
Under review as submission to TMLR

On Uniform, Bayesian, and PAC-Bayesian Deep Ensembles

Anonymous authors
Paper under double-blind review

Abstract

It is common practice to combine deep neural networks into ensembles. These deep ensembles
can benefit from the cancellation of errors effect: Errors by ensemble members may average
out, leading to better generalization performance than each individual network. Bayesian
neural networks learn a posterior distribution over model parameters, and sampling and
weighting networks according to this posterior yields an ensemble model referred to as
a Bayes ensemble. In this study, we review the argument that neither the sampling nor
the weighting in Bayes ensembles are particularly well suited for increasing generalization
performance, as they do not support the cancellation of errors effect, which is evident in
the limit from the Bernstein-von Mises theorem for misspecified models. In contrast, we
show that a weighted average of models, where the weights are optimized by minimizing a
second-order PAC-Bayesian generalization bound, can improve generalization performance.
It is crucial that the optimization takes correlations between models into account. This can
be achieved by minimizing the tandem loss, which requires hold-out data for estimating
error correlations. The tandem loss based PAC-Bayesian weighting increases robustness
against correlated models and models with lower performance in an ensemble. This allows
us to safely add several models from the same learning process to an ensemble, instead of
using early-stopping for selecting a single weight configuration. Our study presents empirical
results supporting these conceptual considerations on four different classification datasets.
Our experiments provide further evidence that state-of-the-art intricate Bayes ensembles
from the literature do not outperform simple uniformly weighted deep ensembles in terms of
classification accuracy. Additionally, we show that these Bayes ensembles cannot match the
performance of deep ensembles weighted by optimizing the tandem loss, which additionally
provides nonvacuous rigorous generalization guarantees.

1 Introduction

Combining different deep neural networks into an ensemble model is a common way to increase generalization
performance (Bishop & Bishop, 2023; Goodfellow et al., 2016). Such deep ensembles can profit from the
cancellation of errors effect (Eckhardt & Lee, 1985): When the individual networks perform better than
random guessing and make independent errors, the errors in an additive ensemble (or committee) average
out, and the ensemble tends to outperform the individual models (Hansen & Salamon, 1990; Perrone &
Cooper, 1993; Dietterich, 2000). Many strategies have been explored to create networks for an ensemble (e.g.
Buschjäger et al., 2020; D’Angelo & Fortuin, 2021; Dziugaite & Roy, 2017; Garipov et al., 2018; Huang et al.,
2017; Jiang et al., 2017; Lee et al., 2015; Liu & Yao, 1999; Masegosa et al., 2020; Monteith et al., 2011; Ortega
et al., 2022; Pérez-Ortiz et al., 2021). However, simple deep ensembles, which rely solely on repeating neural
network training with random weight initializations and stochastic training to generate ensemble members,
often already improve generalization over single networks (Lakshminarayanan et al., 2017).

One way to build a neural network ensemble is based on the predictive posterior of Bayesian neural networks
(Adlam et al., 2020; Aitchison, 2021; Chen et al., 2014; Farquhar et al., 2020; Gal & Ghahramani, 2016;
Grünwald, 2012; Izmailov et al., 2021; Kapoor et al., 2022; Kendall & Gal, 2017; MacKay, 1992b; Maddox
et al., 2019; Monteith et al., 2011; Nabarro et al., 2022; Neal, 1992; 1996; 2011; Pearce et al., 2020; Ritter
et al., 2018; Welling & Teh, 2011; Wenzel et al., 2020a;b; Wilson & Izmailov, 2020; Zhang et al., 2020), and

1

Under review as submission to TMLR

this approach has recently gained attention (Bachmann et al., 2022; Fortuin et al., 2022; Rudner et al., 2022;
Wiese et al., 2023). A Bayesian neural network learns a posterior distribution over the weights of the network
(MacKay, 1992a; Neal, 1996). Averaging networks sampled from this posterior yields an approximation of the
Bayesian model average (BMA) and is referred to as a Bayes ensemble. This approach comes with great
expectations, for example, Domingos (2000) stated ‘Given the “correct” model space and prior distribution,
Bayesian model averaging is the optimal method for making predictions; in other words, no other approach
can consistently achieve lower error rates than it does.’ While Bayes ensembles typically outperform individual
ensemble members, we argue that neither the sampling nor the weighting in a Bayes ensemble are particularly
well-suited for increasing generalization performance in theory and practice compared to other ensembling
methods (see also Minka, 2002; Ortega et al., 2022). The Bernstein-von Mises theorem (assuming identifiability
of the model) shows that the BMA converges towards the maximum likelihood point estimate with growing
dataset size (Kleijn & Van der Vaart, 2012). In the limit, it will eventually concentrate on a single model
without exploiting ensemble diversity. Thus, the Bayes ensemble typically does not leverage the cancellation
of errors effect. This is particularly problematic because the model space considered in the BMA setting
is typically not ‘correct’: The Bayes ensemble itself is, in general, outside the model space from which its
members are sampled – and in the space of ensemble models the Bayes ensemble cannot be expected to be
optimal.

PAC-Bayesian methods (McAllester, 1998) provide an alternative approach to incorporate prior information
about models and to improve the weighting of the members of the ensemble. We bring forward optimizing
the weighting of deep ensemble members using a PAC-generalization bound based on the tandem loss, which
accounts for pairwise correlations between networks (Masegosa et al., 2020). This allows us to maintain
diversity and increase the generalization performance of the deep ensemble. This weight optimization is
especially useful when intermediate weight configurations (snapshots) from model training are considered,
in which case the optimization performs model selection taking both individual network performance and
ensemble diversity into account. The price to pay for the improved weighting is additional hold-out data for
the optimization of the weights; however, the resulting PAC-Bayesian bound provides a rigorous performance
guarantee.

Our study transfers existing, but scattered and often partly neglected knowledge on the (1) behavior of
Bayesian model averaging (BMA), in particular its suboptimality in terms of generalization performance in
the (typical) misspecified setting, (2) cancellation of errors, (3) and second-order PAC-Bayesian bounds to
ensembling of deep neural networks (DNNs). The main contributions can be summarized as:

• We discuss the conceptual differences between simple, Bayes and PAC-Bayesian deep ensembles, in
particular reviewing the argument that Bayes ensembles do not consider the cancellation of errors
effect, which may explain some observations in the current literature (e.g., on “cold posteriors”).

• We support our conceptual arguments through unbiased experiments on DNN benchmark problems
that were used to promote BMA. Our results on four datasets provide further evidence that complex
Bayesian approximate inference methods can often be surpassed by more efficient simple deep
ensembles. Bagging decreased predictive performance, showing the trade-off between the degree of
randomization and single-network performance given limited training data.

• We show that the optimization of a PAC-Bayesian generalization bound using the tandem loss
can improve the predictive performance of deep ensembles and provides nonvacuous generalization
guarantees. This is in contrast to what could have been expected from the results by Ortega et al.
(2022). Our results stress the importance of second-order PAC-Bayesian analysis for ensembles.

• We demonstrate that when intermediate checkpoints from the same training run are used in a neural
network ensemble, optimizing their weighting by minimizing a second-order PAC-Bayesian bound
can improve accuracy and prevent checkpoints from low-performing models from deteriorating the
ensemble generalization performance.

In the next section, we will briefly summarize the background on Bayesian model averaging, the cancellation
of errors effect, deep ensembles, and PAC-Bayesian majority voting. Section 3 will bring these topics together:

2

Under review as submission to TMLR

It contrasts uniform, Bayes, and PAC-Bayesian deep ensembles and formulates our main claims. These claims
will be empirically studied in Section 4 before we conclude.

2 Background

We consider data D = {(xi, yi)}n
i=1 drawn i.i.d. from a distribution p. The loss of a hypothesis/model h on

(x, y) is denoted by ℓ(h(x), y). The generalization error (risk) of h is given by L(h) = E(x,y)∼p[ℓ(h(x), y)]
and the empirical risk by L̂D(h) = 1

n

∑n
i=1 ℓ(h(xi), yi). We write hw to stress that a model is parameterized

by w ∈ Rd. We consider ensembles of M models hi = hwi
∈ H, i = 1, . . . , M , weighted by ρ ∈ RM . For

regression, the ensemble regressor is hρ(x|h1, . . . , hM) =
∑M

i=1 ρihi(x). For classification, we distinguish
two ways of combining the predictions of the ensemble members. We assume a predictive distribution
pi(y|x) = p(y|x, wi) associated with each hypothesis hwi

(x). The ensemble prediction hρ(x|h1, . . . , hM) can
be either defined by the ρ-weighted average of these distributions

AVGρ(x) = arg max
y

M∑
i=1

ρipi(y|x) (1)

or by the ρ-weighted majority vote

MVρ(x) = arg max
y

M∑
i=1

ρi1[y = arg max
y′

pi(y′|x)] , (2)

where 1[·] is 1 if its argument is true and zero otherwise. Uniform weighted aggregations are denoted by
AVGu and MVu.

2.1 Bayesian model average

In Bayesian inference, we update our prior belief about the parameters w of a model that predicts y given x
based on p(y|x, w) to a posterior distribution p(w|D) based on training data D. Marginalizing p(y|x, w) over
this posterior gives the posterior predictive distribution

p(y|x, D) =
∫

p(y|x, w)p(w|D)dw, (3)

also known as Bayesian Model Average (BMA), Bayes ensemble (e.g., Wenzel et al., 2020a), Bayesian
marginalization (e.g., Wilson & Izmailov, 2020), and posterior predictive. It predicts by averaging all possible
models weighted by their posterior probability. The BMA explicitly models aleatoric uncertainty (given by
p(y|x, w)) and epistemic uncertainty in the form of p(w|D) (see Caprio et al., 2024 for a recent discussion).
As the integral in (3) is in general intractable, it is approximated in practice by an average of M models
sampled from the posterior:

p(y|x, D) ≈ 1
M

M∑
m=1

p(y|x, wm), wm ∼ p(w|D) (4)

It is in general difficult to sample from p(w|D), which can, for example, be addressed by Markov chain Monte
Carlo (MCMC) sampling (Chen et al., 2014; Neal, 1992; 2011; Welling & Teh, 2011; Wenzel et al., 2020a;
Zhang et al., 2020), Monte Carlo Dropout (Folgoc et al., 2021; Gal & Ghahramani, 2016), and Laplace
approximation (MacKay, 1992b; Ritter et al., 2018).

2.2 Cancellation of errors

The cancellation of errors effect refers to the fact that, when individual ensemble members perform better
than random guessing and make independent errors, their errors average out and the combined model
outperforms the individual predictors (Eckhardt & Lee, 1985; Hansen & Salamon, 1990). Let us assume

3

Under review as submission to TMLR

binary classification and assume that each member of the ensemble has an error probability lower bounded
by pmax < 1

2 . Given M models, the generalization error of the ensemble is upper bounded by

P(x,y)∼ p(MVu(x) ̸= y) ≤ exp
(

−2
(M + 1

2 − Mpmax
)2

M−1
)

, (5)

see Appendix A.3 for a proof. That is, in the idealized (and not realistic) setting of independent errors,
the generalization error vanishes with increasing M if the classifiers are better than random guessing. The
corresponding regression case relating the expected mean squared error and the correlation of the models’
outputs is discussed in deep learning textbooks by (Goodfellow et al., 2016, sec. 7.11) and (Bishop & Bishop,
2023, sec. 9.6).

2.3 Deep ensembles

Deep ensembles (Lakshminarayanan et al., 2017) are ensembles with deep neural networks as members. More
specifically, we refer to a deep ensemble if the networks all share the same structure. These networks are
typically the result of independent training processes. The diversity is a result of random initialization
and stochastic optimization. This randomness alone can yield well-performing ensembles, while additional
randomization of the training data by bootstrap aggregation (bagging) bears the risk of the ensemble being
worse than a single network trained on all data (Lakshminarayanan et al., 2017; Lee et al., 2015). Other
ways to create deep ensemble members include the use of a cyclical learning rate schedule and taking the
intermediate checkpoints as snapshot ensembles (SSEs) (Huang et al., 2017) as well as searching for other
ensemble members in the neighborhood of a single pre-trained network (fast geometric ensembling (Garipov
et al., 2018)). Although being introduced as an alternative to Bayesian approaches, Bayesian interpretations
of deep ensembles can be found in recent work (D’Angelo & Fortuin, 2021; Wilson & Izmailov, 2020).

2.4 PAC-Bayesian majority voting

PAC-Bayesian analysis (McAllester, 1998; Valiant, 1984) provides bounds on the generalization error of Gibbs
classifiers defined by a distribution ρ over a (subset of a) hypothesis space H given empirical risks for the
hypotheses.

A Gibbs classifier draws a hypothesis h according to ρ at random for each input x and returns the prediction
h(x). PAC-Bayesian bounds hold for all distributions ρ over H simultaneously. This allows us to directly
optimize a PAC-Bayesian bound in terms of ρ, e.g., by gradient-based methods (Dziugaite & Roy, 2017;
Masegosa et al., 2020; Masegosa, 2020; Ortega et al., 2022; Pérez-Ortiz et al., 2021; Thiemann et al., 2017).
In a weighted majority voting classifier MVρ (e.g., a deep ensemble), the randomized prediction is replaced
by a ρ-weighted vote by all hypotheses (Germain et al., 2009; 2015). PAC-Bayesian bounds can be applied
to MVρ by bounding L(MVρ) by twice the risk of the corresponding Gibbs classifier (Germain et al., 2015;
Langford & Shawe-Taylor, 2002; Masegosa et al., 2020). Gibbs classifiers ignore interactions between the
models (such as cancellation of errors), and optimization of the weighting using bounds on the Gibbs classifier
directly does typically not increase generalization performance of the ensemble (e.g., Lorenzen et al., 2019).
This can be addressed by second-order PAC-Bayesian bounds (Germain et al., 2015; Lacasse et al., 2006;
Masegosa et al., 2020). In particular, Masegosa et al. derive a bound in terms of the tandem loss

L(h, h′) = Ep(x,y)[1(h(x) ̸= y ∧ h′(x) ̸= y)] , (6)

which takes pairwise correlations into account:
Theorem 1 (Masegosa et al., 2020). For any probability distribution π on H that is independent of D and
any δ ∈]0, 1[, with probability at least 1 − δ over a random draw of D with n elements, for all distributions ρ
on H and all λ ∈]0, 2[simultaneously:

L(MVρ) ≤ 4
(
Eρ2 [L̂D(h, h′)]

1 − λ/2 + 2KL(ρ∥π) + ln(2
√

n/δ)
λ(1 − λ/2)n

)
(7)

4

Under review as submission to TMLR

Here KL(ρ∥π) denotes the Kullback–Leibler divergence between prior π and posterior ρ, L̂D(h, h′) is the
empirical tandem loss on the data L̂D(h, h′) = 1

|D|
∑

(x,y)∈D 1(h(x) ̸= y ∧ h′(x) ̸= y)], and Eρ2 is the short
form for Eh∼ρ,h′∼ρ. The bound can be efficiently optimized w.r.t. to ρ and λ (Thiemann et al., 2017).

We consider optimization of ρ (i.e., the weights in a weighted ensemble) given M models as proposed by
Masegosa et al. (2020). Instead, one could also turn a second-order PAC-Bayesian bound into an objective
function to optimize ρ and the parameters of the M models simultaneously. This was done by Masegosa
(2020) for small multi-layer perceptrons and by Ortega et al. (2022) to optimize deep ensembles. However,
because of the optimization of the neural networks’ parameters and their weighting, the formal guarantees
by the PAC-Bayesian bounds get lost. Furthermore, Ortega et al. did not find improvements compared to
uniformly weighted deep ensembles for larger networks (e.g., ResNet20, He et al., 2016) in their empirical
evaluation.

3 Uniform, Bayesian, and PAC-Bayesian deep ensembles

In the following, we revisit results from the literature (Minka, 2002; Masegosa, 2020) and argue that general
ensemble methods and BMA have different motivations, which can leads to difference in prediction performance
in practice. Bayes ensembles are a way to improve uncertainty quantification and calibration of DNNs and
often increase accuracy compared to a single neural network. However, the BMA does not take interactions
between the ensemble members into account and weights them according to p(w|D), which does not necessarily
align with maximizing the predictive performance of an ensemble.

3.1 Bayes ensembles and cancellation of errors

In a weighted additive ensemble, a finite set of hypotheses from H are combined to a new model hρ ∈ HE
from the hypothesis class

HE =
{

hρ(x|h1, . . . , hM)
∣∣∣∣M ∈ N, ρ ∈ RM , hi ∈ H

}
. (8)

Learning a weighted combination of hypotheses can be regarded as a form of stacked generalization (Wolpert,
1992). As discussed in Section 2.2, hρ can generalize better than the individual h1, . . . , hM if the ensemble
members are diverse in the sense that their errors are not strongly correlated. Typically, H ⊂ HE, and for
most ensemble methods this is key. The ensemble members selected from H are often referred to as weak
learners and are not expected to have a very low risk (generalization performance) as long as they are better
than random guessing: The desired model is expected to be in HE \ H. Boosting with decision stumps is a
prime example (Freund et al., 1996).

In Bayesian machine learning, the posterior distribution p(h|D) over H models the uncertainty of identifying
a desired model h∗ ∈ H given finite training data D and the prior over H.1 In Bayesian deep learning with
a fixed neural network architecture hw parameterized by weights w ∈ Rd, we have H = {hw|w ∈ Rd} and
the posterior over the hypotheses is modelled by a distribution p(w | D) over the weights w. To simplify
the discussion, let us assume that the models are parameterized in a way that ensures identifiability, that
is, different parameters generate different hypotheses. With increasing training data set size n = |D| the
uncertainty about the desired model decreases, and p(w | D) should concentrate on w∗ (i.e., the weights of
the desired model h∗ = hw∗). This is formally shown by the Bernstein-von Mises theorem (Kleijn & Van der
Vaart, 2012; Van der Vaart, 2000), which was first discovered by Laplace (1820), taken up by Bernstein (1917)
and Von Mises (1931) independently, and proven in a more general form by Le Cam (1953), who coined the
name.
Theorem 2 (Bernstein-von Mises theorem). Let the parametric model hw be twice differentiable with a
non-singular Fisher information matrix I(w∗) at w∗, identifiable and continuous on a compact parameter
space. Furthermore, let the prior measure be absolutely continuous in a neighbourhood of w∗ with a continuous

1The desired model in H is the model in H closest to the true model hp underlying the data generating distribution p. We do
neither assume hp ∈ H nor hp ∈ HE.

5

Under review as submission to TMLR

density non-zero at w∗. Let us consider the sequence of posterior distributions pn(w | Dn) and maximum
likelihood estimates ŵn given Dn for data sets Dn ⊂ Dn+1. The Bernstein-von Mises theorem implies

∥pn(w|Dn) − N (ŵn, n−1I−1(w∗))∥TV
pw∗→ 0. (9)

That is, for increasing data set size, the posterior converges in probability to a normal distribution
N (ŵn, n−1I−1(w∗)), where ∥ · ∥TV denotes the total variation norm (see Van der Vaart, 2000). The
normal distribution is centered on the maximum likelihood estimate with covariance n−1I−1(w∗), that is,
the distribution gets more and more concentrated with increasing data set size. Under the same assumptions,
this implies that the expectation of the Bayes ensemble (4) converges to the maximum likelihood estimate
hw∗ ∈ H for n → ∞ (while the Bayes ensemble is not necessarily in H for finite n).

Thus, as already argued by Masegosa (2020, sec. 4) and by Minka (2002), from the perspective of general
ensemble learning and the goal of finding a model with minimum risk, a sample from the posterior p(w | D)
does not appear to be a particularly good choice for ensemble members. As the sample will be distributed
around the maximum likelihood estimate hw∗ ∈ H, it cannot be expected that the members of the ensemble
will be very diverse, and the lack of diversity reduces the cancellation of errors effect. The Bayes ensemble will
tend to the model with the highest likelihood in H – and not to the model with the highest likelihood in HE.
One may well argue that the presented asymptotic argument is of little practical relevance if H already has a
high capacity (e.g., consists of overparameterized deep neural networks), because then hw∗ ∈ H may be close
to the optimal solution. However, the important point is that even for finite n, the M ensemble members can
be expected to be quite similar in their predictive behavior. Thus, we formulate the following claim:
Claim 1. The Bayes ensemble is not a particularly good way to select and weight networks in a deep ensemble.

Although this claim appears to be evident given the theoretical considerations outlined above (see also, e.g.,
Minka, 2002; Masegosa, 2020), many studies evaluate the performance of the Bayes ensemble by measuring
generalization performance on a test set and provide favorable comparisons to baselines, especially single
networks, suggesting the posterior predictive as a way to maximize generalization performance. This study
presents unbiased comparisons of Bayes ensembles with alternative ensemble approaches to test Claim 1.

A Bayesian way to find the best generalizing ensemble is to lift the Bayesian reasoning from H to HE. This
has been demonstrated by Monteith et al. (2011), who apply BMA not to hw ∈ H, but to hρ ∈ HE, where HE
are all ensembles of a constant size M . In such an approach, the posterior distribution contracts around the
maximum likelihood estimate of the best weighting of ensemble members. Thus, we go from a distribution
over the weights of a single neural network to a distribution over all parameters of the M networks and the
ensemble weights. This growth in the number of dimensions renders the approach computationally infeasible
in larger settings.

The most basic way to create an ensemble of M neural networks is to repeat the training process M
times using all training data and to combine the resulting networks uniformly (Hansen & Salamon, 1990;
Lakshminarayanan et al., 2017). This procedure can be viewed as a simple ensembling, where random weight
initializations and stochastic training (randomly composed mini-batches, randomized augmentations), in
general stopped before convergence, are assumed to generate sufficiently diverse ensemble members. While this
approach is often explicitly referred to as non-Bayesian (see, e.g., Lakshminarayanan et al., 2017; Ovadia et al.,
2019; Wenzel et al., 2020a), the resulting ensemble may also be interpreted as a BMA from an approximate
posterior (Gustafsson et al., 2020; Wilson & Izmailov, 2020). In the former case, the motivation is to generate
a diverse set of ensemble members (i.e., to find a good solution in HE), in the latter the focus is on the
uncertainty about the single best model (in H). When modifying the algorithm, for example, by introducing
non-uniform weighting of the ensemble members, the difference in motivation matters. For example, putting
little weight on the hypothesis with maximum likelihood can be reasonable from the ensembling point of view,
but is difficult to justify from the BMA perspective.

In BMA it is also acknowledged that having samples with the same or very similar behavior in (4) is not very
efficient and methods have been devised to approximate the BMA using a diverse set of samples (Wilson &
Izmailov, 2020), but “[u]ltimately, the goal [of BMA] is to accurately compute the predictive distribution” in
(3) (Wilson & Izmailov, 2020), which is a different goal than finding the hypothesis with the lowest risk in

6

Under review as submission to TMLR

HE (Minka, 2002). At the core of the Bayesian ensembling approach is the weighting based on p(w|D) – and
this is suboptimal because it ignores the interactions between ensemble members.2

3.2 PAC-Bayesian deep ensembles

Claim 1 does not state that one cannot do better than uniform averaging given M models from H (as already
pointed out in early works on ensembles, e.g., Krogh & Sollich, 1997) nor that we cannot make use of priors
and Bayesian reasoning to improve ensembles. For example, there is no need to put weight on an ensemble
member that is worse than random guessing or always errs when another ensemble member errs (i.e., it can
never correct an error). Given the results by Masegosa et al. (2020) and Wu et al. (2021), it appears to be
promising to weight the members of the ensemble based on PAC-Bayesian generalization bounds optimized
using the tandem loss. It is crucial to consider a second-order bound that takes interactions between ensemble
members – error cancellation – into account; otherwise the approach suffers from the same problem as BMA
and concentrates all weight on a single ensemble member in the limit. However, the bounds require for each
ensemble member hi that there are data points Di not used for training hi and that for each pair of models
hi and hj the overlap Di ∩ Dj is large enough for a good enough estimate of the tandem loss: In (7), we
compute L̂Di∩Dj

(hi, hj) for each hypotheses pair hi and hj and n becomes n = mini |Di|. For random forests
as considered by Lorenzen et al. (2019) and Masegosa et al. (2020), data sets Di ⊂ D naturally arise from the
bagging procedure and the proposed bounds can be computed and optimized for free. When applied to deep
ensembles, we have to pay by leaving data out when training the ensemble members, which can be expected
to reduce the performance of the individual networks. Taking this into account, we claim:
Claim 2. PAC-Bayesian weighting optimized using the tandem loss can improve the generalization performance
of a deep ensemble, in particular if extra data for computing the bound are available, and provide nonvacuous
performance guarantees.

Theorem 1 based on the tandem loss provides a bound on the classification error that holds simultaneously
for all distributions ρ. Thus, given hypotheses hw1 , . . . , hwM

and data sets Di, we suggest optimizing the
second-order PAC-Bayesian bound to adapt ρ, which can be done very efficiently using gradient-based
optimization, see Appendix A.4 for details about the optimization process following Wu et al. (2021).

Because Theorem 1 holds for any ρ, it provides rigorous performance guarantees even if ρ is optimized using
the data Di. That is the fundamental difference to the work by Masegosa (2020) and Ortega et al. (2022),
who derive a loss function based on a PAC-Bayesian bound and optimize the parameters of the hypotheses
w1, . . . , wM . In this approach, the optimized loss functions do not provide performance guarantees, because
the models hw1 , . . . , hwM

are not independent of the data used for computing the loss (the same would happen
if we would optimize both ρ and w1, . . . , wM based on Theorem 1. Masegosa (2020) proves a PAC-Bayesian
bound on the cross-entropy that takes correlations into account. A loss function is derived on the basis of this
bound, which is then optimized to build ensembles. The study considers ensembles of multi-layer perceptrons
with 20 hidden units, which are jointly trained by minimizing the new loss. Ortega et al. (2022) extend
this work, which is, to our knowledge, the only study applying PAC-Bayesian methods to DNN ensembles.
They empirically compare uniform DNN ensembles with ensembles of DNNs that are jointly trained with
newly proposed loss functions derived from a PAC-Bayesian bound on the cross-entropy. For larger DNNs
such as ResNet20, the authors find that direct optimization of their bound does not induce ensembles
with much higher diversity and with similar or even worse performance than uniform deep ensembles with
individually trained members, which is in contrast to our empirical results described in section 4. Apart
from unsatisfactory empirical results when applied to DNNs, the bounds on the cross-entropy underlying the
algorithms in Masegosa (2020) and Ortega et al. (2022) are not valid anymore after constructing the ensemble.
This is in contrast to the approach proposed here, using the 0-1 loss bound given in Theorem 1 to weight
trained models. The bound holds for all λ and ρ simultaneously, and we optimize λ and ρ on independent
data, which can be done efficiently as described in Appendix A.4.

In most deep ensemble approaches, each ensemble member is the result of an independent training process,
where the weight configuration is chosen by early-stopping (requiring some hold-out data) or simply after
a predefined number of learning iterations (which is then also a crucial hyperparameter). In contrast,

2The original BMA (4) is based on independent draws from p(w|D), thus the w1, . . . , wM are independent by definition.

7

Under review as submission to TMLR

Wenzel et al. (2020a) sample from the posterior using a single stochastic gradient Markov chain Monte Carlo
(SG-MCMC) sequence and SSEs combine networks from a single learning process (Huang et al., 2017). That
is, one process creates all members of the ensemble. Having a theoretically sound way to weight models in an
ensemble reduces the risk that some of the models deteriorate the overall performance. The second-order
PAC-Bayesian weighting performs model selection taking both individual performance and diversity into
account, which should provide protection from networks that do not contribute positively to an ensemble. It
allows one to add models to the ensemble that do not perform particularly well and/or are correlated. As
an example, this makes it safe to include several weight configurations (checkpoints) from a single learning
process to an ensemble. It also renders using a hold-out validation dataset for early-stopping the neural
network training unnecessary: It should neither be harmful to add underfitted nor overfitted models. The
early-stopping data can instead be used to optimize the PAC-Bayesian weighting:

Claim 3. Optimizing the weighting using the tandem loss allows inclusion of several models from a training
run in a way that efficiently improves performance and makes early-stopping unnecessary.

In the following, we will study the three claims empirically.

4 Experiments and results

4.1 Experimental setup

Four different datasets and four neural network architectures were considered.3 We evaluated a CNN LSTM
(Yenter & Verma, 2017) on the IMDB binary classification benchmark (Maas et al., 2011) and compared
it with a state-of-the-art Bayesian approximate inference method from Wenzel et al. (2020a) (referred to
as cSGHMC-ap), who combine stochastic gradient Langevin dynamics (SGLD) (Chen et al., 2014; Welling
& Teh, 2011) with a cyclical learning rate schedule (Zhang et al., 2020), and adaptive preconditioning (Li
et al., 2016; Ma et al., 2015). Furthermore, we considered the multi-class data sets CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) with ResNet110 (He et al., 2016) and WideResNet28-10 (WRN28-10) (Zagoruyko &
Komodakis, 2016) architectures, for which Ashukha et al. (2020) and Vadera et al. (2022) provide reference
results for a variety of Bayesian methods. Lastly, the ResNet50 was evaluated on the EyePACS dataset that
contains diabetic retinopathy diagnoses distinguishing five degrees of severity. It was introduced by Band
et al. (2021) as a benchmark for Bayesian approximate inference methods. The authors provide results for a
variety of Bayesian neural networks and ensembles of those, creating “deep ensembles of Bayes ensembles”. As
we are concerned with a comparison to Bayes ensembles, we focus on the results of the individual Bayesian
methods as a reference. The hyperparameters for each experiment are given in Appendix A.3.

The optimization of the tandem loss followed Wu et al. (2021), see Appendix A.4 for details. To optimize
the weighting while retaining the original training data set size, test-time cross validation as introduced by
Ashukha et al. (2020) was employed. We used 50% of the hold-out data for bound optimization and the other
half for testing. This was then repeated with the two subsets switching roles, and the results were averaged
to decrease the variance for the unbiased performance estimate, see Appendix A.2 for details.

For each dataset and model architecture, a simple deep ensemble was constructed based on the reference
paper’s single-run hyperparameters. Intermediate checkpoints were stored and either included (referred to
as all from now) or ignored in the final ensemble (last). Further, ensembles with sub-sampled training sets
(bagging) as well as snapshot ensembles (SSE) using a cyclical learning rate were formed. Finally, the trade-off
between the size of the ensemble and the number of training epochs was studied in a sequential setting in
Appendix A.5.2.

We trained Mtotal networks for each setting, where Mtotal was 30, 50, and 10 for CIFAR, IMDB, and EyePACS,
respectively. Ensembles of size M were created by sampling without replacement from these models. This
was repeated five times for every setting, and we report mean and standard deviation σ of these five trials.
Generalization bounds are reported for δ = 0.05.

3We consumed approximately 320 GPU days for all experiments on a local cluster.

8

Under review as submission to TMLR

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M

0.83

0.84

0.85

0.86

0.87

0.88
Â

IMDB CNN-LSTM

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD cSGHMC-ap[7]

2 4 6 8 10 12 14 16 18 20 22 24

M

0.910

0.915

0.920

0.925

0.930

0.935

0.940

0.945

0.950

Â

CIFAR-10 ResNet20v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD cSGHMC-ap[27]

2 4 6 8 10 12 14 16 18 20 22 24

M

0.74

0.76

0.78

0.80

0.82

0.84

Â

CIFAR-100 ResNet110v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

cSGLD[10]

DE[10]

SGD

2 3 4 5 6 7 8

M

0.890

0.895

0.900

0.905

0.910

0.915

0.920

Â

EyePACS ResNet50v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

MC-Dr. [5]

MC-Dr. DE [15]

MAP

DE[3]

Figure 1: Mean test accuracy Â ±σ vs. ensemble size M over five ensembles for uniformly and PAC-Bayesian
weighted deep ensembles (AVGu and AVGρ), using either only the last or all training checkpoints, and the
best single model (SGD). References are Bayesian ensembles cSGHMC-ap (Wenzel et al., 2020a), cSGLD
(Ashukha et al., 2020), MC-Dropout and MC-Dropout Deep Ensemble (i.e., ensemble of Bayesian ensembles),
as well as simple Deep Ensembles for EyePACS from Band et al. (2021). Numbers in brackets indicate the
ensemble sizes of the baselines. Additional results for other settings are shown in Figure A.4 in the appendix.

4.2 Results

Bayesian vs. uniform deep ensembles (Claim 1). We compared the uniformly weighted deep ensembles
across all datasets and model architectures with Bayesian ensembles from the literature. Our results shown
in Table 1 and figures 1 and A.4 demonstrate that uniformly weighted deep ensembles can match the
performance of models based on BMA. On IMDB, a uniform deep ensemble of size M ≥ 20 matched the
reported performance from Wenzel et al. (2020a), and equivalent results were observed for all other datasets
and architectures. On CIFAR-100 with a ResNet110, the uniform deep ensemble outperformed the Bayesian
reference from Ashukha et al. (2020) by 1.3 ppt. Interestingly, the SGD and deep ensemble results from
Ashukha et al. are notably better than ours. As the authors base their Bayesian methods on pre-trained
SGD solutions, we can assume that their Bayesian reference performances could also profit from the better
accuracies achieved in their training environment. Thus, it is remarkable that our uniform deep ensembles
nevertheless matched the Bayesian references, and we would expect an even better performance if compared
in the same environment.

In accordance with the literature, bagging reduced the performance, see Appendix A.5.1 for details. The
experiments on the trade-off between M and the number of training epochs showed that, even in a sequential
setting with a strict limit on the number of overall training epochs, deep ensembles could match the BMA
approach, see Appendix A.5.2 for details.

9

Under review as submission to TMLR

Table 1: Mean test accuracies Â over five ensembles, ensemble size is given in brackets (for other ensemble
sizes see figures A.4, A.5, A.6, and A.7 in the appendix). The Simple results refer to simple deep ensembles
with SGD hyperparameters from the reference papers. The subscript ρ indicates that the weighting of the
ensemble members was based on minimizing a PAC-Bayesian tandem bound. The Bayesian reference results
are taken from Ashukha et al. (2020) (CIFAR ResNet110 & WRN28-10), Band et al. (2021) (EyePACS) and
Wenzel et al. (2020a) (IMDB, CIFAR-10 ResNet20).

Model Experiment Â(AVGu) Â(AVGρ) Â(AVGu) Â(AVGρ) SGD Bayesian
(Dataset) last last all all reference

CNN LSTM
(IMDB)

Simple 0.871[40] 0.872[40] – – 0.853
0.870[7]Checkp. 0.872[40] 0.873[40] 0.868[40·5] 0.873[40·5] 0.849

SSE 0.729[8] 0.741[8] 0.858[8·10] 0.874[8·10] 0.861
ResNet20
(CIFAR-10)

Simple 0.938[24] 0.938[24] 0.928[24·5] 0.938[24·5] 0.918 0.936[27]
SSE 0.894[24] 0.894[24] 0.903[24·5] 0.908[24·5] 0.896

ResNet110
(CIFAR-10)

Simple 0.956[20] 0.956[20] 0.944[20·5] 0.956[20·5] 0.943 0.955[10]
SSE 0.954[20] 0.955[20] 0.951[20·5] 0.954[20·5] 0.941

WRN28-10
(CIFAR-10)

Simple 0.967[24] 0.967[24] 0.96[24·5] 0.967[24·5] 0.961 0.967[10]
SSE 0.964[24] 0.963[24] 0.964[24·5] 0.964[24·5] 0.956

ResNet110
(CIFAR-100)

Simple 0.794[24] 0.793[24] 0.78[24·5] 0.793[24·5] 0.745 0.781[10]
SSE 0.79[24] 0.79[24] 0.788[24·5] 0.794[24·5] 0.733

WRN28-10
(CIFAR-100)

Simple 0.83[24] 0.83[24] 0.827[24·5] 0.829[24·5] 0.798 0.828[10]
SSE 0.818[24] 0.818[24] 0.822[24·5] 0.826[24·5] 0.791

ResNet50
(EyePACS)

Simple 0.91[8] 0.91[8] 0.912[8·6] 0.913[8·6] 0.895 0.909[5]

Bayesian vs. PAC-Bayesian deep ensembles (Claim 2). Optimizing the weighting by minimizing
the second-order PAC-Bayesian bound matched the uniform performance in all cases ±0.1 ppt, while even
slightly improving the ensemble performance on IMDB (Table 1: Â(AVGu) last vs. Â(AVGρ) last). At the
same time, the PAC generalization guarantees in Table 2 – which still hold after optimization – tightened
dramatically, most significantly on CIFAR-10 ResNet20 by 31.8 ppt, from 0.425 to 0.743. For ResNet110 on
CIFAR-100, the optimization was necessary to get a nontrivial bound, increasing from 0.0 to 0.127. The
PAC-Bayesian guarantees hold for MVρ as the aggregation method, and AVGρ usually performs slightly
better in practice. However, Table A.4 in the appendix shows how similar the two aggregation methods
behave. That is, a slight decrease in performance can give rigorous generalization bounds. Figures 2 and 3
exemplify the weighting from minimizing the tandem loss and a first-order PAC generalization bound. They
show that the second-order objective function avoids putting all weight on a single hypothesis, while the
first-order bound optimization does not.

Computing and optimizing the PAC-Bayesian bound requires additional hold-out data, which biases the
comparison with uniform weighting. Instead of using extra data, one could use bagging (Lorenzen et al., 2019;
Masegosa et al., 2020). The results of our bagging experiments are presented in Appendix A.5.1. For our
ensembles of neural networks and rather small data sets, bagging decreased the performance, which is in line
with the literature (Lakshminarayanan et al., 2017; Lee et al., 2015).

Bayesian vs. second-order PAC-Bayesian deep snapshot ensembles (Claim 3). We evaluated
snapshot ensembling (Huang et al., 2017) as well as simply taking checkpoints from the original learning
rate schedule. In SSEs, going from one to all intermediate checkpoints with optimized weighting improved
predictive performance in all but one case. On IMDB, this improvement was most pronounced with 13.3ppt
(Table 1: Â(AVGρ) last vs. Â(AVGρ) all). An SSE with 8 members (and 10 snapshots per member) gave the
best accuracy with a training budget (8 · 50 = 400 epochs) below the budget of the Bayesian reference method

10

Under review as submission to TMLR

(500 epochs). SSEs include networks when the learning rate is lowest, just before re-starting the learning rate
cycle. However, including checkpoints following the original schedule also matched the baseline of taking only
the last checkpoint across all experiments. This straightforward approach improved performance on IMDB
and EyePACS (Table 1: Â(AVGρ) last vs. Â(AVGρ) all). This is in contrast to the uniform weighting results,
where adding the snapshots decreased the performance compared to only taking the last network.

As hypothesized, the tandem loss bound optimization allows one to include worse performing models in the
ensemble (at no additional training cost) while maintaining or improving performance. Figures 2 and 3 show
that the second-order PAC-Bayesian approach picks snapshots from the different training runs. This can be
seen most clearly from the regular pattern in Figure 3, bottom left. Figure 3 shows the differences between
the Simple and SSE training setup. In the former, there was a tendency to pick the last snapshots of each
network training run; in the latter, which used a cyclic learning rate schedule, intermediate snapshots were
also selected.

Thus, optimizing the weights is crucial when considering all models from a training run. We attribute this to
the importance of filtering out models with low performance. When considering all models and optimizing
the weighting, the Simple setting using SGD hyperparameters from the reference papers performed on par
with the SSE setting using a cyclic learning rate. Thus, using a special learning rate schedule when combining
models from a single training run was not necessary when the proposed weighting method was employed.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0.0

0.5Â

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

ρ

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M

0.00

0.05

ρ

50 100 150 200
0.0

0.5Â

50 100 150 200
0.00

0.25ρ

50 100 150 200

M

0.000

0.025

ρ

Figure 2: IMDB accuracies (Â, top) and weight distribution per member for first-order (middle, Lorenzen
et al., 2019) and tandem bound weighting (bottom) for the Simple setting considering only a single network
per training process (left) and when adding checkpoints (right). The number of training runs was 40. Four
intermediate checkpoints were added, giving a total of five weight configurations per training process.

20 40 60 80 100 120
0.0

0.5Â

20 40 60 80 100 120
0.00

0.25ρ

20 40 60 80 100 120

M

0.00

0.05

ρ

20 40 60 80 100 120
0.0

0.5Â

20 40 60 80 100 120
0.0

0.5

ρ

20 40 60 80 100 120

M

0.00

0.05

ρ

Figure 3: ResNet20 on CIFAR-10 accuracies (top) and weight distribution per member for first-order (middle)
and tandem bound weighting (bottom) for the Simple setting (left) and SSE (right), both including all
checkpoints (24 training processes, five checkpoints per process).

11

Under review as submission to TMLR

Table 2: Test accuracies for AVGρ and MVρ and PAC-Bayesian bounds (δ = 0.05) for all Simple experiments
(see Table 1). An overview over all experiments is shown in Figure A.4 in the appendix. The bounds were
computed for the all setting, except for IMDB, where checkpoints were taken in a separate experiment due to
early-stopping in Simple; MVu and MVρ refer to majority voting with uniform and optimized ρ, respectively.

Model Dataset
Bound
MVu

Bound
MVρ

Â(AVGρ)
last

Â(MVρ)
last

Â(AVGρ)
all

Â(MVρ)
all

CNN LSTM IMDB 0.576 0.594 0.873 0.872 0.873 0.874
ResNet20 CIFAR-10 0.425 0.743 0.938 0.938 0.938 0.938
ResNet110 CIFAR-10 0.559 0.792 0.956 0.956 0.956 0.955
WRN28-10 CIFAR-10 0.794 0.833 0.967 0.966 0.967 0.966
ResNet110 CIFAR-100 0.0 0.127 0.793 0.791 0.793 0.791
WRN28-10 CIFAR-100 0.172 0.277 0.83 0.829 0.829 0.829
ResNet50 EyePACS 0.686 0.695 0.911 0.909 0.912 0.912

5 Discussion and conclusions

Bayesian model averaging (BMA) can improve uncertainty quantification and calibration of deep neural
networks (DNNs). Several lines of research study the generalization performance of the Bayes ensemble and
try to improve it, where performance is measured in terms of accuracy on a test set. In general, the BMA
indeed improves predictive performance compared to a single neural network. However, the Bayes ensemble is
often – implicitly and explicitly – brought forward as a particularly good and theoretically justified approach
to weight members of an ensemble to improve generalization performance. In this work, we argue conceptually
in the line of Masegosa (2020), Minka (2002) and Ortega et al. (2022) and provide additional evidence that
the predictive posterior is not a particularly good basis for selecting and weighting the networks in a deep
ensemble. A proper Bayesian way to build a deep ensemble would be to apply Bayesian inference to the space
of ensembles (Monteith et al., 2011), but this is computationally expensive and – also for that reason – is
not what is typically proposed in the research directions our study addresses. A simple uniformly weighted
deep ensemble can be expected to perform on par with more sophisticated BMA based approaches and it
can be created more efficiently. It does not require involved sampling from the posterior and training is
embarrassingly parallel.

Our proposed optimization of the weighting of DNN ensemble members using the tandem loss and additional
data can improve uniform deep ensembles. Using a second-order bound to derive the optimization objective
is crucial, because minimizing a first-order bound will lead to a lack of diversity similar to BMA (see also
Lorenzen et al., 2019). The PAC-Bayesian weighting allows us to safely include several models from a training
run, which can improve performance efficiently and make early-stopping unnecessary. It has already been
argued by Sollich & Krogh (1995) that having models overfitted to a subset of the training data in a properly
weighted ensemble need not be harmful. The proper weighting is important, a naïve uniform combination of
many models from the same run can deteriorate performance.

Although no hold-out data for early-stopping is needed, it is a limitation of the weighting approach that
additional hold-out data is required. For the rather small data sets and the models considered in this
study, experiments with canonical bagging showed that leaving out training data impaired the performance
of the ensemble (as also observed by Lakshminarayanan et al., 2017, and Lee et al., 2015), even though
bagging increases diversity. However, the data used for optimization of the weighting provide at the same
time a rigorous, non-trivial upper bound on the generalization performance – and getting such formal
guarantees generally requires independent data, see Gastpar et al. (2024) for theoretical arguments in the
overparameterized DNN setting. The PAC-Bayesian bounds still hold after optimization. In our case, this
optimization was necessary to elevate some of the bounds from being trivial to nonvacuous guarantees on the
ensemble performance. The bound presumes model combination by majority voting as prediction method,
however, in our experiments we did not observe a big difference in generalization performance between
majority voting and averaging predictive distributions. Thus, PAC-Bayesian optimization of the ensemble

12

Under review as submission to TMLR

weights is highly recommended if not all data available for model construction is needed for training so that a
subset can be employed for optimization and getting performance guarantees. Combining several solutions
(i.e., checkpoints or snapshots) from a single training trial with PAC-Bayesian optimization presents a novel
way to utilize hold-out data – for ensemble member weighting instead of checkpoint selection using early
stopping.

Code availability

Code for reproducing the experiments is submitted as supplementary material. Our work builds on several,
publicly available code repositories and datasets. The IMDB training code including the CNN LSTM model
was based on the Keras example, similarly to the CIFAR training code from the CIFAR-10 Keras example,
including all ResNets. Both examples are distributed under the Apache 2.0 license. The Gaussian prior for the
CNN LSTM on IMDB was based on the code from Wenzel et al. (2020a), also under Apache 2.0 license. The
preprocessing routine of the EyePACS dataset was adapted from Google’s uncertainty-baselines repository,
again under the Apache 2.0 license. The Wide ResNet (Zagoruyko & Komodakis, 2016) implementation was
taken from a publicly available GitHub repository. Finally, the implementation of the tandem loss PAC-
Bayesian bound optimization (Masegosa et al., 2020) was taken and extended from the official implementation
by the authors.

References
Ben Adlam, Jasper Roland Snoek, and Sam Smith. Cold posteriors and aleatoric uncertainty. In International

Conference on Machine Learning (ICML) Workshop on Uncertainty and Robustness in Deep Learning, 2020.

Laurence Aitchison. A statistical theory of cold posteriors in deep neural networks. In International Conference on
Learning Representations (ICLR), 2021.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain uncertainty
estimation and ensembling in deep learning. In International Conference on Learning Representations, 2020.

Gregor Bachmann, Lorenzo Noci, and Thomas Hofmann. How tempering fixes data augmentation in Bayesian neural
networks. In International Conference on Machine Learning (ICML), volume 39, 2022.

Neil Band, Tim G. J. Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W Dusenberry, Ghassen Jerfel,
Dustin Tran, and Yarin Gal. Benchmarking Bayesian deep learning on diabetic retinopathy detection tasks. In
Advances in Neural Processing Systems (NeurIPS) Datasets and Benchmarks Track (Round 2), 2021.

Sergei Bernstein. Theory of probability, 1917. In Russian, cited after Kleijn & Van der Vaart (2012).

Christopher M Bishop and Hugh Bishop. Deep Neural Networks. Springer, 2023.

Sebastian Buschjäger, Lukas Pfahler, and Katharina Morik. Generalized negative correlation learning for deep
ensembling. arXiv preprint arXiv:2011.02952, 2020.

Michele Caprio, Souradeep Dutta, Kuk Jin Jang, Vivian Lin, Radoslav Ivanov, Oleg Sokolsky, and Insup Lee. Credal
Bayesian deep learning. arXiv preprint arXiv:2302.09656, 2024.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In International
Conference on Machine Learning (ICML), 2014.

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are Bayesian. In Advances in Neural Processing
Systems (NeurIPS), volume 34, 2021.

Thomas G Dietterich. Ensemble methods in machine learning. In International Workshop on Multiple Classifier
Systems, pp. 1–15. Springer, 2000.

Pedro Domingos. Bayesian averaging of classifiers and the overfitting problem. In International Conference on Machine
Learning (ICML), pp. 223–230, 2000.

Emma Dugas, Jared, Jorge, and Will Cukierski. Diabetic retinopathy detection. https://www.kaggle.com/
competitions/diabetic-retinopathy-detection, 2015. Accessed: 15.04.2024.

13

https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/imdb_cnn_lstm.py
https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/cifar10_resnet.py
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/google/uncertainty-baselines/blob/main/uncertainty_baselines/datasets/diabetic_retinopathy_dataset_utils.py
https://raw.githubusercontent.com/titu1994/Wide-Residual-Networks/master/wide_residual_network.py
https://github.com/StephanLorenzen/MajorityVoteBounds
https://github.com/StephanLorenzen/MajorityVoteBounds
https://www.kaggle.com/competitions/diabetic-retinopathy-detection
https://www.kaggle.com/competitions/diabetic-retinopathy-detection

Under review as submission to TMLR

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for deep (stochastic)
neural networks with many more parameters than training data. In Conference on Uncertainty in Artificial
Intelligence (UAI), volume 33, 2017.

Dave E. Eckhardt and Larry D. Lee. A theoretical basis for the analysis of multiversion software subject to coincident
errors. IEEE Transactions on Software Engineering, SE-11(12), 1985.

Sebastian Farquhar, Michael A Osborne, and Yarin Gal. Radial Bayesian neural networks: Beyond discrete support in
large-scale Bayesian deep learning. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2020.

Loic Le Folgoc, Vasileios Baltatzis, Sujal Desai, Anand Devaraj, Sam Ellis, Octavio E Martinez Manzanera, Arjun
Nair, Huaqi Qiu, Julia Schnabel, and Ben Glocker. Is MC Dropout Bayesian? arXiv preprint arXiv:2110.04286,
2021.

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Ratsch, Richard E Turner, Mark
van der Wilk, and Laurence Aitchison. Bayesian neural network priors revisited. In International Conference on
Learning Representations, 2022.

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In International Conference on
Machine Learning (ICML), volume 96, 1996.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep
learning. In International Conference on Machine Learning (ICML), 2016.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss surfaces, mode
connectivity, and fast ensembling of DNNs. In Advances in Neural Processing Systems (NeurIPS), volume 31, 2018.

Michael Gastpar, Ido Nachum, Jonathan Shafer, and Thomas Weinberger. Fantastic generalization measures are
nowhere to be found. In International Conference on Learning Representations (ICLR), 2024.

Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-Bayesian learning of linear
classifiers. In International Conference on Machine Learning (ICML), volume 26, 2009.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario March, and Jean-Francis Roy. Risk bounds for the
majority vote: From a PAC-Bayesian analysis to a learning algorithm. Journal of Machine Learning Research, 16
(26):787–860, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

Peter Grünwald. The safe Bayesian: Learning the learning rate via the mixability gap. In International Conference on
Algorithmic Learning Theory, 2012.

Fredrik K. Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable bayesian deep learning methods
for robust computer vision. In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.
318–319, 2020.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(10):993–1001, 1990.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger. Snapshot ensembles:
Train 1, get m for free. In International Conference on Learning Representations (ICLR), 2017.

Christian Igel and Michael Hüsken. Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing,
50(C):105–123, 2003.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What are Bayesian neural network
posteriors really like? In International Conference on Machine Learning (ICML), volume 38, 2021.

Zhengshen Jiang, Hongzhi Liu, Bin Fu, and Zhonghai Wu. Generalized ambiguity decompositions for classification with
applications in active learning and unsupervised ensemble pruning. In AAAI Conference on Artificial Intelligence,
volume 31, 2017.

14

Under review as submission to TMLR

Sanyam Kapoor, Wesley J Maddox, Pavel Izmailov, and Andrew G Wilson. On uncertainty, tempering, and data
augmentation in Bayesian classification. In Advances in Neural Processing Systems (NeurIPS), volume 35, 2022.

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer vision? In
Advances in Neural Processing Systems (NeurIPS), volume 30, 2017.

Bas JK Kleijn and Aad W Van der Vaart. The Bernstein-von-Mises theorem under misspecification. Electronic
Journal of Statistics, 6:354–381, 2012.

Alex Krizhevsky. Learning multiple layers of features from tiny images. https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf, 2009. Accessed: 15.04.2024.

Anders Krogh and Peter Sollich. Statistical mechanics of ensemble learning. Physical Review E, 55(1):811, 1997.

Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, and Nicolas Usunier. PAC-Bayes bounds
for the risk of the majority vote and the variance of the gibbs classifier. In Advances in Neural Processing Systems
(NeurIPS), volume 19, 2006.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Processing Systems (NeurIPS), volume 30, 2017.

John Langford and John Shawe-Taylor. PAC-Bayes & margins. In Advances in Neural Processing Systems (NeurIPS),
volume 15, 2002.

Pierre Simon Laplace. Théorie analytique des probabilités, volume 7. Courcier, 1820. In French, cited after Kleijn &
Van der Vaart (2012).

Lucien Le Cam. On some asymptotic properties of maximum likelihood estimates and related Bayes’ estimates. Univ.
Calif. Publ. in Statist., 1:277–330, 1953.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why m heads are better
than one: Training a diverse ensemble of deep networks. arXiv preprint arXiv:1511.06314, 2015.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic gradient Langevin
dynamics for deep neural networks. In Association for the Advancement of Artificial Intelligence (AAAI) Conference
on Artificial Intelligence, volume 30, 2016.

Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural Networks, 12(10):1399–1404, 1999.

Stephan S Lorenzen, Christian Igel, and Yevgeny Seldin. On PAC-Bayesian bounds for random forests. Machine
Learning, 108(8):1503–1522, 2019.

Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient mcmc. In Advances in Neural
Processing Systems (NeurIPS), volume 28, 2015.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, volume 49, 2011.

David JC MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992a.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3):448–472,
1992b.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A simple baseline
for Bayesian uncertainty in deep learning. In Advances in Neural Processing Systems (NeurIPS), volume 32, 2019.

Andrés R. Masegosa. Learning under model misspecification: Applications to variational and ensemble methods. In
Advances in Neural Processing Systems (NeurIPS), volume 33, 2020.

Andrés R. Masegosa, Stephan S. Lorenzen, Christian Igel, and Yevgeny Seldin. Second order PAC-Bayesian bounds
for the weighted majority vote. In Advances in Neural Processing Systems (NeurIPS), 2020.

David A McAllester. Some PAC-Bayesian theorems. In Conference on Computational Learning Theory (COLT),
volume 11, 1998.

15

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Under review as submission to TMLR

Thomas P Minka. Bayesian model averaging is not model combination, 2002. Available electronically at
https://tminka.github.io/papers/minka-bma-isnt-mc.pdf.

Kristine Monteith, James L Carroll, Kevin Seppi, and Tony Martinez. Turning Bayesian model averaging into Bayesian
model combination. In International Joint Conference on Neural Networks (IJCNN), pp. 2657–2663, 2011.

Seth Nabarro, Stoil Ganev, Adrià Garriga-Alonso, Vincent Fortuin, Mark van der Wilk, and Laurence Aitchison. Data
augmentation in Bayesian neural networks and the cold posterior effect. In Conference on Uncertainty in Artificial
Intelligence, 2022.

Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael Dusenberry, Sebastian Farquhar, Angelos Filos,
Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah Liu, Zelda Mariet, Jeremy Nixon, Shreyas Padhy,
Jie Ren, Tim Rudner, Yeming Wen, Florian Wenzel, Kevin Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper
Snoek, Yarin Gal, and Dustin Tran. Uncertainty Baselines: Benchmarks for uncertainty & robustness in deep
learning. arXiv preprint arXiv:2106.04015, 2021.

Radford M Neal. Bayesian learning via stochastic dynamics. In Advances in Neural Processing Systems (NeurIPS),
volume 5, 1992.

Radford M Neal. Bayesian Learning for Neural Networks. Springer, 1996.

Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2(11):113–162, 2011.

Luis A. Ortega, Rafael Cabañas, and Andres Masegosa. Diversity and generalization in neural network ensembles. In
International Conference on Artificial Intelligence and Statistics (AISTATS), volume 25, pp. 11720–11743, 2022.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshmi-
narayanan, and Jasper Snoek. Can you trust your model's uncertainty? Evaluating predictive uncertainty under
dataset shift. In Advances in Neural Processing Systems (NeurIPS), volume 32, 2019.

Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approximately Bayesian
ensembling. In International Conference on Artificial Intelligence and Statistics, 2020.

María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk certificates for neural
networks. Journal of Machine Learning Research, 22(227):1–40, 2021.

Michael P Perrone and Leon N Cooper. When networks disagree: Ensemble methods for hybrid neural networks. In
Richard J. Mammone (ed.), Neural networks for speech and image processing, pp. 81–99. Chapman-Hall, 1993.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation for neural networks. In
International Conference on Learning Representations (ICLR), volume 6, 2018.

Tim GJ Rudner, Zonghao Chen, Yee Whye Teh, and Yarin Gal. Tractable function-space variational inference in
Bayesian neural networks. In Advances in Neural Processing Systems (NeurIPS), volume 35, 2022.

Peter Sollich and Anders Krogh. Learning with ensembles: How overfitting can be useful. In Advances in Neural
Information Processing Systems (NeurIPS), volume 8, 1995.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly quasiconvex PAC-Bayesian
bound. In International Conference on Algorithmic Learning Theory, 2017.

Ilya O Tolstikhin and Yevgeny Seldin. PAC-Bayes-empirical-Bernstein inequality. In Advances in Neural Processing
Systems (NeurIPS), volume 26, 2013.

Meet Vadera, Jinyang Li, Adam Cobb, Brian Jalaian, Tarek Abdelzaher, and Benjamin Marlin. URSABench: A
system for comprehensive benchmarking of Bayesian deep neural network models and inference methods. In Machine
Learning and Systems (MLSys), volume 4, 2022.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Aad W Van der Vaart. Asymptotic Statistics, volume 3. Cambridge University Press, 2000.

Richard Von Mises. Wahrscheinlichkeitsrechnung. Springer, 1931.

16

Under review as submission to TMLR

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In International Conference
on Machine Learning (ICML), volume 28, 2011.

Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim
Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes posterior in deep neural networks
really? In International Conference on Machine Learning (ICML), volume 37, 2020a.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for robustness and
uncertainty quantification. In Advances in Neural Processing Systems (NeurIPS), volume 33, 2020b.

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, and David Rügamer.
Towards efficient MCMC sampling in Bayesian neural networks by exploiting symmetry. In Machine Learning and
Knowledge Discovery in Databases: Research Track, 2023.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of generalization. In
Advances in Neural Processing Systems (NeurIPS), volume 33, pp. 4697–4708, 2020.

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, January 1992.

Yi-Shan Wu, Andrés R. Masegosa, Stephan S. Lorenzen, Christian Igel, and Yevgeny Seldin. Chebyshev-Cantelli
PAC-Bayes-Bennett inequality for the weighted majority vote. In Advances in Neural Processing Systems (NeurIPS),
2021.

Alec Yenter and Abhishek Verma. Deep CNN-LSTM with combined kernels from multiple branches for IMDb review
sentiment analysis. In IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference
(UEMCON), volume 8, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference (BMVC),
2016.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical stochastic gradient
MCMC for Bayesian deep learning. In International Conference on Learning Representations (ICLR), 2020.

17

Under review as submission to TMLR

A Appendix / supplemental material

A.1 Experimental details

The experimental setups including the hyperparameters were taken from the respective references cited and
the corresponding source code. Thus, no hyperparameter tuning was performed, except for the EyePACS
dataset, where the hyperparameters from the literature did not lead to convergence of the models and the
learning rate was decreased by a factor of 100.

IMDB. For IMDB, the described setup from Wenzel et al. (2020a) was copied as closely as possible. The
dataset from the tensorflow.keras.datasets API was used with 20,000 word features and a maximum
sequence length of 100. 20,000 training samples with 5,000 random validation samples being used for training
with early-stopping due to overfitting. The test set included all 25,000 samples from the original test set.
The CNN LSTM model and code were taken from the Keras example4 and extended with a Gaussian prior
N (0, I) for regularization, as done by the authors in their code repository5. As optimizer, SGD with Nesterov
momentum of 0.98 and a batch size of 32 with a constant learning rate was utilized. For the cyclic learning
rate in all snapshot ensemble (SSE) experiments, the original schedule from Huang et al. (2017) was used.

CIFAR. The CIFAR datasets were taken from the tensorflow.keras.datasets API with the original
train and test split. Similar to Wenzel et al. (2020a), no early-stopping with a validation set was used.
The ResNet20 model was taken from the Keras example 6. As in the example, all experiments used
data augmentation during training with random left/right flipping and random cropping with 4px of shift
horizontally and vertically. The hyperparameters for the ResNet20 were adopted from Wenzel et al. (2020a),
while they were taken from Ashukha et al. (2020) for the ResNet110 and Wide ResNet28-10. As optimizer,
SGD with Nesterov momentum of 0.9 and a batch size of 128 with a step-wise decreasing learning rate (η)
was employed (epoch, η-multiplier): (80, 0.1), (120, 0.01), (160, 0.001), (180, 0.0005). For the ResNet110 and
WRN28-10, a linearly decreasing learning rate schedule starting at half of the total number of epochs was
utilized, as reported by Ashukha et al. (2020) and introduced by Garipov et al. (2018):

η(i) =


ηinit, i ∈ [0, 0.5 · epochs]
ηinit · (1.0 − 0.99 · (i/epochs − 0.5)/0.4), i ∈ [0.5 · epochs, 0.9 · epochs]
ηinit · 0.01, otherwise

(A.10)

EyePACS. The EyePACS dataset was included in the 2015 Kaggle diabetic retinopathy detection com-
petition (Dugas et al., 2015). Diabetic retinopathy is the leading cause of blindness in the working-age
population of the developed world and is estimated to affect more than 92 million people. The dataset
contains high-resolution labeled RGB images of human retinas with varying degrees of diabetic retinopathy
on a five-grade scale, from none (0), to mild (1), moderate (2), severe (3) and proliferating (4) development of
the disease. It consists of 35126 training, 10906 validation and 42670 test images, each labeled by a medical
expert. In order to binarize the labels, Band et al. (2021) follow previous work and classify moderate or
worse manifestation as sight-threatening (grades 2-4), and remaining grades 0-1 as non sight-threatening.
The dataset with binary labels is unbalanced, such that 19.6% of the training and 19.2% of the test set
have a positive label, which is why the cross-entropy objective is weighted by the inverse of the global
class distribution. Furthermore, the images exhibit different types of noise (artifacts, focus, exposure) and
are expected to show label noise due to misjudgement of the medical personnel (Dugas et al., 2015). The
preprocessing of images by Band et al. (2021) follows the winning entry of the original Kaggle challenge (Dugas
et al., 2015). The images are first rescaled such that the retinas have a radius of 300 pixels, smoothed using
local Gaussian blur with a kernel standard deviation of 100 pixels and clipped to 90% to remove boundary
effects. Finally, they are resized to 512x512 pixels and stored. For our preprocessing, the implementation
from Nado et al. (2021) was used7. Except the preprocessing, no data augmentation was used. With the

4https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/imdb_cnn_lstm.py
5https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
6https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/cifar10_resnet.py
7https://github.com/google/uncertainty-baselines/blob/main/uncertainty_baselines/datasets/diabetic_retinopathy_dataset_utils.py

18

https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/imdb_cnn_lstm.py
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/cifar10_resnet.py
https://github.com/google/uncertainty-baselines/blob/main/uncertainty_baselines/datasets/diabetic_retinopathy_dataset_utils.py

Under review as submission to TMLR

Table A.3: Hyperparameters for all experiments. Ep.b. (Epoch budget) refers to the experiments in
section A.5.2.

Model Experiment Val. set lrinit CP epochs L2-reg. LR Sched.
(Dataset)

IMDB
(CNN LSTM)

Simple 20%

0.1

1 50

N (0, I)

constant
Checkp. 20% 5 5 constant
Bagging Bagging 1 50 constant
SSE 20% 5 50 cyclic
Ep.b. 20% 1 variable constant

ResNet20
(CIFAR-10)

Simple 0% 0.1 5 200

0.002

step
Bagging Bagging 0.1 5 200 step
SSE 0% 0.2 5 200 cyclic
Ep.b. 0% 0.1 1 variable step

ResNet110,
WRN28-10
(CIFAR-10,
CIFAR-100)

Simple 0%

0.1

5 300

0.0003

linear
Bagging Bagging 5 300 linear
SSE 0% 5 300 cyclic
Ep.b. 0% 1 variable linear

ResNet50
(EyePACS)

Simple 0% 2.3 · 10−4 6 90 1.07 · 10−4 stepBagging Bagging

optimal SGD hyperparameters from Band et al. (2021), the resulting models failed to converge in our case,
which is why we reduced the learning rate and switched the optimizer to Adam. The batch size was kept at
32. For the learning rate schedule, a step-wise decrease was employed with a reduction by a factor of 0.2 at
30 and 60 epochs.

A.2 Test-time cross-validation

Ashukha et al. (2020) describe the problem of requiring a validation set (in their case for scaling the logit
outputs of neural networks with a temperature parameter), while the benchmark datasets only feature a
training and test dataset (e.g. CIFAR). In that case, when splitting the training set into a training and
validation subset, the performance may drop compared to methods that use the full training data because the
reduced training data set is a worse description of the task. In contrast, when splitting off a validation set
from the test data, one still obtains an unbiased estimate of the generalization error, but with higher variance
due to smaller test dataset size. In order to reduce the variance, Ashukha et al. (2020) propose test-time
cross-validation: splitting the test dataset randomly and averaging the results of the generalization estimates
to reduce the variance. We follow this approach and divide the test dataset randomly in half. One half is
used for the tandem loss bound optimization, while the other serves as a generalization estimate. Afterwards,
the roles of the datasets are switched and the risk estimates are averaged. In our case, this setting does not
result in a fair comparison. All methods should make use of the same amount of data, and algorithms that
do not need a validation set could use the additional data for training, which can improve performance, in
particular if data are scarce. However, one can envision a scenario where the additional data are not available
during training but only later when deploying the model (e.g., local fine-tuning of centrally trained models).

A.3 Cancellation of independent binary classification errors

Because this known result is often stated without proof, we provide an upper bound for the error probability
of the majority vote for an ensemble of binary classifiers with independent errors.
Theorem 3. Consider M binary classifiers hi, . . . , hM mapping to {0, 1} and the majority vote classifier
given by:

hMV(x) =
{

1 if
∑M

i=1 hi(x) ≥ M/2
0 otherwise

(A.11)

19

Under review as submission to TMLR

We define the random variables Ai = 1[hi(x) ̸= y] indicating a mistake by hi and assume for all i = 1, . . . , M
that the risk is bounded by a constant

P(x,y)∼ p(hi(x) ̸= y) = E{Ai} ≤ pmax <
1
2 (A.12)

and that the Ai are independent. Then it holds

P (hMV(x) ̸= y) ≤ exp
(

−
2
(

M+1
2 − Mpmax

)2

M

)
. (A.13)

Proof. Let SM =
∑M

i=1 Ai. The probability P (hMV(x) ̸= y) that the majority vote classifier makes a mistake
is the probability that P (SM > M/2) or alternatively P (SM ≥ (M + 1)/2). It holds

E
{ M∑

i=1
Ai

}
= E{SM } ≤ Mpmax (A.14)

and we have

P (SM ≥ (M + 1)/2) = P (SM − E{SM } ≥ (M + 1)/2 − E{SM }) (A.15)
≤ P (SM − E{SM } ≥ (M + 1)/2 − Mpmax). (A.16)

With Hoeffding’s inequality and ε = (M + 1)/2 − Mpmax we get the desired bound

P (SM ≥ (M + 1)/2) ≤ P{SM − E{SM } ≥ ε} ≤ exp
(

−2ε2

M

)
(A.17)

= exp
(

−
2
(

M+1
2 − Mpmax

)2

M

)
.

A.4 Optimization of the tandem loss bound

The following results are taken from Masegosa et al. (2020) and are just restated for completeness.

The bound in Theorem 1 is convex in λ for a given ρ. From Tolstikhin & Seldin (2013) and Thiemann et al.
(2017), the optimal λ for a given ρ is simply given by

λ = 2√
2nEρ2 [L̂(h,h′,D)]
2KL(ρ∥π)+ln 2

√
n

δ

+ 1 + 1
. (A.18)

Let the matrix of empirical tandem losses be defined as L̂ ∈ RM×M with entries [L̂]ij = L̂Dij (hi, hj), where
Dij is the data used for estimating the tandem loss for hypotheses hi and hj . Now, the gradient with respect
to ρ given λ

Let [∇f]i for denote the component of the gradient corresponding to hypothesis hi for fixed λ. Then we have

[∇f]i = 2
M∑

j=1
ρ(hj)L̂(hi, hj), Dij) + 2

λn

(
1 + ln ρ(hi)

π(hi)

)
. (A.19)

If Dij = Dkl for i, j, k, l ∈ {1, . . . , M}, then the loss is convex in ρ for a given λ. This is true in our experiments
with a separate data set for tuning the ensemble, but not when using bagging. We refer to Masegosa et al.
(2020) for details.

In practice, for a given ensemble, the bound is optimized in an iterative procedure. Starting from a uniform
ρ(0), in iteration t = 0, 1, . . . ones computes λ(t) using ρ(t) and equation (A.18) and then ρ(t+1) by performing a
gradient-based optimization step using λ(t) and equation (A.19). The optimization problem is low-dimensional
(ρ ∈ RM) and converges quickly. We employed iRprop (Igel & Hüsken, 2003) for gradient-based optimization
as done by Wu et al. (2021).

20

Under review as submission to TMLR

A.5 Further experimental results

Table A.4: Test accuracies for AVGρ and MVρ and PAC-Bayesian bounds for all experiments. The bounds
were computed for the all setting, except for IMDB, where checkpoints were taken in a separate experiment due
to early-stopping in Simple; MVu and MVρ refer majority voting with uniform and optimized ρ, respectively.

Model
(Dataset) Experiment

Bound
MVu

Bound
MVρ

Â(AVGρ)
last

Â(MVρ)
last

Â(AVGρ)
all

Â(MVρ)
all

CNN LSTM
(IMDB)

Simple 0.585 0.59 0.872 0.873 - -
Checkpointing 0.576 0.594 0.873 0.872 0.873 0.874
Bagging 0.579 0.585 0.869 0.867 - -
SSE 0.459 0.575 0.741 0.74 0.874 0.872
Ep.b. (500) 0.571 0.574 0.873 0.872 - -

ResNet20
(CIFAR-10)

Simple 0.425 0.743 0.938 0.938 0.938 0.938
Bagging 0.387 0.691 0.929 0.928 0.929 0.928
SSE 0.593 0.612 0.894 0.893 0.908 0.909
Ep.b. (1500) 0.718 0.718 0.937 0.934 - -

ResNet110
(CIFAR-10)

Simple 0.559 0.792 0.956 0.956 0.956 0.955
Bagging 0.555 0.763 0.949 0.948 0.949 0.948
SSE 0.785 0.802 0.955 0.954 0.954 0.953
Ep.b. (1500) 0.799 0.8 0.954 0.953 - -
Ep.b. (300) 0.735 0.735 0.942 0.939 - -

Wide
ResNet28-10
(CIFAR-10)

Simple 0.794 0.833 0.967 0.966 0.967 0.966
Bagging 0.764 0.808 0.959 0.958 0.959 0.958
SSE 0.843 0.848 0.963 0.964 0.964 0.964
Ep.b. (1500) 0.832 0.834 0.966 0.965 - -
Ep.b. (300) 0.805 0.806 0.961 0.957 - -

ResNet110
(CIFAR-100)

Simple 0.0 0.127 0.793 0.791 0.793 0.791
Bagging 0.0 0.0 0.771 0.769 0.771 0.768
SSE 0.083 0.125 0.79 0.787 0.794 0.793
Ep.b. (1500) 0.091 0.099 0.783 0.777 - -
Ep.b. (300) 0.0 0.0 0.749 0.728 - -

Wide
ResNet28-10
(CIFAR-100)

Simple 0.172 0.277 0.83 0.829 0.829 0.829
Bagging 0.041 0.173 0.812 0.811 0.812 0.811
SSE 0.276 0.289 0.818 0.818 0.826 0.827
Ep.b. (1500) 0.271 0.276 0.829 0.822 - -
Ep.b. (300) 0.233 0.233 0.815 0.811 - -

ResNet50
(EyePACS)

Simple 0.686 0.695 0.911 0.909 0.912 0.912
Bagging 0.613 0.638 0.894 0.893 0.896 0.895

A.5.1 Bagging

In the bagging experiments, we used different training data for each ensemble member to increase diversity.
We drew bootstrap samples from the training data uniformly at random with replacement. The sample size
was equal to the size of the training data. The experiments illustrate the effect of decreasing the training
data volume (e.g., to use the data for bound optimization).

The individual network performance suffered from omitting unique training data points, and although the
networks are assumed to be more diverse, the resulting ensembles performed worse performance across all
experiments. The results are visualized in Figure A.6, which shows that none of the ensembles, neither
uniform nor optimized in their weighting, could match the Bayesian reference. This is in line with the

21

Under review as submission to TMLR

2 4 6 8 10 12 14 16 18 20

M

0.93

0.94

0.95

0.96

0.97

Â
CIFAR-10 ResNet110v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.955

0.960

0.965

0.970

0.975

Â

CIFAR-10 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.74

0.76

0.78

0.80

0.82

0.84

Â

CIFAR-100 ResNet110v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

cSGLD[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.80

0.81

0.82

0.83

0.84

Â

CIFAR-100 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.80

0.81

0.82

0.83

0.84

Â

CIFAR-100 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 3 4 5 6 7 8

M

0.890

0.895

0.900

0.905

0.910

0.915

0.920

Â

EyePACS ResNet50v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

MC-Dr. [5]

MC-Dr. DE [15]

MAP

DE[3]

Figure A.4: Mean test accuracy Â ±σ over five ensembles for uniformly and PAC-Bayesian weighted deep
ensembles (AVGu and AVGρ), using only the last or all training checkpoints, and best single model (SGD).
References are Bayesian ensembles cSGHMC-ap (Wenzel et al., 2020a), cSGLD (Ashukha et al., 2020),
MC-Dropout and MC-Dropout Deep Ensemble (i.e., ensemble of Bayesian ensembles), as well as simple
Deep Ensembles for EyePACS from Band et al. (2021). Numbers in brackets indicate the ensemble sizes.

literature (Lakshminarayanan et al., 2017; Lee et al., 2015), which finds the same decrease in performance
for neural network ensembles. PAC-Bayesian optimization is therefore best suited for large datasets with
additional data that is not essential for training. On a positive note, random initialization and stochastic
training appears to be enough randomization for creating diverse ensembles.

22

Under review as submission to TMLR

2 3 4 5 6 7 8

M

0.83

0.84

0.85

0.86

0.87

0.88
Â

IMDB CNN-LSTM

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD cSGHMC-ap[7]

2 4 6 8 10 12 14 16 18 20 22 24

M

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

Â

CIFAR-10 ResNet20v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD cSGHMC-ap[27]

2 4 6 8 10 12 14 16 18 20

M

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

Â

CIFAR-10 ResNet110v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.955

0.960

0.965

0.970

0.975

Â

CIFAR-10 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.74

0.76

0.78

0.80

0.82

0.84

Â

CIFAR-100 ResNet110v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

cSGLD[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.79

0.80

0.81

0.82

0.83

0.84

Â

CIFAR-100 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

Figure A.5: Snapshot ensemble (SSE) experiments: Mean ensemble accuracy (5 ensembles, ±σ)

A.5.2 Training time comparison

It is not straight-forward to compare the computational resources required by the different approaches due to
their different training and inference procedures. The BMA based approaches require training of the neural
network and sampling the posterior, where the latter can be time consuming. In contrast, minimization of the
PAC-Bayesian bound is highly efficient and its computational costs can be neglected. Simple deep ensembles
are embarrassingly parallel, while methods that consider ensemble members from one process cannot be fully
parallelized.

23

Under review as submission to TMLR

But even for simple ensembles, there can be a trade-off between number of networks and the number of
training iterations spent on each network. To explore this trade-off, we considered the worst case scenario
for deep ensemble training and assume that there is no parallelization. Furthermore, we assumed that the
sampling from the posterior does not take any time. That is, for methods based on BMA only the training
epochs for optimizing the network are counted, not the sampling. In this sequential setting, we asked, given
an overall budget of B training epochs, how does the performance of our deep ensembles depend on the
number M of networks when each network is trained for ⌊B/M⌋ epochs. For the experiments taken from
Wenzel et al. (2020a), we set B = 1500 for CIFAR-10 and B = 500 for IMDB, corresponding to the number
of training epochs used for the Bayes ensemble. The results are shown in Figure A.7. Even in this biased
comparison, there were choices of M for which the simple deep ensemble outperformed the Bayesian approach.

24

Under review as submission to TMLR

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

Â
IMDB CNN-LSTM

AVGu last AVGρ last SGD cSGHMC-ap[7]

2 4 6 8 10 12 14 16 18 20 22 24

M

0.90

0.91

0.92

0.93

0.94

0.95

Â

CIFAR-10 ResNet20v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD cSGHMC-ap[27]

2 4 6 8 10 12 14 16 18 20

M

0.92

0.93

0.94

0.95

0.96

0.97

Â

CIFAR-10 ResNet110v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

Â

CIFAR-10 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Â

CIFAR-100 ResNet110v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

cSGLD[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

Â

CIFAR-100 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 4 6 8 10 12 14 16 18 20 22 24

M

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

Â

CIFAR-100 WideResNet28-10

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

SWAG[10]

DE[10]

SGD

2 3 4 5 6 7 8

M

0.86

0.87

0.88

0.89

0.90

0.91

0.92

Â

EyePACS ResNet50v1

AVGu last

AVGu all

AVGρ last

AVGρ all

SGD

MC-Dr. [5]

MC-Dr. DE [15]

MAP

DE[3]

Figure A.6: Bagging: Mean ensemble accuracy (5 runs, ±σ highlighted)

25

Under review as submission to TMLR

2 4 6 8 10 12 14 16 18 20

M

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

Â

IMDB CNN-LSTM

AVGu last AVGρ last cSGHMC-ap[7]

2 3 4 5 6 7 8 9 10 11 12 13 14 15

M

0.920

0.925

0.930

0.935

0.940

0.945

0.950
Â

CIFAR-10 ResNet20v1

AVGu last AVGρ last cSGHMC-ap[27]

Figure A.7: Epoch budget in a sequential training setting: Mean ensemble accuracy (5 ensembles, ±σ). The
number of epochs is given by ⌊B/M⌋, where b = 1500.

26

	Introduction
	Background
	Bayesian model average
	Cancellation of errors
	Deep ensembles
	PAC-Bayesian majority voting

	Uniform, Bayesian, and PAC-Bayesian deep ensembles
	Bayes ensembles and cancellation of errors
	PAC-Bayesian deep ensembles

	Experiments and results
	Experimental setup
	Results

	Discussion and conclusions
	Appendix / supplemental material
	Experimental details
	Test-time cross-validation
	Cancellation of independent binary classification errors
	Optimization of the tandem loss bound
	Further experimental results
	Bagging
	Training time comparison

