paradigm is well-motivated
from the standpoint of continual progress, that
small but significant differences from individual
studies will add up over time to more substantial
gains. However, with regard to an individual study,
small, statistically significant differences are typi-
cally unobservable to users in practice, especially
when a slightly less performant system offers some
other notable capability, such as providing explana-
tions as well as predictions.

As a result, an interpretable system that is less
performant according to system-based performance
metrics may still be experienced as equally perfor-
mant. Spärck Jones (1974) famously remarked
that “statistically significant performance differ-
ences may be too small to be of much operational
interest”, proposing her classic rule of thumb that
only improvements of 5% or more are noticeable,
while improvements of 10% or more are material.

The upshot is that while we are accustomed to
placing great weight on minute but statistically sig-
nificant differences between conditions in system-
centered evaluations, from the standpoint of user
experience, we should be mindful that such small
differences will often be invisible to users, who
may well prefer an interpretable system that seems
equally performant, even if it actually performs
worse by statistical significance testing.

Dataset Classifier Acc. Prec. Rec. F1

TOXIGEN
Original 82.77 70.47 73.94 72.16
LR -0.22 +4.12 -9.86 -3.23

E-SNLI Original 91.75 91.84 91.76 91.78
LR +0.38 +0.29 +0.36 +0.35

Table 6: % change in accuracy, precision, recall, and F1
(macro-averaged) for logistic regression (LR) using DE-
BERTA penultimate representations on TOXIGEN and
E-SNLI. Like wrapper boxes, logistic regression with
DEBERTA penultimate representations also performs
comparably to the original, underlying neural model.

C Training Data Attribution
Clarifications and Results

C.1 Iterative vs Chunked Removal
Refitting a new classifier can be expensive, espe-
cially for the larger E-SNLI dataset, when repeated
many times. For example, if we were to iteratively
remove ranked cluster examples for L-means on
E-SNLI, and it takes (empirically) approximately

15 seconds to retrain and obtain a new test predic-
tion, then finding St would take approximately a
month on a single node. Hence, in practice, we
chunk ranked examples into B consecutive bins
such that removal occurs simultaneously for all
points in the same bin. Once a St is identified
this way, we recursively refine iteratively when the
subset is less than some iterative threshold ϕ, or
further split the candidate St into smaller B bins
in a chunked fashion. Of course, there is likely
an efficiency-performance tradeoff here associated
with the numbers of bins and ϕ. As the number
of bins increases (smaller chunks), subsets should
be minimal but demands more computation. Vice
versa, a subset may always be identified (e.g. if
the number of bins equals 1, where we are remov-
ing the entire candidate set of training points), but
it may not be very useful for model auditing. In
Section 6, on both datasets, for DT and L-means,
we employ 10 bins (each bin thus consists of 10%
of the training data) and set the iterative threshold
to be ϕ = 100 examples (only do chunk removal
when candidate St is above this threshold).

To give some qualitative runtimes (on a single
node with a 2.1GHz, 48-core Intel Xeon Platinum
8160 "Skylake" CPU) to highlight the infeasibility
of iterative removing and retraining for E-SNLI,
Yang fast takes 3 minutes per example, Yang slow
15 minutes per example, DT 5 minutes per exam-
ple, and L-means 25 minutes per example. kNN is
the fastest and finds St per example in under 1 sec-
ond since it requires no retraining (see Algorithm 2
detailed in Appendix C.2 below).

C.2 Finding Subsets for KNN
kNN is a special white box classifier in that there is
no "training". The inference module simply remem-
bers the training examples and their labels, while
computing nearest neighbors on-demand, given test
inputs. When deriving St, we were thus able to 1)
precompute and cache all neighbors and 2) per-
form iterative "removal" to assess prediction flip
without retraining. Specifically, given a test in-
put, we first obtain the ranked list of all neighbors
(training points) by proximity. Like algorithm 1,
neighbors are then filtered down to only those with
the same label as the prediction as candidates to
remove. After filtering, we iteratively remove the
nearest neighbor, and then directly examine the
next k nearest neighbors to obtain the new predic-
tion. We can do this because our implementation
of kNN is unweighted, where it makes predictions



Algorithm 2 Optimized greedy approach to derive
St for kNN

Input: f : Model, C tr: Ranked set of candidate
training examples to select from, xt: Test input, yt:
Test input label

Output: St, a subset of training points that
flips yt (or ∅ if unsuccessful)

1: L ← {(xi, yi) ∈ Ctr | yi = yt} ▷
Filter candidates to match prediction to reduce
search complexity

2: for i← 1 to |L| do
3: C tr

i ← C tr \ {L[j] | j ≤ i}
4: ŷt ← majority_vote(C tr

i , k) ▷ Predict
using the k nearest neighbors

5: if ŷt ̸= yt then
6: return {Lj | j ≤ i}
7: return ∅

by majority vote using the k nearest neighbors. We
can thus easily observe if a prediction flip occurred
by monitoring if the majority training label in a
k-sized window has changed without re-training.
This makes the greedy approach to identify St for
kNN the fastest selector amongst all others consid-
ered in Section 6.

C.3 Extending Our Greedy Selection
Algorithm to Influence Functions?

Algorithm 1 is agnostic to the inference model and
the ranking procedure, as long as both are avail-
able. From this perspective, one can theoretically
leverage influence functions (IF) (Koh and Liang,
2017) to obtain training examples ranked by in-
fluence to run the procedure. However, because
IF assumes linearity and twice-differentiable loss
functions, this constrains their application to non-
convex white wrapper boxes (e.g., kNN). This re-
striction is why Yang et al. limit their analysis to
logistic regression alone. One could apply IF to the
underlying neural module, but it is computationally
infeasible to repeatedly retrain the language models
analyzed in this study. Our Algorithm 1 is feasible
in our experiments because our wrapper boxes are
lightweight, e.g., kNN does not require retraining!

C.4 Comparisons to Prior Work
Algorithm 1 is similar to data models (Ilyas et al.,
2022) in that some model retraining is required.
However, we note several distinctions here. First,
data models are surrogate models trained to ap-
proximate the output of a black-box neural model.

Thus, subsets identified through data models are
not guaranteed to lead to a prediction flip, whereas
we are guaranteed that resultant subsets are correct.
Second, learning data models requires collecting
labels (probability outputs) from the neural mod-
ule retrained with different subsets of the training
set. This is considerably more expensive since we
only retrain lightweight white box models. Third,
data models are affected by the stochastic nature
of the neural model and its supervised learning
framework, so its outputs are nondeterministic and
only approximate the neural. On the other hand,
our approach yields deterministic subsets, since
the re-trained wrapper model must have the same
hyperparameters as the original.

Overall, this paper and prior work (Ilyas et al.,
2022; Yang et al., 2023) have shown that finding
St is computationally challenging. Our greedy ap-
proach (besides kNN) requires retraining a new
white box classifier for each removal, Yang et al.
(2023) necessitates inverse hessian approximations,
and Ilyas et al. (2022) requires numerous retraining
of models to obtain labels for data models. De-
spite these computational demands, none of these
approaches guarantee that identified subsets are
minimal (smallest possible) or unique (for each test
input). An alternative direction, as investigated in
(Yang et al., 2024), is to flip training labels instead
of removing whole examples. While this method is
sample-efficient for binary classification tasks, its
efficacy in multiclass tasks remains uncertain.

C.5 Reproducing Yang et al. (2023)

Our results in Section 6 show that both selectors
from Yang et al. (2023) perform poorly on our two
selected datasets. To demonstrate that the baseline
was implemented correctly (and thereby validate
our baseline results with Yang et al.’s methods in
our own experiments), we reproduce reported re-
sults on the datasets evaluated in Yang et al. (2023),
including Movie sentiment4 (Socher et al., 2013);
Twitter sentiment classification5 (Go, 2009); Essay
grading6 (Hamner et al., 2012); Emotion classifi-
cation7 (Saravia et al., 2018), and; Hate speech
detection8 (de Gibert et al., 2018). We adopt their
source code9 to reproduce their results.

4
https://github.com/successar/instance_attributions_NLP/

tree/master/Datasets/SST
5
https://www.kaggle.com/datasets/kazanova/sentiment140

6
https://www.kaggle.com/competitions/asap-aes/data

7
https://huggingface.co/datasets/dair-ai/emotion

8
https://huggingface.co/datasets/odegiber/hate_speech18

9
https://github.com/ecielyang/Smallest_set

https://github.com/successar/instance_attributions_NLP/tree/master/Datasets/SST
https://github.com/successar/instance_attributions_NLP/tree/master/Datasets/SST
https://www.kaggle.com/datasets/kazanova/sentiment140
https://www.kaggle.com/competitions/asap-aes/data
https://huggingface.co/datasets/dair-ai/emotion
https://huggingface.co/datasets/odegiber/hate_speech18
https://github.com/ecielyang/Smallest_set


Dataset Selector Coverage Correctness Median

Movie reviews
Yang Fast 64.22 64.11 94
Yang Slow 64.22 63.19 76

Essays
Yang Fast 7.47 7.47 24
Yang Slow 7.47 7.16 12

Emotion
Yang Fast 71.78 71.78 64
Yang Slow 71.78 70.79 51

Hate speech
Yang Fast 52.94 52.66 135
Yang Slow 46.41 44.16 103

Tweet Sentiment
Yang Fast 89.80 89.50 110
Yang Slow 75.30 60.30 213

Table 7: Coverage, Correctness, and Median for logistic regression using BERT [cls] representations for the two
St selector algorithms proposed in Yang et al. (2023). Note that results differ slightly from their Table 2 due to
stochastic differences in generating dataset splits and potential differences in L2 penalty term.

As part of reproduction work, we share a few
data-cleaning details not reported in Yang et al.
(2023). Although their training and testing split
sizes are provided in their Table A1, the random
seed used to generate those splits was unavailable
(besides movie reviews, which appear to use the
provided train split and the validation split for test-
ing). Consequently, we observe slightly different
subset results than those reported in their Table 2.

To preserve the split sizes reported in their Table
A1, we use the the movie review dataset training
split as-is while using the provided validation set as-
is for testing. We only use the provided training set
for all other datasets and break it down to a 90/10
train-test split. For essays, we first binarize the
training split dataset by converting the top 10% of
essay scores to 1 and the rest to 0. Only examples
labeled with "sadness" (0) and "joy" (1) were kept
for emotions. For hate speech, we similarly only
kept training examples labeled with "nohate" (0)
and "hate" (1). 19,000 random training points were
sampled from the tweet sentiment training split.

Representations using the [cls] token of
bert_base_uncased10 (Devlin et al., 2019) were
extracted for each dataset, following (Yang et al.,
2023). For recency, we did not reproduce results
with bag-of-words embeddings. We then fitted a
logistic regression for each dataset using the ex-
tracted BERT representations, using τ = 0.25 for
hate speech and τ = 0.5 for all other datasets as
specified in (Yang et al., 2023).

Table 7 shows the subset results for various clas-
10
https://huggingface.co/google-bert/bert-base-uncased

sifiers and selector methods on the five datasets. We
apply the same metrics as described in Table 4, not-
ing that Coverage and Correctness are equivalent
to the columns "Found St" and "Flip Successful"
in Yang et al. (2023)’s Table 2.

Our reproduced results are comparable to their
reported results, barring stochastic differences due
to different train/test splits and potentially different
L2 penalty terms for each fitted regressor. Further-
more, as remarked in their limitations, "assuming a
stochastic parameter estimation method (e.g., SGD)
the composition of St may depend on the arbitrary
random seed, similarly complicating the interpre-
tation of such sets," so it is not surprising that we
observe somewhat different outcomes.

D AI vs. Human Perceptions of Similarity

In explaining model decisions to end-users by at-
tributing decisions to specific training data, we as-
sume that users will understand why the given train-
ing examples shown are relevant to a given input.
Otherwise, the training examples shown could ap-
pear spurious, and users might not understand why
the model deemed these training examples relevant
to the input at hand. This raises two key questions:
1) how do wrapper boxes measure instance similar-
ity, and 2) how closely does this measurement align
with human perceptions of instance similarity?

Given the neural model’s extracted embeddings,
wrapper boxes compute similarity between in-
stances via Euclidean distance. Instance similarity
is thus assessed as a combination of the embedding
space and the distance function.

https://huggingface.co/google-bert/bert-base-uncased


Human perceptual judgments may naturally di-
verge from large pre-trained language models’
learned latent representation space. For example,
Liu et al. (2023) show that nearest neighbor im-
ages using ResNet (He et al., 2016) representations
may not align with human similarity judgments.
However, they also show that more human-aligned
representations can be learned to improve human
decision-making. Similarly, Toneva and Wehbe
(2019) show that modifying BERT (Devlin et al.,
2019) to match human brain recordings better en-
hances model performance.

We hypothesize that continuing progress in de-
veloping increasingly powerful pre-trained large
language models will naturally trend toward pro-
ducing representations having greater alignment
with human perceptions (Muttenthaler et al., 2023).
Of course, it is also possible for more performant
embeddings to diverge from human perceptions of
similarity. As discussed, alignment between model
vs. human embeddings can also be directly opti-
mized (Liu et al., 2023; Toneva and Wehbe, 2019).

Of course, this, too, has a risk: tuning em-
beddings for perceptual judgments could improve
explanation quality for users but reduce perfor-
mance. Thus, the choice of embeddings may em-
body a tradeoff between performance and explana-
tion quality, though current evidence suggests oth-
erwise (Liu et al., 2023; Muttenthaler et al., 2023).

E When are Example-based Explanations
Most Appropriate to Use?

Different input formats (e.g., text versus image) or
categories (e.g., tweets vs. passages) impose vary-
ing amounts of cognitive load required to process
and reason about analogical justifications. For ex-
ample, the amount of critical thinking necessary
to comprehend social media posts compared to
scientific papers is drastically disparate, and that
difference may even vary amongst users.

Consequently, user cognitive load in understand-
ing example-based explanations is likely positively
correlated with the amount of information inher-
ently embedded in the inputs themselves. This di-
rectly impacts our analysis of explanation simplic-
ity. For tweets, perhaps three or five short posts are
still manageable. For scientific passages, maybe
even one manuscript is overwhelming.

If model explanations are intended to support
people, quantifying the degree to which explana-
tions actually improve human performance in prac-

tice will ultimately require user studies.

F Visualizing L-Means

Figure 2 visualizes L-Means (described in Sec-
tion 4) clusters for the training split of TOXI-
GEN and E-SNLI after using Principal Compo-
nents Analysis (Maćkiewicz and Ratajczak, 1993)
to reduce dimensions of extracted representations.
Given limited space, only representations from DE-
BERTA-large, the top-performing model, are used.

F.1 TOXIGEN

For TOXIGEN, we observe an almost clean cluster-
ing of examples. Specifically, cluster 1 (crosses)
consists mostly of toxic examples (1671 orange),
with only 129 benign (blue) instances. Similarly,
cluster 0 (circles) consists mostly of benign (5154
blue) examples, with only 26 toxic (orange) exam-
ples. As expected, the two clusters mainly separate
along the first principal component, which accounts
for almost half of the variation in DEBERTA en-
codings for TOXIGEN.

F.2 E-SNLI

We observe that the resultant clusters for E-SNLI
are not as clean as those for TOXIGEN, hence result-
ing in noisier predictions that lead to slightly worse
performance as shown in Table 3. This may be at-
tributed to the fact that both principal components
(PCs) constitute a significant amount of variation
for E-SNLI, whereas PC1 for TOXIGEN is the sole
dominant axis. Specifically, cluster 0 (circles) con-
sists of 1168 entailment, 3996 neural, and 164217
contradiction examples. Cluster 1 contains 163618
entailment, 14229 neural, and 1437 contradiction
examples. Cluster 2 comprises of 8628 entailment,
164537 neural, and 17531 contradiction examples.

G Qualitative Examples

We closely examine some qualitative example-
based explanations for DEBERTA-large on the
validation splits of TOXIGEN and E-SNLI. For
the sake of space, we present the single closest
(as measured by Euclidean distance over the latent
representation space) neighbor/support vector/leaf
node instance/cluster point as example-based ex-
planations for various wrapper boxes. Instances
are presented as is without any modifications, ex-
cept that target groups and countries of offensive
examples are demarcated in angle brackets. Raw



Metric BART vs. DEBERTA BART vs. Flan-T5 DEBERTA vs. Flan-T5
T

O
X

IG
E

N Accuracy 0.282 0.768 0.434
Precision 0.192 0.0248 0.347

Recall 0.0614 <1e-3 <1e-3
F1 0.116 0.338 0.0114

E
-S

N
L

I Accuracy <1e-3 0.171 0.024
Precision <1e-3 0.188 0.0112

Recall <1e-3 0.180 0.0203
F1 <1e-3 0.187 0.0168

Table 8: TOXIGEN and E-SNLI test set p-values for comparisons between baseline transformers in Table 3

BART-large DEBERTA-large Flan-T5-large
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

T
O

X
IG

E
N KNN 0.679 0.145 0.101 0.905 0.578 0.014 0.007 0.830 1.000 0.730 0.528 0.819

DT 0.860 0.016 <1e-3 0.171 0.903 0.006 <1e-3 0.054 0.953 0.899 0.638 0.815
L-Means 0.601 0.355 1.000 0.623 0.762 0.757 0.028 0.355 0.906 0.983 0.638 0.770

E
-S

N
L

I KNN 0.791 0.740 0.777 0.762 0.054 0.036 0.049 0.047 0.137 0.142 0.144 0.145
DT <1e-3 <1e-3 <1e-3 <1e-3 0.796 0.762 0.758 0.774 0.843 0.831 0.841 0.832
L-Means <1e-3 <1e-3 <1e-3 <1e-3 0.035 0.259 0.039 0.053 0.767 0.755 0.764 0.756

Table 9: TOXIGEN and E-SNLI test set p-values for Table 3.

Figure 2: Visualization of resultant clusters from L-Means after PCA with two components.



Input Classifier Prediction Explanation

people who are mentally disabled should
be treated with the same respect and dig-
nity that we would give to any other human
being [Benign]

kNN Benign people who are mentally disabled should be treated
with the same respect and dignity as anyone else
[Benign]

DT Benign Same as KNN
L-means Benign Same as KNN

<GROUP> are very hostile people
[Harmful]

kNN Harmful <GROUP> people arent normal [Harmful]

DT Harmful Same as KNN
L-means Harmful Same as KNN

the government should not be in the busi-
ness of providing services for those who
cannot help themselves [Harmful]

kNN Benign society should not be obligated to provide for the
needs of those who are not able to provide for them-
selves [Harmful]

DT Harmful it is a waste of money to provide services for those
who are not productive members of the community
[Harmful]

L-means Harmful Same as KNN

Table 10: Qualitative examples for TOXIGEN validation set. Often, kNN, DT, and L-means identify the same
closest training point as explanations. However, sometimes (row 3) wrapper boxes can lead to diverse explanations,
and the final prediction may not agree with the label of the closest training point, since these explanations are
parsimonious but not faithful. Nevertheless, we believe that these explanations are still useful, serving as intuitions
for correct predictions and clarifications for failure cases.

examples may contain punctual, spelling, or gram-
matical errors. Labels for each training instance
are in normal brackets.

Only presenting the closest training point does
not constitute a faithful explanation of the wrapper
boxes’ reasoning process. Here, we again rely on
the assumption that relevant examples as judged by
the wrapper boxes will also be judged as related
by users. Following this logic, we think the closest
training point as deemed by the model is likely a
good analogy to the input example from the users’
perspective as well. However, the closest train-
ing point may not be representative of the overall
distribution of the training instances applied for in-
ference (e.g. row 3 in Table 10). Even if it may be
relevant to the input, the closest example could be
an outlier or an atypical example that does not accu-
rately represent the majority of examples employed
for reasoning. If users believe that explanations are
faithful when they are not, this misinterpretation
may also trick users into trusting faulty models
(Lakkaraju and Bastani, 2020).

G.1 TOXIGEN

Table 10 showcases qualitative examples for TOX-
IGEN. Although not faithful, we observe that these
explanations are relevant to the input text and are

often identical across wrapper boxes. Specifically,
kNN, DT, and L-means usually pinpoint the same
training instances as explanations. Rows 1-2 illus-
trate this phenomenon, where all example-based
explanations address the same topic as the inputs.

Since all wrapper boxes leverage more than
just the closest training example in inference (Sec-
tion 4), these explanations are simple but are not
faithful (Case II in Table 2). This can lead to sce-
narios (row 3) where the final prediction disagrees
with the explanation label. Furthermore, there’s no
guarantee that kNN, DT, and L-means always pin-
point the same explanations, and indeed they can
be different since the exact mechanism by which
similar examples are identified for each approach
varies. Either way, we theorize that these explana-
tions are useful to cultivate intuitions for correct
predictions and clarifications for failure cases.

G.2 E-SNLI

Table 11 presents qualitative examples for E-SNLI.
Each sample constitutes a premise-hypothesis pair,
alongside a randomly selected (from three) human-
annotated explanation. Although our qualitative
example-based explanations ( Table 10 and Ta-
ble 11) are simple and intuitive, other NLP tasks
may differ, such as topic modeling or passage re-



Input Classifier Prediction Explanation

Premise: Two women are embracing
while holding to go packages.

Hypothesis: Two woman are holding
packages. [Entailment]

Human explanation: Saying the two
women are holding packages is a way to
paraphrase that the packages they are
holding are to go packages.

kNN Entailment Premise: Two boys show off their stained, blue
tongues.
Hypothesis: boys are showing their tongues.
[Entailment]

DT Entailment Same as KNN

L-means Entailment Premise: This young child is having fun on their first
downhill sled ride.
Hypothesis: A child on a sled. [Entailment]

Premise: A shirtless man is singing into a
microphone while a woman next to him
plays an accordion.

Hypothesis: He is playing a saxophone.
[Contradiction]

Human explanation: A person cannot be
singing and playing a saxophone
simultaneously.

kNN Contradiction Premise: A woman is sitting on a steps outdoors play-
ing an accordion.
Hypothesis: Someone is playing a piano. [Contradic-
tion]

DT Contradiction Same as KNN

L-means Contradiction Premise: Africans gather water at an outdoor tap.
Hypothesis: Africans are gathering rice for a meal.
[Contradiction]

Premise: A woman in a gray shirt
working on papers at her desk.

Hypothesis: Young lady busy with her
work in office. [Neutral]

Human explanation: All women are not
young. Although she is working on
papers at her desk, it does not mean that
she is busy or that she’s in an office.

kNN Neutral Premise: Man raising young boy into the clear blue
sky.
Hypothesis: Father holds his son in the air. [Entail-
ment]

DT Entailment Premise: Two soccer players race each other during
a match while the crowd excitedly cheers on.
Hypothesis: Two men compete to see who is faster
during soccer. [Entailment]

L-means Neutral Premise: A model poses for a photo shoot inside a
luxurious setting.
Hypothesis: a woman poses. [Neutral]

Table 11: Qualitative examples for E-SNLI validation set. Here, most of the time, kNN and DT identify the
same closest training point as explanations, and L-means pinpoints a different but related instance (rows 1-2). We
postulate that this differs from TOXIGEN because L-means results in less clean clusters. Again, sometimes (row 3)
wrapper boxes can still lead to diverse explanations, and the final prediction may not agree with the label of the
closest training point. Nevertheless, we believe that these explanations are still useful as rationales behind annotated
human explanations often also apply to the selected training examples.



trieval.
Interestingly, whereas for TOXIGEN kNN, DT,

and L-means often pinpoint the same training in-
stances as explanations, for E-SNLI instead kNN
and DT follow this trend (rows 2-3). We postulate
that this occurs because L-means results in less
clean clusters (noisier neighbors)

Nevertheless, we observe that provided example-
based explanations often require the same reason-
ing skills as the input, consistent with examples
from TOXIGEN. Again, sometimes (row 3) wrap-
per boxes can still lead to different explanations,
and the final prediction may not agree with the
label of the closest training point.

Unfaithful explanations can still be useful. For
E-SNLI, we observe that rationales behind anno-
tated human explanations often apply to the pre-
sented example-based explanations. For example,
the human justifies the pair as entailment for the
first input example (row 1) since the hypothesis
paraphrases the premise. Likewise, our example-
based explanation displays a hypothesis that para-
phrases the premise.

H Wrapper Box Results for LLMs

H.1 Evaluation Setup

We additionally experiment with several more mod-
ern large language models (LLMs) to test the
generalizability of wrapper boxes. Namely, we
experiment with Llama 2-7B Instruct (Touvron
et al., 2023), Llama 3-8B-Instruct (Dubey et al.,
2024), Mistral-7B Instruct (Jiang et al., 2023), and
Gemma-7B Instruct (Mesnard et al., 2024). We
used model checkpoints publicly hosted on Hug-
ging Face. Table 14 shows the prompts used for all
LLMs.

Representations are extracted from the penulti-
mate layer (directly preceding the language model-
ing heads) and mean-pooled across tokens to obtain
a sentence-level embedding for white classic mod-
els. Sentence representations are then further pro-
cessed by fitting a logistic regression, and we then
take the logit output of the regression model to be
the final input features for wrapper boxes. We em-
pirically observe that this logistic transformation
is necessary to achieve comparable performance
and that fitting wrapper boxes directly on mean-
pooled embeddings can lead to severe performance
degradation, particularly for L-means.

We use the same datasets and metrics introduced
in Section 5. Due to time and computation con-

straints, we only report zero-shot results and only
report metrics on a 10,000 random stratified sample
for E-SNLI. Applying state-of-the-art in-context-
learning (ICL) strategies or fine-tuning may im-
prove baseline neural performance but would also
result in different representations as input to wrap-
per boxes. The efficacy of wrapper boxes in these
scenarios would thus need to be empirically bench-
marked, although we anticipate that there should
be no drastic performance degradation.

H.2 TOXIGEN LLM Results
Table 12 shows predictive performance results for
TOXIGEN. LLM zero-shot results favor recall over
precision, likely due to the imbalanced distribu-
tion of labels in TOXIGEN, with Llama 3 8B being
the best model. No wrapper box uniformly out-
performs others, although the precision and recall
scores are more balanced. Results show that wrap-
per boxes using zero-shot LLM representations
strongly outperform baseline LLM performance
across both tasks.

H.3 E-SNLI LLM Results
Table 13 shows predictive performance results for
E-SNLI. Precision and recall scores are balanced
for both LLMs and wrapper boxes here since E-
SNLI has a balanced distribution of labels. Inter-
estingly, we observe that decision tree consistently
outperforms other wrapper boxes, although the dif-
ferences (e.g., compared to KNN) may not be sig-
nificant. Nevertheless, we consistently observe that
wrapper boxes can strongly outperform baseline
LLMs using zero-shot LLM representations.



Model Classifier Accuracy (%) F1 Score (%) Precision (%) Recall (%)

LLama2 7B

Zero-shot 61.17 55.76 42.51 80.99
KNN 82.02 68.05 73.47 63.38
DT 80.85 69.90 66.56 73.59

L-Means 82.23 71.06 69.97 72.18

LLama3 8B

Zero-shot 71.70 65.81 51.82 90.14
KNN 77.23 59.47 64.34 55.28
DT 76.70 61.10 61.65 60.56

L-Means 76.60 61.27 61.27 61.27

Mistral 7B

Zero-shot 68.62 64.50 48.99 94.37
KNN 78.72 62.69 66.67 59.15
DT 79.04 63.59 66.93 60.56

L-Means 78.72 63.90 65.56 62.32

Gemma 7B

Zero-shot 55.64 56.79 40.23 96.48
KNN 79.36 63.12 68.60 58.45
DT 78.94 68.37 62.57 75.35

L-Means 79.47 66.55 65.53 67.61

Table 12: TOXIGEN test set performance metrics (percentage) of wrapper boxes for various instruction-tuned,
open-source large language models. Embeddings are mean-pooled overall all sequence tokens from the penultimate
layer (directly preceding the generative language modeling head). Then, representations are further transformed
into logits using weights learned from logistic regressor before input as features to other wrapper boxes (KNN, DT,
L-Means).

Model Classifier Accuracy (%) F1 Score (%) Precision (%) Recall (%)

LLama2 7B

Zero-shot 47.96 42.28 50.52 48.51
KNN 70.80 70.76 70.92 70.72
DT 73.03 72.91 72.91 72.96

L-Means 65.95 66.42 69.37 65.87

LLama3 8B

Zero-shot 61.93 62.71 68.48 61.89
KNN 70.75 70.72 70.86 70.67
DT 73.35 73.31 73.34 73.30

L-Means 66.43 66.83 69.53 66.33

Mistral 7B

Zero-shot 70.99 71.47 72.81 70.99
KNN 80.23 80.15 80.13 80.18
DT 81.94 81.90 81.91 81.91

L-Means 77.20 76.27 76.59 77.00

Gemma 7B

Zero-shot 52.56 48.12 70.30 53.20
KNN 66.07 65.98 66.15 65.97
DT 69.68 69.68 69.80 69.62

L-Means 62.61 63.02 66.41 62.50

Table 13: E-SNLI test set performance metrics (percentage) of wrapper boxes for various instruction-tuned,
open-source large language models. Embeddings are mean-pooled overall all sequence tokens from the penultimate
layer (directly preceding the generative language modeling head). Then, representations are further transformed
into logits using weights learned from logistic regressor before input as features to other wrapper boxes (e.g., KNN,
DT, L-Means). The training set is a 10,000 random stratified sample of the original 500k set.



Dataset Prompt

TOXIGEN
You are a content moderator tasked with toxicity detection. After reading the provided
text, categorize it as either "0" for benign or "1" for toxic. Only respond with "0" or
"1". Do not include any additional text or explanations.

E-SNLI

You are an informative AI assistant tasked with natural language inference. Given the
following premise and hypothesis, classify their relationship as "0" for entailment,
"1" for neutral, or "2" for contradiction.
Entailment (0): The hypothesis logically follows from the premise. If the premise is
true, the hypothesis must also be true.
Neutral (1): The hypothesis is neither definitively true nor false based on the premise.
The premise provides some information, but it is insufficient to confirm or deny the
hypothesis.
Contradiction (2): The hypothesis directly conflicts with the premise. If the premise
is true, the hypothesis must be false.
Only respond with "0", "1", or "2". Do not include any additional text or explanations.

Table 14: LLM Prompts for TOXIGEN and E-SNLI.


	Introduction
	Related Work
	Example-based Explanation Tradeoffs
	Conceptual Tradeoffs

	Wrapper Boxes
	Learning Feature Representations
	Wrapper Box Models

	Evaluation: Prediction Performance
	Results

	Evaluation: Training Data Attribution
	Results

	Conclusion
	Limitations
	Time and Space Requirements
	Use-Cases for Training Data Attribution
	St Assumptions and Challenges

	Implementation Details
	Significance Testing
	Procedure
	Ablation Results
	Are Significant Differences Noticeable?

	Training Data Attribution Clarifications and Results
	Iterative vs Chunked Removal
	Finding Subsets for KNN
	Extending Our Greedy Selection Algorithm to Influence Functions?
	Comparisons to Prior Work
	Reproducing Yang et al. (2023)

	AI vs. Human Perceptions of Similarity
	When are Example-based Explanations Most Appropriate to Use?
	Visualizing L-Means
	ToxiGen
	E-SNLI

	Qualitative Examples
	ToxiGen
	E-SNLI

	Wrapper Box Results for LLMs
	Evaluation Setup
	ToxiGen LLM Results
	E-SNLI LLM Results


