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Abstract

Registration of multimodal images is challenging, especially when dealing with different
anatomical structures and samples without segmentations. The main difficulty arises from
the use of registration loss functions that are inadequate in the absence of corresponding
regions. In this work, we present the first registration and segmentation approach tailored
to this challenge. In particular, we assume the practically highly relevant scenario that
only a limited number of segmentations are available for one modality and none for the
other. First, we augment our few segmented samples using unsupervised deep registra-
tion within one modality, thereby providing many anatomically plausible samples to train
a segmentation network. The resulting segmentation network then allows us to train a
segmentation network on the target modality without available segmentations by using an
unsupervised domain adaptation architecture. Finally, we train a deep registration net-
work to register multimodal image pairs purely based on predictions of their segmentation
networks. Our work demonstrates that using a small number of segmentations from one
modality enables training a segmentation network on a target modality without the need
for additional manual segmentations on that modality. Additionally, we show that regis-
tration based on these segmentations provides smooth and accurate deformation fields on
anatomically different image pairs, unlike previous methods. We evaluate our approach
on 2D medical image segmentation and registration between knee DXA and X-ray images.
Our experiments show that our approach outperforms existing methods. Code is available
at https://github.com/uncbiag/SegGuidedMMReg.
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1. Introduction

Image registration is a crucial medical imaging task in establishing correspondences between
image pairs. It is commonly used for disease diagnosis (Khalil et al., 2018), disease progres-
sion monitoring (Viergever et al., 2016), and organ motion tracking (Fu et al., 2020). At its
core is the solution of an inverse problem to determine the unknown spatial transformation
between a moving and a fixed image, such that the deformed moving image matches the
fixed image well. Solving this inverse problem involves solving a possibly high-dimensional
optimization problem. One can directly optimize over the parameters of a chosen transfor-
mation model (e.g., a displacement vector field) or over the parameters of a deep neural
network which then indirectly produces the desired transformation by regression. Deep-
learning approaches (Balakrishnan et al., 2019; Yang et al., 2017) are typically significantly
faster than direct optimization approaches (Avants et al., 2009; Heinrich et al., 2014) and
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can achieve state-of-the-art (SOTA) accuracies (Tian et al., 2023; Mok and Chung, 2020)
especially when combined with instance optimization.

All of these methods aim to optimize a loss function that is a compromise between image
pair dissimilarity and transformation irregularity. Multimodal image registration is still
significantly more challenging than monomodal image registration because it requires image
dissimilarity costs that can assess whether two images from different modalities differ or
should be considered spatially well-matched. Further, Fig. 1 illustrates that the visibility of
different anatomical structures across different modalities may cause a registration model to
predict incorrect correspondences between different anatomical structures. We hypothesize
that a registration model trained using supervision based on segmentations available for both
modalities can assist the registration model in focusing on common regions of image pairs.
However, this presupposes the availability of these segmentations. Our focus in this work is,
therefore, to develop an approach that solves both image segmentation and registration for
multimodal image pairs, assuming that 1) anatomies are not consistently visualized between
the modalities (e.g., one might focus on bone visualization while another might visualize
both bones and soft tissue) and 2) only a few manual segmentations are available in one
modality and none in the other.
In summary, the contributions of our work are:

• We propose the first deep image registration approach for multimodal images where
image pairs visualize different anatomical parts. Our approach is based on registering
segmentations while only requiring a few segmentations from one modality and none
for the other.

• We test our approach for 2D knee datasets between DXA images which focus on
imaging bone, and radiographs (termed X-rays in what follows) which visualize bones
and soft tissue.

• Compared to existing loss functions and approaches, our approach can reliably register
DXA and X-ray image pairs and predicts smooth deformation fields on anatomically
different image pairs.

2. Related Work

Image Registration. Image registration is a key tool of medical image analysis to esti-
mate spatial correspondences between images. Recently, deep neural networks have enabled
population-based registration approaches that require one-time training but then provide
very fast inference (Balakrishnan et al., 2019; Miao et al., 2016; Greer et al., 2021; Tian
et al., 2023; Greer et al., 2023). However, registration performance still heavily depends on
selecting a correct task-specific image similarity measure.

For monomodal applications, mean squared error (MSE) (Fan et al., 2019; Hoopes et al.,
2021; Kim et al., 2021) and normalized cross-correlation (NCC) (Kim et al., 2022; Tang
et al., 2020) are popular image similarity measures. In contrast, multimodal registration
cannot rely on matching image intensities directly. Hence, measures of statistical depen-
dence such as NCC and Mutual Information (Wells III et al., 1996) are popular choices.
Another option, Modality Independent Neighbourhood Descriptors (MIND) (Heinrich et al.,
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Figure 1: Multimodal registration results for registration using different similarity mea-
sures. Existing multimodal registration approaches based on image intensities
fail to capture anatomical correspondences, whereas our segmentation-based ap-
proach (see red box) predicts smooth and accurate deformation fields. DXA
images reproduced by kind permission of the UK Biobank®.

2012), operates by comparing local image neighborhoods in both the moving and fixed im-
ages. Many other image similarity measures exist (e.g., structural similarity index (SSIM)
(Wang et al., 2004) and normalized gradient fields (NGF) (Haber and Modersitzki, 2006)).
However, none of these similarity measures are usable for image pairs which show different
anatomical parts (see Fig. 1). Specifically, registrations based on these similarity measures
fail to find appropriate correspondences even between common anatomical structures when
one of the images contains anatomical structures that are not visualized in the other image.

Recent works (Xu and Niethammer, 2019; Canalini et al., 2019; Cai et al., 2022) show
that segmentation can supervise registration and improve registration performance with
better border alignment. Further, such supervision encourages segmentations to match
after registration, ensuring the preservation of anatomical consistency. Inspired by these
works, we propose a registration strategy that can find correspondences fully based on given
segmentations tailored for anatomically different and multimodal image pairs.

Domain Adaptation for Segmentation. Machine learning models often struggle with
data that differs significantly from their training data. This is a major challenge in medical
imaging, where datasets can vary greatly in modality (e.g., MRI vs. CT) even when imaging
the same body region. Moreover, manual segmentations are typically available for only a
limited number of images and modalities. Unsupervised domain adaptation (UDA) offers a
solution to this challenge. UDA techniques adapt models trained on one domain (source) to
perform well on a related but different domain (target) without requiring segmented target
data. This is crucial for generalizing models in medical imaging, where acquiring large
segmented datasets is expensive and time-consuming. Building on the success of adversarial
image translation methods (Liu and Tuzel, 2016; Isola et al., 2017; Zhu et al., 2017), several
techniques have been proposed for pixel-level UDA (Murez et al., 2018; Pizzati et al., 2020;
Li et al., 2020). These methods initially establish a mapping function between the source
and target domains, enabling inter-domain image translation.

Recent works (Hoffman et al., 2018; Xie et al., 2018) enhance UDA by combining feature
alignment and pixel-level adversarial training. In our approach, we use an CycleGAN (Zhu
et al., 2017) unsupervised domain adaptation strategy with semantic losses at each step of
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translation (Gogoll et al., 2020). These semantic losses ensure that modality-translated
images not only appear to belong to the target image domain but also maintain consistent
anatomical boundaries during image translation. This is an essential property for our
registration approach. Further, the approach allows us to train a segmentation network on
the target modality using only source domain segmentations.

3. Methodology

3.1. Overview

Our source dataset DS = {(Ii)}i∈[n] includes at least one segmentation {(Si)}i∈[l] (1 ≤
l ≤ n). No segmentations are available for our target dataset DT = {(Ii)}i∈[m]. First, we
augment the source dataset DS with a registration network (Sec. 3.2). Subsequently, we
train the segmentation network SS for the source domain using the augmented dataset and
freeze weights of the network. Next, we obtain a segmentation network ST for the target
dataset with the guidance of SS via an unsupervised domain adaptation network (Sec. 3.3).
We predict segmentations for the non-segmented part of the source dataset with SS and
apply ST to the target dataset. Finally, we train a registration network solely based on the
segmentations we obtained (Sec. 3.4). This registration network then enables us to register
two images according to their predicted or provided segmentations.

3.2. Augmentation with Registration

A non-parametric registration network predicts a displacement field u = R(Im, If ; θ) be-
tween the moving image Im and the fixed image If for given network parameters θ. We can
warp the moving image to the fixed image as Iwm = Im ◦Φ−1, where Φ−1 = u+ id is a trans-
formation map, and id is the identity transform. Since the registration network can find
correspondences between images without supervision, we use predicted transformation maps
to create artificial samples by warping the images with segmentations to images without
available segmentations. First, we sample moving image segmentation pair (Im, Sm) ∈ DS

and fixed image If ∈ DS and we obtain the transformation map Φ−1 between Im and If .
Next, we create a new sample by warping both the moving image Im and its segmentation
Sm as

(Iwm, Sw
m) =

(
Im ◦ Φ−1, Sm ◦ Φ−1

)
. (1)

Warping both the image and its segmentation helps preserve semantic consistency be-
tween them. This artificially created sample, (Iwm, Sw

m), is anatomically similar to If . When
a limited number of segmented samples is available, we can use this approach to create
additional samples. Sec. B.2 provides details of the implementation.

3.3. Domain Adaptation

Inspired by (Gogoll et al., 2020), we use a CycleGAN (Zhu et al., 2017)-based domain
adaptation network for medical image segmentation. We assume that we already have a pre-
trained segmentation network SS for the source domain. Our goal is to train a segmentation
network ST for the target domain by transferring information from SS .
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Figure 2: Domain Adaptation Overview. Our domain adaptation architecture consists
of two image translation cycles. Each cycle translates images from one domain
(source or target) to the other and back again. Our pre-trained segmentation
network SS enables training of ST based on semantic consistency. DXA images
reproduced by kind permission of the UK Biobank®.

We use an adversarial training procedure. Two generators, GST and GTS , are designed
to learn mapping functions from the source domain to the target domain and vice versa.
Concurrently, discriminators DS and DT are responsible for distinguishing between real
and translated samples. We integrate these generators and discriminators into the image
translation process with adversarial loss (ℓGAN ) and cycle consistency loss (ℓcycle) terms,
following the principles of CycleGAN (Zhu et al., 2017). However, it is important to note
that this process does not ensure the semantic consistency between real and translated im-
ages, i.e., while translated images look realistic for a CycleGAN approach the synthesized
image will not necessarily be spatially consistent, and anatomical boundaries might shift.
This would, of course, be problematic for any subsequent registration. Hence, we incorpo-
rate semantic segmentation networks SS and ST to encourage the semantic segmentation
of the images at each step of the cycle to remain consistent (Gogoll et al., 2020). The work
by (Gogoll et al., 2020) assumes that all segmentations are available for the source domain,
and hence manual segmentations can be used for network training. However, in our case,
only a few segmentations are available for the source domain. Therefore, we augment our
source dataset with registration (see Sec. 3.2), and use all images in DS for training.

To encourage consistent segmentation predictions at each cycle phase we use the losses

ℓsem-ST :=E(IS ,MS)∼Daug
S

Lsem (ST (GST (IS)) ,MS) + Lsem (SS (GTS (GST (IS))) ,MS) ,

ℓsem-TS :=EIT∼DT
Lsem (ST (IT ), SS (GTS(IT ))) + Lsem (ST (IT ), ST (GST (GTS(IT ))))

(2)

where Daug
S is augmented source dataset containing image segmentation pairs (IS ,MS).

These losses enable us to train ST based on SS which was trained with only a few segmented
samples. The total loss is

ℓtotal =λGAN

(
ℓSTGAN + ℓTS

GAN

)
+ λcycleℓcycle + λsem (ℓsem-ST + ℓsem-TS) . (3)
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In summary, we use an unsupervised domain adaptation method for medical image
segmentation (Gogoll et al., 2020). In doing so, we jointly learn image segmentation and
translation using a pre-trained segmentation network trained with only a few segmentations.
Sec. B.3 provides implementation details.

3.4. Registration by Segmentation

Figure 3: Registration Approach. We first predict segmentations of the images by our
SS and ST segmentation models. Then, we pass the segmentations to the registra-
tion network and predict transformation maps. Finally, we warp images based on
the predicted transformation maps. DXA images reproduced by kind permission
of the UK Biobank®.

Instead of proposing a new registration approach, we use an inverse-consistent registra-
tion network (Tian et al., 2023). Since our goal is to register anatomically different pairs,
we register images based on their segmentations. Note that while our domain adaptation
approach of Sec. 3.3 generates translated images and segmentations, we only utilize its
capability to train a segmentation network for the target domain.

Our image-segmentation pairs for moving and fixed images are (Im, Sm) and (If , Sf ). In
our registration setting, the registration network R finds correspondences between images
based on their segmentations. The registration network predicts the transformation map
Φ = R (Sm, Sf ; θ) + id, where θ denotes the network parameters. We denote by Φθ[Sm, Sf ]
the transformation mapping the moving segmentation, Sm to the space of the fixed seg-
mentation, Sf . During training, we register segmentations of image pairs, using gradient
inverse consistency of the transformation maps as the regularizer and 1-Dice score on the
segmentations as the similarity loss Lsim. The training loss function is

ℓ = Lsim (Sm ◦ Φθ [Sm, Sf ] , Sf )+Lsim (Sf ◦ Φθ [Sf , Sm] , Sm)+

+ λ ∥∇ (Φθ [Sm, Sf ] ◦ Φθ [Sf , Sm])− I∥2F .
(4)

During inference, we first register the segmentation pair (Sm, Sf ) and obtain the corre-
sponding transformation map Φθ[Sm, Sf ]. Then, we use this transformation map to warp
the real multimodal image pair (Im, If ) as I

w
m = Im ◦ Φθ[Sm, Sf ].

In summary, we use our pre-trained segmentation networks (see Sec. 3.2, Sec. 3.3) for
inference. First, we predict the segmentations for a given image pair. Then, we predict the
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transformation map based on the predicted segmentation pair. Lastly, we warp the real
images using this predicted transformation map. Thus, we preserve anatomical consistency
while finding correspondences between images. Sec. B.4 provides implementation details.

4. Experiments

We conduct experiments to evaluate the effectiveness of each step of our approach. We
use 123 DXA samples provided by the UK Biobank (Sudlow et al., 2015) and 123 X-rays
from The Osteoarthritis Initiative (OAI) (Nevitt et al., 2006)1. We resized each sample to
256 × 256 and manually segmented the femur, tibia, and fibula for 100 samples from each
dataset. We performed affine pre-alignment on all samples to one random sample using the
affine layers of (Greer et al., 2023). See Table 2 for the dataset splits.

Augmentation with Registration: We compare the effectiveness of our augmentation
strategy with raw data (without any augmentation) and elastic augmentation (Ronneberger
et al., 2015). Our method outperforms elastic augmentation in most cases. Additionally, we
investigate the impact of the number of segmented training samples on test performance.
Table 5 (highlights in orange cells) shows that we achieve comparable performance to the
segmentation network trained on 75 segmented samples using only 10 segmented samples
for DXA (86.6% fewer) or 15 samples for X-rays (80% fewer). Additionally, our method
does not require any parameters unlike elastic augmentation (e.g., number of control points
and maximum displacement).

Domain Adaptation for Segmentation: We evaluate our domain adaptation network
in both the DXA to X-ray and the X-ray to DXA adaptation directions. We assume that we
already have a pre-trained segmentation model on the source domain trained with varying
numbers of segmented samples. We investigate the impact of different ways of creating the
source dataset. We conduct experiments using the following approaches: 1) ”Baseline,”
which only uses images with available segmentations; 2) ”Baseline + Predictions,” which
additionally uses pre-trained network predictions for all available images without segmen-
tation; and 3) ”Baseline + Augmentation,” which augments the source dataset with our
augmentation strategy. We observe that augmenting the source dataset is the most reliable
approach when the number of segmentations is less than 5. However, for 15 segmentations
or more, all approaches converge to similar Dice scores.

The domain adaptation network significantly improves performance on the target modal-
ity. The ”Baseline + Augmentation” approach improves over directly using a segmentation
network trained only on the source domain and then applied to the target domain (”w/o
Adaptation”). For example, when only 5 segmented samples are available for the source
domain, we observe a 7.1% increase in mean Dice score when comparing the ”Baseline +
Augmentation” and the ”w/o Adaptation” approaches when adapting from the X-ray to the
DXA domain, and an increase of 50.5% in Dice score when adapting from the DXA to the
X-ray domain. Table 6 shows quantitative results, and we highlight the results discussed
herein orange cells. Figures 7 and 8 provide visual comparisons.

Registration: We compare our approach to deep registration approaches that differ with
respect to their input (either images or segmentations) and the losses that were used during

1. This registration task is motivated by our desire to extract spatially localized biomarkers across multiple
large-scale, but modality-diverse datasets, e.g., to enable imaging genetics studies for large sample sizes.
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DXA −→ X-ray X-ray −→ DXA

Approach Input Type #DXA Seg. #X-ray Seg. Loss Femur Tibia Fibula Mean % |Jφ| Femur Tibia Fibula Mean % |Jφ| Mean

1 Manual Segmentations 75 75 Dice 0.993 0.993 0.990 0.992 0.000 0.994 0.995 0.990 0.993 0.000 0.993

2 Real DXA - Real X-ray ✗ ✗ LNCC 0.834 0.813 0.610 0.752 0.000 0.952 0.950 0.841 0.914 0.845 0.883

3 Real DXA - Real X-ray 75 75 NGF 0.966 0.963 0.869 0.933 0.000 0.964 0.960 0.865 0.930 0.000 0.931

4 Real DXA - Real X-ray 75 75 Dice 0.966 0.965 0.863 0.931 0.000 0.966 0.967 0.844 0.926 0.000 0.929

5
Real DXA - Fake DXA

✗ ✗
LNCC

0.970 0.964 0.802 0.912 0.000 0.964 0.960 0.817 0.914 0.000 0.913
75 75 0.969 0.967 0.920 0.952 0.000 0.954 0.958 0.908 0.940 0.000 0.946

Real X-ray - Fake X-ray
✗ ✗ 0.966 0.962 0.806 0.911 0.000 0.966 0.960 0.818 0.915 0.000 0.913
75 75

LNCC
0.961 0.960 0.866 0.929 0.000 0.966 0.962 0.880 0.936 0.000 0.933

Ours Predicted Segmentations

1 ✗ Dice 0.956 0.945 0.899 0.933 0.000 0.957 0.944 0.902 0.934 0.000 0.891
3 ✗ Dice 0.967 0.964 0.917 0.949 0.000 0.967 0.965 0.919 0.950 0.000 0.950
5 ✗ Dice 0.970 0.966 0.932 0.956 0.000 0.971 0.967 0.934 0.957 0.000 0.957
10 ✗ Dice 0.972 0.972 0.925 0.956 0.000 0.972 0.973 0.928 0.958 0.000 0.957
75 ✗ Dice 0.970 0.970 0.938 0.959 0.000 0.971 0.971 0.939 0.960 0.000 0.960
✗ 1 Dice 0.917 0.942 0.793 0.884 0.002 0.906 0.946 0.825 0.892 0.008 0.888
✗ 3 Dice 0.971 0.965 0.901 0.946 0.000 0.969 0.967 0.916 0.951 0.001 0.948
✗ 5 Dice 0.966 0.965 0.889 0.940 0.000 0.966 0.965 0.905 0.945 0.000 0.943
✗ 10 Dice 0.976 0.967 0.937 0.960 0.000 0.977 0.969 0.935 0.960 0.000 0.960
✗ 75 Dice 0.977 0.972 0.950 0.966 0.000 0.978 0.975 0.953 0.969 0.000 0.968

Table 1: Dice and % of voxels with neg. Jacobian (% |Jφ|) for multimodal registration.

training (either using 1-Dice for segmentation-based losses or various image-based similarity
measures). Specifically, we compare our registration approach with 1) An oracle approach
that has access to manual segmentations for all images and uses manual segmentations as
input and for the loss (to provide an upper bound on performance); 2) Multimodal regis-
tration where inputs are real images and our loss uses images; 3) Multimodal registration
where inputs are real images and our loss uses images but only within manually segmented
regions (Sec. C.1); 4) Multimodal registration where inputs are real images and our loss
uses manual segmentations (Sec. C.2); 5) Monomodal registration where inputs are real-
fake image pairs generated by our image translation network, where loss uses images (Sec.
C.3).

Note that while our approach only assumes that few segmentations are available on
the source domain, approaches 1, 3, 4, and 5 above may use manual segmentations for all
images in the source and target domain to provide strong competing approaches.

Table 1 shows that our approach achieves a mean Dice score of 95.7% with only 5
segmentations from the DXA domain or 96% with 10 segmentations from the X-ray domain,
which is better than the non-oracle best-performing approach (5) that uses 150 manual
segmentations in the training process and results in a Dice score of 94.6%. For more
detailed results, please refer to Table 7 where we compare different approaches with varying
training losses. Additionally, Figures 9 and 10 demonstrate that our method aligns bone
borders with smooth deformation fields.

5. Conclusion

We demonstrated that our proposed approach enables the registration of 2D multimodal
image pairs visualizing different anatomical structures using a few segmentations from one
modality. This work is essential when we have limited numbers of segmented samples for one
modality and potentially none for other modalities. To the best of our knowledge, this is the
first work addressing this particular problem. Our results showed that our approach using
registration-based data augmentation, unsupervised domain adaptation, and segmentation-
based registration outperforms existing multimodal registration approaches. Future work
will explore 3D extensions to our approach (see Sec. A for a related discussion on the
limitations of our approach).
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Appendix A. Limitations

Our current approach has several limitations.
2D Images. Our 2D knee datasets are projections of 3D structures. This projection results
in complex image intensity distributions because of the multi-layer structure of the knee,
which cannot easily be disentangled based on a 2D registration (See Sec. C.4). This is the
main reason why our approach currently uses segmentations for registration.

Registration with Segmentation. Although segmentations allow us to align object
borders well, they disregard image texture. Hence, while our approach establishes cor-
respondences inside the bones, those are purely based on a smooth interpolation of the
deformation field.

Training Cost. Our approach involves several sequential training phases to train deep
networks. This increases the training time.

Future work. As a next step, we will extend our work to 3D images. Unlike our 2D
images, these are not projection images and will therefore allow us to incorporate a suitable
loss function that can directly operate on images without solely relying on segmentations.

Appendix B. Implementation and Network Parameters

B.1. Dataset Splits

We crop left and right knee 2D X-ray images from the raw OAI dataset and select 123
random images from the dataset. Then, we resize both the DXA images from the UK
Biobank and the OAI X-ray images to 256 × 256. Since segmentations are not provided
for these datasets, we manually segment them into femur, tibia, and fibula. Additionally,
we perform affine alignment on all images with respect to one randomly selected image,
using the affine registration layers from (Greer et al., 2023). In unpaired image translation
networks, the discriminator learns how anatomical regions should appear across a variety
of images without seeing real paired examples. Affine alignment helps this process by
standardizing the shapes and positions of these regions. Table 2 shows train/validation/test
splits.

Dataset Train Validation Test

DXA 75 + 23† 10 15
X-ray 75 + 23† 10 15

Table 2: Dataset splits. † denotes samples without segmentations.

B.2. Augmentation with Registration

We train a two-stage registration network (Tian et al., 2023) for each modality. We set
the learning rate to 5 × 10−5, use 20000 iterations per stage, use a batch size of 32, and
penalize with localized normalized cross-correlation (LNCC) with σ = 3. For random elastic
augmentation, we set the augmentation parameters to 3 control points and use a Gaussian
with a standard deviation σ of 3. We use a 2D Residual U-Net (Kerfoot et al., 2019) from
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Figure 4: For augmentation, we first register images with segmentations (Im, Sm) to images
without segmentations If . Then, we warp both Im and Sm to create an artificial
sample based on the predicted transformation map. DXA images reproduced by
kind permission of the UK Biobank®.

the MONAI Framework (Cardoso et al., 2022) setting channels to (4, 8, 16, 32, 64, 128),
strides to (1, 1, 1, 1, 1) and using 8 residual units.

B.3. Domain Adaptation

We implement generators using ResNet (He et al., 2016), discriminators following the Patch-
GAN (Isola et al., 2017) approach, and segmentation models using a Residual U-Net (Ker-
foot et al., 2019) that shares the same architecture introduced in Section B.2. We embed our
source segmentation network, which is pre-trained with our augmentation strategy, into the
domain adaptation architecture and freeze it. Additionally, we initialize the segmentation
network for the target modality with the same weights. We set λGAN to 1, λcycle to 10, and
λsem to 5 and train the network for 400 epochs with a batch size of 1. We use 1-Dice as a
semantic loss Lsem.

B.4. Registration

For our registration task, we prefer using a single-stage registration network (Tian et al.,
2023) over a two-stage network. Since registering segmentations is an easier task than regis-
tering images, even a single-stage model can converge easily and achieve high performance.
We set the learning rate to 10−4, batch size to 32, and use 1-Dice as a similarity loss for
5000 steps. During inference, we do not employ any instance optimization.

B.5. Computational Cost

We train our registration network for augmentation for ∼4.5 hours, the segmentation net-
work on the source dataset for ∼1 hour, the UDA network for ∼3.5 hours, and the regis-
tration network for registering segmentations for ∼0.5 hours. We use one NVIDIA GeForce
RTX 3090 for all of our experiments.
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Appendix C. Experimental Details

This section provides additional details and experimental results for the registration ap-
proaches 3-5 of Sec. 4. Specifically, Sec. C.1 provides experimental details for the multi-
modal registration approach 3) where inputs are real images and our loss uses images, but
only within manually segmented regions. Sec. C.2 provides experimental details for the
multi-modal registration approach 4) where inputs are real images and our loss uses man-
ual segmentations. Sec. C.3 provides experimental details for the multi-modal registration
approach 5) where inputs are real-fake image pairs generated by our image translation net-
work and the loss uses images. Sec. C.4 discusses the challenges of 2D knee registration
and provides registration visualizations for the inner regions of the bones when using dif-
ferent similarity measures. Sec. C.5 provides experimental results for the applicability of
our method to the case where we assume segmentations from both modalities are available.
Sec. C.6 discusses the robustness of our domain adaptation strategy.

C.1. Registration Training with Segmentation Constrained Similarity Loss

We design an experimental setting where the registration network takes real multimodal
images as input, and the similarity loss is calculated using images but only within the seg-
mented regions. First, we create binary masks from our manual segmentations by assigning
1 to segmented regions and 0 to the background. Then, we assume that image-mask pairs
are given as moving (Im,Mm) and fixed images (If ,Mf ). The registration network esti-
mates the transformation map Φ = R (Im, If ; θ) + id based on image intensities. If we
denote the mapping from the moving image to the fixed image as Φθ[Im, If ], the training
loss function is

ℓ =
∑
i∈Mf

Lsim (Im ◦ Φθ [Im, If ] , If )i +
∑
i∈Mm

Lsim (If ◦ Φθ [If , Im] , Im)i+

+ λ ∥∇ (Φθ [Im, If ] ◦ Φθ [If , Im])− I∥2F ,

(5)

where Lsim()i denotes the value of the similarity measure at location i. Here, we sum
over all the foreground pixels of the fixed (Mf ) and moving (Mm) image, respectively.

During training, we use gradient inverse consistency as the regularizer. Additionally,
we conduct experiments with several similarity losses. During inference, this approach does
not require any segmentations since it operates on image space.

Table 7 shows that our approach, with 3 segmentations from either the DXA or X-
ray modality, outperforms this approach (registration approach 3 of Sec. 4) trained with
several similarity losses while using 75 segmentations from each of the modalities. Therefore,
optimizing over images even if constrained by segmentations, is not the best way for this
registration task.

C.2. Registration with Semantic Loss

Inspired by (Hu et al., 2018), we create an experiment where the registration network
takes real multimodal images as input but where the similarity loss is based on manual
segmentations, assuming manual segmentations are available for all images. Based on a
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similar setting as in Sec. 3.4, we assume that image-segmentation pairs are given as moving
(Im, Sm) and fixed images (If , Sf ). The registration network estimates the transformation
map Φ = R (Im, If ; θ) + id based on image intensities. If we denote the mapping from the
moving image to the fixed image Φθ[Im, If ], the training loss function is

ℓ = Lsim (Sm ◦ Φθ [Im, If ] , Sf )+Lsim (Sf ◦ Φθ [If , Im] , Sm)+

+ λ ∥∇ (Φθ [Im, If ] ◦ Φθ [If , Im])− I∥2F .
(6)

We use gradient inverse consistency of the transformation maps as the regularizer and 1-
Dice score on the segmentations as the similarity loss Lsim. During inference, this approach
does not require any segmentations since it operates on image space.

Table 7 shows that this approach (registration approach 4 of Sec. 4) performs worse when
registering the fibula, even if we incorporate all manual segmentations for both modalities.
We hypothesize that in contrast to a registration network that uses segmentations as inputs,
a registration network that uses the acquired images directly will likely have to internally
form some notion of a region of interest, essentially performing a form of latent segmentation.
Hence, using the segmentations already as input is likely an easier task.

C.3. Registration of Real-Fake Image Pairs

In our approach, we use a CycleGAN-based image translation network to train a segmenta-
tion network on the target domain, and we use this segmentation network for registration.
However, we can also use our image translation network to convert our multimodal regis-
tration problem into a monomodal one. To obtain a strong competitor to our approach, we
assume that we have manual segmentations for all images of both domains in contrast to
our approach.

We train both a standard CycleGAN and a CycleGAN using manual segmentations for
both modalities as semantic losses. Then, we translate all images in our training dataset to
the same domain and create DXA & fake DXA and X-ray & fake X-ray image pairs. Based
on these datasets, we train monomodal registration networks. During inference, we initially
translate images to the same domain and then use these real-fake image pairs as the input
to a monomodal registration network. Finally, we predict deformation fields.

Table 7 shows that registration via a CycleGAN using manual segmentations for both
modalities as semantic losses is better than using a standard CycleGAN. However, because
registering based on images is still difficult, the registration accuracy of our proposed ap-
proach remains better. Therefore, in our approach, it is beneficial to use the segmentation-
guided CycleGAN to train the segmentation networks and work with the predicted segmen-
tations.

Figure 5 illustrates the moving, fixed, fake fixed, and registered images produced using
the CycleGAN monomodal registration approach with semantic loss for several cases. Table
7 presents the Dice scores of the CycleGAN monomodal registration approach, comparing
results with and without the use of semantic loss.
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Figure 5: Qualitative results for multimodal registration with image translation. While
registering between DXA and fake DXA images (bottom two rows) works rea-
sonably well, registering between X-rays and fake X-rays (top two rows) is much
harder and results in nonsensical registration results for some of the similarity
measures. Best viewed zoomed. DXA images reproduced by kind permission of
the UK Biobank®.

C.4. Registration of Anatomically Similar Pairs

In our registration setting, we register pairs based on their provided or predicted segmen-
tations. Although registering based on segmentations aligns the borders of the bones well,
it does not establish correspondences between the inner regions of the bones. To decouple
registration problems due to visualization of different anatomical regions from registration
problems due to image appearance differences for the different modalities within the same
anatomical regions, we conducted an experiment by using images that only visualize com-
mon anatomical structures. We achieve this by masking the images of both modalities based
on our manual segmentations. We thereby remove uncommon structures, in this case, soft
tissue. This masking results in an artificial experimental dataset for multimodal registration
that only shows anatomically similar regions. Then, we trained a registration network with
several image similarity loss functions.

Figure 6 illustrates predictions of grid-based displacement fields based on these different
image similarity measures. We observe each loss causes the network to behave significantly
differently for inner bone regions due to appearance differences between the DXA and X-ray
images. Combined with the multi-layer structure of the knee (including the presence of the
patella), this leads to some similarity measures to highly spatially irregular deformation
fields.
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Figure 6: Qualitative results for multimodal registration using different similarity measures.
The DXA and X-ray images have been masked to obtain pairs showing the same
anatomical structure. Due to appearance differences within the bones, registra-
tion results strongly differ between the different similarity measures. DXA images
reproduced by kind permission of the UK Biobank®.

C.5. Registration where Segmentations for Both Modalities Exist

Our approach assumes that a small number of segmentations are provided for only one
of the modalities. However, we also explore the applicability of our approach to a case
where we have segmentations for both modalities. In this setting, the unsupervised domain
adaptation phase is no longer necessary. Instead, we directly train segmentation networks
for each modality with augmentation based on registration (see 3.2) for which we illustrated
its effectiveness in Table 5. Then, we register image pairs again with predicted segmentations
as we do in our proposed approach.

Table 3 compares two approaches: one that assumes segmentations are available from
only one modality (ours) and another that utilizes segmentations from both modalities
(ours w/o UDA). When the same number of segmentations are provided, our approach
can outperform the approach without unsupervised domain adaptation (UDA) in some
cases. For instance, ours reaches a 95.7% Dice score with 10 DXA segmentations and
96% with 10 X-ray segmentations, while ours w/o UDA with 5 segmentations for each
modality only achieves a 94.2% Dice score. We observe similar results for the case of 20
segmentations: our approach reaches a 96.4% Dice score with 20 DXA segmentations and
96.5% with 20 X-ray segmentations while ours w/o UDA with 20 segmentations achieves
a 96% Dice score. However, ours w/o UDA slightly outperforms with a 97% Dice score
when 40 segmentations are provided, while ours reaches 96% with DXA and 96.8% with
X-ray segmentations. These results demonstrate that our method, even when utilizing
segmentations from only one modality, performs competitively compared to the approach
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that benefits from segmentations from both modalities. This highlights the effectiveness of
unsupervised domain adaptation in our approach.

DXA −→ X-ray X-ray −→ DXA

Approach #DXA Seg. #X-ray Seg. Femur Tibia Fibula Mean % |Jφ| Femur Tibia Fibula Mean % |Jφ| Mean

Ours w/o UDA
5 5 0.967 0.968 0.883 0.939 0.000 0.968 0.971 0.893 0.944 0.000 0.942
10 10 0.971 0.969 0.941 0.960 0.000 0.973 0.970 0.935 0.959 0.000 0.960
20 20 0.980 0.974 0.950 0.968 0.000 0.982 0.977 0.955 0.971 0.000 0.970

Ours

10 ✗ 0.972 0.972 0.925 0.956 0.000 0.972 0.973 0.928 0.958 0.000 0.957
20 ✗ 0.976 0.970 0.944 0.963 0.000 0.976 0.970 0.945 0.964 0.000 0.964
40 ✗ 0.971 0.967 0.941 0.960 0.000 0.972 0.968 0.941 0.960 0.000 0.960
✗ 10 0.976 0.967 0.937 0.960 0.000 0.977 0.969 0.935 0.960 0.000 0.960
✗ 20 0.976 0.970 0.945 0.964 0.000 0.977 0.973 0.950 0.967 0.000 0.965
✗ 40 0.979 0.971 0.952 0.967 0.000 0.980 0.973 0.954 0.969 0.000 0.968

Table 3: Class-based Dice scores for multimodal registration where we compare our ap-
proach (ours), which assumes manual segmentations from one of the modalities
are provided for training, to ours w/o UDA, which assumes manual segmentations
from both modalities are provided for training.

C.6. Robustness of CycleGAN Based Unsupervised Domain Adaptation

Training a robust CycleGAN typically requires a large and diverse dataset. However, col-
lecting such a dataset may be a challenging task. Under our experimental constraints, where
we have a small number of images, this task becomes even more difficult. To investigate
the robustness of our unsupervised domain adaptation approach, we run our experiments
with 5 random seeds and report the mean and standard deviation of Dice scores for each
class. Table 4 shows that our approach is reliable for domain adaptation, with the highest
standard deviation being 0.028 for the worst-case scenario.

DXA −→ X-ray X-ray −→ DXA

#Segmentations Femur Tibia Fibula Femur Tibia Fibula

1 0.955 ± 0.004 0.935 ± 0.007 0.922 ± 0.008 0.984 ± 0.002 0.981 ± 0.001 0.922 ± 0.028
3 0.968 ± 0.002 0.962 ± 0.002 0.932 ± 0.012 0.986 ± 0.001 0.984 ± 0.002 0.967 ± 0.001
5 0.972 ± 0.002 0.969 ± 0.002 0.914 ± 0.011 0.986 ± 0.003 0.983 ± 0.002 0.969 ± 0.001
10 0.978 ± 0.003 0.976 ± 0.004 0.922 ± 0.011 0.988 ± 0.001 0.984 ± 0.001 0.964 ± 0.002
15 0.975 ± 0.001 0.970 ± 0.004 0.931 ± 0.004 0.987 ± 0.001 0.983 ± 0.002 0.966 ± 0.004
20 0.974 ± 0.002 0.970 ± 0.002 0.923 ± 0.009 0.986 ± 0.002 0.984 ± 0.002 0.966 ± 0.004
40 0.977 ± 0.001 0.967 ± 0.004 0.924 ± 0.011 0.988 ± 0.001 0.985 ± 0.001 0.965 ± 0.001
75 0.977 ± 0.003 0.971 ± 0.004 0.918 ± 0.009 0.985 ± 0.001 0.981 ± 0.001 0.963 ± 0.006

Table 4: Class-based Dice score means and standard deviations for unsupervised domain
adaptation with 5 random training seeds. Dice scores are based on comparing
the segmentation network results for the domain without available segmentations.
The orange cell indicates a result discussed in the main text.
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Appendix D. Qualitative and Quantitative Results

This section provides the experimental results of our experiments. Specifically, Sec. D.1
provides a table comparing segmentation performances of networks without augmentation
(raw), with elastic augmentation, and our augmentation with registration strategies. Sec.
D.2 provides qualitative results that compare segmentation results without adaptation (w/o
Adaptation) with several domain adaptation approaches: 1) ”Baseline,” which only uses
images with available segmentations; 2) ”Baseline + Predictions,” which additionally uses
pre-trained network predictions for all available images without segmentation; and 3) ”Base-
line + Augmentation,” which augments the source dataset with our augmentation strat-
egy. Additionally, it provides resulting visuals of our domain adaptation strategy (”Base-
line+Augmentation”) for a varying number of source dataset segmentations. Lastly, Sec.
D.3 provides Dice scores and the percentage of voxels with a negative Jacobian (% |Jφ|) for
our registration approach compared to 1) an oracle approach; 2) multimodal registration
where inputs are real images and our loss uses images; 3) multimodal registration where
inputs are real images and our loss uses images but only within manually segmented re-
gions; 4) multimodal registration where inputs are real images and our loss uses manual
segmentations; 5) monomodal registration where inputs are real-fake image pairs generated
by our image translation network, where loss uses images. Moreover, it provides registration
visuals of our approach for a varying number of provided source dataset segmentations.

D.1. Results of Augmentation Experiments

DXA

Raw Elastic Registration

#Segmentations Femur Tibia Fibula Mean Femur Tibia Fibula Mean Femur Tibia Fibula Mean

1 0.700 0.681 0.710 0.697 0.850 0.865 0.714 0.810 0.962 0.949 0.907 0.928
3 0.917 0.917 0.828 0.887 0.963 0.958 0.938 0.953 0.984 0.981 0.951 0.972
5 0.928 0.923 0.885 0.912 0.971 0.964 0.951 0.962 0.982 0.980 0.950 0.971
10 0.967 0.966 0.916 0.950 0.977 0.974 0.956 0.969 0.987 0.984 0.970 0.980
15 0.968 0.963 0.916 0.949 0.981 0.978 0.957 0.972 0.987 0.982 0.968 0.979
20 0.974 0.972 0.956 0.967 0.984 0.981 0.966 0.977 0.987 0.983 0.973 0.981
40 0.988 0.985 0.964 0.979 0.990 0.989 0.966 0.982 0.990 0.988 0.975 0.984
75 0.982 0.981 0.974 0.979 0.983 0.982 0.977 0.981 0.987 0.985 0.973 0.982

X-ray

Raw Elastic Registration

#Segmentations Femur Tibia Fibula Mean Femur Tibia Fibula Mean Femur Tibia Fibula Mean

1 0.736 0.607 0.243 0.529 0.729 0.706 0.345 0.593 0.772 0.666 0.291 0.576
3 0.763 0.745 0.421 0.643 0.882 0.878 0.643 0.801 0.941 0.936 0.811 0.896
5 0.778 0.751 0.642 0.724 0.900 0.882 0.699 0.827 0.946 0.920 0.759 0.875
10 0.911 0.900 0.736 0.849 0.945 0.941 0.885 0.924 0.976 0.959 0.918 0.951
15 0.953 0.941 0.837 0.910 0.980 0.970 0.887 0.946 0.976 0.967 0.948 0.964
20 0.956 0.956 0.879 0.930 0.982 0.978 0.932 0.964 0.978 0.975 0.935 0.963
40 0.976 0.964 0.902 0.947 0.977 0.979 0.939 0.965 0.982 0.980 0.955 0.972
75 0.977 0.981 0.934 0.964 0.982 0.986 0.956 0.975 0.984 0.985 0.959 0.976

Table 5: Class-based Dice scores for augmentation strategies evaluated on the DXA and
X-ray segmentation tasks. Our method outperforms other strategies in most cases
for a given number of available manual segmentations. The orange cells indicate
the results discussed in the main text.
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D.2. Results of Domain Adaptation Experiments

DXA −→ X-ray

w/o Adaptation Baseline Baseline + Pred. Baseline + Aug.

#Segmentations Femur Tibia Fibula Mean Femur Tibia Fibula Mean Femur Tibia Fibula Mean Femur Tibia Fibula Mean

Oracle 0.984 0.985 0.959 0.976 0.984 0.985 0.959 0.976 0.984 0.985 0.959 0.976 0.984 0.985 0.959 0.976

1 0.689 0.635 0.232 0.519 0.944 0.954 0.742 0.880 0.953 0.938 0.899 0.930 0.952 0.932 0.910 0.931
3 0.657 0.672 0.272 0.534 0.969 0.963 0.856 0.929 0.976 0.969 0.937 0.961 0.968 0.965 0.903 0.945
5 0.611 0.388 0.331 0.443 0.971 0.969 0.897 0.946 0.972 0.972 0.889 0.944 0.967 0.966 0.911 0.948
10 0.788 0.759 0.358 0.635 0.978 0.978 0.928 0.961 0.979 0.974 0.897 0.950 0.977 0.978 0.891 0.949
15 0.782 0.729 0.476 0.662 0.973 0.965 0.926 0.955 0.975 0.970 0.936 0.960 0.977 0.971 0.934 0.961
20 0.729 0.780 0.533 0.681 0.977 0.972 0.926 0.958 0.981 0.975 0.932 0.963 0.980 0.973 0.920 0.958
40 0.807 0.837 0.562 0.735 0.978 0.965 0.932 0.958 0.975 0.969 0.940 0.961 0.977 0.968 0.920 0.955
75 0.698 0.615 0.462 0.592 0.979 0.974 0.909 0.954 0.978 0.978 0.929 0.962 0.972 0.976 0.930 0.959

X-ray −→ DXA

w/o Adaptation Baseline Baseline + Pred. Baseline + Aug.

#Segmentations Femur Tibia Fibula Mean Femur Tibia Fibula Mean Femur Tibia Fibula Mean Femur Tibia Fibula Mean

Oracle 0.987 0.985 0.973 0.982 0.987 0.985 0.973 0.982 0.987 0.985 0.973 0.982 0.987 0.985 0.973 0.982

1 0.696 0.720 0.438 0.618 0.971 0.964 0.855 0.930 0.976 0.878 0.064 0.639 0.982 0.978 0.930 0.954
3 0.820 0.871 0.843 0.845 0.982 0.981 0.954 0.972 0.981 0.978 0.970 0.976 0.987 0.983 0.964 0.978
5 0.929 0.947 0.845 0.907 0.985 0.980 0.958 0.974 0.988 0.982 0.969 0.980 0.986 0.981 0.967 0.978
10 0.936 0.967 0.886 0.930 0.985 0.985 0.953 0.974 0.985 0.980 0.973 0.979 0.990 0.984 0.970 0.981
15 0.886 0.923 0.818 0.876 0.985 0.984 0.968 0.979 0.990 0.985 0.976 0.984 0.989 0.984 0.963 0.979
20 0.927 0.925 0.928 0.927 0.988 0.984 0.970 0.981 0.985 0.987 0.972 0.981 0.987 0.985 0.969 0.980
40 0.957 0.958 0.944 0.953 0.988 0.983 0.966 0.979 0.988 0.984 0.972 0.981 0.989 0.985 0.970 0.981
75 0.940 0.958 0.781 0.893 0.988 0.980 0.972 0.980 0.986 0.981 0.971 0.979 0.988 0.982 0.967 0.979

Table 6: Class-based Dice scores for unsupervised domain adaptation for segmentation. We
test our networks on the target modality with a limited number of source segmen-
tations. Additionally, as an oracle method, we trained and tested a segmentation
network on the target modality with full supervision. We observe that Dice scores
converge when around 15 segmentations are provided. The results of domain
adaptation are competitive with the oracle method. The orange cells indicate the
results discussed in the main text.

Figure 7: Qualitative results of our domain adaptation strategy (”Base-
line+Augmentation”) on the X-ray modality with varying numbers of provided
DXA segmented samples.
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Figure 8: Qualitative results of our domain adaptation strategy (”Base-
line+Augmentation”) on the DXA modality for varying numbers of provided
X-ray segmented samples. DXA images reproduced by kind permission of the UK
Biobank®.

D.3. Results of Registration Experiments

Figure 9: Qualitative results for our multimodal registration approach for different numbers
of segmented DXA samples. DXA images reproduced by kind permission of the
UK Biobank®.
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Segmentation-guided multimodal registration

DXA −→ X-ray X-ray −→ DXA

Approach Input Type #DXA Seg. #X-ray Seg. Loss Femur Tibia Fibula Mean % |Jφ| Femur Tibia Fibula Mean % |Jφ| Mean

1 Manual Segmentations 75 75 Dice 0.993 0.993 0.990 0.992 0.000 0.994 0.995 0.990 0.993 0.000 0.993

2 Real DXA - Real X-ray

✗ ✗ LNCC 0.834 0.813 0.610 0.752 0.000 0.952 0.950 0.841 0.914 0.845 0.833
✗ ✗ MI 0.658 0.770 0.460 0.629 0.030 0.787 0.948 0.634 0.790 7.422 0.710
✗ ✗ MIND 0.866 0.893 0.528 0.762 0.000 0.847 0.888 0.493 0.867 0.000 0.753
✗ ✗ NCC 0.643 0.721 0.399 0.588 0.000 0.727 0.907 0.357 0.664 7.308 0.626
✗ ✗ NGF 0.678 0.712 0.368 0.586 0.000 0.758 0.794 0.356 0.636 0.000 0.611
✗ ✗ SSD 0.671 0.656 0.177 0.501 0.000 0.698 0.664 0.164 0.509 5.309 0.505
✗ ✗ SSIM 0.642 0.702 0.443 0.596 0.000 0.852 0.911 0.390 0.718 4.694 0.657

3 Real DXA - Real X-ray

75 75 LNCC 0.965 0.962 0.882 0.936 0.000 0.962 0.959 0.845 0.922 0.004 0.929
75 75 MI 0.964 0.962 0.874 0.933 0.000 0.963 0.960 0.856 0.926 0.001 0.930
75 75 MIND 0.698 0.445 0.310 0.484 0.000 0.735 0.645 0.285 0.555 1.597 0.520
75 75 NCC 0.964 0.963 0.875 0.934 0.001 0.964 0.961 0.848 0.924 0.002 0.929
75 75 NGF 0.966 0.963 0.869 0.933 0.000 0.964 0.960 0.865 0.930 0.000 0.931
75 75 SSD 0.597 0.563 0.000 0.387 99.737 0.630 0.769 0.000 0.466 75.812 0.427
75 75 SSIM 0.965 0.962 0.867 0.931 0.001 0.963 0.960 0.852 0.925 0.000 0.928

4 Real DXA - Real X-ray 75 75 Dice 0.966 0.965 0.863 0.931 0.000 0.966 0.967 0.844 0.926 0.000 0.929

5

Real DXA - Fake DXA

✗ ✗
LNCC

0.970 0.964 0.802 0.912 0.000 0.964 0.960 0.817 0.914 0.000 0.913
75 75 0.969 0.967 0.920 0.952 0.000 0.954 0.958 0.908 0.940 0.000 0.946
✗ ✗ 0.969 0.963 0.770 0.901 0.001 0.966 0.960 0.799 0.908 0.002 0.905
75 75

MI
0.968 0.966 0.909 0.948 0.000 0.959 0.957 0.868 0.928 0.002 0.938

✗ ✗
MIND

0.950 0.947 0.696 0.864 0.000 0.953 0.949 0.698 0.867 0.000 0.866
75 75 0.953 0.949 0.699 0.867 0.000 0.953 0.949 0.697 0.866 0.000 0.867
✗ ✗ 0.968 0.961 0.777 0.902 0.000 0.969 0.963 0.773 0.902 0.000 0.902
75 75

NCC
0.965 0.963 0.874 0.934 0.000 0.966 0.963 0.871 0.933 0.000 0.934

✗ ✗
NGF

0.957 0.955 0.779 0.897 5.483 0.962 0.956 0.768 0.895 5.477 0.896
75 75 0.951 0.955 0.820 0.909 5.234 0.952 0.952 0.816 0.907 4.090 0.908
✗ ✗ 0.966 0.960 0.764 0.897 0.000 0.966 0.961 0.760 0.896 0.000 0.896
75 75

SSD
0.960 0.960 0.837 0.919 0.000 0.961 0.960 0.842 0.921 0.000 0.920

✗ ✗
SSIM

0.968 0.964 0.775 0.902 0.000 0.961 0.958 0.791 0.903 0.000 0.903
75 75 0.966 0.966 0.908 0.947 0.000 0.948 0.951 0.864 0.921 0.000 0.934

Real X-ray - Fake X-ray

✗ ✗ 0.966 0.962 0.806 0.911 0.000 0.966 0.960 0.818 0.915 0.000 0.913
75 75

LNCC
0.961 0.960 0.866 0.929 0.000 0.966 0.962 0.880 0.936 0.000 0.933

✗ ✗
MI

0.947 0.950 0.761 0.886 0.000 0.952 0.949 0.796 0.899 0.000 0.893
75 75 0.928 0.921 0.820 0.890 0.000 0.951 0.947 0.816 0.905 0.000 0.897
✗ ✗ 0.927 0.875 0.693 0.832 0.000 0.923 0.871 0.695 0.830 0.000 0.831
75 75

MIND
0.894 0.800 0.682 0.792 0.000 0.900 0.819 0.696 0.805 0.000 0.799

✗ ✗
NCC

0.929 0.916 0.658 0.834 0.000 0.921 0.910 0.680 0.837 0.000 0.836
75 75 0.872 0.834 0.652 0.786 0.000 0.911 0.889 0.597 0.799 0.000 0.793
✗ ✗ 0.951 0.944 0.703 0.866 0.000 0.952 0.945 0.684 0.860 0.000 0.863
75 75

NGF
0.943 0.938 0.686 0.856 0.000 0.949 0.944 0.677 0.857 0.000 0.856

✗ ✗
SSD

0.738 0.694 0.349 0.594 0.000 0.790 0.743 0.351 0.628 0.000 0.611
75 75 0.705 0.644 0.150 0.500 0.000 0.530 0.487 0.148 0.388 0.000 0.444
✗ ✗ 0.878 0.836 0.562 0.759 0.000 0.901 0.864 0.571 0.779 0.000 0.769
75 75

SSIM
0.799 0.758 0.389 0.649 0.000 0.804 0.704 0.371 0.626 0.000 0.638

Ours w/o UDA Predicted Segmentations

1 1 Dice 0.918 0.947 0.802 0.888 0.002 0.909 0.949 0.821 0.893 0.000 0.891
3 3 Dice 0.969 0.967 0.904 0.946 0.000 0.968 0.970 0.912 0.950 0.001 0.948
5 5 Dice 0.967 0.968 0.883 0.939 0.000 0.968 0.971 0.893 0.944 0.000 0.942
10 10 Dice 0.971 0.969 0.941 0.960 0.000 0.973 0.970 0.935 0.959 0.000 0.960
15 15 Dice 0.978 0.975 0.949 0.967 0.000 0.979 0.978 0.951 0.969 0.000 0.968
20 20 Dice 0.980 0.974 0.950 0.968 0.000 0.982 0.977 0.955 0.971 0.000 0.970
40 40 Dice 0.978 0.974 0.959 0.970 0.000 0.979 0.977 0.960 0.972 0.000 0.971
75 75 Dice 0.975 0.976 0.959 0.970 0.000 0.976 0.979 0.960 0.971 0.000 0.971

Ours Predicted Segmentations

1 ✗ Dice 0.956 0.945 0.899 0.933 0.000 0.957 0.944 0.902 0.934 0.000 0.934
3 ✗ Dice 0.967 0.964 0.917 0.949 0.000 0.967 0.965 0.919 0.950 0.000 0.950
5 ✗ Dice 0.970 0.966 0.932 0.956 0.000 0.971 0.967 0.934 0.957 0.000 0.957
10 ✗ Dice 0.972 0.972 0.925 0.956 0.000 0.972 0.973 0.928 0.958 0.000 0.957
15 ✗ Dice 0.975 0.971 0.938 0.961 0.000 0.976 0.972 0.939 0.962 0.000 0.962
20 ✗ Dice 0.976 0.970 0.944 0.963 0.000 0.976 0.970 0.945 0.964 0.000 0.964
40 ✗ Dice 0.971 0.967 0.941 0.960 0.000 0.972 0.968 0.941 0.960 0.000 0.960
75 ✗ Dice 0.970 0.970 0.938 0.959 0.000 0.971 0.971 0.939 0.960 0.000 0.960
✗ 1 Dice 0.917 0.942 0.793 0.884 0.002 0.906 0.946 0.825 0.892 0.008 0.888
✗ 3 Dice 0.971 0.965 0.901 0.946 0.000 0.969 0.967 0.916 0.951 0.001 0.948
✗ 5 Dice 0.966 0.965 0.889 0.940 0.000 0.966 0.965 0.905 0.945 0.000 0.943
✗ 10 Dice 0.976 0.967 0.937 0.960 0.000 0.977 0.969 0.935 0.960 0.000 0.960
✗ 15 Dice 0.976 0.971 0.941 0.963 0.000 0.977 0.974 0.945 0.965 0.000 0.964
✗ 20 Dice 0.976 0.970 0.945 0.964 0.000 0.977 0.973 0.950 0.967 0.000 0.965
✗ 40 Dice 0.979 0.971 0.952 0.967 0.000 0.980 0.973 0.954 0.969 0.000 0.968
✗ 75 Dice 0.977 0.972 0.950 0.966 0.000 0.978 0.975 0.953 0.969 0.000 0.968

Table 7: Class-based Dice scores for multimodal registration. This table shows quantita-
tive results for our approach comparing the following approaches: 1) An oracle
approach (to provide an upper performance bound); 2) Multimodal registration
where inputs are real images and our loss uses images; 3) Multimodal registration
where inputs are real images and our loss uses images but only within manually
segmented regions; 4) Multimodal registration where inputs are real images and
our loss uses manual segmentations; 5) Monomodal registration where inputs are
real-fake image pairs generated by our image translation network, where loss uses
images.
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Figure 10: Qualitative results for our multimodal registration approach for different num-
bers of segmented X-ray samples. DXA images reproduced by kind permission
of the UK Biobank®.
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