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Abstract
We propose Guided Speculative Inference (GSI), a
novel algorithm for efficient reward-guided decod-
ing in large language models. GSI combines soft
best-of-n test-time scaling with a reward model
r(x, y) and speculative samples from a small aux-
iliary model πS(y | x). We provably approximate
the optimal tilted policy πβ,B(y | x) ∝ πB(y |
x) exp(β r(x, y)) of soft best-of-n under the pri-
mary model πB . We derive a theoretical bound on
the KL divergence between our induced distribu-
tion and the optimal policy. In experiments on rea-
soning benchmarks (MATH500, OlympiadBench,
Minerva Math), our method achieves higher ac-
curacy than standard soft best-of-n with πS and
reward-guided speculative decoding (Liao et al.,
2025), and in certain settings even outperforms
soft best-of-n with πB . The code is available at:
https://github.com/j-geuter/GSI.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able performance across diverse generation tasks, with scal-
ing model and data size emerging as a reliable and efficient
way to enhance their capabilities (Kaplan et al., 2020; Team,
2024; OpenAI, 2024). However, this scaling has resulted
in significant computational and economic costs, prompt-
ing the need for more efficient alternatives. One such ap-
proach is test-time scaling (Snell et al., 2024; Muennighoff
et al., 2025; Zhang et al., 2025), which focuses on scaling
inference-time rather than training time compute. An or-
thogonal direction in LLM post-training is model alignment
(Ouyang et al., 2022; Gao et al., 2022; Touvron et al., 2023),
where models are optimized to maximize a given reward
model r(x, y) that quantifies the quality of a response y
given a prompt x. Several techniques have been proposed
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for aligning LLMs with reward models (Yang & Klein, 2021;
Mudgal et al., 2024; Huang et al., 2025). Recent work
on reward-guided speculative decoding (RSD) (Liao et al.,
2025) introduces a single-step speculative check to filter
samples by a reward threshold, though it lacks theoretical
guarantees on distributional fidelity. Alternatively, best-of-n
sampling (Gao et al., 2022; Mroueh, 2024; Beirami et al.,
2025) with temperature (“soft BoN”) (Verdun et al., 2025)
can interpolate between the base distribution πB and reward
maximization, helping to mitigate reward hacking (Skalse
et al., 2025).

Contributions. In this paper, we introduce a novel algo-
rithm, Guided Speculative Inference (GSI), which combines
speculative decoding, soft best-of-n sampling, and rejection
sampling. Importantly, by tilting (i.e., adjusting) the rewards
according to the loglikelihoods under both πB and πS , GSI
provably approximates the optimal reward-regularized pol-
icy under πB (Section 3), namely

πβ,B(y | x) =
πB(y | x) exp(β r(x, y))

Zβ,B(x)
.

We evaluate GSI on several reasoning benchmarks and show
that it outperforms both reward-guided speculative decoding
(Liao et al., 2025) and soft best-of-n sampling (Section 4).

2. Background
Let V denote a (finite) vocabulary. Let X = {x =
(x1, ..., xn) : n ∈ N, xi ∈ V} be the (countable) space of
inputs (in practice, consisting of the prompt and already gen-
erated reasoning steps), and Y = {y = (y1, ..., yn) : n ∈
N, yi ∈ V} the (countable) space of reasoning steps (e.g. to-
ken sequences). Note that mathematically, these two spaces
are identical, but we define both X and Y for notational
convenience. By ∆(Y), we denote the set of probability
measures over Y . For x ∈ X , let πB(y | x) ∈ ∆(Y) and
πS(y | x) ∈ ∆(Y) be the base and small language model
distributions over y ∈ Y given x. Note that we define the
distributions over reasoning steps instead of single tokens.
When we write πB(· | x, y), it denotes the distribution of
πB over Y given a prompt x and a (partial) response y. We
further assume we are given a process reward model (PRM)
(Lightman et al., 2023) r : X × Y → [0, R] for some
R <∞, which assigns a reward r(x, y) to a reasoning step
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x
Small Model πS

Sample yi ∼ πS(· | x)
Compute log πS(yi | x)

i = 1 . . . n

Reward Model r
ri = r(x, yi)

Big Model πB

Compute log πB(yi | x)

Sample i∗ via

Softmax
(
βri + log πB

πS
(yi | x)

)
Return yi∗

Condition
If βr(x, yi∗) + log πB

πS
(yi∗ | x) > u

Accept yi∗
Else Sample using SBoN from πB

Figure 1. Guided Speculative Inference workflow. All computations involving the small, big, and reward models can be efficiently
performed using vLLM.

y ∈ Y given an input x ∈ X . We assume that r approxi-
mates a golden reward (Gao et al., 2022) r∗ : X × Y → R,
which can be thought of as the “true” reward function. Re-
call that the Kullback–Leibler divergence between two dis-
tributions P,Q ∈ ∆(Y) with P ≪ Q is defined as

KL(P∥Q) = Ey∼P

[
log P (y)

Q(y)

]
,

and the chi-square divergence as

χ2(P ||Q) =

∫ (
dP
dQ
− 1

)2

dQ =

∫
dP 2

dQ
− 1.

KL Regularized Reward Alignment. A standard formula-
tion for maximizing the reward r(x, y) given x ∈ X , while
constraining how far the policy can move from the base
policy πB(· | x), is to add a KL regularizer, and find π∗

B

maximizing

max
π∈∆(Y)

Ey∼π[ r(x, y) ]− 1
β KL

(
π(· | x) ∥πB(· | x)

)
,

where β > 0 trades off maximizing the reward versus fi-
delity to πB . It is well known (e.g. (Korbak et al., 2022))
that the optimal policy has the closed form

πβ,B(y | x) =
πB(y | x) exp

(
β r(x, y)

)
Zβ,B(x)

, (1)

where Zβ,B(x) = Ey′∼πB(·|x)

[
eβ r(x,y′)

]
.

Best-of-n Sampling. Best-of-n (BoN) (Beirami et al., 2025)
is a common inference-time method for scaling LLMs. Hard
best-of-n draws y1, . . . , yn∼πB(· | x), and selects

y∗ = arg max
i∈{1,...,n}

r(x, yi).

Soft best-of-n (S-BoN) (Verdun et al., 2025) weighs each
draw by wi ∝ exp

(
β r(x, yi)

)
, then sample a response yi

with probability wi/
∑

j wj . We denote the soft best-of-n
distribution over y by πr,n

β,B(· | x). Note that both soft and
hard BoN can be applied both to one-shot generation (where

the complete response it generated in one step) or reasoning
tasks, where the yi correspond to reasoning steps, and the
BoN procedure is repeatedly applied. In this work, we focus
on reasoning tasks. By moving from hard to soft best-of-n,
the distribution πr,n

β,B(· | x) enjoys a KL bound to the tilted
distribution πβ,B (Verdun et al., 2025):

KL(πβ,B∥πr,n
β,B) ≤ log

(
1 +

Vary∼πB
[eβr(x,y)]

n(Ey∼πB
[eβr(x,y)])2

)
.

(2)

Speculative Decoding. Speculative decoding (SD)
(Leviathan et al., 2023) accelerates sampling from πB by
first drawing proposals from πS and then accepting or reject-
ing them based on a criterion derived from the ratio πB/πS .
On rejection, one falls back to direct sampling from πB .
SD provably samples from the distributions of πB . The
core idea is that k tokens can be sampled from πS autore-
gressively, but verified by πB in parallel, thus generating
up to k + 1 tokens from πB with a single forward pass of
πB . Variants of SD include block verification (Sun et al.,
2025) where sequences of draft tokens are verified jointly
instead of token-by-token, and SpecTr (Sun et al., 2024)
which allows for verification of multiple draft sequences
in parallel by framing SD as an optimal transport problem.
SD has also been combined with early-exiting (Liu et al.,
2024), and (Bhendawade et al., 2024) propose using n-gram
predictions of πB as drafts, which alleviates the need for an
auxiliary model.

A recent work proposes RSD (reward-guided speculative
decoding) (Liao et al., 2025), where samples are generated
from πS , and a threshold on the reward of the samples from
πS determines whether one should accept the sample or
resample from πB . While this approach shares similarities
with GSI, it only provides a guarantee on the expected re-
ward: under the assumption that EπB

[r(y | x)] ≥ EπS
[r(y |

x)], RSD satisfies EπRSD [r(y | x)] ≥ EπS
[r(y | x)], which

in the worst case does not yield any improvement over the
small model πS , and also does not guarantee anything about
the policy πRSD itself. As we will see in Section 3, GSI
provides guarantees on the induced policy directly.
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Figure 2. Accuracy over n. We plot GSI without rejection step (πr̃,n
β,S), GSI with rejection step (πGSI), S-BoN with the small (πβ,S) and

big (πβ,B) model, and RSD (Liao et al., 2025) (with β = 20 for all methods).

3. Guided Speculative Inference
Note that we can write the tilted distribution (1) as

πβ,B(y | x) =
πS(y | x) exp

(
βr(x, y) + log

(
πB(y|x)
πS(y|x)

))
Zβ,B(x)

,

i.e. we can rewrite it as a distribution over πS (exponen-
tially) tilted by the rewards

r̃(x, y) = r(x, y) +
1

β
log

(
πB(y | x)
πS(y | x)

)
Thus, one can sample from πS and re-weight candidates to
approximate πβ,B :

Reward-Likelihood Tilted S-BoN. For x ∈ X , the reward-
tilted S-BoN is defined as follows:

1. sample y1, ..., yn ∼ πS(· | x)

2. compute r̃i = r(x, yi) +
1
β log

(
πB(yi|x)
πS(yi|x)

)
3. sample yi ∝ exp(βr̃i)

We will denote the distribution generated by this sampling
algorithm by πr̃,n

β,S(· | x). Of course, we can only hope that
πr̃,n
β,S(· | x) is close to πβ,B(· | x) if the support of πB is

sufficiently covered by πS .

Coverage Assumption. Throughout, we will assume that

C∞(x) := sup
y∈Y:πB(y|x)>0

πB(y | x)
πS(y | x)

<∞. (3)

Under this assumption, Reward-Likelihood Tilted S-BoN
with πS indeed approximates the tilted distribution πβ,B in
the sense of the following theorem.

Algorithm 1 Guided Speculative Inference

input base model πB , small model πS , PRM r, β > 0,
threshold u ∈ R, n ∈ N, prompt x ∈ X

1: y ← () #empty response
2: for t = 0, 1, ..., until EOS do
3: Sample {yit}ni=1 ∼ πS(· | x, y)
4: r̃i ← r(x, yit)+

1
β

(
log πB(y

i
t | x)− log πS(y

i
t | x)

)
5: Sample index c ∼ softmax(βr̃1, ..., βr̃n)
6: if r̃c ≥ u then
7: y ← (y, yct ) #append yˆc_t
8: else
9: Sample {yjt }nj=1 ∼ πB(· | x, y)

10: rj ← r(x, yjt )
11: Sample index c ∼ softmax(βr1, ..., βrn)
12: y ← (y, yct )
13: end if
14: end for

Theorem 1. Let x ∈ X . Assume that the coverage assump-
tion (3) holds. Let ϵ > 0 be arbitrary, and

n ≥
(
χ2
(
πB(· | x) ∥πS(· | x)

)
+ 1
)
e2β∥r∥∞ − 1

eϵ − 1
.

Then,
KL
(
πβ,B(· | x) ∥πr̃,n

β,S(· | x)
)
≤ ϵ.

The proof can be found in Appendix B.

This lies at the core of our proposed algorithm. In addition
to sampling from the Reward-Likelihood Tilted S-BoN, we
also add a rejection sampling-like threshold on the tilted
reward, which triggers resampling from the base model πB

in case the tilted reward falls below it. This improves per-
formance empirically. The complete GSI method can be
seen in Algorithm 1. Note that in principle, it is possible to
choose different n for the small and large model in the algo-
rithm. We leave exploring this for future research. Note that
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Table 1. Accuracies on reasoning benchmarks for n = 16 and n = 64. GSI performs better than RSD (Liao et al., 2025) and S-BoN with
the small model. S-BoN with the big model is the target distribution.

Method MATH500 OlympiadBench Minerva Math Mean Acc.

GSI, n=16 (ours) 82.2 41.4 29.6 51.1
RSD, n=16 79.5 41.7 24.3 48.5
S-BoN (small), n=16 80.3 41.2 25.5 49.0
S-BoN (big), n=16 82.5 39.3 36.0 52.6

GSI, n=64 (ours) 83.3 41.2 29.6 51.3
RSD, n=64 79.9 41.1 25.4 48.8
S-BoN (small), n=64 80.3 42.3 24.3 49.0
S-BoN (big), n=64 83.0 42.5 36.4 54.0

Table 2. Avg. inference time (in seconds) per reasoning step, avg.
number of reasoning steps per sample, and avg. percentage of sam-
ples accepted (averaged across all datasets). GSI is significantly
faster than S-BoN on the big model, but has slightly higher infer-
ence time per step than RSD (Liao et al., 2025) as the acceptance
rate is lower.

Method s / step # steps % accept
GSI, n=16 (ours) 0.87 13.9 91
RSD, n=16 0.74 11.6 97
S-BoN (small), n=16 0.79 11.0 –
S-BoN (big), n=16 1.14 11.8 –

GSI, n=64 (ours) 2.06 15.3 93
RSD, n=64 1.88 12.7 98
S-BoN (small), n=64 1.99 10.9 –
S-BoN (big), n=64 2.76 11.7 –

while GSI is, in theory, applicable to one-shot generation
tasks, we consider yt in Algorithm 1 to be a reasoning step
(i.e., a subsequence of the full response), and r is a process
reward model (PRM). The algorithm generates reasoning
steps until an end-of-sequence (EOS) token is created.

We denote the distribution generated by Algorithm 1 as
πGSI. While Theorem 1 does not apply to πGSI (only to
πr̃,n
β,S), we can also guarantee that the expected difference in

(golden) reward goes to 0 as n increases (see Theorem 2 in
Appendix B):

Eπβ,B
[r∗]− EπGSI [r

∗]
n→∞−−−−→ 0.

4. Experiments
Models. We use Qwen2.5-Math-1.5B-Instruct as πS ,
Qwen2.5-Math-7B-Instruct as πB , and Qwen2.5-Math-
PRM-7B as the PRM r throughout. The rewards lie in
[0, 1].

Implementation. We implement all models with vLLM
(Kwon et al., 2023). The log-likelihoods for πS are com-

puted without any additional computational overhead within
the forward pass of πS . The log-likelihoods for πB can be
computed with minimal computational overhead, as they
only require a single forward pass through πB . We host
each of the three models on its own NVIDIA H100 GPU.

Datasets. We evaluate on three mathematical reasoning
benchmarks: MATH500 (Lightman et al., 2023), Olympiad-
Bench (He et al., 2024) (the OE TO maths en COMP split
which is text-only math problems in English), and Minerva
Math (Lewkowycz et al., 2022). We decode stepwise with
chain-of-thought; rewards are computed on each reasoning
step. For each method and dataset, we report the average
accuracies over two different random seeds.

Methods. We compare GSI against RSD (Liao et al., 2025),
S-BoN with πS , and S-BoN with πB .

Hyperparameters. We use β = 20, u = 0.5 (selected
empirically amongst a range of values based on acceptance
rate vs. accuracy trade-off), temperature = 0.7, and
top_p = 1.0. We set the threshold in RSD to 0.7, which is
the same as in the RSD paper.

4.1. Performance on Reasoning Benchmarks

In Table 1, we compare the average accuracies of GSI,
RSD, and S-BoN on the small and big model. We see
that GSI clearly outperforms RSD and S-BoN on the small
model across the datasets. While RSD is slightly better on
OlympiadBench, this might be the case because the small
model is better on this dataset than the big model, and RSD
is closer to the small model due to its high overall accep-
tance rate, cmp. Table 2.

Figure 2 compares GSI without the rejection sampling step
(i.e., without lines 6 to 11 in Algorithm 1) to regular GSI,
S-BoN with πB and πS , and RSD. We see that GSI clearly
outperforms GSI without rejection step; however, this differ-
ence becomes less significant as n increases, hinting at the
fact that with larger n, the samples from the small model
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reach better coverage of the support of πB . As the accuracy
of GSI without the rejection step, i.e. πr̃,n

β,S , approaches
the accuracy of S-BoN with the big model, Figure 2 also
empirically verifies Theorem 1. In future research, we plan
to investigate this behavior as we scale n beyond 256.

In Table 2, we report the inference time per sample (in sec-
onds) across methods (averaged over datasets), as well as the
average percentage of samples accepted by GSI and RSD.
We see that RSD generally tends to accept almost all sam-
ples, which explains why its performance is comparable to
S-BoN with the small model, compare Table 1, while being
slightly worse in terms of inference speed. GSI accepts less
samples, thus is slower than RSD, while still outperforming
S-BoN on the large model in terms of inference speed.

5. Discussion
We introduced Guided Speculative Inference (GSI), a novel
inference-time algorithm for efficient reward-guided decod-
ing from language models. GSI leverages speculative sam-
ples from a small auxiliary model to approximate the opti-
mal tilted policy of a base model with respect to a given re-
ward function. We showed that unlike previous approaches,
GSI provably approaches the optimal policy as the num-
ber of samples generated at each step n increases. Empir-
ical results on various reasoning datasets show that GSI
significantly outperforms reward-guided speculative decod-
ing (Liao et al., 2025) and soft best-of-n using the small
model—and, perhaps surprisingly, even surpasses soft best-
of-n with the base model in some cases. Future work will
explore extending GSI beyond reasoning tasks (e.g., align-
ment to safety rewards), studying its scaling behavior with
respect to n, and analyzing its sensitivity to different values
of β and n across both models. Deriving tighter theoretical
bounds is also an important aspect in better understanding
the behavior of GSI.
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A. Code
The code is available at: https://github.com/j-geuter/GSI.

B. Proofs
Theorem 1. Let x ∈ X . Assume that the coverage assumption (3) holds. Let ϵ > 0 be arbitrary, and

n ≥
(
χ2
(
πB(· | x) ∥πS(· | x)

)
+ 1
)
e2β∥r∥∞ − 1

eϵ − 1
.

Then,

KL
(
πβ,B(· | x) ∥πr̃,n

β,S(· | x)
)
≤ ϵ.

Proof. By Lemma 1 in (Verdun et al., 2025) (which equally holds for countable instead of finite spaces), we have

πr̃,n
β,S(y | x) ≥

πS(y | x) exp
[
β r(x, y) + log

πB(y | x)
πS(y | x)

]
1
n exp

[
β r(x, y) + log πB(y|x)

πS(y|x)

]
+ n−1

n Ey′∼πS(·|x)
[πB(y′|x)
πS(y′|x) e

β r(x,y′)
]

=
πB(y | x) eβ r(x,y)

1
n

πB(y | x)
πS(y | x)

eβ r(x,y) + n−1
n Ey′∼πB(·|x)

[
eβ r(x,y′)

] .

Hence

KL
(
πβ,B∥π n,t

S

)
=
∑
y

πβ,B(y | x) log
πβ,B(y | x)
π n,t
S (y | x)

≤
∑
y

πB(y | x)eβr(x,y)

Ey′∼πB(·|x)[eβr(x,y
′)]

log

πB(y | x) eβr(x,y)
[
1
n

πB(y | x)
πS(y | x)

eβr(x,y) + n−1
n Ey′∼πB(·|x)[e

βr(x,y′)]

]
Ey′∼πB(·|x)[eβr(x,y

′)]πB(y | x) eβr(x,y)


=
∑
y

πB(y | x)eβr(x,y)

Ey′∼πB(·|x)[eβr(x,y
′)]

log

(
1
n

πB(y | x)
πS(y | x)

eβ r(x,y)

Ey′∼πB(·|x)[eβ r(x,y′)]
+ n−1

n

)

≤ log

(
1
n

(∑
y

πB(y | x)2

πS(y | x)
e2β r(x,y)(

Ey′∼πB(·|x)[eβ r(x,y′)]
)2
)

+ n−1
n

)
(Jensen’s inequality)

≤ log

(
1
n e2β ∥r∥∞

χ2
(
πB(· | x) ∥πS(· | x)

)
+ 1(

Ey′∼πB(·|x)[eβ r(x,y′)]
)2 + n−1

n

)

≤ log

((
χ2
(
πB(·|x) ∥πS(·|x)

)
+1

)
e2β∥r∥∞

n + n−1
n

)
,

using the fact that

Ey′∼πB(·|x)[e
β r(x,y′)] ≥ 1
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since r(x, y′) ≥ 0. Now for ϵ > 0, we have

log

((
χ2
(
πB(·|x) ∥πS(·|x)

)
+1

)
e2β∥r∥∞

n + n−1
n

)
≤ ϵ

⇔
(
χ2
(
πB(·|x) ∥πS(·|x)

)
+1

)
e2β∥r∥∞

n + 1− 1
n ≤ eϵ,

⇔ 1 +

(
χ2
(
πB(·|x) ∥πS(·|x)

)
+1

)
e2β∥r∥∞−1

n ≤ eϵ,

⇔
(
χ2
(
πB(·|x) ∥πS(·|x)

)
+1

)
e2β∥r∥∞−1

n ≤ eϵ − 1,

⇔
(
χ2
(
πB(· | x) ∥πS(· | x)

)
+ 1
)
e2β∥r∥∞ − 1

eϵ − 1
≤ n,

which finishes the proof.

Theorem 2. Let x ∈ X . Assume that EπGSI
[r∗] <∞ and Eπβ,B

[r∗] <∞ (here we implicitly assume that distributions and
rewards are conditioned on x, which we omit for ease of notation). Furthermore, assume the coverage assumption (3) holds.
Denote by p(u) the acceptance probability of GSI. Then

Eπβ,B
[r∗]− EπGSI [r

∗] ≤ ∥r
∗∥∞√
n

[
p(u)

1
2 eβ∥r∥∞

(
χ2(πB∥πS) + 1

) 1
2 + (1− p(u))

(
CV(eβr)2 + 1

) 1
2

]
,

where CV(eβr) =

√
Vary′∼πB(·|x)[e

βr(x,y′)]

(Ey′∼πB(·|x)[e
βr(x,y′)])

2 . In particular, we have EπGSI
[r∗]− Eπβ,B

[r∗]
n→∞−−−−→ 0.

Proof. Denote by Y≥ ⊂ Y the set where r̃t ≥ u, i.e. where πGSI = πr̃,n
β,S , and let Y< = Y \ Y≥, hence πGSI = πr,n

β,B on Y<.
We write

Eπβ,B
[r∗]− EπGSI [r

∗] = Eπβ,B
[1Y≥r

∗]− EπGSI [1Y≥r
∗]︸ ︷︷ ︸

(a)

+Eπβ,B
[1Y<

r∗]− EπGSI
[1Y<

r∗]︸ ︷︷ ︸
(b)

.

Step 1: Bounding (a). We have by Cauchy-Schwarz:

(a) = Ey∼πβ,B(·|x)
[
1Y≥(y) r

∗(x, y)
]
− Ey∼πr̃,n

β,S(·|x)
[
1Y≥(y) r

∗(x, y)
]

≤ ∥r∗∥∞
(∫

1Y≥(y) dπr̃,n
β,S(y | x)

) 1
2

∫ (πβ,B(y | x)− πr̃,n
β,S(y | x)

πr̃,n
β,S(y | x)

)2

πr̃,n
β,S(dy | x)

 1
2

= ∥r∗∥∞
(
πr̃,n
β,S(Y≥ | x)

) 1
2
(
χ2
(
πβ,B(· | x)

∥∥πr̃,n
β,S(· | x)

))1/2
. (4)
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By Lemma 1 from (Verdun et al., 2025) we have

χ2
(
πβ,B(· | x)

∥∥πr̃,n
β,S(· | x)

)
(5)

=

∫
πβ,B(y | x)2

πr̃,n
β,S(y | x)

dy − 1

=

∫ (
πB(y | x) eβ r(x,y)

)2(
Ey′∼πB(·|x)[eβr(x,y

′)]
)2

πr̃,n
β,S(y | x)

dy − 1

Lemma 1
≤

∫ (
πB(y | x) eβr(x,y)

)2(
Ey′∼πB(·|x)[eβr(x,y

′)]
)2 1

n
πB(y|x)
πS(y|x) e

βr(x,y) + n−1
n Ey′∼πB(·|x)[e

βr(x,y′)]

πB(y | x) eβr(x,y)
dy − 1

=
1

n
(
Ey′∼πB(·|x)[eβr(x,y

′)]
)2 ∫ πB(y | x)2

πS(y | x)
e2βr dy +

n− 1

n

Ey′∼πB(·|x)[e
βr(x,y′)](

Ey′∼πB(·|x)[eβr(x,y
′)]
)2 − 1

≤ e2β∥r∥∞

n
(
Ey′∼πB(·|x)[eβr(x,y

′)]
)2(χ2

(
πB(· | x)∥πS(· | x)

)
+ 1
)
− 1

n

≤ 1

n
e2β∥r∥∞

(
χ2
(
πB(· | x)∥πS(· | x)

)
+ 1
)
. (6)

Plugging (6) into (4) yields

(a) ≤ ∥r∗∥∞
(
πr̃,n
β,S(Y≥ | x)

) 1
2

(
1

n
e2β∥r∥∞

(
χ2(πB∥πS) + 1

)) 1
2

=
∥r∗∥∞√

n
p(u)

1
2 eβ∥r∥∞

(
χ2(πB∥πS) + 1

) 1
2 . (7)

Step 2: Bounding (b). Similar to the bound for (a), we get

(b) = πr̃,n
β,S(1Y <)

(∫
r∗(x, y)

πβ,B(y | x)− πr,n
β,B(y | x)

πr,n
β,B(y | x)

πr,n
β,B(dy | x)

)

≤ πr̃,n
β,S(1Y <)

(∫
r∗(x, y)2πr,n

β,B(dy | x)
) 1

2

∫ (πβ,B(y | x)− πr,n
β,B(y | x)

πr,n
β,B(y | x)

)2

πr,n
β,B(dy | x)

 1
2

≤ πr̃,n
β,S(1Y <) ∥r∗∥∞

∫ (πβ,B(y | x)− πr,n
β,B(y | x)

πr,n
β,B(y | x)

)2

πr,n
β,B(dy | x)

 1
2

= (1− p(u)) ∥r∗∥∞
(
χ2(πβ,B ||πr,n

β,B)
) 1

2

(8)

by independence of the event Y< and πn
B resp. πβ,B , and applying Cauchy-Schwarz.
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Again, using Lemma 1 from (Verdun et al., 2025) we get

χ2(πβ,B ||πr,n
β,B) =

∫
πβ,B(y | x)2

πr,n
β,B(y | x)

dy − 1

Lemma 1
≤

∫ (
πB(y | x) eβr(x,y)

)2(
Ey′∼πB(·|x)[eβr(x,y

′)]
)2 1

n eβr(x,y) + n−1
n Ey′∼πB(·|x)[e

βr(x,y′)]

πB(y | x) eβr(x,y)
dy − 1

=
1

n

Ey′∼πB(·|x)[e
2βr(x,y′)](

Ey′∼πB(·|x)[eβr(x,y
′)]
)2 +

n− 1

n
− 1

≤ 1

n

Ey′∼πB(·|x)[e
2βr(x,y′)](

Ey′∼πB(·|x)[eβr(x,y
′)]
)2

=
1

n

(
Vary′∼πB(·|x)[e

βr(x,y′)](
Ey′∼πB(·|x)[eβr(x,y

′)]
)2 + 1

)
. (9)

Plugging equation (9) into (8) yields

(b) ≤
∥r∗∥∞√

n
(1− p(u))

(
Vary′∼πB(·|x)[e

βr(x,y′)](
Ey′∼πB(·|x)[eβr(x,y

′)]
)2 + 1

) 1
2

(10)

Combining equations (7) and (10) gives

Eπβ,B
[r∗]− EπGSI

[r∗] ≤ ∥r
∗∥∞√
n

[
p(u)

1
2 eβ∥r∥∞

(
χ2(πB∥πS) + 1

) 1
2 + (1− p(u))

(
CV(eβr)2 + 1

) 1
2

]
as desired.
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