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Abstract

Various uncertainty estimation methods have been proposed for deep learning-based im-
age segmentation models. An uncertainty measure is treated useful if it can be used to
accurately predict segmentation quality. Therefore, structure-wise uncertainty measures
are frequently correlated with measures like the Dice score. However, it is known that the
Dice score highly depends on the size of the structure of interest. It is less well-known that
popular structure-wise uncertainty measures also correlate with structure size. Therefore,
the structure size acts as confounding variable when trying to quantify the performance of
such uncertainty measures via correlation. We investigate this for the popular uncertainty
measures structure-wise epistemic uncertainty, mean pairwise Dice and volume variation
coefficient based on test-time-augmentation, Monte Carlo Dropout and model ensembles.
We propose to use a partial correlation coefficient to address structure size as confounding
variable and arrive at lower correlation estimates which better reflect the true relationship
between segmentation quality and structure-wise uncertainty.

Keywords: Uncertainty Quantification, Medical Image Segmentation

1. Introduction

Estimation of model uncertainty in deep learning based image segmentation can be done
with various proposed measures such as mean predictive entropy (Gal et al., 2017), mutual
information (Kendall and Gal, 2017), volume variation coefficient (VVC) (Roy et al., 2018),
or mean pairwise Dice (MPD) (Roy et al., 2018). Given a specific model input, there is also
a choice of methods to produce a set of outputs, like test time augmentation (TTA) (Wang
et al., 2019), Monte Carlo dropout (MCD) (Gal and Ghahramani, 2015; Gal et al., 2017) or
model ensembles (Lakshminarayanan et al., 2017), which we will call uncertainty sources.
Uncertainty measures then translate such sets of outputs into an uncertainty prediction, i.e.
an estimate of the likelihood of making a wrong prediction. In order to assess an uncertainty
measure, it is commonly correlated with a measure for the prediction quality. In the case of
image segmentation, this is usually the Dice score, which is known to be higher in general
for larger structures (Reinke et al., 2021). If model uncertainty was also influenced by
structure size, then the structure size would be a confounding variable, potentially tainting
correlation estimates.
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Figure 1: A proper uncertainty measure for structure segmentation quality should be well
correlated with the segmentation quality. We assess the confounding effect of the
structure volume on this relationship.

In this work, we analyse this relationship for the task of segmenting diverse anatomical
structures in whole body MRI. Our contributions are threefold:

• We show empirically that the popular uncertainty measures structure-wise epistemic
uncertainty, MPD and VVC all correlate notably with structure size.

• To compute correlation estimates that correct for this confounding variable, we pro-
pose to use partial Spearman’s rank correlation (Liu et al., 2018) and assess its changes
to the correlation estimates and to the resulting ranking of uncertainty measures.

• We also confirm that the average symmetric surface distance has a lower correlation
with structure size and is therefore less severely affected its confounding nature.

Our results are achieved in the context of domain transfer between computed tomog-
raphy (CT) which is our source domain and magnetic resonance imaging (MRI) which
is our target domain. A segmentation model is trained on the TotalSegmentator dataset
(Wasserthal et al., 2023), a large collection of CT images with masks for anatomical struc-
tures. During training it utilizes GIN augmentation (Ouyang et al., 2023) to allow domain
transfer. It is evaluated on a subset of the MR Imaging Study within the German National
Cohort Study (Bamberg et al., 2015) for which segmentation masks are manually created
by radiological technologists.

2. Related Work

Different ways have been proposed to estimate the uncertainty of deep neural networks, like
model ensembles (Lakshminarayanan et al., 2017), test time augmentation (Wang et al.,
2019), using the raw model outputs (Smailagic et al., 2018), Monte Carlo dropout (Gal and
Ghahramani, 2015, 2016) or deterministic methods (Liu et al., 2020a). In addition there
are uncertainty aware models using variational autoencoders to learn the model uncertainty
(Kohl et al., 2018) and models based on Dempster-Shafer theory (Huang et al., 2022) or
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Table 1: Description of study population using mean ± SD for continuous variables

Cases Study Centers Sex Age [Years] Weight [kg] Height [cm]

30 5 15 male, 15 female 45.7 ± 13.6 86.9 ± 21.4 173.9 ± 13.2

subjective logic (Zou et al., 2022) using evidential deep learning to incorporate the model
uncertainty. There are also models which try to disentangle the uncertainty coming from
different possible uncertainty sources (Shaw et al., 2021).

Mehta et al. (2022) conducted the QU-BraTS challenge assessing the uncertainty pre-
diction performance of 14 participating teams and proposing a novel metric to evaluate
uncertainty maps. Camarasa et al. (2021) evaluated how to best calculate voxel-wise un-
certainty maps in multi-class segmentation settings.

Based on sampled model outputs, there are different ways to compute uncertainties
for each structure. One way is to compute the voxel-wise uncertainty of the image, such
as entropy, variance or variation ratio over the samples (Gal et al., 2017) and average it
over the predicted structure mask. For segmentation tasks, there are also structure level
measures which can be computed directly from a set of masks, like the volume variation
coefficient and the mean pairwise Dice score between the predictions (Roy et al., 2018).

Kendall and Gal (2017) introduced an uncertainty decomposition into two components:
Aleatoric uncertainty captures uncertainty inherent to the data, like measurement or label-
ing errors, while epistemic uncertainty captures the uncertainty in the model parameters
by computing the mutual information (Mukhoti and Gal, 2018).

Many publications use correlations between segmentation quality and uncertainty mea-
sures to compare different methods (Roy et al., 2018; Wang et al., 2019; Hoebel et al., 2020;
Lin et al., 2022a,b; Sahlsten et al., 2023) while others report correlations on their own to
assess the quality of the uncertainty measure (Hiasa et al., 2019). Hoebel et al. (2020) found
no significant correlation between uncertainty measures and structure size in their experi-
ments on lung nodule segmentation in CT scans, computing uncertainties based on MCD
and model ensembles using structure-wise mean entropy over the predicted samples, VVC
and MPD. Furthermore, Wang et al. (2019) claim that the VVC is agnostic to structure
size.

In contrast to this, we find non-negligible correlations between the structure size and
the uncertainty measures structure-wise epistemic uncertainty, VVC and MPD based on
model ensembles, MCD and TTA in our experiments.

3. Experiments

3.1. Data

For model training the publicly available TotalSegmentator dataset is used. It contains
1204 CT images with 104 annotated structures (Wasserthal et al., 2023), accounting for 27
organs, 59 bones, 10 muscles, and eight vessels.
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Our evaluation dataset consists of 30 selected cases out of 10828 whole body MR vol-
umes obtained as part of the MR Imaging Study within the German National Cohort Study
(GNC, 2014-2019) (Bamberg et al., 2015) from volunteers. The data were acquired on MAG-
NETOM Skyra 3T (Siemens Healthineers, syngo VD13C) systems. The MRI sequence is a
two-point Dixon volumetric interpolated breath-hold examination (VIBE) with T1 weight-
ing. Axial slices were acquired with a 320×260 in-plane matrix (resolution 1.4×1.4mm2)
and a slice thickness of 3mm. The volume consists of four acquired table positions with
a total of 316 slices. The test cases are selected to span a diverse sample of the subject
distribution with regard to study center, sex, age, weight and height. Details of the study
population are depicted in Table 1.

Three radiological technologists annotate segmentation masks for 28 anatomical struc-
tures, comprising 8 abdominal organs (liver, spleen, kidneys, stomach, pancreas, adrenal
glands), 5 thoracic organs (heart, lungs, esophagus, trachea), 12 bones (scapulas, clavic-
ulas, hips, sacrum, femurs, vertibrae L1-5, T1-12 and C3-7), 2 muscles (autochthon) and
one vessel (aorta) on these cases. The number of annotated structures per structure type
is shown in Table 6 in the appendix. The structure types are chosen as a subset of the
TotalSegmentator structures. This variety was selected to be able to draw conclusions
about anatomical structures of various shapes and sizes.

3.2. Segmentation Model

A segmentation model is trained from scratch on the TotalSegmentator data using our re-
implementation of the nnU-Net framework (Isensee et al., 2021). As training configuration,
we approximate the TotalSegmentator low resolution (3mm) model. The images are re-
sampled to a voxel size of 3×3×3mm3, a patch size of 80×80×80 is used and the nnU-Net
non-CT normalization is performed. The models are trained for 250,000 iterations with a
batch size of 2. The model used for MCD has a dropout layer with dropout rate 0.1 after
each block of convolution, normalization and non-linearity in the up- and downpath. For
basic data augmentation we utilize the batch generators library (Isensee et al., 2020).

In addition all models are trained using GIN data augmentation (Ouyang et al., 2023)
to allow for domain transfer between CT and MR images. In GIN, a convolutional neural
network (CNN) applies a random non-linear intensity value transformation on the training
patches. Therefore, the model needs to focus more on the shape and less on the intensity
values of structures and generalizes better to different imaging modalities and contrasts.
We re-implement GIN augmentation. In our experiments, GIN augmentation is applied
with a probability of 0.9 to each patch. The CNN for the augmentation has 4 layers with 2
channels each and uses ReLU activations. In each layer of the GIN augmentation network
a random 1×1×1 convolution is sampled. As we train our models on a low resolution we
decided to use only 1×1×1 convolutions to avoid too much smoothing that could arise from
larger filters.

3.3. Uncertainty Quantification

We asses three alternative uncertainty sources to predict a set of different predictions for the
same input image: model ensembles, TTA and MCD. For model ensembles one trains a set
of deep learning models to obtain models with different learned weights for the prediction
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task. In MCD this process is approximated by training only one model with dropout layers
(Srivastava et al., 2014); in our experiments, we use spatial dropout (Tompson et al., 2015)
which is more suited for convolutional neural networks. During inference, the dropout
layers are then activated to use the model as Bayesian neural network that approximates
the model posterior with different predictions for each dropout layer configuration. In TTA,
there is only one fixed model, but for each inference pass the input image is augmented with
either reversible geometric augmentations or intensity transformations to obtain a set of
different predictions for the same input. In our experiments 3D rotations, scaling, additive
and multiplicative brightness, contrast transformation and gamma transformation are used.
These are inspired by the data augmentations used in the batch generators library.

The epistemic uncertainty (Kendall and Gal, 2017; Mukhoti and Gal, 2018) is first
computed for each voxel by Equation 1, where pct(x) is the predicted probability for class c,
voxel x and sample t. T is the number of samples used for TTA, MCD and model ensembles,
which is set to 10 in our experiments.

I(x) = −
∑
c

(
1

T

∑
t

pct(x)

)
log

(
1

T

∑
t

pct(x)

)
+

1

T

∑
t

∑
c

pct(x) log pct(x) (1)

In order to then get to a structure-wise epistemic uncertainty, we average the epistemic
uncertainty over all voxels which are predicted as this structure.

The MPD (Roy et al., 2018) for class c is computed as the mean of the pairwise Dice
scores of all predicted segmentation masks (Eq. 2). mct is the binary mask for class c and
sample t.

MPDc =
2

T (T − 1)

∑
i>j

Dice(mci,mcj) (2)

Finally, the VVC (Roy et al., 2018) for class c is computed as the variance of the
predicted structure volumes divided by their mean (Eq. 3).

VVCc = Vart(vol(mct)) / Et(vol(mct)) (3)

3.4. Partial Spearman’s Rank Correlation

When computing the correlation between two variables X and Y, which are both highly
correlated with a third variable Z, the correlation between X and Y gets tainted by the
confounding nature of Z and potentially overestimated. In our case X and Y are the
segmentation quality and structure-wise uncertainty while the potential confounder Z is the
structure size. Partial correlation coefficients allow to remove the confounding effect of Z
when assessing the correlation between X and Y, providing a better estimate of their actual
relationship.

As we do not observe a linear relationship between our segmentation quality metrics
and uncertainty measures, we cannot use partial Pearson’s correlation for our purpose, but
have to rely on rank based correlations. Kendall (1942) defined a partial correlation based
on Spearman’s rank correlation, but stated that it is hard to theoretically justify. It was
also criticized because it is nonzero even under conditional independence of the correlated
variables given the controlling variable (Korn, 1984). Therefore we propose to use the partial
Spearman’s rank correlation defined by Liu et al. (2018) which they base on probability scale
residuals. To compute it we use the R package PResiduals (Liu et al., 2020b).
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Table 2: Correlation between uncertainty measures (left) or segmentation quality (right)
and structure volume computed over all structures. Signs of some quantities are
switched to allow for easier comparison of correlations.

-Ep. Unc. MPD -VVC Dice -ASSD

TTA 0.627 0.776 0.782 0.804 0.246
Ensemble 0.807 0.757 0.735 0.776 0.193
MCD 0.641 0.769 0.850 0.814 0.134

Table 3: Correlation between uncertainty measures and segmentation quality. Bold values
mark the best method/measure combination for each segmentation quality metric.

1-Dice vs. 1-Dice vs. 1-Dice vs. ASSD vs. ASSD vs. ASSD vs.
Ep. Unc. 1-MPD VVC Ep. Unc. 1-MPD VVC

TTA 0.845 0.936 0.850 0.635 0.586 0.562
Ensemble 0.908 0.941 0.801 0.746 0.788 0.694
MCD 0.837 0.958 0.907 0.660 0.577 0.520

4. Results

4.1. Evaluation Across All Structures

At first, we consider Spearman’s correlation between structure volume and uncertainty, as
well as between structure volume and segmentation quality. The results across all structures
and patients are presented in Table 2. We observe strong correlation for all tested uncer-
tainty measures and for the Dice score, which is contrary to the observations of Hoebel et al.
(2020) who observed no significant correlations between structure volume and uncertainty.
For the average symmetric surface distance (ASSD), we observe only weaker correlations.

The correlation between uncertainty measures and segmentation quality is shown in
Table 3. We observe moderate to high correlations in all cases, ranging from 0.520 to 0.958,
again higher when using the Dice score as segmentation quality measure.

As we observed before, there is a high correlation between both the segmentation quality
and structure volume as well as uncertainty and structure volume. Therefore, one can see
the structure volume acting as confounding variable between segmentation quality and
uncertainty. To correct for this, we use the partial Spearman’s rank correlation between
segmentation quality and uncertainty, accounting for the structure volume. It removes
the influence of structure volume from the correlation between segmentation quality and
uncertainty. We show the results in Table 4. One can observe that the correlations drop
in all cases, sometimes considerably by up to 0.260. We can also compare Table 3 and
Table 4 to check if the ranking of different uncertainty methods (column wise) or uncertainty
measures (row wise) changes when switching from correlation to partial correlation. This
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Table 4: Partial correlation between uncertainty measures and segmentation quality con-
trolling for structure volume. Differences to regular correlation (Table 3) are dis-
played in gray, measures that rank better (worse) within their column are marked
with △ (▽) and uncertainty sources that changed rank within their row with ▲(▼).
Bold values mark the best method/measure combination for each segmentation
quality metric.

1-Dice vs. 1-Dice vs. 1-Dice vs. ASSD vs. ASSD vs. ASSD vs.
Ep. Unc. 1-MPD VVC Ep. Unc. 1-MPD VVC

TTA ▲0.736 0.820△ ▼0.665 0.607 0.553 0.508
∆ -0.109 -0.116 -0.185 -0.028 -0.033 -0.054
Ensemble ▲0.792 ▼0.726▽ 0.541 ▲0.678 ▼0.629 0.534
∆ -0.116 -0.215 -0.260 -0.068 -0.159 -0.160
MCD ▲0.698 0.799▽ ▼0.675 0.638 0.513 0.443
∆ -0.139 -0.159 -0.232 -0.022 -0.064 -0.077

is important, because it means that we potentially arrive at different conclusions about the
utility of uncertainty methods/measures when we assess them either with the correlation
or partial correlation. We observe that the ranking of different methods is relatively stable
(only one column changes rankings) while for the different measures the rankings differ
more (all three rows changing for Dice and one row changing for ASSD).

From these observations we can conclude that the structure volume has a strong con-
founding effect on the correlation between uncertainty measures and the Dice score and a
weak confounding effect on the correlation between uncertainty measures and ASSD. The
partial correlation allows to address this issue and arrive at correlation estimates less tainted
by this confounding variable.

4.2. Evaluation per Structure Type

In the previous section we observed a strong correlation between structure-wise uncertainty
measures and structure volume when computing it across a wide variety of structure types.
All these structure types differ in their typical volume (cf. Table 6 in the appendix), which
is why the structure type itself could be the confounding variable, with the structure volume
being only an intermediate dependent variable on that. So the remaining question is if the
structure volume is the true confounding variable or if it is actually the structure type.

Considering correlation between structure size and uncertainty or segmentation quality,
the median, 1st and 3rd quartiles over all 28 structure types are shown in Table 5. The corre-
lations between structure volume and uncertainty are weaker when evaluated per structure
type, but still many structure types show correlations that deviate considerably from 0.

When correlating the uncertainty measures with the Dice score per structure type,
the medians of the distribution of correlations move towards 0 in all nine cases we are
assessing when switching from correlation to partial correlation. The lower and upper
quartiles also move towards 0 in eight of nine cases each. For the ASSD the medians
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Table 5: Distribution over correlation between uncertainty measures or segmentation qual-
ity and structure volume over structure types (median [1st quartile, 3rd quartile])

-Ep. Unc. MPD -VVC Dice -ASSD

TTA 0.23 [-0.02,0.37] 0.29 [0.17,0.42] 0.17 [0.08,0.36] 0.51 [0.27,0.68] 0.25 [0.13,0.35]

Ensem. 0.23 [0.13,0.51] 0.30 [0.07,0.53] 0.29 [0.06,0.44] 0.51 [0.37,0.69] 0.25 [0.18,0.37]

MCD 0.16 [0.06,0.30] 0.19 [0.04,0.38] 0.20 [0.11,0.35] 0.58 [0.29,0.73] 0.15 [0.00,0.40]

and quartiles sometimes rise and sometimes fall when switching from correlation to partial
correlation. Figure 2 in the appendix summarizes the distribution over correlations and
partial correlations per structure type and Figure 3 and Figure 4 in the appendix provide
all the individual correlations. This shows that the confounding nature of structure volume
is still present when assessing individual structure types and the partial correlation should
be used. When correlating with the ASSD this effect is much less severe. This highlights
its usefulness to assess the quality of uncertainty measures, as it is less effected by the
confounding nature of structure volume.

4.3. Statistical Testing for Structure-wise Evaluation

To test if partial correlation also leads to consistent reductions when considering structure
types individually, we perform a one-sided Wilcoxon signed-rank test over all types. The
threshold for significance is set to p < 0.0028 based on Bonferroni correction to achieve
a family wise error of 0.05. We find significance for TTA using either MPD or VVC as
uncertainty measure and Dice score as segmentation quality metric.

5. Conclusion

We evaluated the influence of structure volume as confounding variable on the correlation
between model uncertainty and segmentation quality in medical image segmentation. It
was confirmed that the Dice score has a strong correlation with structure volume, and in
contrast to prior work, we also found model uncertainty to be strongly correlated with
structure volume. This effect was evaluated both across various structure types as well
individually per structure type. It appears stronger in the first case, but is still visible per
structure type.

To counteract this issue, we propose to use the partial correlation coefficient when
correlating segmentation quality and model uncertainty, which removes the confounding
effect of the structure volume from the correlation estimate. In addition, we observe that
the average symmetric surface distance suffers less from this issue, as it has only a very weak
correlation with structure volume. This makes it a suitable segmentation quality measure
that can be used in addition to the Dice score to assess the performance of uncertainty
measures.
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Appendix A. Number of Masks and Volumes per Structure Type

Table 6: Volume of individual structure types

Structure Type Number of masks Volume [ml] (mean ± std. dev.)

Adrenal Gland Left 8 1.13 ± 0.93

Adrenal Gland Right 6 0.46 ± 0.37

Aorta 17 159.86 ± 54.09

Autochthon Left 18 513.04 ± 193.42

Autochthon Right 16 487.95 ± 187.71

Clavicula Left 24 24.49 ± 9.67

Clavicula Right 24 23.89 ± 8.22

Esophagus 17 23.37 ± 6.34

Femur Left 18 341.03 ± 52.93

Femur Right 17 337.94 ± 48.76

Heart 24 495.06 ± 173.17

Hip Left 25 299.66 ± 98.55

Hip Right 25 306.24 ± 78.32

Kidney Left 18 145.69 ± 36.08

Kidney Right 18 143.43 ± 34.84

Liver 26 1660.21 ± 410.92

Lung Left 25 1715.26 ± 437.92

Lung Right 25 2046.60 ± 485.89

Pancreas 17 73.56 ± 19.35

Sacrum 24 158.62 ± 42.40

Scapula Left 24 71.61 ± 17.90

Scapula Right 24 78.51 ± 27.39

Spleen 18 211.46 ± 71.36

Stomach 18 222.13 ± 140.41

Trachea 18 27.16 ± 9.63

Urinary Bladder 19 154.18 ± 121.17

Vertebrae C 14 18.66 ± 7.53

Vertebrae L 17 229.63 ± 70.20

Vertebrae T 17 242.51 ± 94.14
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Appendix B. Distribution of Correlation between Uncertainty and
Segmentation Quality per Structure Type
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Figure 2: Distribution over (partial) correlation between segmentation quality and uncer-
tainty for individual structure types.
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Appendix C. Correlation of Uncertainty and Segmentation Quality per
Structure Type
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Figure 3: (Partial) correlation between 1 - Dice and uncertainty for individual structure
types.
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(b) Ensemble
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(c) MCD

Figure 4: (Partial) correlation between average symmetric surface distance and uncertainty
for individual structure types.
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