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ABSTRACT

Discovering explanatory factors of user preferences behind behavioral data has
gained increasing attention. As collected behavioral data is often highly sparse,
mining other data modalities, e.g., texts, for interest factors and then correlating
them with those from behavioral data could provide a pathway to improve
recommendation. Nonetheless, two challenges prevail. For one, the unordered set
nature of discovered factors and the unavailability of prior alignment information
causes a challenge to align revealed interest factors from two modalities. For
another, it demands a tailored method to effectively transfer knowledge between
interest factors from mutually related modalities. To resolve this, we regard dis-
covered interest factors from ratings and texts as supporting points of two discrete
measures. Then, their alignment is formulated as an optimal transport problem,
finding an optimal mapping between two probability masses. Next, the mapping
probability serves not only as the prior information but also as input of barycentric
strategy to match and fuse interest factors, effectively tranferring user preferences
between mutually disentangled modalities. Experiments on real-world datasets
verify the advantage of the proposed method over a series of baselines.

1 INTRODUCTION

Variational Autoencoder (VAE)-based disentangled representation learning has demonstrated a
strong performance on recommendation task. Current studies ranged from dimension-wise dis-
entanglement Higgins et al. (2017); Burgess et al. (2018); Liang et al. (2018) to both intention and
dimension disentanglement Ma et al. (2019b) of user preferences. Recently, as gaining user trusts
into recommender systems has become more important, side information has been incorporated into
VAE-based disentangled models Guo et al. (2022); Wang et al. (2023a;b) to enhance interpretability
of user preferences besides improving recommendation accuracy.

Discovering interest factors from side information of multiple modalities then incorporating them
into recommendation models is a direction of emergent pertinence. One the one hand, preference
signals behind side information could complement those mined from user consumption behaviors,
resulting in more expressive interest representations. On the other hand, uncovered interest factors
from side information naturally act as ‘interpreter‘ of preferences as people are able to interpret
meaning behind textual or visual content. Thus, mapping interest factors from behavioral data with
those discovered from side information is a feasible way to gain insights into user preferences.

Therefore, we study the problem of disentangling and aligning interest factors across modalities,
particularly for content-aware recommendation involving text and rating modalities. Nonetheless,
simultaneously discovering and mapping interest factors from both rating and text modalities is
fundamentally different from disentangling preferences from a single modality and therefore poses
two challenges. For one, as interest factors from both modalities are discovered unsupervisedly,
while their alignment information is not available in advance, it requires a proper method to derive
interest factor alignment effectively in unsupervised setting. For another, the unordered set nature
of discovered preference factors makes it challenging to transfer user interest information between
factors as well as fuse their representations to obtain more expressive ones.

To tackle the challenges, we introduce a novel model BANDVAE, standing for Barycentric
Alignment of Mutually Disentangled Modalities with Variational AutoEncoder. BANDVAE dif-
ferentiates itself with three primary aspects. Firstly, we jointly discover multiple user preference
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factors behind ratings and texts by resorting to prototype-based representation learning. Secondly,
by regarding discovered factors from modalities as supporting points of two discrete measures, we
cast their alignment problem into an optimal transport (OT) problem. OT enables finding alignment
probabilities of interest factors unsupervisedly via solving an entropic regularized optimal trans-
port problem using Sinkhorn algorithm, which effectively addresses the first challenge. Thirdly,
we formulate two approaches to resolve knowledge (user preferences) transfer problem. For one, an
alignment probability-guided regularization term is included in the learning objective. For another, a
barycentric mapping strategy maps rating (text) factors onto text (rating) space then incorporating the
mapped factors into decoder to reconstruct rating (text) input, enabling mutual transference of super-
vision signals from two modalities. In addition, our model is capable of dealing with users demon-
strating different behaviors in each modality, i.e., the numbers of interest factors of modalities differ.

Contributions. Our key contributions are three-fold. First, we study the problem of discovering
and matching disentangled factors across modalities to uncover the explanatory factors behind users’
adoptions. Second, we introduce a novel model BANDVAE, aligning interest factors from ratings
and texts via optimal transport and transferring knowledge between uncovered factors via alignment
probability-guided regularization and barycentric mapping. Third, we conduct extensive experi-
ments quantitatively and qualitatively on real-world datasets to verify the advantages of BANDVAE.

2 RELATED WORK

VAE-based disentangled representation learning. Uncovering hidden explanatory factors behind
data results in robust representations and enables modeling complex data Bengio et al. (2013).
Variational AutoEncoder or VAE is a popular method offering representation disentanglement.
Early works including Higgins et al. (2017); Burgess et al. (2018); Kim & Mnih (2018); Chen
et al. (2018); Locatello et al. (2019) aim to achieve dimension-level disentanglement. Later,
Ma et al. (2019b) disentangles user preferences in recommender systems in both dimension and
intention levels. Follow-up works extend MacridVAE by incorporating side information to improve
recommendation accuracy and interpretability Guo et al. (2022); Wang et al. (2023a). Our work
follows this line of research yet distinguishes itself by innovatively incorporating optimal transport
for aligning disentangled rating and text factors. Wang et al. (2023b) disentangles user preferences
from both consumption and social environments, which is fundamentally different from ours.

Textual content-aware recommendation. Early works Wang & Blei (2011); Wang et al. (2015);
Kim et al. (2016); Li & She (2017) explore various methods to model item textual content then
regularize it with item representation. Ma et al. (2019a) leverages attention to model text and
gated mechanism to fuse textual content into autoencoder based recommendation model. Recently,
pre-trained language models (PLM), e.g., Devlin et al. (2019) have been explored to generate text
representation as input to recommendation model Zhang et al. (2021a); Zhou & Shen (2023); Zhou
et al. (2023). Regarding VAE-based recommendation, Zhang et al. (2020) disentangles preferences
from collaborative and content features. Follow-up works incorporate textual content into VAE
both in non-disentangled Zhu & Chen (2022) and disentangled fashions Tran & Lauw (2022); Guo
et al. (2022). We follow disentangled direction to discover multiple factors of user preferences from
ratings and texts then align those factors to enhance recommendation and interpretability. What sets
our work apart is the optimal transport-based method for aligning and fusing interest factors from
modalities. Compressing texts into single vector using PLM might lose the granularity of texts.
Thus it may be unable to interpret user preferences via text, which is out of our interest in this paper.

Optimal transport and its applications. Optimal Transport (OT) provides an elegant way to
measure two probability distributions as well as transport a point from a distribution to another Peyré
& Cuturi (2019). Sinkhorn algorithm is a widely adopted method Cuturi (2013); Genevay et al.
(2018); Peyré & Cuturi (2019) to compute optimal transport plan as it offers a differentiable and
GPU-friendly solution, which enables various applications. Courty et al. (2014; 2017) apply OT for
domain adaptation. Singh & Jaggi (2020) fuses different models’ layers. Zhang et al. (2021b) aligns
multiple query and key matrices in multi-head attention. Sander et al. (2022) improves attention
matrix in Transformer. Cao et al. (2022) improves knowledge graph modeling by fusing multimodal
data via OT. Wu et al. (2023) designs OT-inspired regularization term to improve topic modeling.
Zhang et al. (2023) explores OT for object-centric learning. Our novelty is characterized by aligning
and fusing mutually disentangled user interests from ratings and texts for recommendation.
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3 PRELIMINARIES AND NOTATIONS

Figure 1: Illustration of our model BANDVAE.
Dashed squares and circles are not included in
deriving user interests.

Let U be the set of M users indexed by u, and
V be the set of N items indexed by i. The inter-
actions between users and items are stored in
R 2 {0, 1}M⇥N . For user u, let yu 2 {0, 1}N
be her historical interactions with items. yu is
the uth row of R. yu

i
= 1 indicates an observed

interaction between user u and item i, other-
wise yu

i
= 0. For item i, let wi 2 RW be the

tf-idf representation of its textual content. W
is the number of words in the vocabulary. Let
tu 2 RW be textual vector associated with user
u, obtained by averaging tf-idf vectors of user
u’s adopted items, i.e., tu =

P
i yui wi

P
i yui

. Let H 2
RN⇥d be the embedding matrix of N items,
which is the weight of decoder of rating chan-
nel in Figure 1. The encoder of rating channel
maintains a context matrix Cy 2 RN⇥D used
to derive the user representation from yu.
For text channel in Figure 1, the weight of
decoder is denoted by EW⇥d, which stores
W d-dimensional vectors of W words in the
vocabulary. The encoder of text channel also
includes a context matrix Ct 2 RW⇥D, which
is used to derive user representation from tu.

Our goal is to reveal user preferences underlying yu and tu. To achieve this, we seek factorized user
representations from yu and tu, denoted as zuy and zut, respectively. Concretely, zuy = {zuy

k
}K
k=1

assuming K user interest factors underlying yu. Similarly, zut = {zut
j
}J
j=1 consists of J interest

factors behind tu. Next, we align these rating and text factors via optimal transport. The target
is two-fold. For one, aligning and fusing interest factors increases their expressiveness thanks to
combining knowledge mined from two modalities. For another, mapping rating factors onto text
space improves interpretability as textual content is human-understandable.

4 METHODOLOGY

In this section, we present the proposed model BANDVAE illustrated in Figure 1. BANDVAE
includes three main components: a) prototype-based encoder discovers K rating factors and J
text factors of user interests; b) aligning module includes three sub tasks: i) estimates the alignment
probabilities between rating and text factors; ii) maps rating (text) factors onto text (rating) space;
iii) fuses rating (text) factors with their mapped version; c) decoder receives fused rating and text
factors from b to reconstruct observed user-item interactions and user associated text.

4.1 PROTOTYPE-BASED ENCODER

Rating encoder. Let fenc

rating
(yu,my,H,Cy, ⌧,�y) be encoder of rating channel in Figure 1. The

input includes user u’s adoptions yu, prototypes my 2 RK⇥d, item embedding H 2 RN⇥d, context
matrix Cy 2 RN⇥D, temperature ⌧ , and hyper-parameter �y . First, we group N items into K
clusters by prototypes, producing an item assignment score matrix Ay 2 RN⇥K .

Ay = ⌘(
H · (my)T

⌧ · ||H||2 · ||my||2
, axis = ‘K‘) (1)

axis = ‘K‘ means the operator is performed along axis of K prototypes. Following Ma et al.
(2019b), ⌘ is Gumbel-Softmax Jang et al. (2017); Maddison et al. (2017), i.e., if item i belongs to
cluster k, then Ay

ik
is close to 1 and Ay

ik0 , 8k0 6= k, is near zero. Ay

ik
is based on cosine similarity

between item i embedding Hi and prototype my

k
to prevent mode collapse, i.e., items are mainly
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associated with single prototype Ma et al. (2019b). Small ⌧ is to obtain skewed distribution of
assignment score of Ay

i
of item i. Next, we aggregate user adopted items belonging to cluster k

then estimate parameters µuy

k
and �uy

k
of Gaussian distribution of user u’s kth rating factor.

(ruy
k
, ouy

k
) = gy(

P
i
yu

i
Ay

ik
Cy

ipP
i
yu
i
(Ay

ik
)2
) =) µuy

k
=

ruy
k

||ruy
k
||2

; �uy

k
= �y · exp(�1

2
ouy
k
)

zuy
k
⇠ N (µuy

k
, [diag(�uy

k
)]2) 8k = 1, 2, ...,K

(2)

Here, gy : RD ! R2d is function parameterized by neural network. �y’s value is around 0.1, follow-
ing Ma et al. (2019b). Rating factor k representation of user u is sampled from Gaussian distribution
with estimated parameters. Assuming the independence between rating factors of user u, we have
q(zuy|yu,Ay) =

Q
K

k=1 N (µuy

k
, [diag(�uy

k
)]2), which is called variational distribution, approximat-

ing intractable posterior distribution p(zuy|yu,Ay). q(zuy|yu,Ay) is matched with prior distribution
p(zuy) = N (0, (�y)2I) via Kullback-Leibler divergence (Dy

KL
). As p(zuy) is factorized, Dy

KL
im-

poses micro-disentanglement, i.e., disentangled between dimensions of representation sampled from
q(zuy|yu,Ay). Dy

KL
(q(zuy|yu,Ay)||p(zuy)) will be plugged into Equation 12 for optimization.

Text encoder. Let fenc
text

(tu,mt,E,Ct, ⌧,�t) be the encoder of text channel in Figure 1. The input
includes user u’s texts tu, prototypes mt 2 RK⇥d, word embedding E 2 RW⇥d, context matrix
Ct 2 RN⇥D, temperature ⌧ , and hyper-parameter �t. The procedure of text encoder is similar to
that of rating encoder. Due to limited space, we present the detailed derivation in supplementary
materials. The output of text encoder include J user interest factors {zut

j
}J
j=1, word assignment

matrix At, and regularization term Dt

KL
(q(zut|tu,At)||p(zut)) with p(zut) = N (0, (�t)2I).

4.2 ALIGNING MODULE

As {zuy
k
}K
k=1, {zut

j
}J
j=1 are derived unsupervisedly and their alignment information is unavailable,

this requires us to discover a proper solution capable of handling their alignment. In addition, this
also demands an interest transfer method between these factors so as to improve recommendation
accuracy and user interest interpretability. Thus, we regard discovered rating and text factors of user
u as supporting points of two discrete measures and cast their alignment task as an optimal transport
(OT) problem. For one, OT provides a distribution matching framework capable of estimating
alignment probabilities ⇡u between rating and text factors. For another, ⇡u guides the knowledge
transfer between two modalities and serves as input of barycentric mapping.

4.2.1 INTEREST FACTORS ALIGNMENT AS TRANSPORTATION PROBLEM

Let �uy =
P

K

k=1 p
y

k
�zuy

k
, �ut =

P
J

j=1 p
t

j
�zut

j
be discrete measures of user u’s rating and text

factors, respectively. �zuy
k

and �zut
j

are Dirac delta functions at zuy
k
2 Rd and zut

j
2 Rd, respectively.

py
k

and pt
j

are probability masses of kth rating factor and jth text factor, respectively. py
k

and pt
j

belong to probability simplex, i.e.,
P

K

k=1 p
y

k
= 1 and

P
J

j=1 p
t

j
= 1. Since we do not have access

to the ground truth distribution and {zuy}K
k=1, {zuy}J

j=1 are derived unsupervisedly, we follow Wu
et al. (2023) to set py

k
= 1/K and pt

j
= 1/J , which is uniformly distributed. Let Pu be the set of

alignment probabilities between two distributions �uy and �ut, we have

Pu = {⇡u 2 RK⇥J

+ |⇡u1K = py, (⇡u)T 1J = pt} (3)
where 1K , 1J are K and J-dimensional one vectors. Following Cuturi (2013), a regularized optimal
transport problem is formulated to make it tractable

⇡u = argmin
⇡u2Pu

h⇡u, SuiF � ✏ · Entropy(⇡u) (4)

The first term is the Frobenius dot product between ⇡u and the cost matrix Su 2 RK⇥J ,
Su

kj
= ||zuy

k
� zut

j
||22 and h⇡u, SuiF =

P
k,j

⇡u

kj
Su

kj
. The second term Entropy(⇡u) =P

k,j
�⇡u

kj
log(⇡u

kj
) is the entropy of ⇡u, which is added to make the problem tractable.

✏ is a hyper-parameter of entropic regularization term. Small ✏ results in skewed distri-
bution while large ✏ leads to relatively uniform distribution in ⇡u . The goal of Equa-
tion 4 is to find ⇡u that minimizes the total transporting cost from rating factors to text
factors of user u, where the cost is based on Euclidean distance between two factors.
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Algorithm 1: Alignment probability
derivation

1 Input: {zuy
k
}K
k=1, {zuy

j
}J
j=1, ✏

2 Output: ⇡u

1: Su

kj
= ||zuy

k
� zut

j
||22, Su 2 RK⇥J

2: Bu = exp(�Su/✏)
3: Initialize v 1J

4: while not converged do
5: u = 1

K

1K
Buv ; v 1

J

1J
(Bu)T u

6: end while
7: return ⇡u = diag(u)Budiag(v)

To compute the optimal alignment probability ⇡u in
Equation 4, we resort to Sinkhorn algorithm Cuturi
(2013). Generally, this algorithm works by alterna-
tively calculating u and v, which are two scaling vec-
tors until convergence as presented in Algorithm 1.
Then, the alignment probability between rating fac-
tors {zuy

k
}K
k=1 and text factors {zut

j
}J
j=1 of user u is

⇡u = diag(u)exp(�Su/✏)diag(v) (5)
Algorithm 1 is efficient as it is differentiable and
matrix multiplication is highly supported on GPU.
Besides mapping text factors to rating space to
improve recommendation, ⇡u enables deriving
interpretability of user interests, in which rating
factors are mapped to text space for interpretation.

4.2.2 INTEREST TRANSFER BETWEEN FACTORS OF MODALITIES

We formulate two approaches for user interest transfer between rating and text factors: i) regulariza-
tion term guided by optimal alignment probabilities; ii) mapping rating (text) factors to text (rating)
space via barycentric strategy so that supervision signals of modalities can be mutually transferred.

Alignment probability guided regularization, of which optimization is guided by ⇡u

LOT

u
=

KX

k=1

JX

j=1

⇡u

kj
· ||zuy

k
� zut

j
||22 (6)

Thanks to the probabilities captured by ⇡u, the optimization will focus on transferring user interests
between most probably aligned factors. LOT

u
is included in 4.3 for optimization. Note that

regularization-based interest transfer has been explored in Wang et al. (2015); Li & She (2017);
Tran & Lauw (2022), both in non-disentangled and disentangled fashions. However, none of these
is guided by alignment probabilities, which is crucial for recommendation as shown in Section 5.2.

Mapping and fusing. We incorporate rating (text) factors into text (rating) decoder so they could
capture both modality signals, which requires mapping rating factors to text space (vice versa).

Barycentric Mapping. We resort to barycentric strategy Perrot et al. (2016); Courty et al. (2017) to
map interest factors. Note that ⇡u

kj
tells us how much probability mass of zuy

k
to be transferred to

zut
j

. Thus, we exploit this information to find the transformation of rating factors in text space by
solving ẑuy

k
= argminst2Rd

P
j
⇡u

kj
c(st, zut

j
) . In which, ẑuy

k
be the transformation of zuy

k
onto text

space and c(·, ·) is l2 distance cost function. Following Courty et al. (2017), the solution for ẑuy
k

is
ẑuy
k

= diag(⇡u

k
1J)

�1⇡u

k
zut (7)

where zut = {zut
j
}J
j=1 2 RJ⇥d. We repeat Equation 7 8k = 1, 2, ...,K to obtain {ẑuy

k
}K
k=1.

Similarly, we compute ẑut
j

, the transformation of text factor zut
j

onto rating space, as follows

ẑut
j

= diag((⇡u)T
j

1K)�1(⇡u)T
j

zuy (8)

where zuy = {zuy
k
}K
k=1 2 RK⇥d. Equation 8 is repeated 8j = 1, 2, ..., J to obtain {ẑut

j
}J
j=1.

Adaptively Fusing. We fuse {zuy
k
}K
k=1 with transformed versions {ẑuy

k
}K
k=1 as input of rating de-

coder. Thus, rating signals are transferred explicitly into text space via {ẑuy
k
}K
k=1. As each user’s de-

cision bases differently on modalities, we design a fusion layer with adaptive personalized weight ⇢u

z̃uy
k

= zuy
k

+ ⇢uy · ẑuy
k
, 8k = 1, 2, ...,K with ⇢uy = log(1 + exp(WT [zuy

k
; ẑuy

k
])) (9)

⇢uy is the positive fusion weight via softplus, i.e., softplus(x) = log(1 + exp(x)). W 2 R2d⇥1 is
a projection layer and ; is concatenation. Similarly, a fusion step is also performed for text factors.

z̃ut
j

= zut
j

+ ⇢ut · ẑut
j
, 8j = 1, 2, ..., J with ⇢ut = log(1 + exp(WT [zut

j
; ẑut

j
])) (10)

Next, we normalize fused factors to unit-length, i.e., z̃uy
k

= z̃uy
k
/||z̃uy

k
||2 and z̃ut

j
= z̃ut

j
/||z̃ut

j
||2.

Then, z̃uy = {z̃uy
k
}K
k=1 and z̃ut = {z̃ut

j
}J
j=1 go to corresponding decoder.
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4.3 DECODER

Rating decoder. Let fdec

rating
(z̃uy,Ay,H, ⌧) be the decoder of rating channel, which accepts user

u’s fused rating factors {z̃uy
k
}K
k=1, item assignment score matrix Ay , item embedding matrix H, and

temperature ⌧ as inputs. Decoder predicts the probability of interaction between user u and item i as

p(yu
i
|̃zuy,Ay) =

fr(z̃uy,Hi)P
N

i0=1 f
r(z̃uy,Hi0)

; fr(z̃uy,Hi) =
KX

k=1

Ay

ik
· exp(

z̃uy
k

· Hi

⌧ · ||̃zuy
k
||2 · ||Hi||2

) (11)

The minimizing objective for user u includes cross-entropy loss to match the predicted interaction
probability p(yu) with observed interactions yu and KL divergence term derived from Section 4.1.

Ly

u
=

NX

i=1

�yu

i
ln p(yu

i
) + �Dy

KL
(q(zuy|yu,Ay)||p(zuy)) (12)

Text decoder. Let fdec
text

(z̃ut,At,E, ⌧) be the decoder of text channel. The inputs include user u’s
fused text factors z̃ut, word assignment score matrix At, word embedding matrix E, and temperature
⌧ . The predicted probability of a word w appearing in textual information of user u is

p(tu
w
|̃zut,At) =

f t(z̃ut,Ew)P
W

w0=1 f
t(z̃ut,Ew0)

; f t(z̃ut,Ew) =
JX

j=1

At

wj
· exp(

z̃ut
j

· Ew

⌧ · ||̃zut
j
||2 · ||Ew||2

) (13)

Similarly, the minimizing objective of user u includes cross-entropy term to match predicted proba-
bility p(tu) with observed textual information tu and KL divergence term derived from Section 4.1.

Lt

u
=

WX

w=1

�tu
w
ln p(tu

w
) + �Dt

KL
(q(zut|tu,At)||p(zut)) (14)

Final learning objective. BANDVAE minimizes L = 1
||B||

P
u2B Ly

u
+�t ·Lt

u
+�r ·LOT

u
. In which,

�t and �r are hyper-parameters of Lt
u

and LOT
u

. Training procedure is included in supplements.

5 EXPERIMENTS

Datasets. We use three real-world datasets: Citeulike-a1 (5,551 users; 16,980 items; 204,986
interactions; 8,000 words) contains interactions between users and scientific articles. MovieLens2

(15,000 users; 7,892 items; 1,005,820 interactions; 8,000 words) includes movie ratings of user.
Amazon Cell Phones3 (25,500 users; 17,989 items; 285,047 interactions; 8,000 words) contains
user’ reviews on Cell Phones & Accessories category of Amazon dataset. We follow Ma et al.
(2019b) and Zhu & Chen (2022) to collect and pre-process data. We construct training, validation
and test sets by randomly selecting a subset of users for each, following strong generalization strat-
egy in Ma et al. (2019b). Data and code are included in supplementary materials for reproducibility.

Baselines. We compare BANDVAE against VAE-based recommendation models, as they are ca-
pable of predicting interactions for new users not appearing in training set in strong generalization
setting; including those only consider behavioral data (MacridVAE Ma et al. (2019b), RecVAE
Shenbin et al. (2020)) and those involving text (MDCVAE Zhu & Chen (2022), TopicVAEGuo et al.
(2022), ADDVAE Tran & Lauw (2022) and SEM-MacridVAE Wang et al. (2023a)). Among these,
RecVAE and MDCVAE are non-disentangled while MacridVAE, TopicVAE, ADDVAE, SEM-
MacridVAE are disentangled. Descriptions of these baselines can be found in the supplementary.

Hyper-parameter settings. We use grid search to choose hyper-parameters for baselines based
on performance on validation set. Finally, we re-train these baselines with chosen ones and report
performance on test set. For BANDVAE, hyper-parameter setting is presented in the supplementary.

Recommendation evaluation metrics. We report Recall and Normalized Discounted Cumulative
Gain (NDCG) at top 10 and 50 with full-ranking strategy, i.e., test item is ranked against all items in
the space. Harmonic mean of Recall and NDCG is also included to measure the overall performance.

1http://wanghao.in/CDL.htm
2https://grouplens.org/datasets/movielens/
3https://nijianmo.github.io/amazon/index.html
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Table 1: Recommendation performance comparison. �hm is harmonic mean of reported metrics.
The highest results are boldfaced while the runners-up are underlined. Unit of number is percentage
(%). ? denotes statistical significance of the boldfaced w.r.t. the underlined. On MovieLens, where
models’ performance vary, BANDVAE’s numbers are statistically significant on some metrics, e.g.,
the statistically significant gap between BANDVAE and ADDVAE on R@10, N@10 and N@50.

Model Citeulike-a Cell Phones MovieLens
R@10 R@50 N@10 N@50 �hm R@10 R@50 N@10 N@50 �hm R@10 R@50 N@10 N@50 �hm

MDCVAE 22.43 38.72 20.97 26.45 25.66 4.34 9.60 3.38 4.87 4.79 14.03 29.75 11.98 18.13 16.43
TopicVAE 17.00 37.78 17.54 23.84 21.71 5.31 11.59 4.23 6.00 5.90 14.27 31.90 13.01 19.54 17.43
RecVAE 21.46 38.39 22.43 27.27 25.99 3.77 8.79 2.92 4.34 4.20 14.45 32.78 13.02 19.80 17.62

MacridVAE 21.92 43.00 22.95 29.21 27.27 5.82 11.96 4.84 6.58 6.51 14.25 32.28 12.74 19.49 17.32
SEM-

MacridVAE 22.25 42.52 23.42 29.41 27.56 5.13 10.91 4.23 5.88 5.77 14.17 31.59 13.36 19.77 17.57

ADDVAE 23.44 43.89 24.12 30.23 28.57 5.76 11.96 4.90 6.65 6.54 14.01 32.95 12.62 19.63 17.25

BANDVAE 23.80? 44.70? 24.55? 30.72? 29.05 6.21? 13.05? 5.06? 7.00? 6.92 14.40 32.92 13.15 20.01? 17.71

5.1 RECOMMENDATION PERFORMANCE COMPARISON

Table 1 compares the recommendation performance. Evidently, BANDVAE achieves the strongest
performance on Citeulike-a and Cell Phones. On MovieLens, BANDVAE achieves better accuracy
than strong baselines w.r.t. 3 out of 4 metrics and the highest harmonic mean of those metrics.

Taking a detailed look at the data, there are three data-dependent key takeaways. First, on Citeulike-
a and Cell Phones, text-aware models, including ADDVAE, SEM-MacridVAE, TopicVAE (on Cell
Phones) generally work better than using behavioral data only models MacridVAE, RecVAE, which
supports the importance of textual content on recommendation accuracy. BANDVAE is better than
all these baselines by a large margin, showing effectiveness of optimal transport-based alignment.
Second, disentangled models, e.g., ADDVAE, SEM-MacridVAE, MacridVAE, have overall higher
performance than non-disentangled ones, e.g., RecVAE, MDCVAE, on Citeulike-a and Cell Phones.
Thus, disentangling user preferences has a crucial influence on recommendation performance. Third,
on MovieLens, while baselines’ performance vary across metrics, BANDVAE maintains the com-
petitive performance, improving 3 out of 4 metrics by clear margins. MovieLens results show that
not only disentangling user preferences is crucial but also the alignment of disentangled factors from
ratings and texts. BANDVAE has a blend of these two, explaining its own effectiveness.

5.2 MODEL ANALYSIS

Table 2: Comparing methods producing ⇡u

Method Citeulike-a Cell Phones MovieLens
R@10 N@10 R@10 N@10 R@10 N@10

Sinkhorn 23.80 24.55 6.21 5.06 14.40 13.15
Soft-match 23.31 24.17 6.18 5.00 14.15 12.92
Diagonal 22.60 23.39 5.81 4.78 13.94 12.88

Table 3: Comparing interest transfer methods

Method Citeulike-a Cell Phones MovieLens
R@10 N@10 R@10 N@10 R@10 N@10

Proposed 23.80 24.55 6.21 5.06 14.40 13.15
Mapping &

Fusing 23.31 24.28 6.10 4.95 14.19 12.97

Regularization 22.18 23.14 5.77 4.88 14.18 12.82

Alignment probability. ⇡u lies at the heart of BANDVAE, providing probabilities to align rating
and text factors of user u as well as guide the interest transfer between modalities. Thus, we study
other alternatives to understand the derivation of ⇡u. Table 2 reports the results.

• Sinkhorn leverages Sinkhorn algorithm as presented in Section 4.2.1

• Soft-match generates alignment probabilities by normalizing (negative) distance between disen-
tangled factors from two modalities, i.e., ⇡u

kj
=

exp(�||zuy
k �zut

j ||22)/✏PK
k=1

PJ
j=1 exp(�||zuy

k �zut
j ||22)/✏

.

• Diagonal assumes kth rating factor aligned with kth text factor, i.e., ⇡u

kj
= 1/K if k = j,

otherwise ⇡u

kj
= 0. This approach is only applicable when K = J .
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First, Sinkhorn implicitly models the alignment between interest factors via alternatively scaling
rows and columns of exponential negative distance matrix in Algorithm 1. It is proven that ⇡u

converges to optimal solution of transport problem Peyré & Cuturi (2019). Thus, Sinkhorn is more
effective than soft-match normalizing exponential negative distance over all pairs of interest factors,
which may result in skewed distribution, i.e., probability mass mainly concentrates on the most
similar pair rather than distributing to multiple actually matched pairs of interest factors. Second,
soft-match achieves clearly higher accuracy than diagonal, highlighting the importance of modeling
pair-wise alignment between interest factors. Contrarily, diagonal makes too strong assumption
about the alignment between interest factors, which hurts the accuracy.

Interest transfer methods. Table 3 reports the contribution interest transfer methods.

• Proposed includes both regularization (Section 4.2.2) and mapping and fusing (Section 4.2.2).

• Mapping & Fusing only includes mapping and fusing for interest transfer (no regularization).

• Regularization only involves regularization for interest transfer (no mapping and fusing).

There are two key takeaways. First, the two proposed interest transfer methods complement each
other to boost performance. For another, mapping & fusing has a stronger effect than regularization,
demonstrating that mutually transfering signals is more beneficial than regularizing interest repre-
sentations. Second, the contribution of regularization method is not trivial. Combining with Table 2,
we imply that it comes from estimating informative alignment probabilities via Sinkhorn algorithm.

Table 4: Comparing fusion methods

Method Citeulike-a Cell Phones MovieLens
R@10 N@10 R@10 N@10 R@10 N@10

Adaptive 23.80 24.55 6.21 5.06 14.40 13.15
Mean 23.35 24.35 6.06 4.93 14.17 12.98

Mean-T 22.89 23.80 5.50 4.28 14.04 12.75

Table 5: Effect of Lt
u

on recommendation task

Setting Citeulike-a Cell Phones MovieLens
R@10 N@10 R@10 N@10 R@10 N@10

with Lt

u 23.80 24.55 6.21 5.06 14.40 13.15
without Lt

u 23.52 24.36 6.19 4.98 14.07 12.82

Fusion method (Section 4.2.2). Table 4 compares our fusion layer with two alternatives.

• Adaptive learns the adaptive fusion weight ⇢u for each user u as presented in Section 4.2.2.

• Mean takes the average of rating (text) factors and their corresponding transformed version in text
(rating) space, i.e., z̃uy

k
= 1

2 (z
uy

k
+ ẑut

k
) and z̃ut

j
= 1

2 (z
ut

j
+ ẑuy

j
).

• Mean-T works similarly to mean but operating on two transformed versions of factors and sharing
the final factors for both channels, i.e., z̃uy

k
= 1

2 (ẑ
uy

k
+ ẑut

k
) = z̃ut

k
(k in place of j for text factors).

First, our adaptive layer outperforms two fusion alternatives. Secondly, by contrasting adaptive and
mean, we imply that learning a personalized fusion weight is favorable as each user makes decision
differently based on modalities. Thirdly, mean is better than mean-T, indicating that sharing factor
representations for modalities is limited as user preferences on these modalities might not be iden-
tical. Furthermore, residual connection between rating (text) factors with their transformed version
in text (rating) domain, is also important, dropping it causes harmful effect. It is noted that while
some of alignment probability derivation and fusion method have been adopted in existing works,
e.g., diagonal and Mean-T in Tran & Lauw (2022), mean in Singh & Jaggi (2020), our proposed
alternatives are better than these methods, explaining the strong performance of BANDVAE.

Efficiency analysis. We study the efficiency of BANDVAE by recording the training and inference
time (in second). BANDVAE takes 1.7525s, 6.1622s, 3.1120s to complete a training epoch on
Citeulike-a, Cell Phones and MovieLens, respectively. For contrast, we record training time of
the most similar baseline ADDVAE. The training time of ADDVAE on Citeulike-a, Amazon Cell
Phones and MovieLens are 1.6856s, 5.6698s and 2.9653s, respectively. Clearly, BANDVAE only
requires slightly higher training time than ADDVAE yet achieving better performance by a large
margin. Regarding inference time, we have the same observation, i.e., 0.0375s, 0.1230s, 0.0546s
of BANDVAE compared to 0.0344s, 0.1070s, 0.0544s of ADDVAE on chosen datasets Citeulike-a,
Cell Phones and MovieLens. Overall, the analysis supports that BANDVAE is efficient.
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Figure 2: Alignment probability of user pro-
duced by BANDVAE on Cell Phones dataset.

Interpretability. We study alignment probability
of a user in Figure 2 and the corresponding outputs
of decoder of BANDVAE in Figure 3 to qualitatively
evaluate whether BANDVAE has the capability of
producing interpretable user interest representations.

First, there is a visible staggered pattern in Figure
2. Thus, we can induce a proximate one-to-one
mapping between interest factors to interpret their
meaning. Second, rating factor 3 and 4 in Figure
2 are distinguishable, which is also demonstrated
in Figure 3. Concretely, rating factor 3 are phone
accessories, e.g., back holder & case and rating
factor 4 seeks for composite phone case. Regarding
rating factor 1 and 2, there is a degree of correlation
between these two as shown in both Figure 2 and
3. Whilst rating factor 1 refers to phone wallet case
and rating factor 2 talks about mobile phone and
camera, we observe that a wallet case is in top items of rating factor 2 and a camera shutter retrieved
by rating factor 1. Third, outputs of text decoder has potential capability of capturing semantic
meaning of rating decoder’s outputs. For instance, in Figure 3, top predicted words from text
factor 3 highlight the key features of items retrieved by rating factors 3, e.g., phone, case, Samsung
galaxy. Similar observations can be made from other text factors. Thus, text interest factors can
be potentially used to explain user preferences from rating factors. Note that interest factors from
modalities are discovered unsupervisedly, which might lead to some uninterpretable interest factors,
motivating us to explore other modalities to improve interpretable user interest discovery.

Figure 3: Visualization of predicted words and
items (each has image and title) of text and rating
decoders. Factor alignment is based on probabil-
ity in Figure 2. Words in item titles are boldfaced.

Effect of Lt
u

. We study the effect of Lt
u

on rec-
ommendation accuracy in Table 5. Obviously,
turning off effect of Lt

u
hurts recommendation

accuracy, showing its benefit. We intuit that
text signals embeds user preferences into text
interest factors, benefiting the alignment step.

Effect of ✏ in Equation 4. Experimental ev-
idence on influence of ✏ on derivation of ⇡u is
shown in supplements. First, there is a trade-
off between recommendation and interpretabil-
ity. While recommendation favors ✏ > 0.2,
smaller ✏ benefiting interpretability negatively
affect recommendation. Second, ✏ is data-
dependent w.r.t. recommendation accuracy.

Study the values of K and J . We vary num-
ber of rating factors K and that of text factors J
and record recommendation accuracy included
in supplements. Key takeaways are first, K
and J are data-dependent; second, BANDVAE
is capable of dealing with the case when the
number of user interests between two modal-
ities differ while existing work ADDVAE, is
unable due to their overly strict assumption.

6 CONCLUSION

We study the problem of aligning interest fac-
tors from mutually disentangled modalities to
uncover explanatory factors behind user preferences. Then we introduce a novel model BANDVAE
which aligns disentangled interest factors via optimal transport and transfer knowledge between
factors via alignment probability guided regularization and barycentric mapping.
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