

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW RELIABLE IS LANGUAGE MODEL MICRO-BENCHMARKING?

Anonymous authors

Paper under double-blind review

ABSTRACT

Micro-benchmarking offers a solution to the often prohibitive time and cost of language model development: evaluate on a very small subset of existing benchmarks. Can these micro-benchmarks, however, rank models *as consistently as* the full benchmarks they replace? And can they rank models *more consistently than* selecting a random subset of data points? In many scenarios, we find that the answer is no. We introduce a meta-evaluation measure for micro-benchmarking which investigates how well a micro-benchmark can rank two models as a function of their performance difference on the full benchmark. This approach can determine which model pairs can be ranked correctly by a micro-benchmark, allowing for a finer-grained analysis of the trade-off between micro-benchmark size and reliability. Prior work has suggested selecting as few as 10 examples; we find that no micro-benchmarking method can *consistently* rank model pairs 3.5 points of accuracy apart on MMLU-Pro or 4 points apart on BIG-bench Hard. In order to consistently rank model pairs with relatively similar performances, we show that *often as many as 250 examples must be selected, at which point random sampling is competitive* with existing micro-benchmarking methods. When comparing only 8B instruction-tuned models on MMLU-Pro micro-benchmarks with 25 examples, we find that more than half of pairwise comparisons are not likely to be preserved. Our work provides actionable guidance for both micro-benchmark users and developers in navigating the trade-off between evaluation efficiency and reliability.

1 INTRODUCTION

Micro-benchmarking methods reduce the evaluation time of language models by predicting performance on a full benchmark from performance on a small subset (Vivek et al., 2024; Polo et al., 2024; Perlitz et al., 2024; Ye et al., 2023; Gupta et al., 2024). Current micro-benchmarking determines these subsets based on different criteria (§2). For instance, Anchor Points (Vivek et al., 2024) selects the centroids of test example clusters in the space of model predictions. tinyBenchmarks (Polo et al., 2024) selects examples close to the centroid of clusters obtained using Item Response Theory (Cai et al., 2016). But there is a general trade-off between efficiency and the reliability of the judgments drawn from *any* evaluation set: smaller eval sets are more cost-effective, but they do not always accurately reflect which model will perform best in practice (Shalev-Shwartz & Ben-David, 2014; Dror et al., 2018). Do micro-benchmarks suffer from this general trade-off, as well? Specifically, we ask: How can we measure the extent to which micro-benchmarks reflect the model performance judgments of full benchmarks?

Prior work has evaluated micro-benchmarks using two meta-evaluation approaches: (i) how well they reconstruct the accuracy of any single model on the full evaluation set (Polo et al., 2024), and (ii) how well they preserve the aggregate rankings of a set of models (Vivek et al., 2024; Perlitz et al., 2024). We evaluate micro-benchmarks instead on their ability to predict *pairwise model rankings* on the full benchmark: Given that model M_1 outperforms model M_2 on the full benchmark, what is the probability that model M_1 outperforms M_2 on the micro-benchmark? Inspired by statistical power analysis (Card et al., 2020), we measure the minimum performance difference between models M_1 and M_2 on the full benchmark that still consistently yields a correct pairwise ranking of the two models on the micro-benchmark. We introduce a meta-evaluation measure, the *Minimum Detectable Ability Difference* (MDAD) that offers a fine-grained view of *which* performance judgments are preserved by a micro-benchmark (§3). A direct consequence of MDAD is an understanding of how

micro-benchmark size affects its reliability across model pairs being compared (§5). In addressing pairwise estimates, MDAD offers complementary benefits to existing meta-evaluation measures, which deal with pointwise estimates or aggregate rankings (§5.1).

Unlike micro-benchmark selection, selecting examples uniformly at random has the advantages of speed and simplicity: it does not require evaluating models to learn prediction correlations, nor does it train auxiliary models of instance difficulty. However, existing meta-evaluation has not characterized when micro-benchmark selection outperforms random sampling (Vivek et al., 2024; Polo et al., 2024). Our meta-evaluation measure, MDAD, reveals that the intuitive baseline of random sampling is competitive with existing micro-benchmark selection under all but the most extreme dataset reductions (§5.2). We also use MDAD to show the limits of micro-benchmarking in the common setting of comparing same-size models, which often have similar performances on a task. When selecting 25 examples from MMLU-Pro, 51% of pairwise comparisons among a set of 8B-parameter instruction-tuned models are not likely to be preserved (§5.3).

Figure 1 compares our evaluation with others on revealing the limits of micro-benchmarking. When comparing nearly 100 models on MMLU-Pro (Wang et al., 2024), Kendall’s tau rank correlation between the full benchmark and a micro-benchmark shows that Anchor Points is better correlated with the full benchmark than random sampling is at extremely small dataset sizes (Figure 1, top left). However, a correlation of, say, 0.74, does not identify *which model comparisons remain challenging* for a micro-benchmark. Our measure, MDAD, considers the probability that a micro-benchmark agrees with the full benchmark *as a function of the accuracy difference between a model pair* (Figure 1, bottom panels). For two models that differ by 2 points of accuracy on the full benchmark (dashed lines in Figure 1, bottom), we show that when only 10 examples are selected, no micro-benchmark can distinguish these models more than 65% of the time (Figure 1, bottom left). In contrast, when 500 examples are selected (Figure 1, bottom right), many micro-benchmarks can distinguish the same models more than 90% of the time, including even random sampling, which Kendall’s tau rank correlation corroborates (Figure 1, top right). Thus, if a practitioner wants to distinguish models 2 points of accuracy apart, then they could simply use random sampling to select at least 500 examples. If instead they wanted only to distinguish models that differ by more than 4 points, then only 10 examples selected by Anchor Points would suffice.

Overall, our meta-evaluation provides guidance for navigating the trade-off between evaluation efficiency and reliability. Very small micro-benchmarks have value, but it is vital to know that they will often only be able to distinguish models with very different performances. For the more pertinent task of distinguishing models with similar performances, larger micro-benchmarks are necessary, at which point random sampling is often enough for reliable, simple, and efficient evaluation.

2 MICRO-BENCHMARKING PRELIMINARIES

We give a formal description of micro-benchmarking using the terminology from Vivek et al. (2024). Given a large evaluation dataset D_{full} , the goal is to select a micro-benchmark $D_{\text{micro}} \subset D_{\text{full}}$ where

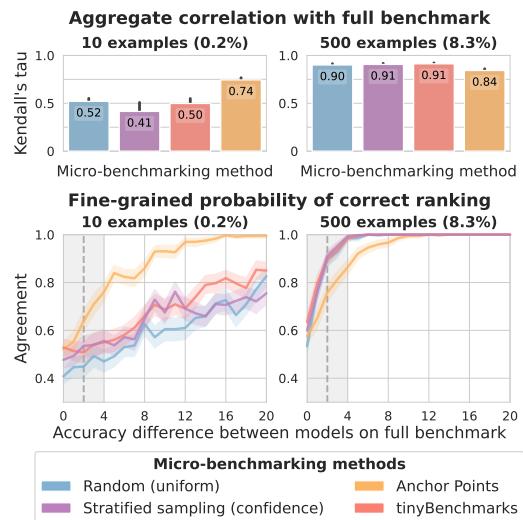


Figure 1: Existing meta-evaluation metrics (e.g. Kendall’s tau rank correlation) summarize micro-benchmark performance for MMLU-Pro in the aggregate (top). At extreme dataset reductions, micro-benchmarks can yield high aggregate rank correlation with full benchmarks (top left), but no micro-benchmark has a high probability of agreeing with the full benchmark when ranking model pairs that differ by fewer than 4 points of accuracy (bottom left, gray background). Once enough examples are selected to distinguish such model pairs (bottom right, gray background), random sampling is competitive. See §3 for details and Figure 4 for comparisons to another existing measure.

108 $|D_{\text{micro}}| \ll |D_{\text{full}}|$. Micro-benchmark selection typically assumes access to a set of source models \mathcal{U}
 109 that have been evaluated on the full dataset D_{full} . A method selects a micro-benchmark D_{micro} of a
 110 fixed size $|D_{\text{micro}}| = n$ with a common high-level goal: for a new set of target models \mathcal{T} , performance
 111 on the micro-benchmark D_{micro} should be similar to performance on the full benchmark. This goal is
 112 realized in various ways by different methods.
 113

114 **Micro-benchmark selection.** We consider four micro-benchmark selection methods throughout
 115 this paper. Anchor Points (Vivek et al., 2024) first calculates correlations between example pairs
 116 using source model confidences and then selects the centroids of test example clusters in the resulting
 117 embedding space, in order to obtain a high correlation between model rankings on the full benchmark
 118 and the selected micro-benchmark. The tinyBenchmarks IRT method (Polo et al., 2024) instead aims
 119 to select a micro-benchmark that minimizes the error when predicting accuracy for individual source
 120 models. It does so by training an Item Response Theory (IRT) model, which results in example and
 121 source model embeddings. It then selects the closest example to centroids obtained from clustering
 122 these embeddings.¹ Stratified random sampling (Fogliato et al., 2024b) randomly selects examples
 123 from clusters obtained based on model confidence on examples. We also consider a diversity-based
 124 method that samples examples spread evenly in the space of source model correlations used by
 125 Anchor Points, enabled by a sampler that can select negatively-dependent samples (Bardenet et al.,
 126 2024). Appendix B gives detailed descriptions of these methods.
 127

127 **Existing meta-evaluations for micro-benchmarks.** Prior work has measured the degree to which
 128 micro-benchmarks preserve target model performance in two ways: (i) for individual models using
 129 *mean estimation error* and (ii) in the aggregate for a whole set of target models using *rank correlation*.
 130 Mean estimation error measures the difference between model performance on the micro-benchmark
 131 and the full evaluation set D_{full} on a set of target models \mathcal{T} (Polo et al., 2024). On the other hand,
 132 Kendall’s tau rank correlation (Nelsen, 2001) between all target model rankings on D_{micro} and D_{full}
 133 measures micro-benchmark fidelity on an entire set of target models (Vivek et al., 2024). A pair
 134 of models $M_1, M_2 \in \mathcal{T}$ is said to be a *discordant pair* if the models are ranked differently on the
 135 full benchmark and the micro-benchmark. Let $\text{perf}_D(M)$ be the performance of model M on an
 136 evaluation set D , and let C be the set of these discordant pairs. The metrics are calculated as:
 137

$$\text{err}_{D_{\text{micro}}, D_{\text{full}}}(\mathcal{T}) = \frac{1}{|\mathcal{T}|} \sum_{M \in \mathcal{T}} |\text{perf}(M) - \text{perf}_{D_{\text{full}}}(M)| \quad \text{Kendall's } \tau = 1 - \frac{2|C|}{\binom{|\mathcal{T}|}{2}} \quad (1)$$

140 **Random sampling.** Uniform random sampling selects a fixed-size subset of examples indepen-
 141 dently and uniformly at random, without any model dependence:
 142

$$D_{\text{micro}} \sim \text{Unif}(\{R \subseteq D_{\text{full}} | |R| = n\}) \quad (2)$$

144 We also consider another variant of stratified random sampling that takes into account a benchmark’s
 145 t pre-defined subtasks $\{D_i\}_{i=1}^t$ where $D_{\text{full}} = \bigcup_{i=1}^t D_i$, where an equal number of examples are
 146 selected from each subtask (Polo et al., 2024; Perlitz et al., 2024):
 147

$$D_{\text{micro}} = \bigcup_{i=1}^t R_i \text{ where } R_i \sim \text{Unif}(\{R_i \subseteq D_i | |R_i| = \lfloor n/t \rfloor\}) \quad (3)$$

149 **Micro-benchmark settings.** Many choices go into building micro-benchmarks: which source models
 150 to use, which target models to evaluate, and even which examples to select from in the first place. Prior
 151 work typically averages evaluation metrics over many partitions of a fixed set of models into source
 152 and target models at random (Vivek et al., 2024; Polo et al., 2024), by model family (Vivek et al.,
 153 2024), or by model release date (Polo et al., 2024). The examples selected for a micro-benchmark
 154 also vary over optimization hyperparameters, such as random seeds.
 155

156 3 MDAD: A META-EVALUATION FOR MICRO-BENCHMARK RELIABILITY

158 We present a meta-evaluation for micro-benchmarks based on how consistently pairwise model
 159 rankings on them agree with those obtained on the full benchmark. Given that model M_1 outperforms
 160

161 ¹Polo et al. (2024) propose method variants that also incorporate IRT model predictions. Results for variants
 162 are very similar in their paper, as borne out by our initial experiments as well. We focus on their main method.

model M_2 on the full dataset, how likely is it that model M_1 also outperforms model M_2 on the micro-benchmark? We consider this pairwise ranking agreement probability as a function of the performance difference between the model pair, aggregated over all target model pairs.

We first calculate the probability of agreement between a micro-benchmark and the full dataset at a given difference in performance between two models on the full dataset. Let the performance difference between models M_1 and M_2 on eval dataset D be $\Delta_D(M_1, M_2) = \text{perf}_D(M_1) - \text{perf}_D(M_2)$. We fix a set of ordered buckets of pairwise performance differences \mathcal{B} and define agreement for each bucket $B \in \mathcal{B}$. Assuming without loss of generality that the model with higher performance on the full benchmark is called M_1 , then for D_{micro} selected from D_{full} :

$$\text{agreement}(D_{\text{micro}}, D_{\text{full}}, B) = \Pr_{M_1, M_2 \in \mathcal{T}} \left(\Delta_{D_{\text{micro}}}(M_1, M_2) > 0 \mid \Delta_{D_{\text{full}}}(M_1, M_2) \in B \right) \quad (4)$$

In practice, we compute agreement using all pairs of target model performances and calculate the frequency of target model comparisons in each bucket that match on both D_{micro} and D_{full} .

The agreement function can be summarized using a single value that we call the *Minimum Detectable Ability Difference* (MDAD): what is the lowest performance difference on the full benchmark at which pairwise model rankings on a micro-benchmark are consistent with those on the full benchmark? Our goal here is to adapt the idea from statistical power analysis of estimating the minimum difference in model performance that can be consistently detected by a dataset (Card et al., 2020; Cohen, 1962). Following conventions from statistical power analysis, we consider a judgment consistent if it is correct at least 80% of the time.²

$$\text{MDAD}(D_{\text{micro}}, D_{\text{full}}) = \arg \min_{\substack{\text{centroid}(B) \\ B \in \mathcal{B}}} \left\{ \text{agreement}(D_{\text{micro}}, D_{\text{full}}, B) \right\} \text{ s.t. } \Pr \geq 0.8 \quad (5)$$

In practice, we report the centroid of the bucket corresponding to the lowest performance difference. MDAD captures how well a micro-benchmark preserves pairwise model rankings, unlike mean estimation error, which only considers single models, or rank correlation, which considers all model rankings in the aggregate. Lower MDAD is better because then even small performance differences across model pairs can be reliably measured under D_{micro} . If two models' performances differ by less than a micro-benchmark's MDAD, then that micro-benchmark is not likely to be able to consistently distinguish them. For example, suppose a micro-benchmark at a given size results in an MDAD of 10.

²Appendix C shows qualitatively similar results for different thresholds.

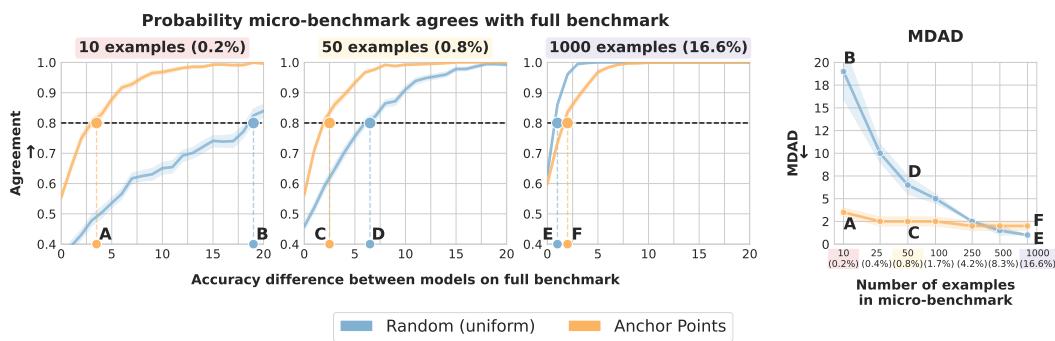


Figure 2: Agreement and MDAD measures on MMLU-Pro for uniform random sampling and Anchor Points with 300 source models. The three left panels show the probability that a pairwise ranking of models on a micro-benchmark agrees with the full benchmark's ranking, as a function of the accuracy difference between those models on the full benchmark. The rightmost panel summarizes all these agreement curves by showing the minimum detectable accuracy difference between models at each micro-benchmark size, i.e. the accuracy difference at which each curve in the first three panels crosses the 0.8 probability of agreement threshold. Points A-F show how each agreement curve is summarized by MDAD: each point marks the minimum difference in accuracy where an agreement curve surpasses a 0.8 probability of agreement. For MDAD, lower values are better. Error bars represent 95% bootstrap confidence intervals over 50 trials.

216 Table 1: Summary of differences between MDAD and existing meta-evaluation measures.
217

218 Meta-evaluation measure	219 What does it measure?	220 Unit of comparison	221 Aggregation
Mean estimation error	Raw performance	Individual model	Across all models
Kendall’s tau rank correlation	Model rankings	Model pair	Across all model pairs
MDAD	Model rankings	Model pair	Model pairs split by performance difference

222 Then at least 80% of the time, that micro-benchmark can correctly rank only model pairs that differ
223 on the full benchmark by at least 10 performance points. If we instantiate agreement (Equation 4)
224 using accuracy as the performance measure, Equation 5 then measures the *Minimum Detectable*
225 *Accuracy Difference*. Figure 2 provides an illustrative example of the relationship between agreement
226 at various accuracy differences and MDAD, which summarizes the agreement curve. For the rest of
227 the paper, MDAD will refer to this accuracy-based instantiation. Table 1 gives a conceptual overview
228 of how MDAD differs from existing meta-evaluation measures.

230 4 EXPERIMENTAL DESIGN

232 Our goal is to measure the reliability of micro-benchmarks as a function of which pairwise model
233 rankings on a micro-benchmark predict pairwise model rankings on a) the full eval set and b) a fresh
234 draw of equal size from the same task distribution.

236 For all experiments, we simulate different draws from a benchmark by splitting each benchmark in
237 half (each subtask is divided in half as well): the train half is used to select the micro-benchmark,
238 and the held-out half is used to measure generalization. We also uniformly at random partition
239 a set of models into source models for selecting micro-benchmarks and a set of target models
240 whose accuracy we are predicting, as in Vivek et al. (2024) and Polo et al. (2024). We account
241 for variance in micro-benchmark construction by averaging over random samples of datasets and
242 source models, following Card et al. (2020) and Perlitz et al. (2024). Most of our experiments select
243 a micro-benchmark from an entire benchmark (as in Polo et al. (2024)), though in §5.4 we also
244 evaluate selecting micro-benchmarks *per subtask* (as in Vivek et al. (2024)) and report averages across
245 subtasks. We compute meta-evaluation measures with the same data split used for micro-benchmark
246 selection for most experiments, following prior work. In §5.4, we do so using the held-out set. We
247 use 50 trials, each with a partition of **a) data points into a set for selection and a set for measuring**
248 **generalization and b) models into source and target sets**. Details are in Appendix D. Appendix E
249 analyzes MDAD estimates for up to 100 trials; we find MDADs have stabilized by 50 trials.

250 **MDAD implementation details.** Following prior work, we consider micro-benchmarking methods
251 specifically designed for classification tasks. We report accuracy as a percent from 0 to 100 and
252 measure agreement using accuracy difference buckets at a resolution of 0.5 points of accuracy, i.e.
253 $\mathcal{B} = \{[0, 0.25), [0.25, 0.75), [0.75, 1.25), \dots\}$, reporting MDAD as the bucket centroid.³ In our
254 experiments, MDAD takes on average 2.40 seconds to compute (with a standard deviation of 0.24 s).

255 **Benchmarks and micro-benchmarks.** We consider 47 subtasks of MMLU (10,631 examples)
256 (Hendrycks et al., 2021), all 24 subtasks of BIG-Bench Hard (BBH, 5,761 examples) (Suzgun et al.,
257 2023), all 14 subtasks of MMLU-Pro (12,032 examples) (Wang et al., 2024), and GPQA (448
258 examples) (Rein et al., 2024). We investigate four micro-benchmark selection methods discussed
259 in §2: Anchor Points, tinyBenchmarks, stratified sampling by confidence, and diversity. We also
260 compare to uniform random sampling and subtask-stratified random sampling.

261 **Size of micro-benchmarks.** We evaluate constructing micro-benchmarks at various small sizes
262 by selecting $k \in \{10, 25, 50, 100, 250, 500, 1000\}$ examples. For GPQA, a smaller bench-
263 mark, we select $k \in \{10, 25, 50, 100, 200\}$ examples. In Appendix G, we also evaluate
264 constructing micro-benchmarks at various proportions of the original benchmark by selecting
265 $\{2\%, 4\%, 8\%, 16\%, 32\%, 40\%\}$ of examples, finding qualitatively similar results.

266 **Models.** For BBH, MMLU-Pro, and GPQA, we use the results of 470 models tagged as official
267 on the Open LLM Leaderboard v2 (Fourrier et al., 2024), as evaluated with the LM Eval Harness

268 269 ³Appendix F shows that bucket resolutions of 0.25, 0.5, and 1 all yield similar MDAD values.

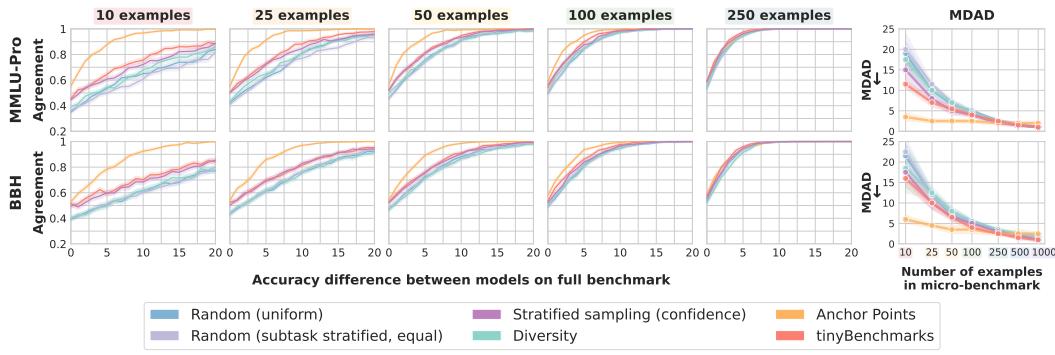


Figure 3: Comparing six micro-benchmarking approaches on two benchmarks. y -axis shows agreement (Equation 4), the probability that a micro-benchmark agrees with the full benchmark when comparing two models, as a function of how much those models differ on the full benchmark (x -axis). The rightmost column summarizes agreement curves using MDAD (Equation 5). For small micro-benchmarks, all methods struggle to compare models that differ by fewer than 4 points of accuracy on the full benchmark. Anchor Points does best, followed by tinyBenchmarks. Error bars show 95% bootstrap confidence intervals over 50 trials. Figure 9 (Appendix G) shows all benchmarks.

(Gao et al., 2024). For MMLU, we use the results of the 366 models from the Open LLM Leaderboard (Fourrier et al., 2024), as in Polo et al. (2024). Model accuracy spans large ranges for all benchmarks, ranging from 25 to 75 on BBH, 27 to 76 on MMLU, 10 to 59 on MMLU-Pro, and 21 to 45 on GPQA. Unless otherwise stated, we randomly partition models into source models and target models as in (Vivek et al., 2024; Polo et al., 2024). We train micro-benchmarks with $\{10, 50, 100, 150, 200, 250, 300\}$ source models in order to determine whether increasing the number of source models substantially improves micro-benchmarks. Prior work has typically used a fixed number of source models for most experiments, either 10 source models (Vivek et al., 2024) or nearly 300 source models (Polo et al., 2024). Figures report results using 300 source models unless otherwise stated. Our approach of freshly computing micro-benchmarks using publicly available cached model predictions follows prior work (Polo et al., 2024).

Difference from standard evaluations. Our experiments do not attempt to find the “best” examples for evaluation—rather, they are designed to assess the reliability of existing micro-benchmarks. We also specifically seek to understand the conditions under which random sampling is an effective alternative to existing micro-benchmarking. For this reason, we do not release specific subsets of benchmarks like tinyMMLU (Polo et al., 2024) or Flash-HELM (Perlitz et al., 2024).

5 RESULTS

We consider four micro-benchmark selection methods and two random sampling baselines across the four benchmark suites, using agreement (Eq. 4) and MDAD (Eq. 5) from §3. MDAD reveals limitations of all the micro-benchmarking approaches we consider in the extreme dataset reduction regime and provides a finer-grained analysis than existing meta-evaluation measures (§5.1, §5.3). We show that random sampling is competitive with other micro-benchmark selection if sampling at least 250 examples (§5.2). §5.4 analyzes micro-benchmark generalization to new draws of the task. The complete results per benchmark for all parameter settings are in Appendix G. Appendix H shows that our analysis also holds for a micro-benchmarking method that selects whole subtasks.

Larger micro-benchmarks afford lower MDAD. Figure 3 examines how agreement varies with micro-benchmark size across methods and benchmarks. Each agreement curve is summarized by an MDAD value (Figure 3, rightmost column); lower MDAD values correspond to higher reliability. As a first case study, consider BBH micro-benchmarks (Figure 3, bottom row). As more examples are selected, model pairwise rankings on micro-benchmarks are likely to be more predictive of those on the full eval set. For example, the agreement curves in the 100-example panel have shifted to the left of their positions in the 10-example panel. Just as agreement steadily increases as more examples are

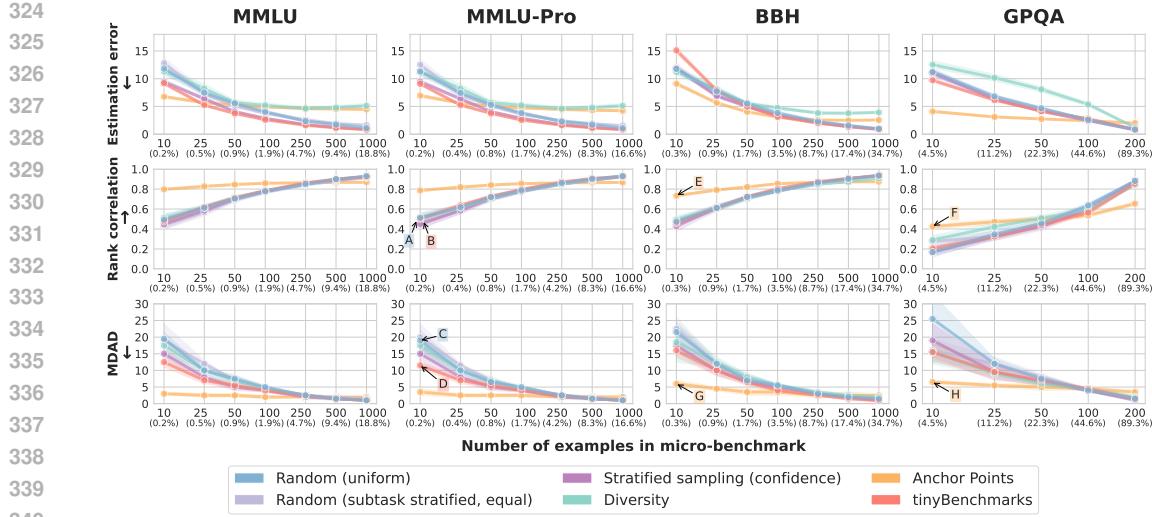


Figure 4: MDAD gives more granular information than mean estimation error and Kendall’s tau rank correlation. Anchor Points is the only method that consistently outperforms random sampling at small dataset sizes across all metrics. Top row: Mean estimation error. Middle row: Kendall’s tau rank correlation. Bottom row: Minimum Detectable Accuracy Difference (MDAD, ours, Equation 5). MDAD panels are the same as in Figure 3, shown here for ease of comparison. Points A-H labeled for ease of reference in §5.1. Error bars represent 95% bootstrap confidence intervals over 50 trials.

selected, MDAD steadily decreases for all methods as more examples are selected. [As the number of examples increases from 10 to 100 to 1000, MDAD for tinyBenchmarks drops from 16 to 4 to 1.](#)

All evaluated micro-benchmarks have limits at extremely small sizes. The leftmost column of Figure 3 shows that BBH micro-benchmarks of size 10 cannot reliably rank model pairs unless they differ by almost 15 points of accuracy! The only exception to this is Anchor Points, which has higher agreement at smaller micro-benchmark sizes. When 10 examples are selected from BBH, Anchor Points achieves an MDAD of 6. If a model pair differs by more than 6 points on the full BBH, then this micro-benchmark is likely to correctly rank these models. If a model pair has an accuracy difference on the full BBH of less than the MDAD, e.g. 2 points of accuracy, then this micro-benchmark is unlikely to correctly rank these models. [Overall all micro-benchmarking methods are limited when selecting only 10 examples. No](#) method can consistently distinguish models that differ on the full benchmark by fewer than 3 points of accuracy on MMLU, 3.5 points of accuracy on MMLU-Pro, 6 points of accuracy on BBH, or 6.5 points of accuracy on GPQA.

Anchor Points has the lowest MDAD at the smallest sizes but stagnates. The rightmost column of Figure 3 shows that Anchor Points has lower MDAD than other methods when selecting extremely few examples. We suspect this is because its method of selecting examples based on correlations in source model confidence is more closely aligned with what MDAD measures. On the other hand, Anchor Points has the highest MDADs when selecting 1,000 examples. We hypothesize this is due to very imbalanced cluster sizes in the underlying clustering that it performs. Anchor Points works by first clustering all of the full benchmark’s examples using k -medoids and then selecting one example from each cluster. When selecting 10 examples from MMLU-Pro, cluster sizes are relatively even. But when selecting 1,000 examples, there is an extreme size imbalance between the 1,000 clusters of the benchmark examples: 47% of clusters are singletons, and the largest 10% of clusters together contain half of all the examples. Contrast this with tinyBenchmarks, which also performs clustering but uses k -means rather than k -medoids and uses a different embedding space. In the same setting of selecting 1,000 examples from MMLU with tinyBenchmarks, only 5% of clusters are singletons, and the largest 10% of clusters only contain 21% of examples. Each selected example from the large clusters in Anchor Points must stand in for many more data points.

378
379

5.1 MDAD AFFORDS FINER-GRAINED ANALYSIS THAN EXISTING MEASURES

380
381
382
383
384
385
386
387
388

Figure 4 compares MDAD to mean estimation error and Kendall’s tau rank correlation using the experimental design from §4. MDAD provides a complementary—but not contradictory—perspective to these existing measures. We also report the correlation between MDAD and other [meta-evaluation](#) measures, using Kendall’s tau rank correlation.⁴ Across all settings, MDAD has a $\tau = 0.701$ ($p < 0.05$) Kendall’s tau rank correlation with mean estimation error. MDAD also has a $\tau = -0.787$ ($p < 0.05$) correlation with the Kendall’s tau rank correlation evaluation measure. Despite the high correlation and similar trends at a high level, e.g. Anchor Points stands out on both MDAD and rank correlation, there are still fine-grained differences between the measures. MDAD does not map one-to-one to other measures.

389
390
391
392
393
394
395
396
397
398
399
400
401
402

MDAD provides more granular information than rank correlation. Even when micro-benchmarks have similar rank correlations in the aggregate, MDAD can identify fine-grained differences between methods. For example, tinyBenchmarks and uniform random sampling both have identical rank correlations when selecting 10 examples from MMLU-Pro (Points A and B, Fig. 4). But uniform random sampling has a much higher MDAD than tinyBenchmarks in this setting (C and D, Fig. 4). Comparing across datasets shows that different rank correlations can map to the same MDAD value. When selecting 10 examples, Anchor Points has a much higher rank correlation of 0.73 on BBH but a rank correlation of 0.43 on GPQA (E and F, Fig. 4). In both cases, MDAD is 6 (G and H, Fig. 4). Even though the rank correlations are very different, both micro-benchmarks afford consistently accurate model comparisons when the models differ by at least 6 points of accuracy. Considering model comparisons only in the aggregate, as rank correlation does, obscures this finer-grained analysis. Additionally, MDAD values have a concrete interpretation—namely, the minimum model performance difference that an evaluation dataset can distinguish at least 80% of the time—while Kendall’s tau values are harder to interpret on their own.

403
404
405
406
407
408
409
410
411
412
413

MDAD accounts for consistent errors across models, unlike mean estimation error. Mean estimation error is defined for a single model; it does not take into account whether a micro-benchmark consistently overestimates or consistently underestimates model accuracy for different models. For a simple illustrative example, if mean estimation error is 5 points, then the micro-benchmark’s accuracy for a single model will be off by 5 points on average. If when comparing two models, the micro-benchmark overestimates both of their accuracies by 5 points, the micro-benchmark can still yield the correct pairwise model ranking. MDAD accounts for this by directly measuring whether pairs of models are correctly ranked. For example, when 100 examples are selected from MMLU-Pro, Anchor Points has a higher estimation error than random sampling but a lower MDAD. [Mean estimation error does not directly capture when models will be ranked correctly, but MDAD does.](#)

414
415

5.2 RANDOM SAMPLING IS COMPETITIVE WITH OTHER METHODS

416
417
418
419
420
421
422
423
424
425
426
427

Figure 4 shows that all methods improve according to all metrics as more examples are selected. For each benchmark, there is a micro-benchmark size at which both random sampling baselines become competitive with the other micro-benchmark selection. For MMLU, MMLU-Pro, and BBH, this occurs around 250 examples, and for GPQA (a much smaller dataset to begin with), this occurs at 200 examples. When selecting this many examples, all MDADs are 2 or less. But it is worth noting that when selecting fewer examples, MDADs for all methods are higher. Even when the other methods outperform random sampling at smaller dataset sizes, their MDAD values show that they do not always consistently rank models that differ by few points of accuracy. Consider, for example, selecting 10 examples from MMLU: tinyBenchmarks (MDAD of 12.5) outperforms random sampling (MDAD of 20) by having a lower MDAD, but this means it cannot consistently distinguish models that differ by fewer than 12.5 points of accuracy on the full MMLU. When tinyBenchmarks achieves an MDAD of 2 by selecting 500 examples from MMLU, random sampling also has an MDAD of 2.

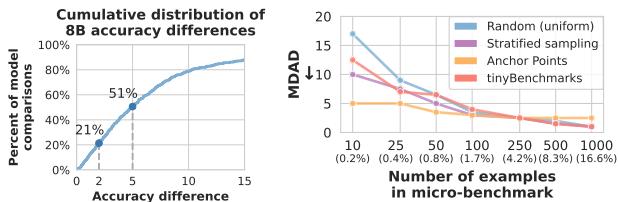
428
429
430
431

⁴Note here that we are using Kendall’s tau rank correlation in a new way, to compare MDAD to existing meta-evaluation measures. One of these measures is itself the Kendall’s tau rank correlation between micro-benchmark and full benchmark model rankings that we have been considering throughout. Each setting with a combination of benchmark, micro-benchmark size, and micro-benchmarking method yields a set of meta-evaluation measure values. We calculate the correlation between the rankings of settings induced by those values.

432 **Case study: MDAD better distinguishes micro-benchmarks from random at ≤ 100 examples.**
 433 If we were to only use Kendall’s tau rank correlation, we would have trouble differentiating most
 434 methods from random sampling when selecting between 10 and 100 examples. Consider performance
 435 on MMLU for ≤ 100 examples (Figure 4, left column). At these extreme dataset reductions, methods
 436 like tinyBenchmarks and stratified sampling by confidence have similar Kendall’s tau rank correlations
 437 to random sampling, indicating that they all rank models equally well *in the aggregate*. But these
 438 methods have lower MDADs than random sampling, showing they can more reliably distinguish
 439 models that differ by fewer points of accuracy. This observation also holds for the other benchmarks.
 440

441 5.3 MDAD CAN INTERPRET WHICH MODEL COMPARISONS WILL BE PRESERVED

442 We have so far established that at
 443 small sizes, most micro-benchmarks
 444 can distinguish only those models
 445 whose performance differ greatly on
 446 the full benchmark. This holds
 447 when comparing target models across
 448 various sizes and training regimes.
 449 But what about when comparing a
 450 specific set of models that we ex-
 451 pect might have more similar per-
 452 formances? We consider a case study
 453 of 32 instruction-tuned 8B-parameter
 454 models on MMLU-Pro.



455 Figure 5: When comparing 8B-parameter instruction-tuned
 456 models on MMLU-Pro: model accuracies are in a narrow
 457 range, so nearly half of pairwise accuracy differences are
 458 less than 5 points (left), which is less than the MDAD for
 459 micro-benchmarks at small dataset sizes (right).

460 **Most models** have accuracies between 27 and 40 on the full benchmark, yielding very low pairwise
 461 accuracy differences (Figure 5, left). MDAD computed from these 8B-parameter models (Figure 5,
 462 right) helps us understand when model comparisons are preserved on micro-benchmarks of various
 463 sizes. All micro-benchmarks have an MDAD of 5 or more when selecting 10 or 25 examples. These
 464 micro-benchmarks are not likely to reproduce the full benchmark’s ranking on the 51% of model
 465 comparisons that differ by at most 5 points of accuracy. When 1,000 examples are selected, most
 466 micro-benchmarks have an MDAD of 2. These can consistently rank more models, though they will
 467 still not be able to consistently rank the 21% of model pairs that differ by no more than 2 points of
 468 accuracy.

469 **MDAD explains why ranks stabilize when comparing models.** Perlitz et al. (2024) observe that
 470 micro-benchmarks can often consistently predict the top-ranked target models, even when selecting
 471 few examples. MDAD offers a mechanism by which this occurs: top-ranked models often have high
 472 pairwise accuracy differences from many models, and micro-benchmarks often agree with the full
 473 benchmark when comparing very different models. That is, top-ranked models often differ from
 474 many models by more than a micro-benchmark’s MDAD. While all micro-benchmarks have high
 475 agreement with the full benchmark for the top-performing models once 25 or more examples are
 476 selected, they are less likely to agree with the full benchmark when comparing the models in the
 477 middle of the distribution that are closer in accuracy to each other (Figure 14, Appendix L). Figure 5
 478 (right) shows that when selecting 25 examples, all methods achieve an MDAD of 5 or more. For
 479 the top-ranked model, two-thirds of all model comparisons are above this MDAD. For a model in
 480 the middle of the distribution, only one third of all pairwise comparisons are above this MDAD.
 481 Appendix L shows similar results when restricting comparisons to various other sets of models, like
 482 instruction-tuned 70B-parameter models.

483 5.4 MICRO-BENCHMARKS GENERALIZE TO NEW EVALUATION SETS

484 One potential advantage of micro-benchmarks is that they may be able to exploit correlations between
 485 model predictions in order to predict how well models will do on fresh draws of the task. Or they
 486 could instead overfit their predictions to the specific examples they were selected from. We test
 487 whether either is the case by evaluating how well model comparisons on a micro-benchmark predict
 488 model comparisons on a held-out unseen set that was not used to construct the micro-benchmark. We
 489 find almost no difference in MDADs when predicting model performance on a held-out set using
 490 micro-benchmarks that select from entire benchmarks, indicating that these micro-benchmarking

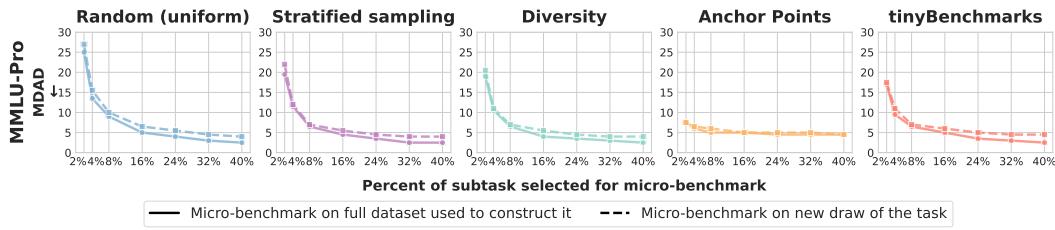


Figure 6: MDAD is modestly higher on MMLU-Pro when predicting relative model performance on a held-out draw of the task (dashed lines) than when predicting relative performance on the full dataset used to select the micro-benchmarks (solid lines). See Appendix J for results on other datasets.

methods can effectively generalize to new draws of a dataset (full results in Appendix I). However, when selecting micro-benchmarks of subtasks individually, we do find that micro-benchmarks are slightly less able to predict model performance on fresh draws of the subtask, as evidenced by higher MDADs (Figure 6). Anchor Points experiences the least increase in MDAD when moving from the full benchmark to a fresh draw of the benchmark. Diversity and tinyBenchmarks experience larger increases. In all cases, MDAD is high. See Appendix J for full details and results.

6 DISCUSSION AND CONCLUSION

We have investigated how well various micro-benchmarking methods reproduce model performance judgments from full benchmarks using the meta-evaluation measures of agreement and Minimum Detectable Ability Difference (MDAD). We find that when micro-benchmarks produce model rankings with high aggregate correlation with the rankings from full benchmarks, they cannot always consistently distinguish model pairs with similar performance. Once enough examples are selected to allow for distinguishing model pairs with similar performance, random sampling is competitive with other methods. Our meta-evaluation measures can guide micro-benchmarking method designers in building reliable and efficient model comparisons. While our experiments primarily focus on accuracy-based evaluation, there exist straightforward extensions of MDAD to other metrics, including ones used in open-ended generation.

We hope our meta-evaluation measures can help practitioners select the right micro-benchmark size for the job, rather than going with a one-size-fits-all recommendation from prior work. If the goal is to produce a ranking of models that may differ by, say, five points of accuracy or to track finer gradations in model performance over the course of training, evaluation sets should be large enough to afford a low MDAD. This is particularly relevant when seeking to identify if a model exceeds the current state-of-the-art, since each new model has historically achieved only incremental improvements in NLP (Card et al., 2020). However, if the goal is just to get a general sense of model performance, then even 10 examples chosen by Anchor Points or tinyBenchmarks from datasets like MMLU-Pro and BIG-bench Hard can suffice. Micro-benchmarks remain valuable tools for efficiently understanding model performance, but it is important to know the limits of that understanding.

REPRODUCIBILITY STATEMENT

We include source code in the supplementary materials for reproducing all experiments, including all implementation details for datasets and micro-benchmarking methods. Appendix B describes the micro-benchmarking methods in detail, and Appendix D describes our experimental setup and infrastructure in greater detail. The supplementary materials also include all intermediate micro-benchmarking results as well as the final results reported in figures throughout this paper. **All source code, intermediate results, and final raw results will be made available on Github and linked from the paper upon publication.**

540 REFERENCES
541542 Rémi Bardenet, Subhroshekhar Ghosh, Hugo Simon-Onfroy, and Hoang Son Tran. Small coresets
543 via negative dependence: DPPs, linear statistics, and concentration. *NeurIPS*, 2024.544 Meriem Boubdir, Edward Kim, Beyza Ermis, Marzieh Fadaee, and Sara Hooker. Which prompts
545 make the difference? Data prioritization for efficient human LLM evaluation. *arXiv preprint*
546 *arXiv:2310.14424*, 2023.548 Li Cai, Kilchan Choi, Mark Hansen, and Lauren Harrell. Item response theory. *Annual Review of*
549 *Statistics and Its Application*, 3(1):297–321, 2016.550 Dallas Card, Peter Henderson, Urvashi Khandelwal, Robin Jia, Kyle Mahowald, and Dan Jurafsky.
551 With little power comes great responsibility. In *EMNLP*, 2020.553 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
554 Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
555 platform for evaluating llms by human preference. In *ICML*, 2024.557 Jacob Cohen. The statistical power of abnormal-social psychological research: a review. *The Journal*
558 *of Abnormal and Social Psychology*, 65(3):145, 1962.559 Rohan Deb, Kiran Koshy Thekumparampil, Kousha Kalantari, Gaurush Hiranandani, Shoham Sabach,
560 and Branislav Kveton. FisherSFT: Data-efficient supervised fine-tuning of language models using
561 information gain. In *ICML*, 2025.563 Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. The hitchhiker’s guide to testing
564 statistical significance in natural language processing. In *ACL*, 2018.566 Logan Engstrom, Andrew Ilyas, Benjamin Chen, Axel Feldmann, William Moses, and Aleksander
567 Madry. Optimizing ML training with metagradient descent. *arXiv preprint arXiv:2503.13751*,
568 2025.569 Kawin Ethayarajh and Dan Jurafsky. Utility is in the eye of the user: A critique of NLP leaderboards.
570 In *EMNLP*, 2020.572 Dante Everaert and Christopher Potts. GIO: Gradient information optimization for training dataset
573 selection. In *ICLR*, 2024.575 Riccardo Fogliato, Pratik Patil, Nil-Jana Akpinar, and Mathew Monfort. Precise model benchmarking
576 with only a few observations. In *EMNLP*, 2024a.577 Riccardo Fogliato, Pratik Patil, Mathew Monfort, and Pietro Perona. A framework for efficient model
578 evaluation through stratification, sampling, and estimation. In *ECCV*, 2024b.580 Clementine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open LLM
581 Leaderboard v2, 2024. URL <https://huggingface.co/spaces/open-llm-leaderboard/blog>.584 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
585 Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
586 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
587 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
588 language model evaluation, 07 2024. URL <https://zenodo.org/records/12608602>.589 Sayan Ghosh, Tejas Srinivasan, and Swabha Swayamdipta. Compare without despair: Reliable
590 preference evaluation with generation separability. In *EMNLP Findings*, 2024.592 Vipul Gupta, Candace Ross, David Pantoja, Rebecca J. Passonneau, Megan Ung, and Adina Williams.
593 Improving model evaluation using SMART filtering of benchmark datasets. *arXiv preprint*
arXiv:2410.20245, 2024.

594 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
 595 Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
 596 Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
 597 del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
 598 Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
 599 with NumPy. *Nature*, September 2020.

600 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 601 Steinhardt. Measuring massive multitask language understanding. In *ICLR*, 2021.

602 D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a
 603 finite universe. *Journal of the American Statistical Association*, 47(260):663–685, 1952. doi:
 604 10.1080/01621459.1952.10483446. URL <https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483446>.

605 Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
 606 Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking bench-
 607 marking in NLP. In *NAACL*, 2021.

608 Bernard Koch, Emily Denton, Alex Hanna, and Jacob Gates Foster. Reduced, reused and recycled:
 609 The life of a dataset in machine learning research. In *NeurIPS: Datasets and Benchmarks Track*,
 610 2021.

611 Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient
 612 model evaluation. In *ICML*, 2021.

613 John Patrick Lalor and Pedro Rodriguez. py-irt: A scalable item response theory library for python.
 614 *INFORMS Journal on Computing*, 35(1):5–13, 2023.

615 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
 616 Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
 617 models. *TMLR*, 2023.

618 Nelson F Liu, Tony Lee, Robin Jia, and Percy Liang. Do question answering modeling improvements
 619 hold across benchmarks? In *ACL*, 2023.

620 Lovish Madaan, Aaditya K Singh, Rylan Schaeffer, Andrew Poulton, Sanmi Koyejo, Pontus Stenetorp,
 621 Sharan Narang, and Dieuwke Hupkes. Quantifying variance in evaluation benchmarks. *arXiv*
 622 preprint [arXiv:2406.10229](https://arxiv.org/abs/2406.10229), 2024.

623 R.B. Nelsen. *Encyclopedia of Mathematics*. EMS Press, 2001.

624 Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Ariviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim,
 625 Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking (of language models). In
 626 *NAACL*, 2024.

627 Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
 628 tinyBenchmarks: Evaluating LLMs with fewer examples. In *ICML*, 2024.

629 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 630 Dirani, Julian Michael, and Samuel R Bowman. GPQA: A graduate-level Google-proof Q&A
 631 benchmark. In *COLM*, 2024.

632 Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P Lalor, Robin Jia, and Jordan
 633 Boyd-Graber. Evaluation examples are not equally informative: How should that change nlp
 634 leaderboards? In *ACL*, 2021.

635 Michael Saxon, Ari Holtzman, Peter West, William Yang Wang, and Naomi Saphra. Benchmarks as
 636 microscopes: A call for model metrology. In *COLM*, 2024.

637 Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to
 638 Algorithms*. Cambridge University Press, 2014.

648 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 649 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 650 imitation game: Quantifying and extrapolating the capabilities of language models. *TMLR*, 2023.
 651

652 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 653 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging BIG-Bench tasks
 654 and whether chain-of-thought can solve them. In *Findings of ACL 2023*, 2023.

655 Shir Ashury Tahan, Ariel Gera, Benjamin Sznajder, Leshem Choshen, Liat Ein Dor, and Eyal Shnarch.
 656 Label-efficient model selection for text generation. In *Proceedings of the 62nd Annual Meeting of
 657 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8384–8402, 2024.

658 Clara Vania, Phu Mon Htut, William Huang, Dhara Mungra, Richard Yuanzhe Pang, Jason Phang,
 659 Haokun Liu, Kyunghyun Cho, and Samuel Bowman. Comparing test sets with item response
 660 theory. In *ACL*, 2021.

661 Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor Points: Benchmarking models
 662 with much fewer examples. In *EACL*, 2024.

664 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 665 Ren, Aaran Arulraj, Xuan He, Ziyuan Jiang, et al. MMLU-Pro: A more robust and challenging
 666 multi-task language understanding benchmark. In *NeurIPS Datasets and Benchmarks Track*, 2024.

667

668 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
 669 Selecting influential data for targeted instruction tuning. In *ICML*, 2024.

670 Gregory Yauney and David Mimno. Stronger random baselines for in-context learning. In *COLM*,
 671 2024.

672

673 Qinyuan Ye, Harvey Fu, Xiang Ren, and Robin Jia. How predictable are large language model
 674 capabilities? A case study on BIG-bench. In *Findings of EMNLP*, 2023.

675 Hongyu Zhao, Ming Li, Lichao Sun, and Tianyi Zhou. BenTo: Benchmark task reduction with
 676 in-context transferability. *arXiv preprint arXiv:2410.13804*, 2024.

677

678 Vilém Zouhar, Peng Cui, and Mrinmaya Sachan. How to select datapoints for efficient human
 679 evaluation of NLG models? *arXiv preprint arXiv:2501.18251*, 2025.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A ADDITIONAL RELATED WORK
703

704 **Efficient evaluation.** Benchmark datasets have been used to evaluate machine learning models
705 for decades (Koch et al., 2021). Though benchmarks are not sufficient to fully map capabilities
706 (Ethayarajh & Jurafsky, 2020; Kiela et al., 2021; Chiang et al., 2024), they remain an important
707 tool for comparing models (Saxon et al., 2024). NLP benchmarks have grown ever-larger as LM
708 capabilities have expanded (Srivastava et al., 2023; Liang et al., 2023). Micro-benchmarking methods
709 select a small subset of a benchmark for evaluation with the goal of estimating a model’s performance
710 on the full benchmark. This is done by exploiting correlations in a model’s predictions across
711 examples (Fogliato et al., 2024b) and correlations across multiple models’ predictions (Vivek et al.,
712 2024; Ye et al., 2023; Liu et al., 2023), by training instance difficulty models using Item Response
713 Theory (Polo et al., 2024; Vania et al., 2021; Rodriguez et al., 2021), or even by deduplication (Gupta
714 et al., 2024). We study the reliability of micro-benchmarks that summarize performance across an
715 entire dataset, though other work focuses on estimating performance across subtasks (Fogliato et al.,
716 2024a). Farther afield, active testing instead selects test instances in an online per-model manner
717 (Kosseen et al., 2021). Still other works use model-based proxies to select unlabeled examples for
718 annotation (Tahan et al., 2024; Zouhar et al., 2025). Subsets of *training data* can be selected using
719 gradients (Everaert & Potts, 2024; Xia et al., 2024; Engstrom et al., 2025) or information gain (Deb
720 et al., 2025), though such methods have not yet been applied to evaluation data selection.

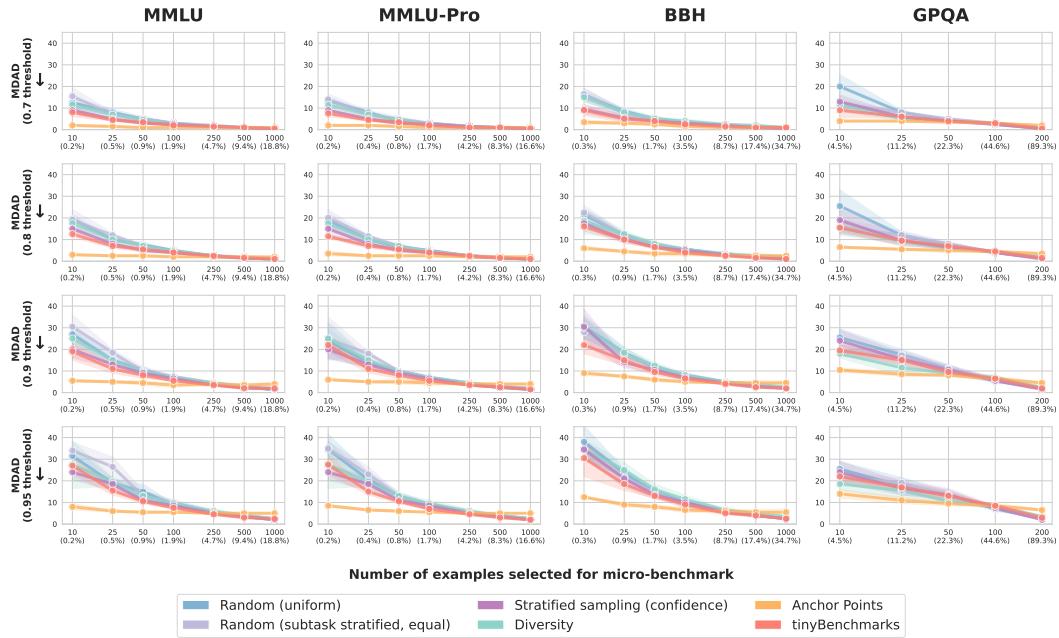
721 **Evaluation reliability.** For classification, larger evaluation datasets yield more reliable model
722 comparisons (Shalev-Shwartz & Ben-David, 2014; Dror et al., 2018; Card et al., 2020) and are more
723 robust to some forms of dataset reuse (Yauney & Mimno, 2024). Card et al. (2020) use statistical
724 power to estimate the minimum detectable effect size afforded by a benchmark, though this approach
725 requires assumptions about [independence of examples](#), [generalization error](#), and expected per-example
726 agreement between model predictions. In contrast, our approach directly estimates the probability
727 that pairwise model comparisons on a micro-benchmark agree with the full benchmark for a set of
728 target models. Perlitz et al. (2024) also frame reliability as consistency over random choices in order
729 to study the reliability of individual model error rate and model rankings over evaluation choices, but
730 they do not identify which model comparisons are preserved by smaller datasets. Madaan et al. (2024)
731 measure the variance in performance across random seeds and find that some micro-benchmarking
732 methods increase variance. Our approach offers an interpretation of when variance impacts model
733 comparisons. Other work considers the reliability afforded by LM generations for human evaluation
734 (Ghosh et al., 2024; Boubdir et al., 2023).

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 B DETAILS OF MICRO-BENCHMARKING METHODS
757758 **Anchor Points.** We evaluate the “Anchor Points Weighted” method from Vivek et al. (2024).
759 First, a correlation matrix C between examples is constructed, where entry $C_{i,j}$ is a function of
760 the correlation between examples i and j across all source models. k -medoids is used to select
761 n examples that maximize the correlation between the selected and the remaining examples. To
762 estimate a target model’s performance using these examples, the method averages the correct class
763 probability of each example, weighted by the size of each example’s corresponding cluster.764 **tinyBenchmarks.** We evaluate the “IRT” method from Polo et al. (2024), which trains an Item
765 Response Theory model using `py-irt` (Lalor & Rodriguez, 2023) from source model predictions to
766 produce embeddings for examples that are then clustered. After hyper-parameter sweeps, we use 10
767 dimensions for the IRT embeddings, and for IRT model training we use a learning rate of 0.1 and
768 2000 epochs.769 **Stratified sampling by confidence.** We implement a variant of the stratified random sampling
770 proposed by Fogliato et al. (2024b). We adapt the algorithm to work with multiple source models
771 by taking the mean of model confidence across all source models. We perform k -means clustering
772 into 10 strata based on these mean confidences. From each cluster, we uniformly at random sample a
773 number of examples proportional to the size of that cluster. From model performance on this chosen
774 subset of examples, we use the Horvitz-Thompson (HT) estimator (Horvitz & Thompson, 1952), as
775 in Fogliato et al. (2024b), to arrive at an estimate of model performance on the full benchmark.776 **Diversity.** We implement a method that selects diverse examples. The setup is similar to Anchor
777 Points: each example has an embedding where each coordinate is a source model’s confidence in the
778 correct class. Rather than using k -medoids to select examples, we use the sampler from Bardenet
779 et al. (2024) to select a diverse set of examples in this embedding space. Surprisingly, dimensionality
780 reduction of embeddings to as few as 4 dimensions does not degrade performance.781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 C DIFFERENT AGREEMENT THRESHOLDS FOR MDAD

812 Figure 7 shows a comparison of 0.7, 0.8, 0.9, and 0.95 as the threshold of agreement in Equation 5.
 813 All of our other experiments use a threshold of 0.8. **Agreement between a micro-benchmark and the**
 814 **full benchmark is higher for larger differences in model performance As the agreement threshold for**
 815 **MDAD increases, the main effect is that MDAD also increases. All methods tend to experience this**
 816 **MDAD increase, so the overall results for different thresholds are qualitatively similar.**



817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839 Figure 7: MDADs when using different thresholds for agreement are qualitatively similar. The **second**
 840 **row of MDAD panels with a 0.8 threshold** are the same as in Figure 4. Error bars represent 95%
 841 **bootstrap confidence intervals over 50 trials.**

864 **D FULL EXPERIMENTAL SETUP AND COMPUTING INFRASTRUCTURE**
865866 For most experiments, we construct micro-benchmarks using 300 source models and evaluate them
867 using 50 target models. We average all evaluation metrics over 50 runs of random partitions into
868 source and target models. For the experiments in Section 5.2 and Appendix L, we choose 300 random
869 source models and evaluate with a fixed set of (non-overlapping) target models. Experiments were
870 implemented using NumPy (Harris et al., 2020). We report calculated MDADs to the nearest 0.5.
871872 **Models.** For MMLU, we use the results of the 366 models from the Open LLM Leaderboard
873 (Fourrier et al., 2024), as in Polo et al. (2024). For the other benchmarks, we use cached model
874 predictions from the 470 models tagged as official on the Open LLM Leaderboard v2 (Fourrier et al.,
875 2024). For each of these benchmarks, we include models that had full per-example evaluations on all
876 subtasks, yielding 447 models for MMLU-Pro, 409 models for BBH, and 420 models for GPQA.
877 Our evaluations include 101 models with 0.5-3B parameters and 39 models with 70B+ parameters.
878 The largest model included in our evaluations is 141B.
879880 **Computing infrastructure.** Micro-benchmarking methods and analysis were run on a cluster node
881 with 4 GeForce GTX 1080 Ti GPUs and a Macbook Pro with an Apple M3 Pro processor and 18GB
882 of RAM.
883884 **Runtime.** Table 2 gives the average
885 time (in seconds) for each method on
886 each benchmark to perform one trial
887 with 300 source models. Our full ex-
888 periments are 50 trials across 7 dif-
889 ferent settings for number of source
890 models, for a total of 91.05 hours.
891

Micro-benchmarking method	MMLU	MMLU-Pro	BBH	GPQA
Random (uniform)	3.1	3.5	3.8	0.8
Random (subtask stratified, equal)	3.1	3.5	3.5	0.7
Stratified sampling (confidence)	3.0	2.8	2.9	0.5
Anchor Points	6.2	7.7	4.7	1.1
tinyBenchmarks	150.9	164.5	58.9	7.5
Diversity	315.0	266.2	207.0	16.8

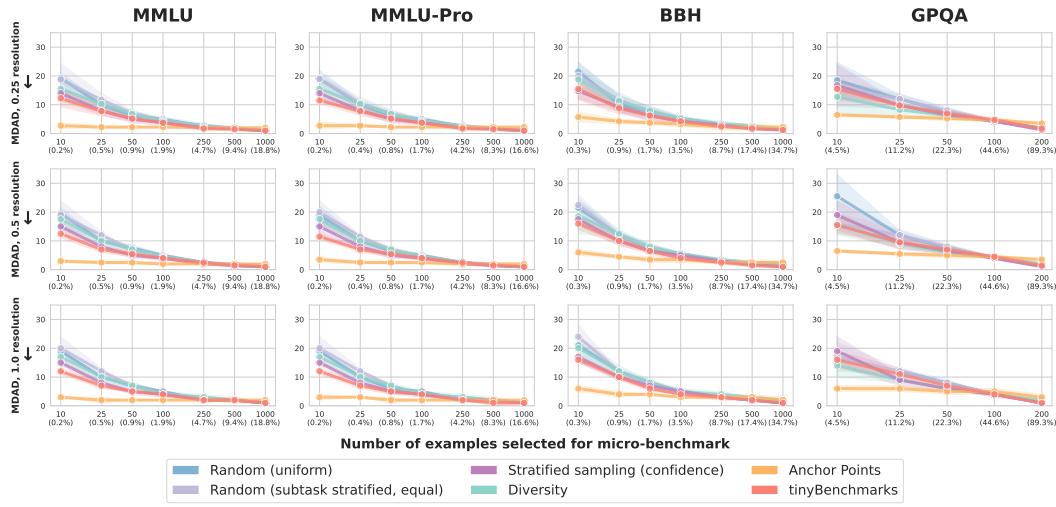
892 Table 2: Average time (seconds) for completion of one trial.
893894 **E QUANTITATIVE ERROR ANALYSIS OF MDAD**
895896 Our results throughout the paper estimate MDAD across 50 trials of our meta-evaluation experiments.
897 Table 3 shows estimated MDADs and 95% confidence intervals for up to 100 trials for uniform
898 random sampling, Anchor Points, and tinyBenchmarks when selecting 50 and 100 examples from
899 MMLU-Pro. Estimated MDADs have stabilized by 50 trials.
900901 Table 3: MDADs with 95% confidence intervals for up to 100 trials for uniform random sampling,
902 Anchor Points, and tinyBenchmarks when selecting 50 and 100 examples from MMLU-Pro.
903

Number of trials	50 examples			100 examples		
	Random (uniform)	Anchor Points	tinyBenchmarks	Random (uniform)	Anchor Points	tinyBenchmarks
10	5.6 ± 3.4	2.90 ± 2.1	3.6 ± 3.1	4.6 ± 2.7	2.8 ± 2.3	3.6 ± 1.7
20	6.1 ± 2.1	3.00 ± 1.7	5.3 ± 2.0	4.5 ± 1.5	2.8 ± 1.7	3.6 ± 1.5
30	6.1 ± 1.9	3.50 ± 1.2	5.2 ± 1.7	4.5 ± 1.6	3.0 ± 1.6	3.6 ± 1.4
40	6.2 ± 1.3	3.50 ± 1.2	5.4 ± 1.2	4.4 ± 1.3	3.4 ± 1.1	4.0 ± 1.3
50	6.3 ± 1.3	4.10 ± 1.3	5.4 ± 1.8	4.4 ± 1.3	3.6 ± 1.1	3.8 ± 0.8
60	6.5 ± 1.0	4.10 ± 1.3	5.4 ± 1.2	4.4 ± 1.0	3.7 ± 1.1	3.8 ± 0.8
70	6.6 ± 1.0	4.00 ± 1.1	5.4 ± 1.2	4.4 ± 0.6	3.7 ± 1.1	3.9 ± 0.7
80	6.6 ± 1.0	4.00 ± 1.1	5.3 ± 1.0	4.4 ± 0.7	3.6 ± 0.9	3.8 ± 0.7
90	6.6 ± 0.9	4.10 ± 1.2	5.2 ± 0.8	4.4 ± 0.6	3.7 ± 0.9	3.8 ± 0.7
100	6.6 ± 0.9	4.10 ± 1.2	5.2 ± 0.8	4.4 ± 0.6	3.7 ± 0.9	3.7 ± 0.6

910
911
912
913
914
915
916
917

918 F DIFFERENT BUCKET RESOLUTIONS FOR MDAD

920 Figure 8 shows a comparison of 0.25, 0.5, and 1.0 as bucket resolutions when calculating MDAD
 921 (Equation 5). All of our other experiments use a resolution of 0.5. These different resolutions result
 922 in very similar MDADs in most cases. The one exception is when selecting 10 examples from GPQA
 923 with random sampling: agreement values in the larger buckets are so low that no bucket has an
 924 agreement value greater than 0.8.

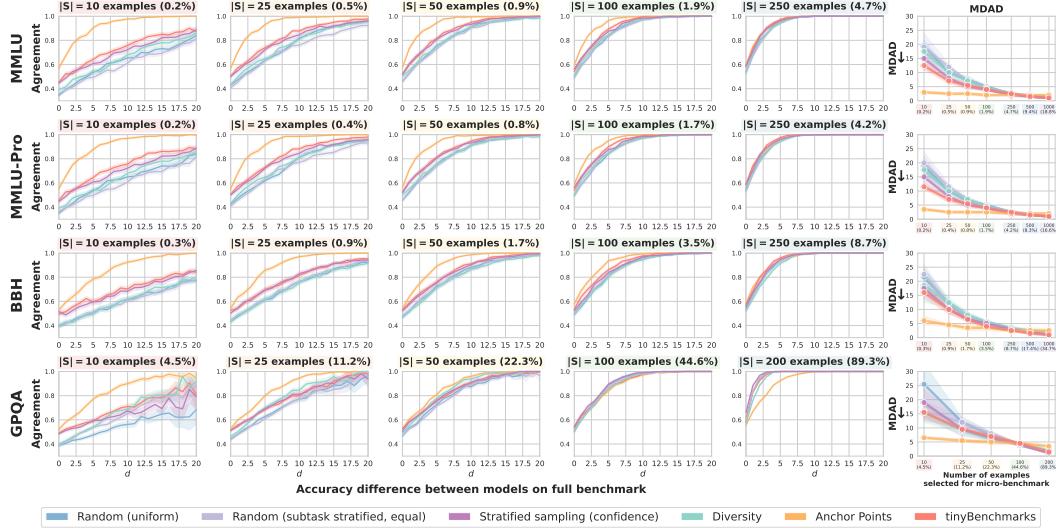


922 Figure 8: MDADs when using different bucket resolutions for agreement are qualitatively similar.
 923 The middle row of MDAD panels are the same as in Figure 4. Error bars represent 95% bootstrap
 924 confidence intervals over 50 trials.

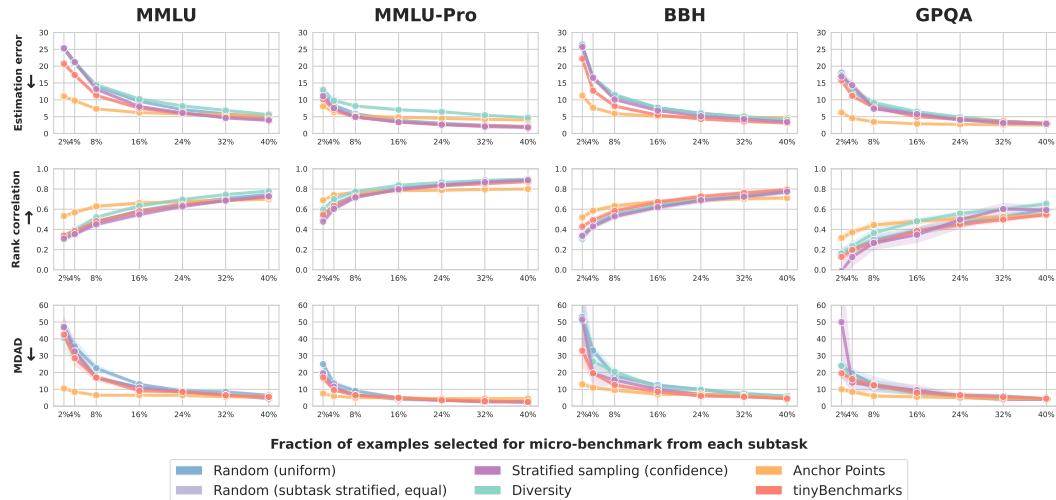
972 G FULL RESULTS

974 Figure 9 is an expanded version of Figure 3 with full correctness curves for all datasets. Figure 10
 975 gives results when selecting a fixed percentage of examples from each subtask in a benchmark.

977 Figure 16 (at the end of the appendix) gives full results for all benchmarks when selecting a fixed
 978 number of examples from each benchmark. Figure 17 (also at the end of the appendix) gives full
 979 results for all benchmarks when selecting a fixed percentage of examples from each benchmark.



998 Figure 9: Expanded version of Figure 3 with all datasets. Comparing six micro-benchmarking
 999 approaches on four evaluation benchmarks. y -axis reports agreement, the probability that a micro-
 1000 benchmark agrees with the full benchmark when comparing two models, as a function of how much
 1001 those models differ on the full benchmark (x -axis). The rightmost column summarizes agreement
 1002 curves using MDAD. Error bars represent 95% bootstrap confidence intervals over 50 trials.



1021 Figure 10: Results when selecting a fixed percentage of examples from each subtask of a benchmark.
 1022 Top row: Mean estimation error. Middle row: Kendall's tau rank correlation. Bottom row: Minimum
 1023 Detectable Accuracy Difference (MDAD, ours). Results are averaged over all subtasks. Error bars
 1024 represent 95% bootstrap confidence intervals over 10 trials.

1026 H MDAD CAN ANALYZE METHODS THAT SELECT ENTIRE SUBTASKS

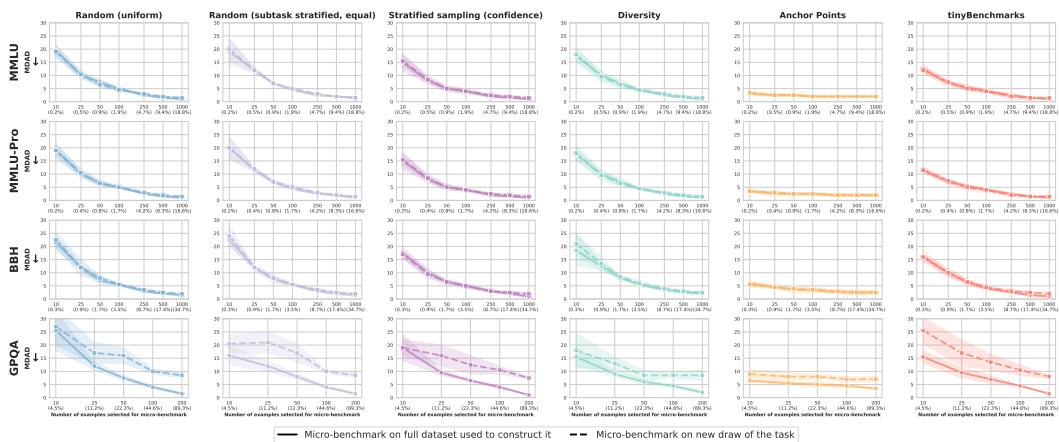
1028
 1029 Throughout this paper, we evaluate micro-benchmarking methods that select examples without
 1030 regard to which subtasks of the original benchmark they are from. But our methods and proposed
 1031 meta-evaluation measures generalize to other kinds of micro-benchmarking methods as well. For
 1032 example, BenTo is a micro-benchmarking method that selects whole subtasks for smaller evaluation
 1033 sets by estimating task transferability (Zhao et al., 2024). When selecting a micro-benchmark from
 1034 MMLU, BenTo selects 801 examples in three subtasks of MMLU for micro-benchmarking. We
 1035 calculate MDAD and other meta-evaluation measures for this selected subset of examples, as well as
 1036 uniform random sampling for selecting 801 examples (Table 4). Both BenTo and Random achieve
 1037 very similar results.

1038
 1039 Table 4: Results for the BenTo micro-benchmarking method.

Method	Mean estimation error	Kendall's tau rank correlation	MDAD
BenTo	1.34 ± 0.39	0.9332 ± 0.0153	1.5 ± 0.5
Random (uniform)	1.30 ± 0.38	0.9166 ± 0.0175	1.5 ± 0.5

1042 1043 I GENERALIZING TO NEW TASK DRAWS WHEN SELECTING FROM ENTIRE 1044 BENCHMARKS

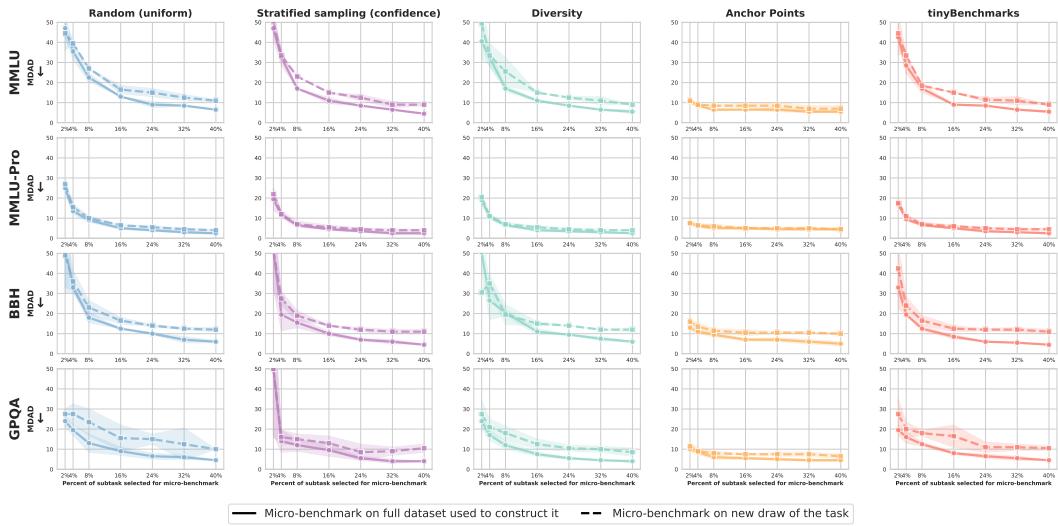
1045 Figure 11 gives results for meta-evaluating micro-benchmarks with respect to a held-out set when
 1046 selecting from the benchmark as a whole. MDADs can increase by up to 0.5 points in this setting.



1064 Figure 11: For all methods on MMLU, MMLU-Pro, and BBH, MDAD is nearly the same when
 1065 predicting relative model performance on a held-out draw of a task (dotted lines) as when predicting
 1066 relative performance on the full set of examples used to select the micro-benchmarks (solid lines).
 1067 For GPQA, a much smaller dataset, there is a larger gap in performance. Error bars represent 95%
 1068 bootstrap confidence intervals over 50 trials.

1080 **J GENERALIZING TO NEW TASK DRAWS WHEN SELECTING FROM SUBTASKS**
 1081 **SEPARATELY**
 1082

1083 Figure 12 is an expanded version of Figure 6 with results for comparing micro-benchmarking methods
 1084 on a held-out set when selecting from subtasks individually.
 1085



1103 Figure 12: For all methods, MDAD is modestly higher when predicting relative model performance
 1104 on a held-out draw of a task (dotted lines) than when predicting relative performance on the full set
 1105 of examples used to select the micro-benchmarks (solid lines). The MMLU-Pro row is the same as in
 1106 Figure 6. Error bars represent 95% bootstrap confidence intervals over 10 trials.
 1107

1108 Table 5 gives changes in other meta-evaluation measures in this setting for MMLU-Pro. When
 1109 moving from the original draw of the task to a new draw of the task, mean estimation error increases
 1110 by less than 1 point, and Kendall’s tau rank correlation decreases by less than 0.05 for all evaluated
 1111 micro-benchmarking methods.
 1112

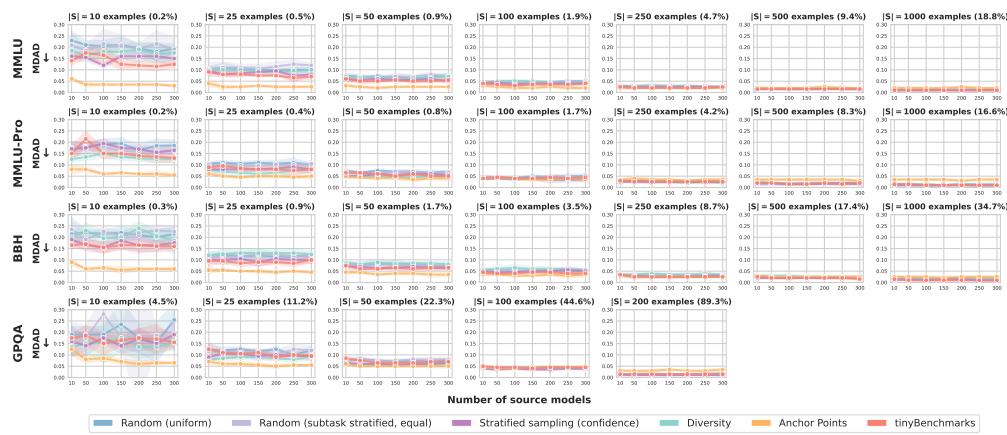
1113 Table 5: Changes in mean estimation error and Kendall’s tau rank correlation for MMLU-Pro
 1114 when generalizing to new draws of the task, as averaged across all selected micro-benchmark sizes
 1115 (corresponding to the MDADs in Figure 6, which are included here for reference).
 1116

Method	Mean increase in MDAD	Mean increase in mean estimation error	Mean decrease in Kendall’s tau rank correlation
Random (uniform)	1.18	0.65	0.039
Stratified sampling (confidence)	1.12	0.75	0.039
Diversity	1.12	0.41	0.041
Anchor Points	0.37	0.31	0.014
tinyBenchmarks	1.07	0.74	0.038

1121 We also find that comparisons between models at the same scale are not always preserved, but
 1122 micro-benchmarks can still consistently distinguish the performance differences between smaller
 1123 (7B) models and larger (70B) models. In Section 5.4, we find that the MDAD of micro-benchmarking
 1124 methods can increase on a new draw of the dataset by up to 1.2 points when selecting examples
 1125 from individual subtasks (Figure 6). When selecting 100 examples from MMLU-Pro, all micro-
 1126 benchmarking methods have an MDAD of at most 5 when generalizing to a new draw of the task.
 1127 When comparing models in the 6B-8B range to each other, 33.3% of comparisons will not be
 1128 preserved by the micro-benchmarks because they involve accuracy differences below the MDAD.
 1129 When comparing models in the 68B-72B range to each other, 35.7% of comparisons will not be
 1130 preserved. But the micro-benchmarks can still consistently distinguish between small and large
 1131 models because only 6.9% of those comparisons have accuracy differences less than 5.
 1132
 1133

1134 **K INCREASING NUMBER OF SOURCE MODELS HAS MODEST EFFECT**
1135

1136 So far we have been evaluating how MDAD decreases as the number of selected examples increases.
 1137 For micro-benchmarking method designers, a key parameter is how many source models to use
 1138 when selecting the micro-benchmark. Whereas previously we have examined performance with 300
 1139 source models, Figure 13 shows aggregate results for all benchmarks for many different numbers of
 1140 source models used to select the micro-benchmark. For nearly all datasets and numbers of examples
 1141 selected, increasing the number of source models provides only modest improvement in model
 1142 distinguishability for any of the methods. The effect of more source models is most pronounced for
 1143 Anchor Points on BBH and GPQA when moving from 10 to 50 source models, though more source
 1144 models do not yield further improvements. For all methods, increasing the number of source models
 1145 is not as effective as evaluating on more examples.



1160 Figure 13: Allowing micro-benchmarking methods access to increasing numbers of source models
 1161 with full predictions does not improve MDAD as much as evaluating on even slightly more examples,
 1162 as indicated by horizontal lines in nearly all panels. Random sampling is provided as a baseline, as it
 1163 does not rely on any source models. Note that the x -axis is number of source models, not number of
 1164 examples selected. Error bars represent 95% bootstrap confidence intervals over 50 trials.
 1165

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 L COMPARING SPECIFIC SIZES OF MODELS

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

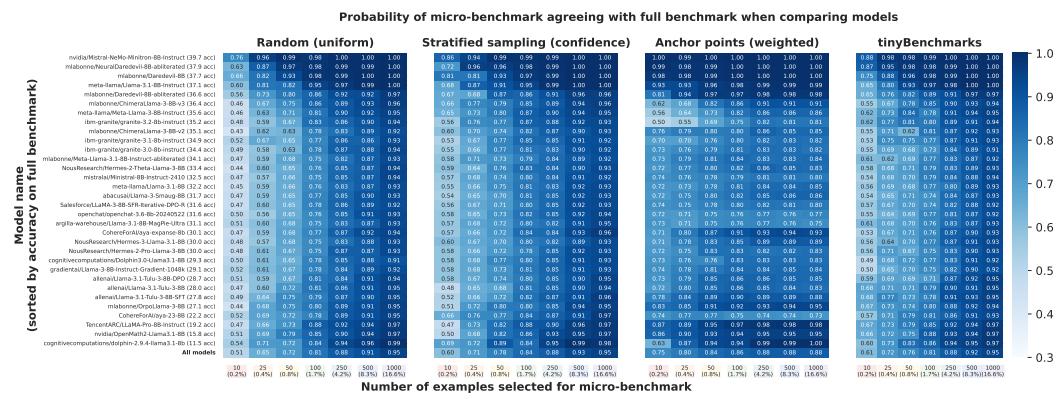
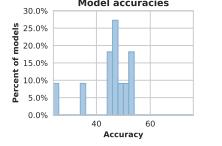
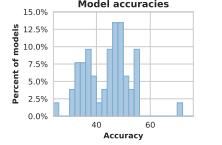


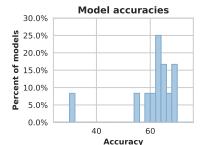
Figure 14: When comparing 8B-parameter instruction-tuned models on MMLU-Pro: per-model agreement with the full benchmark is lower for the models in the middle of the accuracy distribution that have more similar accuracies to many models.



(a) MMLU-Pro, 70B-parameter instruct models.

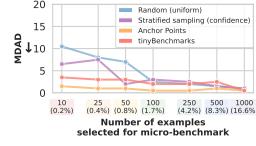


(b) BIG-bench Hard, 7B-parameter instruct models.

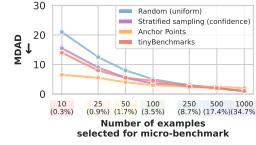


(c) BIG-bench Hard, 70B-parameter instruct models.

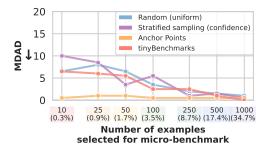
Figure 15: Pairwise model comparisons are often between models with similar accuracies when comparing specific classes of models.



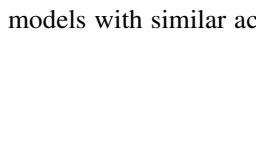
Percent of model comparisons



Percent of model comparisons



Percent of model comparisons



MDAD

MDAD

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

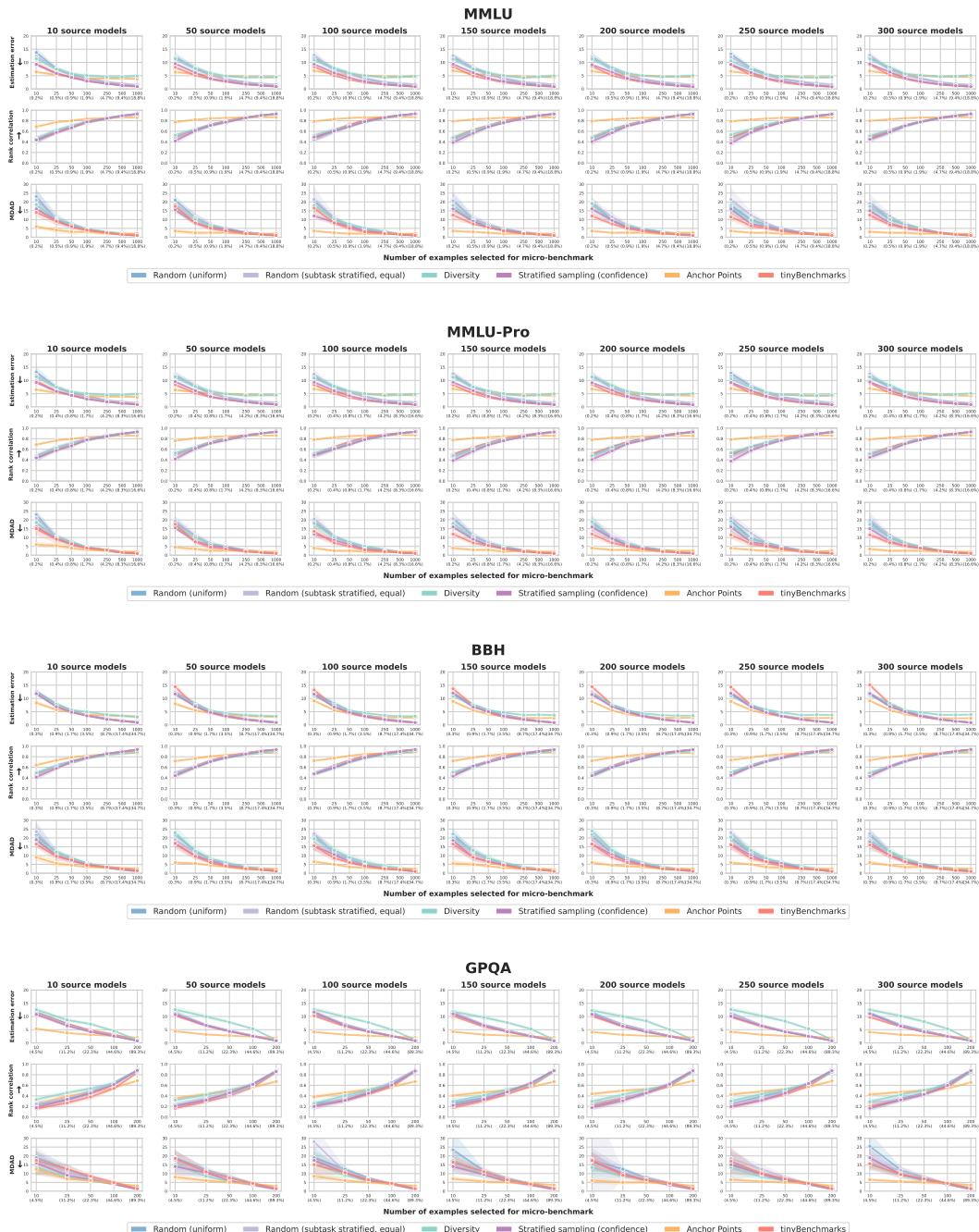


Figure 16: Full results when selecting a fixed number of examples from across entire benchmarks. The column with 300 source models is the same as the results presented in Figure 4. Top row: Mean estimation error. Middle row: Kendall’s tau rank correlation. Bottom row: Minimum Detectable Accuracy Difference (MDAD, ours). Error bars represent 95% bootstrap confidence intervals over 50 trials.

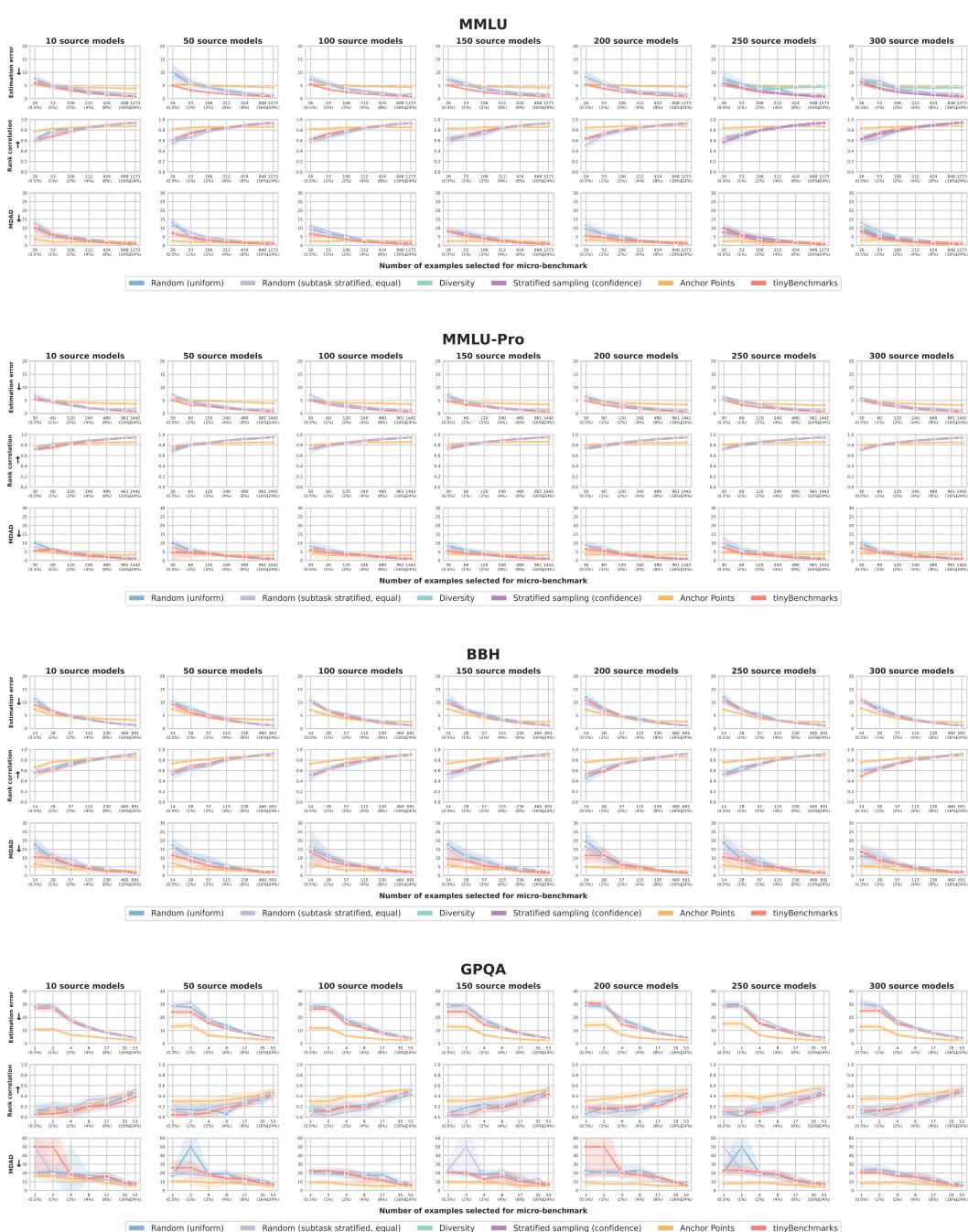


Figure 17: Full results when selecting a fixed *percentage* of examples from across entire benchmarks. Top row: Mean estimation error. Middle row: Kendall’s tau rank correlation. Bottom row: Minimum Detectable Accuracy Difference (MDAD, ours). Error bars represent 95% bootstrap confidence intervals over 50 trials.