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Abstract
In this study, we tackle an optimization problem
with a known function and an unknown decision-
dependent distribution, which arises in a variety
of applications and is often referred to as a perfor-
mative prediction problem. To solve the problem,
several zeroth-order methods have been devel-
oped because the gradient of the objective func-
tion cannot be obtained explicitly due to the un-
known distribution. Although these methods have
theoretical convergence, they cannot utilize the
information on the known function, which limits
their efficiency in reducing the objective value.
To overcome this issue, we propose new zeroth-
order methods that generate effective update di-
rections by utilizing information on the known
function. As theoretical results, we show the con-
vergence of our methods to stationary points and
provide the worst-case sample complexity anal-
ysis, which improves the state of the arts when
the maximum objective value dominates the cube
root of the decision variable’s dimensionality in
order. Our simulation experiments on multiple
applications show that our methods output solu-
tions with lower objective values than the existing
zeroth-order methods do.

1. Introduction
In this study, we consider the following problem:

min
x∈Rd

F (x) := Eξ∼D(x)[f(x, ξ)], (1)

where F : Rd → R is generally non-convex, f is a given
differentiable function, and D(x) is an unknown distribu-
tion of random variables ξ. This formulation is known as
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the performance prediction problem (Perdomo et al., 2020).
The main feature of this problem is that the probability
distribution D(x) depends on decision vector x and is un-
known. This problem appears in a wide range of applica-
tions. For example, in pricing applications, a seller aims
to optimize the prices x of products and services for their
revenue, considering the price-dependent distribution D(x)
of stochastic demand (Ray et al., 2022; Hikima & Takeda,
2025b). In strategic classification in financial practices, a
lender aims to train the parameter x of a classifier for finding
good customers, considering the parameter-dependent data
distribution D(x), which is caused by customers who may
react to the deployed classifier (Levanon & Rosenfeld, 2021;
Liu et al., 2024a). Various studies (Perdomo et al., 2020;
Mendler-Dünner et al., 2020; Chen et al., 2024) have ad-
dressed problem (1). because of its importance in practical
applications.

Since the gradient of the objective function is inaccessible
as a result of the distribution D(x) being unknown, various
zeroth-order methods have been proposed, which update
the decision vector by some estimated gradient on the basis
of function evaluation(s). For example, (Chen et al., 2024;
Hikima & Takeda, 2025b) proposed zeroth-order methods
based on the following gradient estimator:

g :=
1

2µ

(
f(x+ µu, ξ1)− f(x− µu, ξ2)

)
u, (2)

where µ ∈ R≥0 is a constant, u ∈ Rd is sampled from some
distribution (e.g., the standard Gaussian distribution), ξ1 ∼
D(x+µu), and ξ2 ∼ D(x−µu). Not limited to the above,
various studies (Ray et al., 2022; Liu et al., 2024a) proposed
zeroth-order methods using different gradient estimators.

Although these existing zeroth-order methods are theoreti-
cally valid for solving problem (1), they treat the function
f as a black box and do not leverage its gradient informa-
tion, which limits optimization efficiency. Specifically, an
unbiased stochastic gradient of the objective function F in
(1) can be written as follows (Liu et al., 2024b; Hikima &
Takeda, 2025a):

∇xf(x, ξ) + f(x, ξ)∇x log Pr(ξ | x), ξ ∼ D(x). (3)

Here, although we cannot obtain the second term since
Pr(ξ | x) is unknown, we can calculate the first term, that
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is,∇xf(x, ξ), since f is known. Thus, we can access partial
information on the gradient of objective function F .

The fact that existing methods do not fully utilize the infor-
mation leads to slow convergence and increases the number
of samples ξ ∼ D(x). Such an increase is undesirable
in practice because a decision (x) must be deployed in
real-world to obtain a sample ξ ∼ D(x). For example, a
decision maker must sell some products at prices x to obtain
sample demand ξ ∼ D(x).

In this work, we propose guided zeroth-order methods
that integrate partial gradient information derived from the
known structure of f . Inspired by (Maheswaranathan et al.,
2019), our methods use the gradient estimator (2) with
u ∼ N (0,Σ), whereN (0,Σ) is a normal distribution with
a variance-covariance matrix Σ ∈ Rd×d. The key to our
methods is to incorporate partial gradient information in Σ
in order to generate an updating direction u that tends to de-
crease the objective value. We design two interchangeable
methods for obtaining partial gradient information. One
method computes, as the information, the first term of (3)
from new sample(s) ξ ∼ D(xk) at the current iteration k.
The other method approximates it from historical sample(s)
ξi ∼ D(xi) in past iteration(s) i.

Our theoretical analysis shows that our methods converge
to stationary points and provides the worst-case sample
complexity, which represents the number of samples ξ ∼
D(x) needed to obtain a stationary point x̂ such that
E[∥∇F (x̂)∥2] ≤ ϵ2. In particular, we show that the worst-
case sample complexity of our methods is O(σ3d4ϵ−6),
where Eξ∼D(x)[(F (x)− f(x, ξ))2] ≤ σ2 for any x ∈ Rd.
Since the sample complexities of the existing methods are
O(σ3d

9
2 ϵ−6) (Hikima & Takeda, 2025b) and O(G6d2ϵ−6)

(Liu et al., 2024a), where G = supx,ξ |f(x, ξ)|, our meth-
ods outperform them when G = ω(d

1
3 ) or G is unbounded.

Note that even if f is a simple loss function such as squared
error, G is unbounded. This improved order is achieved
by employing a tighter convergence analysis compared to
(Hikima & Takeda, 2025b), which involves tuning algo-
rithmic parameters such as mini-batch size and step size.
Furthermore, the proposed zeroth-order methods incorpo-
rate partial gradient information without making any as-
sumptions about its correlation with the true gradient, and
crucially, without deteriorating the convergence rate.

We conducted simulation experiments on multiple products
pricing and strategic classification applications. The results
show that our methods output solutions with lower objective
values than the existing zeroth-order methods do.

Notation. Bold lowercase symbols (e.g., x,y) denote vec-
tors, and ∥x∥ denotes the Euclidean norm of a vector x.
Bold uppercase symbols (e.g., Σ) denote matrices, and ∥Σ∥
denotes the spectral norm of a matrix Σ. The inner product

of the vectors x,y is denoted by x⊤y. Let R>0 (R≥0) be
the set of positive (non-negative) real numbers. Let N be
the set of natural numbers. The gradient for a real-valued
function f(x) w.r.t. x is denoted by ∇xf(x). We let Id be
a d-dimensional identity matrix and let N (0,Σ) be a Gaus-
sian distribution with a co-variance matrix Σ. We denote
the set of d× d positive definite matrices by Sd++. Let [N ]
be the set {1, 2, . . . , N}.

2. Related Work
2.1. Zeroth-Order Optimization Methods

Zeroth-order optimization methods have been proposed for
solving optimization problems where gradient and Hessian
information are either unavailable or computationally ex-
pensive to calculate (Powell, 2006; Ghadimi & Lan, 2013;
Nesterov & Spokoiny, 2017; Ragonneau & Zhang, 2024).
Recently, various studies have proposed zeroth-order meth-
ods for solving problems with decision-dependent distri-
butions (Ray et al., 2022; Liu et al., 2024a; Chen et al.,
2024; Hikima & Takeda, 2025b). (Chen et al., 2024) de-
rived the conditions under which (1) can be reduced to a
convex optimization problem and solved the reduced con-
vex problem by using a zeroth-order method. (Hikima &
Takeda, 2025b) proposed zeroth-order methods with one-
point and two-point gradient estimators and derived the
iteration and sample complexities for reaching stationary
points. (Ray et al., 2022; Liu et al., 2024a) proposed zeroth-
order methods for (1) with time-varying decision-dependent
distributions. Although these studies effectively develop
zeroth-order methods within their settings, they fail to lever-
age the known structure of the function f . In this study, we
propose new zeroth-order methods by using the information
on f to generate updating directions.

2.2. Other Methods of Solving Stochastic Problems with
Decision-Dependent Distributions

Here, we list methods other than zeroth-order ones for (1).

Retraining methods (Perdomo et al., 2020; Mendler-
Dünner et al., 2020; Roy et al., 2022; Mofakhami et al.,
2023; Li & Wai, 2024; Khorsandi et al., 2024). Re-
training methods update the decision vector without ac-
counting for the distribution shift at each iteration. Specif-
ically, repeated gradient descent (Perdomo et al., 2020)
updates the decision vector such that xk+1 := projC(xk −
ηkEξ∼D(xk)[∇xf(xk, ξ)]), where C is the feasible region
and projC is the Euclidean projection operator onto C. This
method makes the decision vector to converge to a perfor-
matively stable point xPS = argminx Eξ∼D(xPS)[f(x, ξ)].
Subsequent studies have explored several directions, in-
cluding variants of the above approach (Mendler-Dünner
et al., 2020), a setting where the data distribution follows a
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Markov chain with a state-dependent transition kernel (Roy
et al., 2022), relaxed assumptions on the objective function
(Mofakhami et al., 2023; Li & Wai, 2024), and improved
convergence analyses (Khorsandi et al., 2024). However,
these methods focus on obtaining performatively stable solu-
tions and do not aim to (nor is capable of) finding stationary
points, which may result in worse function values.

Stochastic first-order methods (Liu et al., 2024b; Hikima
& Takeda, 2025a). These methods assume that Pr(ξ |
x) and ∇xPr(ξ | x) are known and update the decision
vector by using the unbiased stochastic gradient (3) of the
objective function. However, these methods cannot be used
for solving (1) with an unknown distribution D(x).

Performative gradient descent (Izzo et al., 2021). This
method updates the iterates using an approximate gradient
obtained by estimating∇x log Pr(ξ | x) in the second term
of (3). While this approach can find an optimal point rather
than a performative stable point, it relies on several restric-
tive assumptions. For example, they assume that the distri-
bution can be written as Pr(ξ | x) = p(q(x), ξ), where the
function p is known and the intermediate parameter q can be
approximately obtained through samples. They also assume
that the objective function F is convex. In contrast, our
study suppose looser assumptions: the distribution D(x) is
completely unknown and the objective function is generally
nonconvex.

Distribution approximating approaches (Miller et al.,
2021; Lin & Zrnic, 2024). These approaches estimate
models of the distribution map D(·) and optimize prob-
lem (1) by using the estimated distribution. While these
approaches perform well when the distribution is approxi-
mated accurately, they assume specific distributions or func-
tions. For example, (Miller et al., 2021) assume that the
distribution map is included in location-scale families, i.e.,
D(x) needs to satisfy ξ ∼ D(x)⇔ ξ := ξ0 +Ax, where
ξ0 is a random variable independent of x and matrix A is
constant. Moreover, they assume that f is strongly con-
vex. In this paper, we tackle the design of (more) generic
methods for solving (1) without such specific assumptions.

Search optimization (Bergstra & Bengio, 2012; Frazier,
2018; Xue & Shen, 2020). Search optimization tech-
niques, such as Bayesian optimization (Frazier, 2018), ran-
dom search (Bergstra & Bengio, 2012), and sparrow search
algorithm (Xue & Shen, 2020), aim to find a global solution
by iteratively evaluating objective values across the search
space. When these methods are applied to our problem, they
require a large number of samples ξ ∼ D(x) to obtain the
objective values. Having to take such a large number of
samples is undesirable from the perspective of the sample
complexity, as noted in the introduction.

3. Proposed Method
Here, we describe our new gradient estimator in Section 3.1
and the algorithm using the gradient estimator in Section 3.2.
Moreover, we describe an advanced algorithm that utilizes
historical samples from past iterations in Section 3.3.

3.1. Our Gradient Estimator

We propose the following gradient estimator:

g(x, µ,u, ξ1, ξ2) :=
f(x+ µu, ξ1)− f(x− µu, ξ2)

2µ
u,

(4)

where u ∼ N (0,Σ), ξ1 ∼ D(x+ µu), ξ2 ∼ D(x− µu),
and µ ∈ R>0. Here, we utilize partial information on
the gradient to set Σ, inspired by (Maheswaranathan et al.,
2019). Specifically, we regard the following vector as partial
gradient information:

s :=
1

n

n∑
i=1

∇xf(x, ξ
i), (5)

where ξi ∼ D(x) for i ∈ {1, 2, . . . , n}. This is because
s approximates the expectation of the first term of the un-
biased stochastic gradient (3) for the objective function F .
Let h be the normalized vector of s, that is, h = s

∥s∥ if
s ̸= 0 and h = 0 otherwise. Accordingly, we define Σ as
follows:

Σ :=
α

d
Id + (1− α)hh⊤, (6)

where α ∈ (0, 1]. Here, α is a balance parameter that adjusts
the weight of the partial gradient information.

Next, we present the property of our gradient estimator.
First, let us define an important function, which is closely
related to our gradient estimator.
Definition 3.1. We call the following function the aug-
mented Gaussian smoothed function of F .

Fµ,Σ(x) := Eu∼N (0,Σ)[F (x+ µu)].

The function Fµ,Σ serves as a smooth approximation of
F . This is an extension of the Gaussian smoothed func-
tion (Nesterov & Spokoiny, 2017; Iwakiri et al., 2022): if
Σ = Id, function Fµ,Σ is consistent with it. Throughout
the paper, we assume that Fµ,Σ(x) is well-defined, that is,
Eu∼N (0,Σ)[|F (x + µu)|] < ∞ for any given µ ∈ R>0,
positive-definite matrix Σ ∈ Sd++, and x ∈ Rd.

Next, we show that our gradient estimator is correlated with
the gradient of Fµ,Σ by the following lemma.
Lemma 3.2. Suppose that F is Lipschitz continuous. Then,
for any x ∈ Rd and µ ∈ R>0, we have

Eu∼N (0,Σ)

[
Eξ1∼D(x+µu),ξ2∼D(x−µu)

[
g(x, µ,u, ξ1, ξ2)

]]
= Σ∇xFµ,Σ(x).
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Algorithm 1 Guided zeroth-order method with new samples
input x0 ∈ Rd, T ∈ N, Σ0 ∈ Sd++, µ0 ∈ R>0, µmin ∈

R>0, η ∈ (0, 1], α0 ∈ (0, 1], γ ∈ [0, 1), β ∈ R>0,
{mk}Tk=0 ∈ N, {nk}Tk=0 ∈ N, and distribution DR for
[T ].

1: Sample R ∼ DR(T )
2: for k = 0, 1, . . . , R− 1 do
3: Sample uk from N (0,Σk), {ξ1,ik }

mk
i=1 from D(xk +

µkuk), and {ξ2,ik }
mk
i=1 from D(xk − µkuk).

4: gk ← 1
mk

∑mk
i=1

f(xk+µkuk,ξ
1,i
k

)−f(xk−µkuk,ξ
2,i
k

)

2µk
uk.

5: xk+1 ← xk − βgk
6: Sample {ξ3,ik }

nk
i=1 from D(xk+1)

7: sk ← 1
nk

∑nk

i=1∇xf(xk+1, ξ
3,i
k )

8: if sk ̸= 0 then
9: Σk+1 ← αk

d
Id + (1− αk)hkh

⊤
k , where hk := sk

∥sk∥
10: else
11: Σk+1 ← αk

d Id
12: end if
13: µk+1 ← max(ηµk, µmin)
14: αk+1 ← 1− γ(1− αk)
15: end for

return xR

Note that the proofs of all our lemmas and theorems can be
found in Appendix D. Moreover, the Lipschitz condition for
F in Lemma 3.2 holds under later Assumptions 4.2 and 4.3
(See Lemma D.2).

From Lemma 3.2, when Σ ̸= Id, the gradient estimator in
(4) is a biased gradient estimator for the augmented Gaus-
sian smoothed function Fµ,Σ. When Σ = Id, it is an
unbiased gradient estimator for Fµ,Σ.

Effect of balance parameter α. From Lemma 3.2 and (6),
parameter α adjusts the trade-off between the biasedness of
our gradient estimator and the weight of the partial gradient
information: if α = 1, then Σ = 1

dId and g is an (scaled)
unbiased gradient estimator for Fµ,Σ; if α is close to 0,
the distribution N (0,Σ) emphasizes the partial gradient
information. Our methods (proposed later) initially set α to
a small value to promote a faster decrease in the objective
value, while in the latter iterations, they make α closer to 1
gradually to obtain a gradient estimator with a small bias.

The way of sampling u. Samples of u ∼ N (0,Σ) can
be generated efficiently as

u =

√
α

d
w +

√
1− αhv, (7)

where w ∼ N (0, Id) and v ∼ N (0, 1). This fact is shown
in (Maheswaranathan et al., 2019, Section 3.2).

Algorithm 2 Guided zeroth-order method with historical
samples

In Algorithm 1, add p ∈ N to the input and replace lines
6 and 7 as follows:
sk ←

k∑
j=k−p̂

1

2mj

mj∑
i=1

(∇xf(xk+1, ξ
1,i
j ) +∇xf(xk+1, ξ

2,i
j )),

where p̂ = min(k, p).

3.2. Guided Zeroth-Order Method

We propose Algorithm 1. It begins by probabilistically deter-
mining the maximum number R of iterations on Line 1. This
stochastic operation is necessary to guarantee the conver-
gence for our method, but practically, the maximum iteration
number T can be set as R. Lines 2–15 are the operations of
repeatedly updating the decision vector. Lines 3–5 update
the decision vector xk by using the (mini-batch) gradient es-
timator (4). Lines 6–12 calculate Σk+1 by using (5) and (6).
Line 13 adjusts the smoothing parameter µk: Algorithm 1
starts with a sufficiently large µ0 and gradually reduces µk.
It is known that a better local solution can be potentially
obtained by making such adjustments to µk (Hazan et al.,
2016; Iwakiri et al., 2022).1 Line 14 adjusts the balance pa-
rameter αk. It is updated so that 1−αk+1 = γ(1−αk), with
αk approaching 1 toward the end. As noted in Section 3.1,
this setting promotes a faster decrease in the objective value
initially and reduces the bias of the gradient estimate gk in
later iterations.

3.3. Guided Zeroth-Order Method with Historical
Samples

Although Algorithm 1 generates efficient random directions,
it requires new samples, {ξ3,jk }

nk
j=1 on line 6 to set Σ. In

order to prevent this increase in sample size, we propose an
advanced algorithm that utilizes past samples. Specifically,
we change the partial gradient information of (5) as follows.

s :=

k−1∑
j=k−p̂

1

2mj

mj∑
i=1

(∇xf(x, ξ
1,i
j ) +∇xf(x, ξ

2,i
j )),

(8)

where {ξ1,ij }
mj

i=1 and {ξ2,ij }
mj

i=1 are historical samples from
the past j-th iteration. Here, mj is the batch size of the j-th
iteration and p̂ ∈ N is the window size that determines how
far back the past samples are.

In Algorithm 2, the partial gradient information is obtained
using samples from past iterations. This allows us to set Σ
without requiring a new sample.

1However, this adjustment is not necessary to guarantee the
convergence of our method, and theoretically, we can also use a
fixed µk.
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4. Theoretical Analysis
4.1. Assumptions and Definitions

For the theoretical analysis of our method, we make the
following assumptions.
Assumption 4.1. For any x ∈ Rd, there exists σ ∈ R≥0
satisfying

Eξ∼D(x)[(F (x)− f(x, ξ))
2
] ≤ σ2. (9)

Assumption 4.2. For any x ∈ Rd, f(x, ξ) is Lξ-Lipschitz
continuous with respect to ξ. Moreover, for any ξ, f(x, ξ)
is Lx-Lipschitz continuous with respect to x.
Assumption 4.3. For any x ∈ Rd, there exists θ ∈ R≥0
satisfying

W (D(x), D(x′)) ≤ θ∥x− x′∥,

where W represents the Wasserstein-1 distance.
Assumption 4.4. F (x) = Eξ∼D(x)[f(x, ξ)] is HF -
smooth.

Assumption 4.1 is required for approximating F (x) by
f(x, ξ) with sample ξ. Since the objective function involves
random variables, such an assumption is needed to evaluate
the objective value by its sample. The purpose of Assump-
tions 4.2 and 4.3 is to guarantee the Lipschitz continuity
of the objective function (Lemma D.2). It is used to derive
the properties of the Gaussian smoothing function (Lemma
D.8). Assumption 4.4 is standard in convergence analysis,
ensuring the accuracy of the first-order approximation via
Taylor expansion. This is because descent methods with
(estimated) gradients can be seen as optimizing a first-order
approximation of the objective function at each iteration.

Comparison with assumptions in existing studies. Our
assumptions are looser than or equal to existing stud-
ies (Ray et al., 2022; Hikima & Takeda, 2025b). First,
our assumptions are less restrictive than those of (Ray
et al., 2022). Assumption 5 in (Ray et al., 2022) im-
plies that Eξ∼D(x)[(F (x)− f(x, ξ))

2
] ≤ (2G)2 for G :=

supx,ξ |f(x, ξ)|, which yields our Assumption 4.1. As-
sumptions 1 and 3 in (Ray et al., 2022) yield our Assump-
tions 4.2, 4.3, and 4.4. Conversely, we do not require As-
sumption 1(c) or Assumption 2 in (Ray et al., 2022). More-
over, our assumptions are equivalent to those of (Hikima
& Takeda, 2025b). Regarding Assumption 4.4, the existing
study (Ray et al., 2022) gives a sufficient condition. It can
be found in Appendix C.

Moreover, we define an indicator to evaluate our method.
Definition 4.5 (Sample complexity for ϵ-stationary point).
We define the sample complexity for an ϵ-stationary point
to be the number of samples ξ ∼ D(x) to obtain
E[∥∇F (x̂)∥2] ≤ ϵ2, where x̂ is the output of a target algo-
rithm.

As noted in the introduction, sample complexity is an impor-
tant metric in evaluating algorithms for solving problem (1).
This is because, to obtain a sample ξ ∼ D(x) in practice, a
decision (x) must be deployed in the real world.

No assumptions about partial gradient information. In
our analysis, we do not assume any correlation between
partial gradient information (i.e., (5) and (8)) and the true
gradient. Therefore, we consider the worst-case scenario for
the partial gradient information. Even under this worst-case
scenario, our analysis establishes improved sample com-
plexity for our methods compared to the existing method
(Hikima & Takeda, 2025b). This improvement is achieved
through (i) a reduction in sample complexity by tuning algo-
rithmic parameters such as mini-batch size and step size, and
(ii) the incorporation of partial gradient information without
increasing the sample complexity, even in the worst-case
scenario.

4.2. Sample Complexities of Our Methods

First, we provide a lemma, which indicates a theoretical
property of our gradient estimator.
Lemma 4.6. Suppose that Assumptions 4.1–4.4 hold. For
any x ∈ Rd, the following holds.

Eu∼N (0,Σ)

[
E{ξ1,i,ξ2,i}mi=1

[∥∥∥∥∥ 1

m

m∑
i=1

g(x, µ,u, ξ1,i, ξ2,i)

∥∥∥∥∥
2]]

≤ 24α2

d2
(d+ 4)2∥∇F (x)∥2 + 24(1− α)(25− 23α)∥∇F (x)∥2

+ 3µ2H2
F

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
+

3σ2

2µ2m
,

where {ξ1,i}mi=1 ∼ D(x + µu) and {ξ2,i}mi=1 ∼ D(x −
µu).

Lemma 4.6 gives an upper bound on the second moment of
our gradient estimator.2

Below, we use Lemmas 3.2 and 4.6 to derive the sample
complexity of Algorithm 1.

Theorem 4.7. Suppose that Assumptions 4.1–
4.4 hold. Let {xk} be the sequence gener-
ated by Algorithm 1 with µmin = Θ(ϵd−

3
2 ),

2An existing study (Maheswaranathan et al., 2019) showed
the upper-bound of the (normalized) variance of their gradient
estimator for given correlation ρi :=

∇F (x)⊤Ui
∥∇F (x)∥ between partial

gradient information (Ui’s) and the true gradient (∇F (x)). In
our study, we derived an upper bound on the second moment
of our gradient estimator (Lemma 4.6) without such ρi, leading
to a guarantee of convergence for the proposed method. While
(Maheswaranathan et al., 2019) demonstrated a trade-off between
the unbiasedness and the variance of their gradient estimator by
considering ρi, our study does not consider ρi, and therefore,
theoretically, no such trade-off exists in our setting.
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µ0 = Θ(ϵd−
3
2 ) such that µ0 ≥ µmin, β :=

min
(

α0d
48HF ((d+4)2+25d2) , T

− 2
3 d−

1
3

)
, and Pr(R = k) :=

βαkd
−1−24HF β2α2

k(d+4)2d−2−24HF β2(1−αk)(25−23αk)∑T
ℓ=0(βαℓd−1−24HF β2α2

ℓ(d+4)2d−2−24HF β2(1−αℓ)(25−23αℓ)))

for distribution DR. Then, for any x0 ∈ Rd, Σ0 ∈ Sd++,
η ∈ (0, 1], α0 ∈ (0, 1], γ ∈ [0, 1), nk = O(1) for
k = 0, . . . T , mk = O(1) for k = 0, . . . T , the sample
complexity required to obtain E[∥∇F (xR)∥2] ≤ ϵ2 is
O(σ3ϵ−6d4).

Moreover, we can derive the sample complexity for Algo-
rithm 2.

Theorem 4.8. Suppose that Assumptions 4.1–4.4 hold. Let
the inputs of Algorithm 1 other than p be as in Theorem 4.7.
Then, for any p ∈ N, Algorithm 2 achieves the same sample
complexity as in Theorem 4.7.

The O(σ3d4ϵ−6) sample complexity of our methods has
advantages over those of existing methods (Liu et al., 2024a;
Hikima & Takeda, 2025b). The sample complexity of the
method of (Liu et al., 2024a) is O(G6d2ϵ−6), where G =
supx,ξ |f(x, ξ)|.3 Therefore, our methods outperform them
when G is large or unbounded.4 Moreover, the iteration
complexity of our method is O(d

1
2 ) smaller than that of

(Hikima & Takeda, 2025b).

Remark 4.9. To set the inputs of Algorithm 1 according
to Theorem 4.7, it is necessary to know the value of HF

in Assumption 4.4. While the existing methods (Ray et al.,
2022; Hikima & Takeda, 2025b) also need such information
(e.g., γ in (Ray et al., 2022) and σ in (Hikima & Takeda,
2025b)), it may not be known in advance in practice. In
such cases, one can begin with a sufficiently large value and
refine it using information gathered during the iterations.

5. Experiments
We conducted two experiments on applications of multiprod-
uct pricing (Hikima & Takeda, 2025b) and strategic clas-
sification (Levanon & Rosenfeld, 2021) to show that Algo-
rithms 1 and 2 output solutions with lower objective values
compared with the existing methods for the same number
of samples. All experiments were conducted on a com-
puter with Intel(R) Xeon(R) CPU E5-2697A v4 (2.60GHz)
x2 and 512GB of memory RAM. The program code was
implemented in Python 3.12.2.

Compared methods. We implemented the following
methods. Details of the parameters can be found in Ap-
pendix A.1.2 and A.2.1.

3Note that (Liu et al., 2024a) considers a setting in which the
sample/data distribution evolves according to a controlled Markov
chain, and addresses a more general problem than ours.

4Note that even if f is a simple loss function such as squared
error, G is unbounded.

GZO-NS. This means the Guided-Zeroth Order method
with New Samples, which corresponds to Algorithm 1.
GZO-HS. This means the Guided-Zeroth Order method
with Historical Samples, which corresponds to Algorithm 2.
ZO-TG. This is a Zeroth-Order method with a Two-point
Gradient estimator. It is consistent with Algorithm 1 where
Σk = Id

d for all k ∈ {0, . . . , T} and lines 6–12 and line 14
are not executed. It is analogous to the zeroth-order method
used in the existing studies ((Hikima & Takeda, 2025b, Al-
gorithm 2) and (Liu et al., 2024a, DFO(0) with g2pt−II)).
ZO-OG. This is a Zeroth-Order method with a One-point
Gradient estimator. It is analogous to the zeroth-order
method used in the existing studies (Ray et al., 2022; Liu
et al., 2024a).
ZO-OGVR. This is a Zeroth-Order method with a One-
point Gradient estimator with a Variance Reduction parame-
ter (Hikima & Takeda, 2025b, Algorithm 1).

5.1. Multiproduct pricing application

We conducted experiments on the same problem as (Hikima
& Takeda, 2025b). Specifically, it is the following problem:

min
x∈R10

Eξ∼D(x)[f(x, ξ)],

where x and ξ denote the price vector and the demand vec-
tor for 10 products, respectively. Function f is defined by
f(x, ξ) := −s(x, ξ) + c(ξ), where s(x, ξ) and c(ξ) repre-
sent the sales and production costs of products, respectively.
Distribution D(x) represents the (price-dependent) prob-
ability distribution that ξ follows. This experiments were
semi-synthetic, and some of the parameters were set us-
ing real retail data from a supermarket service provider in
Japan.5 Details of how to set each function and distribution
are given in Appendix A.1.1.

SETTING AND METRIC

We performed our experiments under the following settings.
Initial points. For all methods, we set the initial points as
x0 := 0.5 · 1, where 1 := (1, . . . , 1) ∈ R10.
Metric. To evaluate the output x̂, we computed obj :=
1

103

∑103

q=1 f(x̂, ξ
q(x̂)), where ξq(x̂) ∼ D(x̂).

Termination criteria. We terminated each method once it
had taken 5000 samples from D(x) for some x.

EXPERIMENTAL RESULTS

Table 1 shows the results of the experiments using real data
from different weeks. Our methods (GZO-NS and GZO-
HS) were superior to the baselines for all weeks of data.

Figure 1 illustrates the objective value (obj) obtained with

5The data, “New Product Sales Ranking”, has been made pub-
licly available by KSP-SP Co., Ltd, http://www.ksp-sp.com. Last
accessed on January 28, 2025.
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Table 1. Experimental results for multiple product pricing in 20 randomly generated problem instances. The obj (sd) column represents
the average (standard deviation) of the obj. The best value of the average obj for each experiment is in bold. In all experiments except for
7/18–7/24, the differences in obj between our methods (GZO-NS and GZO-HS) and the baselines were statistically significant (two-sided
t-test: p < 0.05). For 7/18–7/24, the difference between GZO-HS and ZO-TG was not statistically significant, while the difference
between GZO-NS and the baselines remained significant.

date GZO-NS GZO-HS ZO-TG ZO-OG ZO-OGVR

obj sd obj sd obj sd obj sd obj sd

2/21–2/27 -12.53 0.99 -12.85 0.70 -10.92 1.21 5.10 10.33 -6.30 1.75
3/21–3/27 -12.52 1.29 -12.58 1.09 -10.52 1.45 1.56 3.38 -6.41 1.64
5/23–5/29 -15.70 1.04 -15.41 1.17 -10.31 2.29 -0.06 1.59 -5.60 2.07
6/20–6/26 -9.06 1.30 -9.52 0.69 -8.81 0.82 10.15 17.28 -5.65 1.96
7/18–7/24 -8.43 0.99 -8.38 1.29 -7.98 1.42 10.38 19.72 -3.47 2.43
8/08–8/14 -14.98 1.01 -14.93 1.28 -10.30 2.41 -0.53 1.87 -6.11 1.55
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Figure 1. Change in obj in the experiments on multiproduct pricing. Each graph shows the result for one problem instance for each week.
The horizontal axis indicates the cumulative number of samples from D(x), and the vertical axis indicates obj.

each method against the cumulative number of samples
from D(x) in its optimization process. The figure implies
that our methods reduce the objective value more stably
than the baselines. This is due to the following reasons:
(i) ZO-TG and ZO-OGVR could not efficiently decrease
the objective value because they determined the updating
direction uk according to the standard Gaussian distribution
without using information on the function f ; (ii) ZO-OG
could not stably decrease the objective value because of the
large variance of its gradient estimator.6

6The large variance of the one-point gradient estimator used by
ZO-OG is also noted in (Hikima & Takeda, 2025b).

5.2. Strategic Classification with Unknown Agents’ Cost
Functions

We conducted experiments on the application of strategic
classification with a real dataset from (Yeh & hui Lien,
2009).7 We considered a variant of (Levanon & Rosenfeld,
2021, Section 4) where the decision maker wants to opti-
mize the parameter x of the classifier to decide whether
to provide loan financing for a strategic agent with feature
ξF ∈ R11 and label L ∈ {0, 1}. Here, ξF includes credit-
card spending patterns, while L indicates whether the agent

7As with (Levanon & Rosenfeld, 2021), we used a processed
version of the data from (Ustun et al., 2019).
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defaults on a payment. Since the agent can vary their own
features according to the parameter x, (ξF , L) follows a
decision-dependent distribution D(x). Here, we used the
following loss function:

f(ξF , L;x) :=L log

(
1

1 + e
−(x⊤

[11]
ξ+x12)

)
+ (1− L) log

(
1− 1

1 + e
−(x⊤

[11]
ξ+x12)

)
,

where x[11] := (x1, x2, . . . , x11).

The loss-minimization problem is as follows:

min
x∈R12

E(ξF ,L)∼D(x) [f(ξF , L;x)] .

Settings of unknown D(x). We assumed that each agent
has the true feature ξtrue ∼ Dtrue but may change its fea-
tures according to the parameter x of the classifier and the
cost associated with altering its feature. Specifically, each
agent modifies its features by using the following response
mapping:

ξF := arg maxξ r(ξ,x)− c(ξ, ξtrue, τ),

where

r(ξ,x) :=

{
2, if x⊤[11]ξ + x12 ≥ 0,

0, if x⊤[11]ξ + x12 < 0,

c(ξ, ξtrue, τ) := τ∥ξ − ξtrue∥2.

Here, r(ξ,x) represents the profit for each agent: if x⊤[11]ξ+
x12 ≥ 0, then the agent receives a positive classification and
is rewarded.8 Function c represents the cost of modifying
their features: changing one’s own features incurs a cost
based on the distance of the modified feature vector from
the true feature vector. Here, τ ∈ R>0 is a constant that
controls the magnitude of the cost. We consider the set of
real data to be the set of (ξtrue, L) and set D(x) with the
above settings. Note that the information on D(x) was not
used by any of the methods.

Remark 5.1. This setting does not satisfy the smoothness
in Assumption 4.3. This is because the data distribution
changes discontinuously at the point where the cost exceeds
the gain for some agents. Despite this unfavorable setting
for our methods, the experimental results described later
show that they still perform well numerically.

SETTING AND METRIC

We performed our experiments under the following settings.
Initial points. For all methods, we set the initial points as

8The reward value of 2 is set based on the existing study (Lev-
anon & Rosenfeld, 2021).

x0 := 1, where 1 := (1, . . . , 1) ∈ R12.
Metrics. For the output of each method, we used the train-
ing loss, the test loss, the test AUC, and the test accuracy as
metrics.
Termination criteria. We terminated each method once it
had taken 10000 samples from D(x) for some x.

EXPERIMENTAL RESULTS

Table 2 shows the results of the experiments with different
τ .9 Note that τ ∈ R>0 is a constant that controls the magni-
tude of the cost. If τ ∈ R>0 is small, distribution D(x) is
more likely to vary with decision vector x. The results show
that our methods (GZO-NS and GZO-HS) were superior
to the baselines for all τ . Moreover, the performance of
our methods is less affected by changes in τ than existing
methods, which indicates our methods are less sensitive to
the changeability of distribution D(x).

6. Conclusion
We proposed two zeroth-order methods for solving non-
convex stochastic problems with decision-dependent dis-
tributions; they utilize partial gradient information derived
from the known structure of f . The first method obtains
partial gradient information from samples at the current
iteration, and the second one obtains partial gradient infor-
mation from historical samples. Our theoretical analysis
showed that they converged to stationary points and pro-
vided the worst-case sample complexity. Our experimental
results showed that our methods outperformed the conven-
tional zeroth-order methods.

Future work includes exploring efficient methods for ad-
justing the balance parameter α, which controls the weight
of the partial gradient information. We used the first term
in (3) as partial gradient information, whose importance is
affected by the size of the second term. Therefore, we can
adjust α according to the size of the second term. Similarly,
it is expected that a method for determining the range p of
past samples to be referenced in Algorithm 2 can also be
derived. If the reliability of past samples can be theoretically
established, the value of p can be accordingly set.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9Note that the performance of each method in our experiments
is lower than that in typical experiments without strategic agents
because the strategic agent manipulates its own features to cheat
the classifier.
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Table 2. Results of experiments on strategic classification for 20 randomly generated problem instances. The metric (sd) column represents
its average value (standard deviation). The best value of each metric for each experiment is in bold. In all experiments, the differences in
each metric between our methods (GZO-NS and GZO-HS) and the baselines are significant (two-sided t-test: p < 0.05).

τ GZO-NS GZO-HS ZO-TG ZO-OG ZO-OGVR

train loss sd train loss sd train loss sd train loss sd train loss sd

0.5 0.87 0.04 0.83 0.03 1.21 0.08 2.75 1.80 1.51 0.62
1.0 0.88 0.05 0.84 0.03 1.27 0.08 2.98 1.83 1.63 0.63
2.0 0.86 0.05 0.81 0.03 1.34 0.10 3.44 1.92 1.83 0.73
4.0 0.84 0.05 0.79 0.03 1.35 0.12 3.96 2.09 2.06 0.93
8.0 0.83 0.04 0.78 0.03 1.35 0.12 4.39 2.27 2.24 1.09

τ GZO-NS GZO-HS ZO-TG ZO-OG ZO-OGVR

test loss sd test loss sd test loss sd test loss sd test loss sd

0.5 0.93 0.04 0.89 0.03 1.31 0.09 2.89 1.91 1.63 0.67
1.0 0.96 0.05 0.91 0.04 1.38 0.09 3.12 1.94 1.75 0.69
2.0 0.93 0.06 0.87 0.04 1.43 0.11 3.55 2.03 1.96 0.79
4.0 0.90 0.05 0.84 0.04 1.45 0.13 4.04 2.20 2.20 1.01
8.0 0.88 0.05 0.83 0.04 1.45 0.14 4.44 2.39 2.38 1.18

τ GZO-NS GZO-HS ZO-TG ZO-OG ZO-OGVR

test AUC sd test AUC sd test AUC sd test AUC sd test AUC sd

0.5 0.62 0.03 0.62 0.02 0.46 0.03 0.48 0.12 0.44 0.08
1.0 0.62 0.03 0.62 0.02 0.47 0.03 0.49 0.13 0.45 0.09
2.0 0.66 0.03 0.66 0.02 0.48 0.04 0.50 0.14 0.46 0.10
4.0 0.67 0.03 0.68 0.02 0.49 0.04 0.50 0.15 0.46 0.11
8.0 0.68 0.02 0.69 0.02 0.50 0.05 0.51 0.15 0.46 0.12

τ GZO-NS GZO-HS ZO-TG ZO-OG ZO-OGVR

test acc sd test acc sd test acc sd test acc sd test acc sd

0.5 0.55 0.03 0.53 0.03 0.47 0.02 0.49 0.06 0.47 0.04
1.0 0.57 0.03 0.56 0.03 0.47 0.03 0.51 0.08 0.47 0.05
2.0 0.60 0.03 0.59 0.03 0.48 0.02 0.51 0.10 0.48 0.06
4.0 0.62 0.03 0.62 0.03 0.47 0.03 0.51 0.10 0.48 0.07
8.0 0.63 0.03 0.63 0.02 0.49 0.03 0.52 0.11 0.48 0.08
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A. Details of Our Experiments
A.1. Experiments on multiproduct pricing

A.1.1. PROBLEM SETTING

We performed semi-synthetic experiments based on (Hikima & Takeda, 2025b). Here, some of the parameters were set
using real retail data from a supermarket service provider in Japan.10 The experiments simulated a scenario in which a
seller determines the prices of multiple products (n = 10) for multiple buyers (m = 40). Each buyer purchases at most
one unit of any product. Let x := (x1, x2, . . . , x10) ∈ R10 be the price vector (decision vector) for the products. Let
ξ ∈ {0, 1, . . . ,m}11 denote the stochastic demand vector of the products, where ξi for i = 1, . . . , 10 is the number of sales
of each product, and ξ11 is the number of buyers who do not purchase any product.

Then, the objective is to solve the following revenue-maximization problem:

min
x∈R10

Eξ∼D(x) [f(x, ξ)] ,

where f(x, ξ) := −s(x, ξ) + c(ξ) and D(x) is the probability distribution of demand ξ. Here, s(x, ξ) and c(ξ) are the
sales and production cost function, respectively. They are defined as:

s(x, ξ) :=

n∑
i=1

xiξi, c(ξ) :=

n∑
i=1

ci(ξi),

where

ci(ξi) :=


2wiξi, ξi ≤ li,

wi(ξi − li) + 2wili, li < ξi ≤ ui,

3wi(ξi − ui) + wi(ui − li) + 2wili, ξi > ui.

Here, we set li := 0.5m
n , ui :=

1.5m
n , and wi := ρiθi, where ρi is a random variable generated from a uniform distribution

of [0.25, 0.5] and θi is the normalized recorded average selling price for each product i. The function ci reflects the scenario
where the production cost rate varies based on the number of units sold.

Settings of unknown D(x). We assume that buyers choose one product stochastically. Each buyer chooses product
i ∈ I := {1, . . . , n} with probability pi(x) = eγi(θi−xi)

a0+
∑n

j=1 eγj(θj−xj)
or does not choose any product with probability

p0(x) =
a0

a0+
∑n

j=1 eγj(θj−xj)
. Here, we let γi := 2π√

6θi
and let a0 := 0.1n. Then, Pr(ξi | x) =

(m
ξi

)
pi(x)

ξi . Note that the

information on D(x) was not used by any of the methods.

A.1.2. PARAMETERS OF METHODS.

GZO-NS. This is Algorithm 1 with µ0 := 0.2, µmin := 0.0001, α0 = 0, βk := 0.01 · 0.95k, η = 0.95, γ = 0.98,
mk := 30 + 2k, and nk := 30 + 2k, where k is the current iteration number.
GZO-HS. This is Algorithm 2 with p = 1; the other parameters are the same as in GZO-NS.
ZO-TG. This is consistent with Algorithm 1 where Σk = Id

d for all k ∈ {0, . . . , T} and lines 6–12 and line 14 are not
executed. The other parameters are the same as in GZO-NS.

ZO-OG. This is consistent with Algorithm 1 where Σk = Id, gk = 1
mk

∑mk

j=1
f(xk+µkuk,ξ

1,j
k )

µk
uk for all k ∈ {0, . . . , T},

and lines 6–12 and line 14 are not executed. We let β := 10−5 and µk := 0.001; the other parameters are the same as in
GZO-NS.11

ZO-OGVR. This is consistent with (Hikima & Takeda, 2025b, Algorithm 1). We let β := 0.001 · 0.95k, c0 :=∑20
j=1 f(x0, ξ

j(x0)), smax := 10, and M = 0.1; the other parameters are the same as in GZO-NS.

10The data, “New Product Sales Ranking”, has been made publicly available by KSP-SP Co., Ltd, http://www.ksp-sp.com. Last
accessed on January 28, 2025.

11The step size of ZO-OG is set small compared with those of other methods. This is because the variance of the one-point gradient
estimator is large, which causes the objective values to diverge.
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A.1.3. DATA DETAILS.

The experimental data, “New Product Sales Ranking”, provided by KSP-SP Co., Ltd, includes confectionery price data. We
used the actual prices of confectionery as θ in the buyer’s probability function for purchase. We also determined the cost of
each product based on the actual prices.

A.2. Experiments on Strategic Classification

A.2.1. PARAMETERS OF METHODS.

GZO-NS. This is Algorithm 1 with µ0 := 10, µmin := 0.1, α0 = 0, β := 0.95k, η := 0.95, γ := 0.98, mk := 30 + 2k,
and nk := 100 + 2k, where k is the current iteration number.
GZO-HS. This is Algorithm 2 with p := 1; the other parameters are the same as in GZO-NS.
ZO-TG. This is consistent with Algorithm 1 where Σk := Id

d for all k ∈ {0, . . . , T}; the other parameters are the same as
in GZO-NS.
ZO-OG. This is consistent with Algorithm 1 where Σk = Id and gk = 1

mk

∑mk

j=1
f(xk+µkuk,ξ

1,j
k )

µk
uk for all k ∈ {0, . . . , T}.

We let β := 0.05 and µk := 0.1; the other parameters are the same as in GZO-NS.
ZO-OGVR. This is consistent with (Hikima & Takeda, 2025b, Algorithm 1). We let β := d−

1
2 · 0.95k, c0 :=∑20

j=1 f(x0, ξ
j(x0)), smax := 10, and M = 0.1; the other parameters are the same as in GZO-NS.

A.2.2. DATA DETAILS.

The experimental dataset (Yeh & hui Lien, 2009) includes features describing credit-card spending patterns, along with
labels indicating default on payment. As with (Levanon & Rosenfeld, 2021), we used the preprocessed version of the data
by (Ustun et al., 2019). The dataset includes n = 11 features. We divided 13272 data samples into a 12272-sample training
set and 1000-sample test set in our experiments.

B. Additional Experiments
B.1. Statistical information on objective values during iteration

Since Tables 1 and 2 show the statistical results at the final iteration, we give the figures to show averaged curves and error
bars across multiple instances. Figure 2 shows the average and standard deviation of the objective values across iterations,
obtained from experiments using data from each week in the multi-product pricing application. These results indicate that
our methods are superior to existing methods even during iterations.

B.2. Statistical information on gradient norms during iteration

Figure 3 shows the mean and standard deviation of the gradient norm in the application of multi-product pricing. This graph
shows that the proposed method reduces the gradient norm with fewer samples than existing methods.

C. Sufficient condition for Assumption 4.4
Lemma C.1. (Ray et al., 2022, Lemma 1) Suppose that there exist a matrix A and distribution D′ such that

ξ ∼ D(x)⇐⇒ ξ = ν +Ax,

where ν ∼ D′. Moreover, suppose that f(x, ξ) is ρ-smooth with respect to both x and ξ. Then, Assumption 4.4 holds with

HF :=
√
ρ2(1 + ∥A∥2op)max(1, ∥A∥4op),

where ∥A∥op is the operator norm of A, that is, ∥A∥op := supx∈Rd,x ̸=0
∥Ax∥
∥x∥ .
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Figure 2. Changes in the mean and standard deviation of obj for 20 problem instances relative to the number of samples in the experiments
on multiproduct pricing. Each graph shows the result for each week.
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Figure 3. Changes in the mean and standard deviation of the approximated gradient norm of the objective function (calculated by (3) with
1000 samples) for 20 problem instances relative to the number of samples in the experiments on multiproduct pricing. Each graph shows
the result for each week.
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D. Proofs
D.1. Technical lemmas

Here, we provide technical lemmas that are needed to prove the lemmas and theorems in our paper. Technical Lemmas
D.1–D.4 are from existing research, while Technical Lemmas D.5–D.12 are newly proved by us.

Technical Lemma D.1. (Nesterov & Spokoiny, 2017, Lemma 1)

For p ∈ [0, 2],

Ew∼N (0,Id) [∥w∥
p
] ≤ d

p
2 . (10)

For p ≥ 2,

Ew∼N (0,Id) [∥w∥
p
] ≤ (d+ p)

p
2 . (11)

Technical Lemma D.2. (Jagadeesan et al., 2022, Lemma 2.1)

Under Assumptions 4.2 and 4.3, function F (x) = Eξ∼D(x)[f(x, ξ)] is LF -Lipschitz, where LF := Lx + θLξ.

Technical Lemma D.3. (Freund & Walpole, 1986, p183)

For any x ∈ Rd,

E{ξj}mj=1∼D(x)


∥∥∥∥∥∥ 1

m

m∑
j=1

f(x, ξj)− Eξ∼D(x)[f(x, ξ)]

∥∥∥∥∥∥
2
 ≤ 1

m
Eξ′∼D

[
∥f(x, ξ′)− Eξ∼D[f(x, ξ)]∥2

]
.

Technical Lemma D.4. (Maheswaranathan et al., 2019, Section 3.2)

Let Σ := α Id
d + (1− α)hh⊤ for d ∈ N, h ∈ Rd, and α ∈ (0, 1]. Let u =

√
α
dw +

√
1− αhv, where w ∼ N (0, Id) and

v ∼ N (0, 1). Then, the distribution of u is N (0,Σ).

Technical Lemma D.5. Let Σ := α Id
d + (1 − α)hh⊤ for d ∈ N, h ∈ Rd such that ∥h∥ = 1 or h = 0, and α ∈ (0, 1].

Then,
α

d
≤ ∥Σ∥ ≤ α

d
+ 1− α,

where ∥Σ∥ is the spectral norm of Σ. Moreover,

∥Σ−1∥ = d

α
.

Proof. Since Σ is a positive semi-definite matrix, its spectral norm is equal to its largest eigenvalue. Let λ be an eigenvalue
of Σ. Then, there exists an eigenvector x ̸= 0 that satisfies

λx = Σx =
α

d
x+ (1− α)h⊤xh.

From the above equation, λ = α
d when α = 1. When α = 0, x satisfies x = ch for some constant c ∈ R or satisfies

h⊤x = 0. In the case that x = ch, we have h ̸= 0 since x ̸= 0. Then, we have λ = α
d + (1 − α) since ∥h∥ = 1

from the assumption. In the case that h⊤x = 0, we have λ = α
d . Therefore, from the fact that α ∈ (0, 1], we have

α
d ≤ ∥Σ∥ ≤

α
d + 1− α.

Next, we have that ∥Σ−1∥ = 1
Σmin

, where Σmin is the smallest singular value of the matrix Σ. Since the eigenvalues of
the positive-definite matrix Σ are equal to its singular values, we have that ∥Σ−1∥ = 1

λmin
, where λmin is the smallest

eigenvalue of Σ. From the previous discussion, λmin = α
d . Therefore, ∥Σ−1∥ = d

α .

Technical Lemma D.6. For any n ∈ N, x ∈ Rd, and y ∈ Rd,

∥x+ y∥n ≤ 2n−1∥x∥n + 2n−1∥y∥n.
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Proof. Lemma D.6 holds if ∥∥∥∥x+ y

2

∥∥∥∥n ≤ ∥x∥n + ∥y∥n

2
.

Due to the symmetry between x and y, we can assume that ∥x∥ ≥ ∥y∥ without loss of generality. Let z := x
∥y∥ . Then,

∥z∥ ≥ 1. Moreover,

∥∥∥∥x+ y

2

∥∥∥∥n =

∥∥∥∥∥z + y
∥y∥

2

∥∥∥∥∥
n

∥y∥n ≤

∥z∥+ ∥y∥∥y∥
2

n

∥y∥n =

(
∥z∥+ 1

2

)n

∥y∥n.

Therefore, Lemma D.6 holds if
(
∥z∥+1

2

)n
∥y∥n ≤ ∥x∥n+∥y∥n

2 , that is,
(
∥z∥+1

2

)n
≤ ∥z∥n+1

2 for ∥z∥ ≥ 1. Here, let

f(s) := sn+1
2 −

(
s+1
2

)n
. Then, for s ≥ 1,

f ′(s) =
nsn−1

2
− n(s+ 1)n−1

2n
=

n

2

(
sn−1 −

(
s+ 1

2

)n−1
)
≥ 0.

Since f(1) = 0, we have f(s) ≥ f(1) = 0 for s ≥ 1. Therefore,
(
∥z∥+1

2

)n
≤ ∥z∥

n+1
2 for ∥z∥ ≥ 1.

Technical Lemma D.7. Let Σ := α Id
d + (1 − α)hh⊤ for d ∈ N, h ∈ Rd such that ∥h∥ = 1 or h = 0, and α ∈ (0, 1].

Then,

Eu∼N (0,Σ)[∥u∥2] ≤ 1, (12)

Eu∼N (0,Σ)[∥u∥6] ≤
32α3(d+ 6)3

d3
+ 10976(1− α)3. (13)

Proof. Since ∥u∥2 = tr(uu⊤) from (Petersen et al., 2008, (17)), we obtain that

Eu∼N (0,Σ)[∥u∥2] = Eu∼N (0,Σ)[tr(uu
⊤)] = tr(Eu∼N (0,Σ)[uu

⊤]) = tr(00⊤ +Σ) = tr(Σ) =

d∑
i=1

λi,

where λi’s are the eigenvalues of Σ. Therefore, (12) holds if
∑d

i=1 λi ≤ 1. Let x ̸= 0 be an eigenvector of Σ. Then,

λx = Σx =
α

d
x+ (1− α)h⊤xh. (14)

Here, we consider the three cases as follows.

(i) the case where α = 1. From (14), λi =
1
d for all i = 1, . . . , d. Then,

∑d
i=1 λi = 1.

(ii) the case where α ∈ (0, 1) and ∥h∥ = 1. From (14), x satisfies x = ch for some constant c ∈ R or satisfies h⊤x = 0.
In the case that x = ch, we have λ = α

d + (1− α). In all other cases that h⊤x = 0, we have λ = α
d . Then,

d∑
i=1

λi =
α

d
+ (1− α) + (d− 1)

α

d
= 1.

(iii) the case where α ∈ (0, 1) and h = 0. From (14), we have λx = α
dx. Then,

d∑
i=1

λi =
α

d
d = α ≤ 1.

From the above discussion, (12) holds.
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Regarding (13),

Eu∼N (0,Σ)[∥u∥6]
(∗)
= Ew∼N (0,Id),v∼N (0,1)

[∥∥∥∥√α

d
w +

√
1− αhv

∥∥∥∥6
]

(∗∗)
≤ Ew∼N (0,Id),v∼N (0,1)

[
32

∥∥∥∥√α

d
w

∥∥∥∥6 + 32
∥∥√1− αhv

∥∥6]
(∗∗∗)
≤ 32α3

d3
Ew∼N (0,Id) [∥w∥

6
] + 32(1− α)3Ev∼N (0,1)[|v|6]

(∗∗∗∗)
≤ 32α3(d+ 6)3

d3
+ 32(1− α)373

=
32α3(d+ 6)3

d3
+ 10976(1− α)3,

where (*) comes from Lemma D.4, (**) follows from Lemma D.6, (***) is due to the fact that ∥h∥ = 1 or ∥h∥ = 0, and
(****) holds from (11) in Lemma D.1.

Technical Lemma D.8. Suppose that Assumptions 4.2–4.4 hold. Then, Fµ,Σ is HF -smooth for any µ ∈ R>0 and any
positive-definite matrix Σ ∈ Sd++.

Proof.

∥∇Fµ,Σ(x)−∇Fµ,Σ(y)∥ =
∥∥∇Eu∼N (0,Σ)[F (x+ µu)]−∇Eu∼N (0,Σ)[F (y + µu)]

∥∥
(∗)
=
∥∥Eu∼N (0,Σ)[∇F (x+ µu)]− Eu∼N (0,Σ)[∇F (y + µu)]

∥∥
≤
∥∥Eu∼N (0,Σ)[∇F (x+ µu)−∇F (y + µu)]

∥∥
≤ Eu∼N (0,Σ)[∥∇F (x+ µu)−∇F (y + µu)∥]
(∗∗)
≤ Eu∼N (0,Σ)[HF ∥x− y∥]
= HF ∥x− y∥ ,

where (*) holds since Lemma D.2 enables to exchange the order of differentiation and integration. Moreover, (**) comes
from Assumption 4.4.

Technical Lemma D.9. Suppose that Assumptions 4.2 and 4.3 hold. Let

Σ1 :=
α1

d
Id + (1− α1)h1h

⊤
1 , Σ2 :=

α2

d
Id + (1− α2)h2h

⊤
2 ,

where d ∈ N, α1 ∈ (0, 1], α2 := 1− γ(1− α1) for γ ∈ [0, 1), h1 ∈ Rd such that ∥h1∥ = 1 or h1 = 0, and h2 ∈ Rd such
that ∥h2∥ = 1 or h2 = 0. Then,

|Fµ1,Σ1
(x)− Fµ2,Σ2

(x)| ≤
√
2LF |µ1 − µ2|+ LFµ2|

√
α1 −

√
α2|+ LFµ2(1 +

√
γ)
√
1− α1.

Proof. We have

|Fµ1,Σ1
(x)− Fµ2,Σ2

(x)| = |Fµ1,Σ1
(x)− Fµ2,Σ1

(x) + Fµ2,Σ1
(x)− Fµ2,Σ2

(x)|
≤ |Fµ1,Σ1

(x)− Fµ2,Σ1
(x)|+ |Fµ2,Σ1

(x)− Fµ2,Σ2
(x)|. (15)
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Here,

|Fµ1,Σ1(x)− Fµ2,Σ1(x)| =
∣∣Eu∼N (0,Σ1)[F (x+ µ1u)]− Eu∼N (0,Σ1)[F (x+ µ2u)]

∣∣
=
∣∣Eu∼N (0,Σ1)[F (x+ µ1u)− F (x+ µ2u)]

∣∣
≤ Eu∼N (0,Σ1) [|F (x+ µ1u)− F (x+ µ2u)|]
(∗)
≤ Eu∼N (0,Σ1) [LF ∥µ1u− µ2u∥]
= LF |µ1 − µ2|Eu∼N (0,Σ1)[∥u∥]
(∗∗)
= LF |µ1 − µ2|Ew∼N (0,Id),v∼N (0,1)

[∥∥∥∥√α1

d
w +

√
1− α1h1v

∥∥∥∥]
(∗∗∗)
≤ LF |µ1 − µ2|

(√
α1

d
Ew∼N (0,Id)[∥w∥] +

√
1− α1Ev∼N (0,1)[|v|]

)
(∗∗∗∗)
≤ LF |µ1 − µ2|

(√
α1 +

√
1− α1

)
(∗∗∗∗∗)
≤

√
2LF |µ1 − µ2| , (16)

where (*) holds from Lemma D.2, (**) comes from Lemma D.4, (***) is due to the fact that ∥h1∥ = 1 or h1 = 0, (****)
follows from Lemma D.1, and (*****) holds since supa∈(0,1](

√
a+
√
1− a) =

√
2.

Moreover,

|Fµ2,Σ1(x)− Fµ2,Σ2(x)|
=
∣∣Eu∼N (0,Σ1)[F (x+ µ2u)]− Eu∼N (0,Σ2)[F (x+ µ2u)]

∣∣
(∗)
=

∣∣∣∣Ew∼N (0,Id),v∼N (0,1)

[
F

(
x+ µ2

√
α1

d
w + µ2

√
1− α1h1v

)]
−Ew∼N (0,Id),v∼N (0,1)

[
F

(
x+ µ2

√
α2

d
w + µ2

√
1− α2h2v

)]∣∣∣∣
≤ Ew∼N (0,Id),v∼N (0,1)

[∣∣∣∣F (x+ µ2

√
α1

d
w + µ2

√
1− α1h1v

)
− F

(
x+ µ2

√
α2

d
w + µ2

√
1− α2h2v

)∣∣∣∣] , (17)

where (*) comes from Lemma D.4. Here, from Lemma D.2,∣∣∣∣F (x+ µ2

√
α1

d
w + µ2

√
1− α1h1v

)
− F

(
x+ µ2

√
α2

d
w + µ2

√
1− α2h2v

)∣∣∣∣
≤ LF

∥∥∥∥µ2

√
α1

d
w + µ2

√
1− α1h1v − µ2

√
α2

d
w − µ2

√
1− α2h2v

∥∥∥∥
≤ LF

∥∥∥∥µ2

√
α1

d
w − µ2

√
α2

d
w

∥∥∥∥+ LF

∥∥µ2

√
1− α1h1v − µ2

√
1− α2h2v

∥∥
=

LFµ2√
d
|
√
α1 −

√
α2| ∥w∥+ LFµ2

∥∥√1− α1h1 −
√
1− α2h2

∥∥ |v|. (18)

Moreover,

∥∥√1− α1h1 −
√
1− α2h2

∥∥ (∗)
≤
√
1− α1 +

√
1− α2

(∗∗)
=
√
1− α1 +

√
γ(1− α1)

= (1 +
√
γ)
√
1− α1, (19)

where (*) is due to the fact that ∥h1∥ = 1 or h1 = 0 and the fact that ∥h2∥ = 1 or h2 = 0. Moreover, (**) comes from the
definition of α2.
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From (18) and (19),∣∣∣∣F (x+ µ2

√
α1

d
w + µ2

√
1− α1h1v

)
− F

(
x+ µ2

√
α2

d
w + µ2

√
1− α2h2v

)∣∣∣∣
≤ LFµ2√

d
|
√
α1 −

√
α2| ∥w∥+ LFµ2(1 +

√
γ)
√
1− α1|v|. (20)

From (17) and (20), we have

|Fµ2,Σ1
(x)− Fµ2,Σ2

(x)|

≤ LFµ2√
d
|
√
α1 −

√
α2|Ew∼N (0,Id)[∥w∥] + LFµ2(1 +

√
γ)
√
1− α1Ev∼N (0,1)[|v|]

(∗)
≤ LFµ2|

√
α1 −

√
α2|+ LFµ2(1 +

√
γ)
√
1− α1, (21)

where (*) follows from Lemma D.1.

From (15), (16), and (21), we have

|Fµ1,Σ1
(x)− Fµ2,Σ2

(x)| ≤
√
2LF |µ1 − µ2|+ LFµ2|

√
α1 −

√
α2|+ LFµ2(1 +

√
γ)
√
1− α1.

Technical Lemma D.10. Suppose that F is Lipschitz continuous. For any x ∈ Rd, µ ∈ R>0, and Σ ∈ Sd++, the following
holds.

∇Fµ,Σ(x) = Σ−1Eu∼N (0,Σ)

[
F (x+ µu)

µ
u

]
= Σ−1Eu∼N (0,Σ)

[
F (x+ µu)− F (x− µu)

2µ
u

]
.

Proof. First, we show that, when
∫
|F (y)|e−

1
2µ2 (y−x)Σ−1(y−x)

dy <∞,

lim
y→(∞,...,∞)⊤

F (y)e
− 1

2µ2 (y−x)Σ−1(y−x)
= 0, lim

y→−(∞,...,∞)⊤
F (y)e

− 1
2µ2 (y−x)Σ−1(y−x)

= 0.

Assuming that the above does not hold, we derive a contradiction. Since

lim
y→(∞,...,∞)⊤

F (y)e
− 1

2µ2 (y−x)Σ−1(y−x) ̸= 0,

there exist c1 ∈ R>0, q ∈ R>0, and {yn}∞n=1 such that ∥yn−yn+1∥ ≥ q and |F (yn)|e
− 1

2µ2 (yn−x)Σ−1(yn−x) ≥ c1 for n =

1, . . . ,∞. Then, since F is Lipschitz continuous, there exist c2 ∈ R>0 and δ < q
2 such that |F (y)|e−

1
2µ2 (y−x)Σ−1(y−x) ≥

c2 for yn − δ · 1 ≤ y ≤ yn + δ · 1. Then,
∫∞
y1−δ·1 |F (y)|e−

1
2µ2 (y−x)Σ−1(y−x)

dy ≥
∑∞

n=1 c2(2δ)
d =∞. It contradicts

the fact that
∫
|F (y)|e−

1
2µ2 (y−x)Σ−1(y−x)

dy <∞. Therefore,

lim
y→(∞,...,∞)⊤

F (y)e
− 1

2µ2 (y−x)Σ−1(y−x)
= 0. (22)

Similarly,

lim
y→−(∞,...,∞)⊤

F (y)e
− 1

2µ2 (y−x)Σ−1(y−x)
= 0. (23)
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Let κ :=
√
(2π)d|Σ| and y := x+ µu. Then, we have

∇Fµ,Σ(x)
(∗)
=

1

κ

∫
∇xF (x+ µu)e−

1
2u

⊤Σ−1udu

=
1

µd+2κ

∫
∇yF (y)e

− 1
2µ2 (y−x)Σ−1(y−x)

dy

(∗∗)
=

1

µd+2κ

[
F (y)e

− 1
2µ2 (y−x)Σ−1(y−x)

]y→(∞,...,∞)⊤

y→−(∞,...,∞)⊤
− 1

µd+2κ

∫
F (y) · ∇y

(
e
− 1

2µ2 (y−x)Σ−1(y−x)
)
dy

(∗∗∗)
= − 1

µd+2κ

∫
F (y)e

− 1
2µ2 (y−x)Σ−1(y−x)

(−Σ−1)(y − x)dy

=
1

µ2κ
Σ−1

∫
F (x+ µu)e−

1
2uΣ−1u(µu)du

=
1

κ
Σ−1

∫
F (x+ µu)

µ
ue−

1
2uΣ−1udu

= Σ−1Eu∼N (0,Σ)

[
F (x+ µu)

µ
u

]
, (24)

where (*) comes from the fact that F is Lipschitz continuous, (**) is due to integration by parts, and (***) follows from (22)
and (23).

Moreover, since Eu∼N (0,Σ)

[
F (x+µu)

µ u
]
= Eu∼N (0,Σ)

[
F (x−µu)

µ (−u)
]
,

∇Fµ,Σ(x) = −Σ−1Eu∼N (0,Σ)

[
F (x− µu)

µ
u

]
. (25)

Then,

∇Fµ,Σ(x) =
1

2
∇Fµ,Σ(x) +

1

2
∇Fµ,Σ(x)

(∗)
=

1

2
Σ−1Eu∼N (0,Σ)

[
F (x+ µu)

µ
u

]
− 1

2
Σ−1Eu∼N (0,Σ)

[
F (x− µu)

µ
u

]
= Σ−1Eu∼N (0,Σ)

[
F (x+ µu)− F (x− µu)

2µ
u

]
,

where (*) comes from (24) and (25).

Technical Lemma D.11. Suppose that Assumption 4.4 holds. Let Σ := α Id
d + (1− α)hh⊤ for d ∈ N, h ∈ Rd such that

∥h∥ = 1 or h = 0, and α ∈ (0, 1]. Then, for any x ∈ Rd and µ ∈ R>0,

∥∇F (x)∥2 ≤ 2 ∥∇Fµ,Σ(x)∥2 +
d2µ2H2

F

α2

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
.

Proof. First, we show that ∇F (x) = Eu∼N (0,Σ)[∇F (x)⊤u⊤Σ−1u]. Let κ :=
∫
R e−

1
2u

⊤Σ−1udu. Since κ =√
(2π)d|Σ| and |Σ| = |Σ−1|−1,

ln

(∫
R
e−

1
2u

⊤Σ−1udu

)
=

d

2
ln(2π)− 1

2
ln(|Σ−1|).

Differentiating this identity in Σ−1, it follows from (Petersen et al., 2008, (57)) that

− 1

2κ

∫
R
uu⊤e−

1
2u

⊤Σ−1udu = −1

2
Σ⊤

(∗)
= −1

2
Σ,

where (*) holds since Σ is a symmetric matrix. Thus, multiplying by∇F (x) from the right yields

1

κ

∫
R
uu⊤∇F (x)e−

1
2u

⊤Σ−1udu = Σ∇F (x),
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that is,

∇F (x) =
1

κ

∫
R
∇F (x)⊤uΣ−1ue−

1
2u

⊤Σ−1udu = Eu∼N (0,Σ)[∇F (x)⊤uΣ−1u].

Then,

∥∇F (x)∥2 =
∥∥Eu∼N (0,Σ)[∇F (x)⊤uΣ−1u]

∥∥2
=

∥∥∥∥ 1µEu∼N (0,Σ)

[(
F (x+ µu)− F (x)− (F (x+ µu)− F (x)− µ∇F (x)⊤u)

)
Σ−1u

]∥∥∥∥2
≤ 2

∥∥∥∥ 1µEu∼N (0,Σ)

[
(F (x+ µu)− F (x))Σ−1u

]∥∥∥∥2
+ 2

∥∥∥∥ 1µEu∼N (0,Σ)

[
(F (x+ µu)− F (x)− µ∇F (x)⊤u)Σ−1u

]∥∥∥∥2
(∗)
= 2 ∥∇Fµ,Σ(x)∥2 + 2

∥∥∥∥ 1µEu∼N (0,Σ)[(F (x+ µu)− F (x)− µ∇F (x)⊤u)Σ−1u]

∥∥∥∥2
≤ 2 ∥∇Fµ,Σ(x)∥2 +

2

µ2
Eu∼N (0,Σ)[(F (x+ µu)− F (x)− µ∇F (x)⊤u)2∥Σ−1∥2∥u∥2]

(∗∗)
≤ 2 ∥∇Fµ,Σ(x)∥2 +

2

µ2
Eu∼N (0,Σ)

[
H2

F

4
∥µu∥4∥Σ−1∥2∥u∥2

]
(∗∗∗)
= 2 ∥∇Fµ,Σ(x)∥2 +

d2µ2H2
F

2α2
Eu∼N (0,Σ)[∥u∥6]

(∗∗∗∗)
≤ 2 ∥∇Fµ,Σ(x)∥2 +

d2µ2H2
F

2α2

(
32α3(d+ 6)3

d3
+ 10976(1− α)3

)
= 2 ∥∇Fµ,Σ(x)∥2 +

d2µ2H2
F

α2

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
,

where (*) comes from Lemma D.10 and the fact that Eu∼N (0,Σ)

[
F (x)Σ−1u

]
= F (x)Σ−1Eu∼N (0,Σ) [u] = 0, (**) is

due to the fact that F (x+ µu) ≤ F (x) +∇F (x)⊤(µu) + 1
2HF ∥µu∥2 from Assumption 4.4, (***) follows from Lemma

D.5, and (****) comes from Lemma D.7.

Technical Lemma D.12. Suppose that Assumptions 4.2–4.4 holds. Let Σ := α Id
d + (1− α)hh⊤ for d ∈ N, h ∈ Rd such

that ∥h∥ = 1 or h = 0, and α ∈ (0, 1]. Then, for any x ∈ Rd and µ > 0, the following holds.

Eu∼N (0,Σ)

[∥∥∥∥F (x+ µu)− F (x− µu)

2µ
u

∥∥∥∥2
]

≤ 8α2

d2
(d+ 4)2∥∇F (x)∥2 + 8(1− α)(25− 23α)∥∇F (x)∥2 + µ2H2

F

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
.

Proof. Since F is HF -smooth from Assumption 4.4,

F (x+ µu) ≤ F (x) +∇F (x)⊤(µu) +
1

2
HF ∥µu∥2,

F (x− µu) ≥ F (x)−∇F (x)⊤(µu)− 1

2
HF ∥µu∥2.

Then, we have

F (x+ µu)− F (x− µu) = [F (x+ µu)− F (x)] + [F (x)− F (x− µu)]

≤
[
µ∇F (x)⊤u+

µ2

2
HF ∥u∥2

]
+

[
µ∇F (x)⊤u+

µ2

2
HF ∥u∥2

]
= 2µ∇F (x)⊤u+ µ2HF ∥u∥2. (26)
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Similarly, since

F (x+ µu) ≥ F (x) +∇F (x)⊤(µu)− 1

2
HF ∥µu∥2,

F (x− µu) ≤ F (x)−∇F (x)⊤(µu) +
1

2
HF ∥µu∥2,

we have

F (x+ µu)− F (x− µu) ≥ 2µ∇F (x)⊤u− µ2HF ∥u∥2. (27)

From (26) and (27),

(F (x+ µu)− F (x− µu))2 ≤ (2µ∇F (x)⊤u+ µ2HF ∥u∥2)2 + (2µ∇F (x)⊤u− µ2HF ∥u∥2)2

= 8µ2(∇F (x)⊤u)2 + 2µ4H2
F ∥u∥4. (28)

Let ρ := ∇F (x)⊤h. Then,

Eu∼N (0,Σ)

[∥∥∥∥F (x+ µu)− F (x− µu)

2µ
u

∥∥∥∥2
]

=
1

4µ2
Eu∼N (0,Σ)

[
(F (x+ µu)− F (x− µu))2∥u∥2

]
(∗)
≤ 1

4µ2

(
Eu∼N (0,Σ)[8µ

2(∇F (x)⊤u)2∥u∥2 + 2µ4H2
F ∥u∥6]

)
(∗∗)
= Ew∼N (0,Id),v∼N (0,1)

[
2

(
∇F (x)⊤

(√
α

d
w +

√
1− αhv

))2 ∥∥∥∥√α

d
w +

√
1− αhv

∥∥∥∥2]+ Eu∼N (0,Σ)

[
µ2H2

F

2
∥u∥6

]
(∗∗∗)
≤ 2Ew∼N (0,Id),v∼N (0,1)

[(
2α

d
(∇F (x)⊤w)2 + 2(1− α)ρ2v2

)(
2α

d
∥w∥2 + 2(1− α)v2

)]
+

µ2H2
F

2

(
32α3(d+ 6)3

d3
+ 10976(1− α)3

)
= 2Ew∼N (0,Id),v∼N (0,1)

[
4α2

d2
(∇F (x)⊤w)2∥w∥2 + 4α(1− α)

d
(∇F (x)⊤w)2v2 +

4(1− α)α

d
ρ2v2∥w∥2

+ 4(1− α)2ρ2v4
]
+ µ2H2

F

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
≤ 8α2

d2
∥∇F (x)∥2Ew∼N (0,Id)[∥w∥

4] +
8α(1− α)∥∇F (x)∥2

d
Ew∼N (0,Id)[∥w∥

2]Ev∼N (0,1)[v
2]

+
8(1− α)α

d
ρ2Ev∼N (0,1)[v

2]Ew∼N (0,Id)[∥w∥
2]

+ 8(1− α)2ρ2Ev∼N (0,1)[v
4] + µ2H2

F

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
(∗∗∗∗)
≤ 8α2

d2
(d+ 4)2∥∇F (x)∥2 + 8α(1− α)∥∇F (x)∥2 + 8(1− α)α∥∇F (x)∥2 + 8(1− α)2∥∇F (x)∥2 · 25

+ µ2H2
F

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
=

8α2

d2
(d+ 4)2∥∇F (x)∥2 + 8(1− α)(25− 23α)∥∇F (x)∥2 + µ2H2

F

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
,

where (*) comes from (28), (**) is due to Lemma D.4, (***) follows from Lemma D.7 and the fact that ∥h∥2 ≤ 1, and
(****) comes from Lemma D.1 and the fact that ρ = ∇F (x)⊤h ≤ ∥∇F (x)∥∥h∥ ≤ ∥∇F (x)∥.
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D.2. Proofs of main lemmas and theorems in our paper

Here, we prove the main lemmas and theorems in our paper by using the technical lemmas prepared in Section D.1.

D.2.1. PROOF OF LEMMA 3.2

Proof. From Lemma D.10,

∇Fµ,Σ(x) = Σ−1Eu∼N (0,Σ)

[
F (x+ µu)− F (x− µu)

2µ
u

]
= Σ−1Eu∼N (0,Σ)

[Eξ1∼D(x+µu)[f(x+ µu, ξ1)]− Eξ2∼D(x−µu)[f(x− µu, ξ2)]

2µ
u

]
= Σ−1Eu∼N (0,Σ)

[
Eξ1∼D(x+µu),ξ2∼D(x−µu)

[
g(x, µ,u, ξ1, ξ2)

]]
.

D.2.2. PROOF OF LEMMA 4.6

Proof. First, we show that ∥x+ y + z∥2 ≤ 3∥x∥2 + 3∥y∥2 + 3∥z∥2. The inequality of arithmetic and geometric means
yields, for any x ∈ Rd, y ∈ Rd, and z ∈ Rd,

∥x∥∥y∥ ≤ ∥x∥
2 + ∥y∥2

2
, ∥y∥∥z∥ ≤ ∥y∥

2 + ∥z∥2

2
, ∥z∥∥x∥ ≤ ∥z∥

2 + ∥x∥2

2
.

Then,

∥x+ y + z∥2 = ∥x∥2 + ∥y∥2 + ∥z∥2 + 2x⊤y + 2y⊤z + 2x⊤z

≤ ∥x∥2 + ∥y∥2 + ∥z∥2 + 2∥x∥∥y∥+ 2∥y∥∥z∥+ 2∥x∥∥z∥
≤ 3∥x∥2 + 3∥y∥2 + 3∥z∥2. (29)

Here,

Eu∼N (0,Σ)

[
E{ξ1,j}mj=1∼D(x+µu),{ξ2,j}mj=1∼D(x−µu)

[∥∥∥∥∥ 1

m

m∑
j=1

g(x, µ,u, ξ1,j , ξ2,j)

∥∥∥∥∥
2]]

= Eu∼N (0,Σ)

[
E{ξ1,j}mj=1∼D(x+µu),{ξ2,j}mj=1∼D(x−µu)

[∥∥∥∥∥
1
m

∑m
j=1 f(x+ µu, ξ1,j)− 1

m

∑m
j=1 f(x− µu, ξ2,j)

2µ
u

∥∥∥∥∥
2]]

= Eu∼N (0,Σ)

[
E{ξ1,j}mj=1∼D(x+µu),{ξ2,j}mj=1∼D(x−µu)

[∥∥∥∥∥F (x+ µu)− F (x− µu)

2µ
u+

1
m

∑m
j=1 f(x+ µu, ξ1,j)− F (x+ µu)

2µ
u

+
− 1

m

∑m
j=1 f(x− µu, ξ2,j) + F (x− µu)

2µ
u

∥∥∥∥∥
2]]

(∗)
≤ Eu∼N (0,Σ)

[
3

∥∥∥∥F (x+ µu)− F (x− µu)

2µ
u

∥∥∥∥2

+ 3E{ξ1,j}mj=1∼D(x+µu)

[∥∥∥∥ 1
m

∑m
j=1 f(x+ µu, ξ1,j)− F (x+ µu)

2µ
u

∥∥∥∥2
]

+ 3E{ξ2,j}mj=1∼D(x−µu)

[∥∥∥∥− 1
m

∑m
j=1 f(x− µu, ξ2,j) + F (x− µu)

2µ
u

∥∥∥∥2
]]

(∗∗)
≤ 3Eu∼N (0,Σ)

[∥∥∥∥F (x+ µu)− F (x− µu)

2µ
u

∥∥∥∥2
]
+

3σ2

4µ2m
Eu∼N (0,Σ)[∥u∥2] +

3σ2

4µ2m
Eu∼N (0,Σ)[∥u∥2]

(∗∗∗)
≤ 3Eu∼N (0,Σ)

[∥∥∥∥F (x+ µu)− F (x− µu)

2µ
u

∥∥∥∥2
]
+

3σ2

2µ2m
,

(∗∗∗∗)
≤ 24α2

d2
(d+ 4)2∥∇F (x)∥2 + 24(1− α)(25− 23α)∥∇F (x)∥2 + 3µ2H2

F

(
16α3(d+ 6)3

d3
+ 5488(1− α)3

)
+

3σ2

2µ2m
,
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where (*) follows from (29), (**) follows from Assumption 4.1 and Lemma D.3, (***) is due to (12) in Lemma D.7, and
(****) comes from Lemma D.12.

D.2.3. PROOF OF THEOREM 4.7

Proof. From Lemma D.8, function Fµk,Σk
is HF -smooth. Then,

Fµk,Σk
(xk+1) ≤ Fµk,Σk

(xk) +∇Fµk,Σk
(xk)

⊤(xk+1 − xk) +
HF

2
∥xk+1 − xk∥2

= Fµk,Σk
(xk)− β∇Fµk,Σk

(xk)
⊤gk +

HFβ
2

2
∥gk∥2.

Here, let ζk := (uk, {ξ1,jk }
mk
j=1, {ξ

2,j
k }

mk
j=1, {ξ

3,j
k }

nk
j=1) and ζ[0,k] := (ζ0, ζ1, . . . , ζk). Taking the expectation with respect

to the random vectors ζ[0,k], we obtain

Eζ[0,k]
[Fµk,Σk

(xk+1)]

≤ Eζ[0,k]

[
Fµk,Σk

(xk)− β∇Fµk,Σk
(xk)

⊤gk +
HFβ

2

2
∥gk∥2

]
= Eζ[0,k−1]

[
Fµk,Σk

(xk)− β∇Fµk,Σk
(xk)

⊤Eζk

[
gk | ζ[0,k−1]

]
+

HFβ
2

2
Eζk

[
∥gk∥2 | ζ[0,k−1]

]]
(∗)
≤ Eζ[0,k−1]

[
Fµk,Σk

(xk)− β∇Fµk,Σk
(xk)

⊤Σk∇Fµk,Σk
(xk) +

12HFβ
2α2

k

d2
(d+ 4)2∥∇F (xk)∥2

+ 12HFβ
2(1− αk)(25− 23αk)∥∇F (xk)∥2 + 3µ2

kH
3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

4µ2
kmk

]
.

(30)

where (*) comes from Lemmas 3.2 and 4.6. Here, when sk ̸= 0, we have

∇Fµk,Σk
(xk)

⊤Σk∇Fµk,Σk
(xk) = αkd

−1∥∇Fµk,Σk
(xk)∥2 + (1− αk)∥h⊤k∇Fµk,Σk

(xk)∥2

≥ αkd
−1∥∇Fµk,Σk

(xk)∥2.

When sk = 0, we have

∇Fµk,Σk
(xk)

⊤Σk∇Fµk,Σk
(xk) = αkd

−1∥∇Fµk,Σk
(xk)∥2.

Therefore, from (30) and the fact that mk ≥ 1,

Eζ[0,k]
[Fµk,Σk

(xk+1)]

≤ Eζ[0,k−1]

[
Fµk,Σk

(xk)− βαkd
−1∥∇Fµk,Σk

(xk)∥2 +
12HFβ

2α2
k

d2
(d+ 4)2∥∇F (xk)∥2

+ 12HFβ
2(1− αk)(25− 23αk)∥∇F (xk)∥2 + 3µ2

kH
3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

4µ2
k

]
.
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Rearranging the terms in the above inequality leads to the following.

βαkd
−1Eζ[0,k−1]

[∥∇Fµk,Σk
(xk)∥2]

≤ Eζ[0,k−1]
[Fµk,Σk

(xk)]− Eζ[0,k]
[Fµk,Σk

(xk+1)] (31)

+

(
12HFβ

2α2
k

d2
(d+ 4)2 + 12HFβ

2(1− αk)(25− 23αk)

)
Eζ[0,k−1]

[∥∇F (xk)∥2]

+ 3µ2
kH

3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

4µ2
k

= Eζ[0,k−1]
[Fµk,Σk

(xk)] + Eζ[0,k]
[−Fµk,Σk

(xk+1) + Fµk+1,Σk+1
(xk+1)− Fµk+1,Σk+1

(xk+1)]

+

(
12HFβ

2α2
k

d2
(d+ 4)2 + 12HFβ

2(1− αk)(25− 23αk)

)
Eζ[0,k−1]

[∥∇F (xk)∥2]

+ 3µ2
kH

3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

4µ2
k

≤ Eζ[0,k−1]
[Fµk,Σk

(xk)] + Eζ[0,k]
[| − Fµk,Σk

(xk+1) + Fµk+1,Σk+1
(xk+1)| − Fµk+1,Σk+1

(xk+1)]

+

(
12HFβ

2α2
k

d2
(d+ 4)2 + 12HFβ

2(1− αk)(25− 23αk)

)
Eζ[0,k−1]

[∥∇F (xk)∥2]

+ 3µ2
kH

3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

4µ2
k

(∗)
≤ Eζ[0,k−1]

[Fµk,Σk
(xk)]− Eζ[0,k]

[Fµk+1,Σk+1
(xk+1)] +

√
2LF (µk − µk+1) + LFµk+1(

√
αk+1 −

√
αk)

+ LFµk+1(1 +
√
γ)
√
1− αk +

(
12HFβ

2α2
k

d2
(d+ 4)2 + 12HFβ

2(1− αk)(25− 23αk)

)
Eζ[0,k−1]

[∥∇F (xk)∥2]

+ 3µ2
kH

3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

4µ2
k

, (32)

where (*) holds from Lemma D.9 and the facts that µk ≥ µk+1 and αk ≤ αk+1 for all k = 0, . . . , T .

Here, since it follows from Lemma D.11 that

∥∇F (xk)∥2 ≤ 2 ∥∇Fµk,Σk
(xk)∥2 +

d2µ2
kH

2
F

α2
k

(
16α3

k(d+ 6)3

d3
+ 5488(1− αk)

3

)
,

we have

βαkd
−1∥∇F (xk)∥2 ≤ 2βαkd

−1 ∥∇Fµk,Σk
(xk)∥2 +

βdµ2
kH

2
F

αk

(
16α3

k(d+ 6)3

d3
+ 5488(1− αk)

3

)
.

Taking the expectation with respect to the random vectors ζ[0,k−1], we obtain

βαkd
−1Eζ[0,k−1]

[∥∇F (xk)∥2]

≤ 2βαkd
−1Eζ[0,k−1]

[∥∇Fµk,Σk
(xk)∥2] +

βdµ2
kH

2
F

αk

(
16α3

k(d+ 6)3

d3
+ 5488(1− αk)

3

)
(∗)
≤ 2Eζ[0,k−1]

[Fµk,Σk
(xk)]− 2Eζ[0,k]

[Fµk+1,Σk+1
(xk+1)] + 2

√
2LF (µk − µk+1) + 2LFµk+1(

√
αk+1 −

√
αk)

+ 2LFµk+1(1 +
√
γ)
√
1− αk +

(
24HFβ

2α2
k(d+ 4)2

d2
+ 24HFβ

2(1− αk)(25− 23αk)

)
Eζ[0,k−1]

[∥∇F (xk)∥2]

+ 6µ2
kH

3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

2µ2
k

+
βdµ2

kH
2
F

αk

(
16α3

k(d+ 6)3

d3
+ 5488(1− αk)

3

)
,
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where (*) follows from (32). Rearrange the terms in the above inequality, the following holds.(
βαkd

−1 − 24HFβ
2α2

k(d+ 4)2

d2
− 24HFβ

2(1− αk)(25− 23αk)

)
Eζ[0,k−1]

[
∥∇F (xk)∥2

]
≤ 2Eζ[0,k−1]

[Fµk,Σk
(xk)]− 2Eζ[0,k]

[Fµk+1,Σk+1
(xk+1)] + 2

√
2LF (µk − µk+1) + 2LFµk+1(

√
αk+1 −

√
αk)

+ 2LFµk+1(1 +
√
γ)
√
1− αk + 6µ2

kH
3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)
+

3HFβ
2σ2

2µ2
k

+
βdµ2

kH
2
F

αk

(
16α3

k(d+ 6)3

d3
+ 5488(1− αk)

3

)
. (33)

Here,

T∑
k=0

2LFµk+1(1 +
√
γ)
√
1− αk

(∗)
≤

T∑
k=0

2LFµ0(1 +
√
γ)
√

γk(1− α0)

= 2LFµ0(1 +
√
γ)
√
1− α0

1− γ
T+1

2

1− γ
1
2

≤
2LFµ0(1 +

√
γ)
√
1− α0

1− γ
1
2

, (34)

where (*) comes from the updating rule of αk and the fact that µk ≤ µ0 for k = 1, . . . , T .

Let F ∗ := minx∈Rd F (x). Then, summing up (33) for 0 ≤ k ≤ T , we have

T∑
k=0

(
βαkd

−1 − 24HFβ
2α2

k(d+ 4)2

d2
− 24HFβ

2(1− αk)(25− 23αk)

)
Eζ[0,k−1]

[
∥∇F (xk)∥2

]
(∗)
≤ 2Fµ0,Σ0

(x0)− 2Eζ[0,T ]
[FµT+1,ΣT+1

(xT+1)] + 2
√
2(µ0 − µT+1) + 2LFµ0(

√
αT+1 −

√
α0)

+
2LFµ0(1 +

√
γ)
√
1− α0

1− γ
1
2

+

T∑
k=0

6µ2
0H

3
Fβ

2

(
8α3

k(d+ 6)3

d3
+ 2744(1− αk)

3

)

+

T∑
k=0

3HFβ
2σ2

2µ2
k

+

T∑
k=0

βdµ2
0H

2
F

αk

(
16α3

k(d+ 6)3

d3
+ 5488(1− αk)

3

)
(∗∗)
≤ 2Fµ0,Σ0(x0)− 2F ∗ + 2

√
2(µ0 − µT+1) + 2LFµ0(

√
αT+1 −

√
α0) +

2LFµ0(1 +
√
γ)
√
1− α0

1− γ
1
2

+ 6(T + 1)µ2
0H

3
Fβ

2

(
8(d+ 6)3

d3
+ 2744

)
+ (T + 1)

3HFβ
2σ2

2µ2
min

+ (T + 1)
βdµ2

0H
2
F

α0

(
16(d+ 6)3

d3
+ 5488

)
. (35)

where (*) comes from (34) and µ0 ≥ µk for all k = 0, 1, . . . , T . The inequality (**) is due to that µmin ≤ µk for all k =
0, 1, . . . , T , 0 < α0 ≤ αk ≤ 1 for all k = 0, 1, . . . , T , and Fµ,Σ(x) = Eu∼N (0,Σ)[F (x+ µu)] ≥ Eu∼N (0,Σ)[F

∗] = F ∗

for any x ∈ Rd, µ ≥ 0, and positive-definite matrix Σ ∈ Rd × Rd.

Here, we have β ≤ α0d
48HF ((d+4)2+25d2) and 0 ≤ α0 ≤ αk ≤ 1 from the assumptions on β and the updating rule of αk. Then,

for k = 0, 1, . . . , T ,

βαkd
−1 − 24HFβ

2α2
k(d+ 4)2d−2 − 24HFβ

2(1− αk)(25− 23αk)

≥ βα0d
−1 − 24HFβ

2(d+ 4)2d−2 − 24HFβ
2 · 25

= βα0d
−1 − 24HFβ

2d−2((d+ 4)2 + 25d2)

≥ βα0d
−1 − 24HFβd

−2((d+ 4)2 + 25d2)
α0d

48HF ((d+ 4)2 + 25d2)

=
βα0

2d
. (36)
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Therefore, from the definition of xR,

ER,ζ[0,T ]
[∥∇F (xR)∥2]

=

∑T
k=0(βαkd

−1 − 24HFβ
2α2

k(d+ 4)2d−2 − 24HFβ
2(1− αk)(25− 23αk))Eζ[0,k−1]

[∥∇F (xk)∥2]∑T
ℓ=0(βαℓd−1 − 24HFβ2α2

ℓ (d+ 4)2d−2 − 24HFβ2(1− αℓ)(25− 23αℓ)))

(∗)
≤

2d(
∑T

k=0(βαkd
−1 − 24HFβ

2α2
k(d+ 4)2d−2 − 24HFβ

2(1− αk)(25− 23αk))Eζ[0,k−1]
[∥∇F (xk)∥2])

(T + 1)βα0

(∗∗)
≤

4d

(
Fµ0,Σ0

(x0)− F ∗ +
√
2LF (µ0 − µT+1) + (

√
αT+1 −

√
α0)LFµ0 + LFµ0(1 +

√
γ)
√
1− α0

(
1− γ

1
2

)−1)
(T + 1)βα0

+
12dµ2

0H
3
Fβ

α0

(
8(d+ 6)3

d3
+ 2744

)
+

3dHFβσ
2

µ2
minα0

+
2d2µ2

0H
2
F

α2
0

(
16(d+ 6)3

d3
+ 5488

)
= O((1 + µ0)T

−1β−1d) +O(µ2
0βd) +O(βµ−2mindσ

2) +O(d2µ2
0),

where (*) comes from (36) and (**) follows from (35). Here, µ0 = Θ(ϵd−1), µmin = Θ(ϵd−1) from the assumption.
Moreover, since β = min

(
α0d

48HF ((d+4)2+25d2) , T
− 2

3 d−
1
3

)
, we have

β = O(T−
2
3 d−

1
3 ), and

β−1 ≤ 48HF ((d+ 4)2 + 25d2)

α0d
+ T

2
3 d

1
3 = O(d+ T

2
3 d

1
3 ).

Therefore,

ER,ζ[0,T ]
[∥∇F (xR)∥2]

= O
(
(1 + ϵd−1)(T−1d2 + T−

1
3 d

4
3 )
)
+O(ϵ2T−

2
3 d−

4
3 ) +O(T−

2
3 d

8
3 ϵ−2σ2) +O(ϵ2).

By setting T = Θ(σ3ϵ−6d4), we obtain
ER,ζ[0,T ]

[∥∇F (xR)∥2] ≤ ϵ2.

Here, the sample complexity is O(σ3ϵ−6d4) since
∑T

k=0(2mk + nk) =
∑T

k=0 O(1) = O(T ) = O(σ3ϵ−6d4), where
2mk + nk is the number of samples at the k-th iteration.

D.2.4. PROOF OF THEOREM 4.8

Proof. Since the proof of Theorem 4.7 does not depend on the value of s in Algorithm 1, the same iteration complexity
holds for Algorithm 2. That is, by setting T = Θ(σ3ϵ−6d4), we obtain ER,ζ[0,T ]

[∥∇F (xR)∥2] ≤ ϵ2. Then, the sample
complexity of Algorithm 2 is O(σ3ϵ−6d4) since

∑T
k=0 2mk =

∑T
k=0 O(1) = O(T ) = O(σ3ϵ−6d4), where 2mk is the

number of samples at the k-th iteration.
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