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Abstract

Deep discriminative approaches like random forests and deep neural networks have1

recently found applications in many important real-world scenarios. However, de-2

ploying these learning algorithms in safety-critical applications raises concerns, par-3

ticularly when it comes to ensuring confidence calibration for both in-distribution4

and out-of-distribution data points. Many popular methods for in-distribution (ID)5

calibration, such as isotonic and Platt’s sigmoidal regression, exhibit excellent ID6

calibration performance. However, these methods are not calibrated for the entire7

feature space, leading to overconfidence in the case of out-of-distribution (OOD)8

samples. On the other end of the spectrum, existing out-of-distribution (OOD)9

calibration methods generally exhibit poor in-distribution (ID) calibration. In this10

paper, we address ID and OOD calibration problems jointly. We leveraged the11

fact that deep models, including both random forests and deep-nets, learn internal12

representations which are unions of polytopes with affine activation functions to13

conceptualize them both as partitioning rules of the feature space. We replace the14

affine function in each polytope populated by the training data with a Gaussian15

kernel. Our experiments on both tabular and vision benchmarks show that the16

proposed approaches obtain well-calibrated posteriors while mostly preserving or17

improving the classification accuracy of the original algorithm for ID region, and18

extrapolate beyond the training data to handle OOD inputs appropriately.19

1 Introduction20

Machine learning methods, specially deep neural networks and random forests have shown excellent21

performance in many real-world tasks, including drug discovery, autonomous driving and clinical22

surgery [1–3]. However, calibrating confidence over the whole feature space for these approaches23

remains a key challenge in the field [4]. Calibrated confidence within the training or in-distribution24

(ID) region as well as in the out-of-distribution (OOD) region is crucial for safety critical applications25

like autonomous driving and computer-assisted surgery, where any aberrant reading should be26

detected and taken care of immediately [4, 5].27

The approaches to calibrate OOD confidence for learning algorithms described in the literature can28

be roughly divided into two groups: discriminative and generative. Intuitively, the easiest solution for29

OOD confidence calibration is to learn a function that gives higher scores for in-distribution samples30

and lower scores for OOD samples [6]. The discriminative approaches try to either modify the loss31

function [7–9] or train the network exhaustively on OOD datasets to calibrate on OOD samples [10, 4].32

Recently, Hein et al. [4] showed ReLU networks produce arbitrarily high confidence as the inference33

point moves far away from the training data. Therefore, calibrating ReLU networks for the whole34

OOD region is not possible without fundamentally changing the network architecture. As a result, all35

of the aforementioned algorithms are unable to provide any guarantee about the performance of the36

network throughout the whole feature space. The other group tries to learn generative models for the37
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in-distribution as well as the out-of-distribution samples. The general idea is to do likelihood ratio38

test for a particular sample using the generative models [11], or threshold the ID likelihoods to detect39

OOD samples. However, it is not obvious how to control likelihoods far away from the training data40

for powerful generative models like variational autoencoders (VAEs) [12] and generative adversarial41

networks (GAN) [13]. Moreover, Nalisnick et al. [14] and Hendrycks et al. [10] showed VAEs and42

GANs can also yield overconfident likelihoods far away from the training data.43

The algorithms described so far are concerned with OOD confidence calibration for deep-nets only.44

However, we show that other approaches which partition the feature space, for example random forest,45

can also suffer from poor confidence calibration both in the ID and the OOD regions. Moreover, the46

algorithms described above are concerned about the confidence in the OOD region only and do not47

address the confidence calibration within the ID region at all. This issue is addressed separately in48

a different group of literature [15–20]. Instead, we consider both calibration problems jointly and49

propose an approach that achieves good calibration throughout the whole feature space.50

In this paper, we conceptualize both random forest and ReLU networks as partitioning rules with an51

affine activation over each polytope. We consider replacing the affine functions learned over the52

polytopes with Gaussian kernels. We propose two novel kernel density estimation techniques named53

Kernel Density Forest (KDF) and Kernel Density Network (KDN). Our proposed approach completely54

excludes the need for training on OOD examples for the model (unsupervised OOD calibration). We55

conduct several simulation and real data studies that show both KDF and KDN are well-calibrated for56

OOD samples while they maintain good performance in the ID region.57

2 Related Works and Our Contributions58

There are a number of approaches in the literature which attempt to learn a generative model and59

control the likelihoods far away from the training data. For example, Ren et al. [11] employed60

likelihood ratio test for detecting OOD samples. Wan et al. [8] modified the training loss so that the61

downstream projected features follow a Gaussian distribution. However, there is no guarantee of62

performance for OOD detection for the above methods. To the best of our knowledge, apart from63

us, only Meinke et al. [5] has proposed an approach to guarantee asymptotic performance for OOD64

detection. Compared to the aforementioned methods, our approach differs in several ways:65

• We address the confidence calibration problem for both ReLU-nets and random forests.66

• We address ID and OOD calibration problem as a continuum.67

• We provide an algorithm for OOD confidence calibration for both tabular and vision datatsets68

whereas most of the existing methods are tailor-made for vision problems.69

• We propose an unsupervised post-hoc OOD calibration approach.70

3 Technical Background71

3.1 Setting72

Consider a supervised learning problem with independent and identically distributed training samples73

{(xi, yi)}ni=1 such that (X, Y ) ∼ PX,Y , where X ∼ PX is a X ⊆ RD valued input and Y ∼ PY is a74

Y = {1, · · · ,K} valued class label. Let S be the high density region of the marginal, PX , thus S ⊊75

X . Here the goal is to learn a confidence score, g : RD → [0, 1]K , g(x) = [g1(x), g2(x), . . . , gK(x)]76

such that,77

gy(x) =

{
PY |X(y|x), if x ∈ S
PY (y), if x /∈ S , ∀y ∈ Y (1)

where PY |X(y|x) is the posterior probability for class y given by the Bayes formula:78

PY |X(y|x) =
PX|Y (x|y)PY (y)∑K
k=1 PX|Y (x|k)PY (k)

, ∀y ∈ Y. (2)

Here PX|Y (x|y) is the class conditional density which we will refer as fy(x) hereafter for brevity.79
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3.2 Main Idea80

Deep discriminative networks partition the feature space Rd into a union of p affine polytopes Qr81

such that
⋃p

r=1 Qr = Rd, and learn an affine function over each polytope [4, 21]. Mathematically,82

the unnormalized class-conditional density for the label y estimated by these deep discriminative83

models at a particular point x can be expressed as:84

f̂y(x) =

p∑
r=1

(a⊤r x+ br)1(x ∈ Qr). (3)

For example, in the case of a decision tree, ar = 0, i.e., decision tree assumes uniform distribution85

for the class-conditional densities over the leaf nodes. Among these polytopes, the ones that lie on86

the boundary of the training data extend to the whole feature space and hence encompass all the OOD87

samples. Since the posterior probability for a class is determined by the affine activation over each of88

these polytopes, the algorithms tend to be overconfident when making predictions on the OOD inputs.89

Moreover, there exist some polytopes that are not populated with training data. These unpopulated90

polytopes serve to interpolate between the training sample points. If we replace the affine activation91

function of the populated polytopes with Gaussian kernels and prune the unpopulated ones, the tail of92

the kernel will help interpolate between the training sample points while assigning lower likelihood to93

the low density or unpopulated polytope regions of the feature space. This results in better confidence94

calibration for the proposed modified approach.95

3.3 Proposed Approach96

We will call the above discriminative approaches as the ‘parent approach’ hereafter. Consider the97

collection of polytope indices P from the parent approach which are populated by the training data.98

We replace the affine functions over the populated polytopes with Gaussian kernels G(·; µ̂r, Σ̂r). For99

a particular inference point x, we consider the Gaussian kernel with the minimum distance from the100

center of the kernel to the corresponding point:101

r∗x = argmin
r
∥µr − x∥, (4)

where ∥ · ∥ denotes a distance. As we will show later, the type of distance metric considered in102

Equation 4 highly impacts the performance of the proposed model. In short, we modify Equation 3103

from the parent ReLU-net or random forest to estimate the class-conditional density (unnormalized):104

f̃y(x) =
1

ny

∑
r∈P

nryG(x;µr,Σr)1(r = r∗x), (5)

where ny is the total number of samples with label y and nry is the number of samples from class y105

that end up in polytope Qr. We add a small constant to the class conditional density f̃y:106

f̂y(x) = f̃y(x) +
b

log(n)
. (6)

Note that in Equation 6, b
log(n) → 0 as the total training points, n → ∞. The intuition behind the107

added constant will be clarified further later in Proposition 2. The confidence score ĝy(x) for class y108

given a test point x is estimated using the Bayes rule as:109

ĝy(x) =
f̂y(x)P̂Y (y)∑K
k=1 f̂k(x)P̂Y (k)

, (7)

where P̂Y (y) is the empirical prior probability of class y estimated from the training data. We110

estimate the class for a particular inference point x as:111

ŷ = argmax
y∈Y

ĝy(x). (8)

3



4 Model Parameter Estimation112

4.1 Gaussian Kernel Parameter Estimation113

We fit Gaussian kernel parameters to the samples that end up in the r-th polytope. We set the kernel114

center along the d-th dimension:115

µ̂d
r =

1

nr

n∑
i=1

xd
i 1(xi ∈ Qr), (9)

where xd
i is the value of xi along the d-th dimension. We set the kernel variance along the d-th116

dimension:117

(σ̂d
r )

2 =
1

nr
{

n∑
i=1

1(xi ∈ Qr)(x
d
i − µ̂d

r)
2 + λ}, (10)

where λ is a small constant that prevents σ̂d
r from being 0. We constrain our estimated Gaussian118

kernels to have diagonal covariance.119

4.2 Sample Size Ratio Estimation120

For a high dimensional dataset with low training sample size, the polytopes are sparsely populated121

with training samples. For improving the estimate of the ratio nry

ny
in Equation 5, we incorporate the122

samples from other polytopes Qs based on the similarity wrs between Qr and Qs as:123

n̂ry

n̂y
=

∑
s∈P

∑n
i=1 wrs1(xi ∈ Qs)1(yi = y)∑

r∈P
∑

s∈P
∑n

i=1 wrs1(xi ∈ Qs)1(yi = y)
. (11)

As n→∞, the estimated weights wrs should satisfy the condition:124

wrs →
{
0, if Qr ̸= Qs

1, if Qr = Qs.
(12)

For simplicity, we will describe the estimation procedure for wrs in the next sections. Note that if we125

satisfy Condition 12, then we have n̂ry

n̂y
→ nry

ny
as n→∞. Therefore, we modify Equation 5 as:126

f̂y(x) =
1

n̂y

∑
r∈P

n̂ryG(x; µ̂r, Σ̂r)1(r = r̂∗x), (13)

where r̂∗x = argminr ∥µ̂r − x∥. Now we use f̂y(x) estimated using (13) in Equation (6), (7) and (8),127

respectively. Below, we describe how we estimate wrs for KDF and KDN .128

4.3 Forest Kernel129

Consider T number of decision trees in a random forest trained on n iid training samples130

{(xi, yi)}ni=1. Each tree t partitions the feature space into pt polytopes resulting in a set of polytopes:131

{{Qt,r}pt

r=1}Tt=1. The intersection of these polytopes gives a new set of polytopes {Qr}pr=1 for the132

forest. For any two points x ∈ Qr and x′ ∈ Qs, we define the kernel K(r, s) as:133

K(r, s) = trs
T

, (14)

where trs is the total number of trees, x and x′ end up in the same leaf node. Here, 0 ≤ K(r, s) ≤ 1.134

If the two samples end up in the same leaf in all the trees, i.e., K(r, s) = 1, they belong to the same135

polytope, i.e. r = s. In short, K(r, s) is the fraction of total trees where the two samples follow the136

same path from the root to a leaf node. We exponentiate K(r, s) so that Condition 12 is satisfied:137

wrs = K(r, s)k logn. (15)

We choose k using grid search on a hold-out dataset.138
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4.4 Network Kernel139

Consider a fully connected L layer ReLU-net trained on n iid training samples {(xi, yi)}ni=1. We140

have the set of all nodes denoted by Nl at a particular layer l. We can randomly pick a node nl ∈ Nl141

at each layer l, and construct a sequence of nodes starting at the input layer and ending at the output142

layer which we call an activation path: m = {nl ∈ Nl}Ll=1. Note that there are N = ΠL
i=1|Nl|143

possible activation paths for a sample in the ReLU-net. We index each path by a unique identifier144

number z ∈ N and construct a sequence of activation paths as:M = {mz}z=1,··· ,N . Therefore,M145

contains all possible activation pathways from the input to the output of the network.146

While pushing a training sample xi through the network, we define the activation from a ReLU unit147

at any node as ‘1’ when it has positive output and ‘0’ otherwise. Therefore, the activation indicates148

on which side of the affine function at each node the sample falls. The activation for all nodes in an149

activation path mz for a particular sample creates an activation mode az ∈ {0, 1}L. If we evaluate150

the activation mode for all activation paths inM while pushing a sample through the network, we151

get a sequence of activation modes: Ar = {arz}Nz=1. Here r is the index of the polytope where the152

sample falls in.153

If the two sequences of activation modes for two different training samples are identical, they belong154

to the same polytope. In other words, if Ar = As, then Qr = Qs. This statement holds because the155

above samples will lie on the same side of the affine function at each node in different layers of the156

network. Now, we define the kernel K(r, s) as:157

K(r, s) =
∑N

z=1 1(a
r
z = asz)

N
. (16)

Note that 0 ≤ K(r, s) ≤ 1. In short, K(r, s) is the fraction of total activation paths which are158

identically activated for two samples in two different polytopes r and s. We exponentiate the kernel159

using Equation 15. Pseudocodes outlining the two algorithms are provided in Appendix D.160

4.5 Geodesic Distance161

Consider Pn = {Q1, Q2, · · · , Qp} as a partition of Rd given by a random forest or a ReLU-net after162

being trained on n training samples. We measure distance between two points x ∈ Qr,x
′ ∈ Qs163

using the kernel introduced in Equation 14 and Equation 16, and call it ‘Geodesic’ distance [22]:164

d(r, s) = −K(r, s) + 1

2
(K(r, r) +K(s, s)) = 1−K(r, s). (17)

Proposition 1. (Pn, d) is a metric space.165

Proof. See Appendix A.1 for the proof.166

We use Geodesic distance to find the nearest polytope to the inference point. As Geodesic distance167

cannot distinguish between points within the same polytope, it has a resolution similar to the size of168

the polytope. For discriminating between two points within the same polytope, we fit a Gaussian169

kernel within the polytope (described above). As hn → 0, the resolution for Geodesic distance170

improves. In Section 5, we will empirically show that using Geodesic distance scales better with171

higher dimension compared to that of Euclidean distance.172

Given n training samples {(xi, yi)}ni=1, we define the distance of an inference point x from the173

training points as: dx = mini=1,··· ,n ∥x− xi∥, where ∥ · ∥ denotes Euclidean distance.174

Proposition 2 (Asymptotic OOD Convergence). Given non-zero and bounded bandwidth of the175

Gaussians, then we have almost sure convergence for ĝy as:176

lim
dx→∞

ĝy(x) = P̂Y (y).

Proof. See Appendix A.2 for the proof.177
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5 Empirical Results178

We conduct several experiments on simulated, OpenML-CC18 [23] 1 and vision benchmark datasets179

to gain insights on the finite sample performance of KDF and KDN. The details of the simulation180

datasets and hyperparameters used for all the experiments are provided in Appendix C. For Trunk181

simulation dataset, we follow the simulation setup proposed by Trunk [24] which was designed182

to demonstrate ‘curse of dimensionality’. In the Trunk simulation, a binary class dataset is used183

where each class is sampled from a Gaussian distribution with higher dimensions having increasingly184

less discriminative information. We use both Euclidean and Geodesic distance to detect the nearest185

polytope (see Equation (4)) on simulation datasets and use only Geodesic distance for benchmark186

datasets. For the simulation setups, we use classification error, Hellinger distance [25, 26] from187

the true class conditional posteriors and mean max confidence [4] as performance statistics. While188

measuring in-distribution calibration for the datasets in OpenML-CC18 data suite, we used maximum189

calibration error as defined by Guo et al. [18] with a fixed bin number of R = 15 across all the datasets.190

Given n OOD samples, we define OOD calibration error (OCE) to measure OOD performance for191

the benchmark datasets as:192

OCE =
1

n

n∑
i=1

∣∣∣∣max
y∈Y

(P̂Y |X(y|xi))−max
y∈Y

(P̂Y (y))

∣∣∣∣ . (18)

For the tabular and the vision datasets, we have used ID calibration approaches, such as Isotonic193

[15, 16] and Sigmoid [17] regression, as baselines. Additionally, for the vision benchmark dataset,194

we provide results with OOD calibration approaches such as: ACET [4], ODIN [6], OE (outlier exposure)195

[10]. For each approach, 70% of the training data was used to fit the model and the rest of the data196

was used to calibrate the model.197

5.1 Empirical Study on Tabular Data198

5.1.1 Simulation Study199

Figure 1 leftmost column shows 10000 training samples with 5000 samples per class sampled within200

the region [−1, 1]× [−1, 1] from the six simulation setups described in Appendix C. Therefore, the201

empty annular region between [−1, 1]×[−1, 1] and [−2, 2]×[−2, 2] is the low density or OOD region202

in Figure 1. Figure 1 quantifies the performance of the algorithms which are visually represented203

in Appendix Figure 4. KDF and KDN maintain similar classification accuracy to those of their parent204

algorithms. We measure hellinger distance from the true distribution for increasing training sample205

size within [−1, 1]× [−1, 1] region as a statistics for in-distribution calibration. Column 3 and 6 in206

Figure 1 show KDF and KDN are better at estimating the ID region compared to their parent methods.207

In all of the simulations, using geodesic distance measure results in better performance compared208

to those while using Euclidean distance. For measuring OOD performance, we keep the training209

sample size fixed at 1000 and normalize the training data by the maximum of their l2 norm so that210

the training data is confined within a unit circle. For inference, we sample 1000 inference points211

uniformly from a circle where the circles have increasing radius and plot mean max posterior for212

increasing distance from the origin. Therefore, for distance up to 1 we have in-distribution samples213

and distances farther than 1 can be considered as OOD region. As shown in Column 4 and 7 of Figure214

1, mean max confidence for KDF and KDN converge to the maximum of the class priors, i.e., 0.5 as we215

go farther away from the training data origin.216

Row 6 of Figure 1 shows KDF-Geodesic and KDN-Geodesic scale better with higher dimensions217

compared to their Euclidean counterpart algorithms respectively.218

5.1.2 OpenML-CC18 Data Study219

We use OpenML-CC18 data suite for tabular benchmark dataset study. We exclude any dataset220

which contains categorical features or NaN values 2 and conduct our experiments on 45 datasets with221

varying dimensions and sample sizes. For the OOD experiments, we follow a similar setup as that222

of the simulation data. We normalize the training data by their maximum l2 norm and sample 1000223

1https://www.openml.org/s/99
2We also excluded the dataset with dataset id 23517 as we could not achieve better than chance accuracy

using RF and DN on that dataset.
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A.

B.

Figure 1: Simulation datasets, Classification error, Hellinger distance from true posteriors, mean
max confidence or posterior for A. five two-dimensional and B. a high dimensional (Trunk)
simulation experiments, visualized for the first two dimensions. The median performance is
shown as a dark curve with shaded region as error bars.
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Figure 2: Performance summary of KDF and KDN on OpenML-CC18 data suite. The dark curve
in the middle shows the median of performance on 45 datasets with the shaded region as error bar.

testing samples uniformly from hyperspheres where each hypersphere has increasing radius starting224

from 1 to 5. For each dataset, we measure improvement with respect to the parent algorithm:225

Ep − EM
Ep

, (19)
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A. Circle (ID) B. Rectange (ID) C. Ellipse (OOD)
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Figure 3: KDN filters out inference points with different kinds of semantic shifts from the training
data. Simulated images: (A) circle with radius 10, (B) rectangle with sides (20, 50) and out-of-
distribution test points: (C) ellipse with minor and major axis (10, 30). Mean max confidence of KDN
are plotted for semantic shift of the inference points created by (D) changing the color intensity, (E)
taking convex combination of circle and rectangle, (F) changing one of the axes of the ellipse.

where Ep =classification error, MCE or OCE for the parent algorithm and EM represents the perfor-226

mance of the approach in consideration. Note that positive improvement implies the corresponding227

approach performs better than the parent approach. We report the median of improvement on dif-228

ferent datasets along with the error bar in Figure 2. The extended results for each dataset is shown229

separately in the appendix. Figure 2 left column shows on average KDF and KDN has nearly similar230

or better classification accuracy compared to their respective parent algorithm whereas Isotonic231

and Sigmoid regression have lower classification accuracy most of the cases. However, according232

to Figure 2 middle column, KDF and KDN have similar in-distribution calibration performance to233

the other baseline approaches. Most interestingly, Figure 2 right column shows that KDN and KDF234

improves OOD calibration of their respective parent algorithms by a huge margin while the baseline235

approaches completely fails to address the OOD calibration problem.236

5.2 Empirical Study on Vision Data237

In vision data, each image pixel contains local information about the neighboring pixels. To extract238

the local information, we use convolutional or vision transformer encoders at the front-end. More239

precisely, we have a front-end encoder, he : RD 7→ Rm and typically, m << D. After the240

encoder there is a few fully connected dense layers for discriminating among the K class labels,241

hf : Rm 7→ RK . Note that the m-dimensional embedding outputs from the encoder are partitioned242

into polytopes by the dense layers (see Equation (3)) and we fit a KDN on the embedding outputs. The243

above approach results in extraction of better inductive bias by KDN from the parent model and makes244

KDN more scalable with larger parent models and training sample size.245

5.2.1 Simulation Study246

For the simulation study, we use a simple CNN with one convolutional layer (3 channels with 3× 3247

kernel) followed by two fully connected layers with 10 and 2 nodes in each. We train the CNN on248

2000 circle (radius 10) and 2000 rectangle (sides 20, 50) images with their RGB values being fixed at249

[127, 127, 127] and their centers randomly sampled within a square with sides 100. The other pixels250

in the background where there is no object (circle, rectangle or ellipse) were set to 0.251
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We perform three experiments while inducing semantic shifts in the inference points as shown in252

Figure 3. In the first experiment, we randomly sampled data similar to the training points. However,253

we added the same shift to all the RGB values of an inference point (shown as color intensity in254

Figure 3 D). Therefore, the inference point is ID for color intensity at 127 and otherwise OOD. In the255

second experiment, we kept the RGB values fixed at [127, 127, 127] while taking convex combination256

of a circle and a rectangle. Let images of circles and rectangles be denoted by Xc and Xr. We derive257

an interference point as Xinf :258

Xinf = ϵXc + (1− ϵ)Xr (20)
Therefore, Xinf is maximally distant from the training points for ϵ = 0.5 and closest to the ID points259

at ϵ = {0, 1}. In the third experiment, we sampled ellipse images with the same RGB values as the260

training points. However, this time we gradually change one of the ellipse axes from 0.01 to 40 while261

keeping the other axis fixed at 10. As a result, the inference point becomes ID for the axis length of262

10. As shown in Figure 3 (D, E, F), in all the experiments KDN becomes less confident for the OOD263

points while the parent CNN remains overconfident throughout the semantic shifts of the test points.264

5.2.2 Vision Benchmark Datasets Study265

In this study, we use a V iT_B16 (provided in keras-vit package) vision transformer encoder [27]266

pretrained on ImageNet [28] dataset and finetuned on CIFAR-10 [29]. We use the same encoder for267

all the baseline algorithms and finetune it with the corresponding loss function without freezing any268

weight. As shown in Table 1, pretrained vision transformers are already well-calibrated for ID and269

the OOD approaches (ACET, ODIN, OE) degrade ID calibration of the parent model. On the contrary,270

ID calibration approaches (Isotonic, Sigmoid) perform poorly compared to that of KDN in the271

OOD region. KDN achieves a compromise between ID and OOD performance while having reduced272

confidence on wrongly classified ID samples. The number of populated polytopes (and Gaussians)273

for KDN is 9323± 353. See Appendix F for the corresponding experiments using Resnet-50.274

Table 1: KDN achieves good calibration at both ID and OOD regions whereas other approaches
which excel either in the ID or the OOD region. Notably, KDN has reduced confidence on wrongly
classified ID points. ‘↑’ and ‘↓’ indicate whether higher and lower values are better, respectively.
MMC∗ = Mean Max Confidence on wrongly classified ID points.

Dataset Statistics Parent KDN Isotonic Sigmoid ACET ODIN OE

ID CIFAR-10
Accuracy(%) ↑ 98.06± 0.00 97.45± 0.00 98.16± 0.00 98.10± 0.00 98.23± 0.00 97.97± 0.00 97.94± 0.00
MCE ↓ 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.02± 0.00 0.01± 0.00
MMC∗ ↓ 0.76± 0.01 0.65± 0.08 0.74± 0.02 0.90± 0.01 0.86± 0.02 0.97± 0.01 0.69± 0.01

OOD
CIFAR-100 OCE ↓ 0.47± 0.01 0.12± 0.01 0.47± 0.01 0.69± 0.01 0.57± 0.01 0.79± 0.00 0.29± 0.01
SVHN OCE ↓ 0.44± 0.06 0.08± 0.02 0.34± 0.12 0.64± 0.16 0.47± 0.04 0.75± 0.03 0.11± 0.02
Noise OCE ↓ 0.28± 0.08 0.03± 0.02 0.30± 0.04 0.56± 0.12 0.01± 0.00 0.53± 0.09 0.07± 0.02

6 Limitations275

Training time complexity for KDF and KDN is O(n2lf ) which is dominated by the Geodesic distance276

calculation. Here lf = total number of leaves in the forest or total nodes in the dense layers of the277

network and n = total training samples. However, the distance calculation can be done in parallel278

using our provided code. Additionally, note that the number of Gaussian kernel used by KDN is279

upper bounded by number of training samples. Therefore, KDN may not scale for really big datasets280

like ImageNet [28]. However, the scaling issue may be solved by selectively pruning neighboring281

polytopes which we will pursue in future.282

7 Discussion283

In this paper, we demonstrated a simple intuition that renders traditional deep discriminative models284

into a type of binning and kerneling approach. The bin boundaries are determined by the internal285

structure learned by the parent approach and Geodesic distance encodes the low dimensional structure286

learned by the model. Moreover, Geodesic distance introduced in this paper may have broader impact287

on understanding the internal structure of the deep discriminative models which we will pursue in288

future. Our code, including the package and the experiments in this manuscript, will be made publicly289

available upon acceptance of the paper.290
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A Proofs375

A.1 Proof of Proposition 1376

For proving that d is a valid distance metric for Pn, we need to prove the following four statements:377

1. d(r, s) = 0 when r = s.378

Proof: By definition, K(r, s) = 1 and d(r, s) = 0 when r = s.379

2. d(r, s) > 0 when r ̸= s.380

Proof: By definition, 0 ≤ K(r, s) < 1 and d(r, s) > 0 for r ̸= s.381

3. d is symmetric, i.e., d(r, s) = d(s, r).382

Proof: By definition, K(r, s) = K(s, r) which implies d(r, s) = d(s, r).383

4. d follows the triangle inequality, i.e., for any three polytopes Qr, Qs, Qt ∈ Pn: d(r, t) ≤384

d(r, s) + d(s, t).385

Proof: Let Ar denote the set of activation modes in a ReLU-net and the set of leaf nodes386

in a random forest for a particular polytope r. N is the total number of possible activation387

paths in a ReLU-net or total trees in a random forest. Below c(·) denotes the cardinality of388

the set. We can write:389

N ≥ c((Ar ∩ As) ∪ (As ∩ At)) (21)
= c(Ar ∩ As) + c(As ∩ At)− c(Ar ∩ As ∩ At)

≥ c(Ar ∩ As) + c(As ∩ At)− c(Ar ∩ At).

Rearranging the above equation, we get:390

N − c(Ar ∩ At) ≤ N − c(Ar ∩ As) +N − c(As ∩ At)

=⇒ 1− c(Ar ∩ At)

N
≤ 1− c(Ar ∩ As)

N
+ 1

− c(As ∩ At)

N
=⇒ d(r, t) ≤ d(r, s) + d(s, t). (22)

A.2 Proof of Proposition 2391

Note that first we find the nearest polytope to the inference point x using Geodesic distance and use392

Gaussian kernel locally for x within that polytope. Here the Gaussian kernel uses Euclidean distance393

from the kernel center to x (within the numerator of the exponent). The value out of the Gaussian394

kernel decays exponentially with the increasing distance of the inference point from the kernel center.395

We first expand ĝy(x):396

ĝy(x) =
f̂y(x)P̂Y (y)∑K
k=1 f̂k(x)P̂Y (k)

=
f̃y(x)P̂Y (y) +

b
log(n) P̂Y (y)∑K

k=1(f̂k(x)P̂Y (k) +
b

log(n) P̂Y (k))

As the inference point x becomes more distant from training samples (and more distant from all of
the Gaussian centers), we have that G(x, µ̂r, Σ̂r) becomes smaller. Thus, ∀y, f̃y(x) shrinks. More
formally, ∀y,

lim
dx→∞

f̃y(x) = 0.
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We can use this result to then examine the limiting behavior of our posteriors as the inference point x397

becomes more distant from the training data:398

lim
dx→∞

ĝy(x) = lim
dx→∞

f̃y(x)P̂Y (y) +
b

log(n) P̂Y (y)∑K
k=1(f̃k(x)P̂Y (k) +

b
log(n) P̂Y (k))

=
(limdx→∞ f̃y(x))P̂Y (y) +

b
log(n) P̂Y (y)∑K

k=1(limdx→∞ f̃k(x))P̂Y (k) +
b

log(n) P̂Y (k))

=
P̂Y (y)∑K
k=1 P̂Y (k)

= P̂Y (y).

B Hardware and Software Configurations399

• Operating System: Linux (ubuntu 20.04), macOS (Ventura 13.2.1)400

• VM Size: Azure Standard D96as v4 (96 vcpus, 384 GiB memory)401

• GPU: Apple M1 Max402

• Software: Python 3.8, scikit-learn ≥ 0.22.0, tensorflow-macos≤2.9, tensorflow-metal ≤403

0.5.0.404

C Simulations405

We construct six types of binary class simulations:406

• Gaussian XOR is a two-class classification problem with equal class priors. Conditioned407

on being in class 0, a sample is drawn from a mixture of two Gaussians with means408

±[0.5,−0.5]⊤ and standard deviations of 0.25. Conditioned on being in class 1, a sample is409

drawn from a mixture of two Gaussians with means ±[0.5,−0.5]⊤ and standard deviations410

of 0.25.411

• Spiral is a two-class classification problem with the following data distributions: let K412

be the number of classes and S ∼ multinomial( 1
K 1⃗K , n). Conditioned on S, each feature413

vector is parameterized by two variables, the radius r and an angle θ. For each sample,414

r is sampled uniformly in [0, 1]. Conditioned on a particular class, the angles are evenly415

spaced between 4π(k−1)tK
K and 4π(k)tK

K , where tK controls the number of turns in the416

spiral. To inject noise along the spirals, we add Gaussian noise to the evenly spaced angles417

θ′ : θ = θ′ +N (0, 0.09). The observed feature vector is then (r cos(θ), r sin(θ)).418

• Circle is a two-class classification problem with equal class priors. Conditioned on being419

in class 0, a sample is drawn from a circle centered at (0, 0) with a radius of r = 0.75.420

Conditioned on being in class 1, a sample is drawn from a circle centered at (0, 0) with a421

radius of r = 1, which is cut off by the region bounds. To inject noise along the circles, we422

add Gaussian noise to the circle radii r′ : r = r′ +N (0, 0.01).423

• Sinewave is a two-class classification problem based on sine waves. Conditioned on being424

in class 0, a sample is drawn from the distribution y = cos(πx). Conditioned on being in425

class 1, a sample is drawn from the distribution y = sin(πx). We inject Gaussian noise to426

the sine wave heights y′ : y = y′ +N (0, 0.01).427

• Polynomial is a two-class classification problem with the following data distributions:428

y = xa. Conditioned on being in class 0, a sample is drawn from the distribution y = x1.429

Conditioned on being in class 1, a sample is drawn from the distribution y = x3. Gaussian430

noise is added to variables y′ : y = y′ +N (0, 0.01).431

• Trunk is a two-class classification problem with gradually increasing dimension and equal432

class priors. The class conditional probabilities are Gaussian:433

P (X|Y = 0) = G(µ1, I),

P (X|Y = 1) = G(µ2, I),
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Figure 4: Visualization of true and estimated posteriors for class 0 from five binary class
simulation experiments. Column 1: 10,000 training points with 5,000 samples per class sampled
from 6 different simulation setups for binary class classification. Trunk simulation is shown for two
dimensional case. The class labels are indicated by yellow and blue colors. Column 2-8: True and
estimated class conditional posteriors from different approaches. The posteriors estimated from KDN
and KDF are better calibrated for both in- and out-of-distribution regions compared to those of their
parent algorithms.

where µ1 = µ, µ2 = −µ, µ is a d dimensional vector whose i-th component is ( 1i )
1/2 and I434

is d dimensional identity matrix.435

Table 2: Hyperparameters for RF and KDF.

Hyperparameters Value
n_estimators 500
max_depth ∞
min_samples_leaf 1
λ 1× 10−6

b exp (−10−7)

D Pseudocodes436

We provide the pseudocode for our porposed algorithms in Algorithm 1, 2 and 3.437

E Extended Results on OpenML-CC18 data suite438

See Figure 5, 6, 7 and 8 for extended results on OpenML-CC18 data suite.439
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Algorithm 1 Fit a KDX model.
Input:

(1) θ ▷ Parent learner (random forest or deep network model)
(2) Dn = (X,y) ∈ Rn×d × {1, . . . ,K}n ▷ Training data

Output: G ▷ a KDX model
1: function KGX.FIT(θ,X,y)
2: for i = 1, . . . , n do ▷ Iterate over the dataset to calculate the weights
3: for j = 1, . . . , n do
4: wij ← COMPUTEWEIGHTS(xi,xj , θ)
5: end for
6: end for
7:
8:
9: {Qr,wrs}p̃r=1 ← GETPOLYTOPES(w) ▷ Identify the polytopes by clustering the samples

with similar weight
10:
11: for r = 1, . . . , p̃ do ▷ Iterate over each polytope
12: G.µ̂r,G.Σ̂r,G.n̂ry ← ESTIMATEPARAMETERS(X, y, {wrs}p̃s=1) ▷ Fit Gaussians using

MLE
13: end for
14: return G
15: end function

Algorithm 2 Computing weights in KDF

Input:
(1) xi,xj ∈ R1×d ▷ two input samples to be weighted
(2) θ ▷ parent random forest with T trees

Output: wij ∈ [0, 1] ▷ compute similarity between i and j-th samples.
1: function COMPUTEWEIGHTS(xi,xj , θ)
2: Ii ← PUSHDOWNTREES(xi, θ) ▷ push xi down T trees and get the leaf numbers it end up

in.
3: Ij ← PUSHDOWNTREES(xj , θ) ▷ push xj down T trees and get the leaf numbers it end up

in.
4: l← COUNTMATCHES(Ii, Ij) ▷ count the number of times the samples end up in the same

leaf
5: wij ← l

T
6: return wij

7: end function

Algorithm 3 Computing weights in KDN

Input:
(1) xi,xj ∈ R1×d ▷ two input samples to be weighted
(2) θ ▷ parent deep-net model

Output: wij ∈ [0, 1] ▷ compute similarity between i and j-th samples.
1: function COMPUTEWEIGHTS(xi,xj , θ)
2: Ai ← PUSHDOWNNETWORK(xi, θ) ▷ get activation modes Ai

3: Aj ← PUSHDOWNNETWORK(xj , θ) ▷ get activation modes Aj

4: l← COUNTMATCHES(Ai, Aj) ▷ count the number of times the two samples activate the
activation paths in a similar way

5: wij ← l
N ▷ N is the total number of activation paths

6: return wij

7: end function
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Table 3: Hyperparameters for ReLU-net and KDNon Tabular data.

Hyperparameters Value
number of hidden layers 4
nodes per hidden layer 1000
optimizer Adam
learning rate 3× 10−4

λ 1× 10−6

b exp (−10−7)

Table 4: ID approaches (Sigmoid, Isotonic) are bad at OOD calibration and OOD approaches
(ACET, ODIN, OE) are bad at ID calibration. KDN bridges between both ID and OOD calibration
approaches. ‘↑’ and ‘↓’ indicate whether higher and lower values are better, respectively. Bolded
indicates most performant, or within the margin of error of the most performant.

Dataset Statistics Parent KDN Isotonic Sigmoid ACET ODIN OE

ID CIFAR-10
Accuracy(%) ↑ 77.78± 0.00 76.84± 0.01 78.25± 0.00 76.93± 0.00 75.08± 0.03 78.00± 0.00 73.95± 0.00
MCE ↓ 0.09± 0.00 0.04± 0.00 0.03± 0.01 0.10± 0.01 0.13± 0.00 0.09± 0.00 0.55± 0.00
MMC∗ ↓ 0.47± 0.00 0.37± 0.01 0.54± 0.01 0.43± 0.01 0.69± 0.00 0.48± 0.01 0.13± 0.00

OOD
CIFAR-100 OCE ↓ 0.30± 0.00 0.20± 0.01 0.37± 0.01 0.29± 0.01 0.55± 0.00 0.31± 0.00 0.01± 0.00
SVHN OCE ↓ 0.87± 0.00 0.01± 0.00 0.85± 0.00 0.69± 0.01 0.90± 0.00 0.87± 0.00 0.04± 0.01
Noise OCE ↓ 0.90± 0.00 0.00± 0.00 0.87± 0.00 0.71± 0.00 0.01± 0.01 0.06± 0.00 0.00± 0.00

F Extended Results on Vision datasets using Resnet-50440

In this experiments, we use a Resnet-50 encoder pretrained using contrastive loss [30] as described441

in http://keras.io/examples/vision/supervised-contrastive-learning. The encoder442

projects the input images down to a 256 dimensional latent space and we add two dense layers with443

200 and 10 nodes on top of the encoder. We use the same pretrained encoder for all the baseline444

algorithms.445

As shown in Table 4, KDN achieves good calibration for both ID and OOD datasets whereas the ID446

calibration approaches are poorly calibrated in the OOD regions and the OOD approaches have poor447

ID calibration.448
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Figure 5: Extended results on OpenML-CC18 datasets. Left: Performance (classification error,
MCE and mean max confidence) of KDF on different Openml-CC18 datasets. Right: Performance
(classification error, MCE and mean max confidence) of KDN on different Openml-CC18 datasets.
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Figure 6: Extended results on OpenML-CC18 datasets (continued). Left: Performance (classi-
fication error, MCE and mean max confidence) of KDF on different Openml-CC18 datasets. Right:
Performance (classification error, MCE and mean max confidence) of KDN on different Openml-CC18
datasets.
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Figure 7: Extended results on OpenML-CC18 datasets (continued). Left: Performance (classi-
fication error, MCE and mean max confidence) of KDF on different Openml-CC18 datasets. Right:
Performance (classification error, MCE and mean max confidence) of KDN on different Openml-CC18
datasets.
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Figure 8: Extended results on OpenML-CC18 datasets (continued). Left: Performance (classi-
fication error, MCE and mean max confidence) of KDF on different Openml-CC18 datasets. Right:
Performance (classification error, MCE and mean max confidence) of KDN on different Openml-CC18
datasets.
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NeurIPS Paper Checklist449

1. Claims450

Question: Do the main claims made in the abstract and introduction accurately reflect the451

paper’s contributions and scope?452

Answer: [Yes]453

Justification: We enumerate list of contributions in Section 2 which are also mentioned in454

the abstract and the introduction.455

2. Limitations456

Question: Does the paper discuss the limitations of the work performed by the authors?457

Answer: [Yes]458

Justification: We discussed the limitations of the work in Section 6 to the best of our459

knowledge.460

3. Theory Assumptions and Proofs461

Question: For each theoretical result, does the paper provide the full set of assumptions and462

a complete (and correct) proof?463

Answer: [Yes]464

Justification: All of our theoretical results are discussed in Section 4.5 and proofs are465

provided in the Appendix.466

4. Experimental Result Reproducibility467

Question: Does the paper fully disclose all the information needed to reproduce the main ex-468

perimental results of the paper to the extent that it affects the main claims and/or conclusions469

of the paper (regardless of whether the code and data are provided or not)?470

Answer: [Yes]471

Justification:472

5. Open access to data and code473

Question: Does the paper provide open access to the data and code, with sufficient instruc-474

tions to faithfully reproduce the main experimental results, as described in supplemental475

material?476

Answer: [Yes]477

Justification: All code that was used to create the experiments has been provided as a part of478

the supplementary material, and will be made public after the review process.479

6. Experimental Setting/Details480

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-481

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the482

results?483

Answer: [Yes]484

Justification: Experimental setting are described adequately in the main paper with more485

details discussed in the Appendix.486

7. Experiment Statistical Significance487

Question: Does the paper report error bars suitably and correctly defined or other appropriate488

information about the statistical significance of the experiments?489

Answer: [Yes]490

Justification: We have repeated the experiments over several Monte Carlo repetitions and491

have reported the error bars in the figures and the tables.492

8. Experiments Compute Resources493

Question: For each experiment, does the paper provide sufficient information on the com-494

puter resources (type of compute workers, memory, time of execution) needed to reproduce495

the experiments?496
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Answer: [Yes]497

Justification: We have provided the computation platform and resources used in the Appendix498

B.499

9. Code Of Ethics500

Question: Does the research conducted in the paper conform, in every respect, with the501

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?502

Answer: [Yes]503

Justification: We did not conduct experiments with human participants and we do not504

anticipate any societal harmful consequences.505

10. Broader Impacts506

Question: Does the paper discuss both potential positive societal impacts and negative507

societal impacts of the work performed?508

Answer: [NA]509

Justification: This paper demonstrates a simple intuition that can increase the confidence510

calibration for modern deep machine learning approaches. Although the proposed work is511

not directly related to any societal impact, down the line we anticipate it will pave the way512

for safety critical application of machine learning models.513

11. Safeguards514

Question: Does the paper describe safeguards that have been put in place for responsible515

release of data or models that have a high risk for misuse (e.g., pretrained language models,516

image generators, or scraped datasets)?517

Answer: [NA]518

Justification: The paper poses no such risks.519

12. Licenses for existing assets520

Question: Are the creators or original owners of assets (e.g., code, data, models), used in521

the paper, properly credited and are the license and terms of use explicitly mentioned and522

properly respected?523

Answer: [Yes]524

Justification: We only use existing public datasets (appropriately cited in the paper) and525

synthetic data. No new assets are created from this paper.526

13. New Assets527

Question: Are new assets introduced in the paper well documented and is the documentation528

provided alongside the assets?529

Answer: [NA]530

Justification: No assets are created in this paper.531

14. Crowdsourcing and Research with Human Subjects532

Question: For crowdsourcing experiments and research with human subjects, does the paper533

include the full text of instructions given to participants and screenshots, if applicable, as534

well as details about compensation (if any)?535

Answer: [NA]536

Justification: No such study was performed.537

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human538

Subjects539

Question: Does the paper describe potential risks incurred by study participants, whether540

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)541

approvals (or an equivalent approval/review based on the requirements of your country or542

institution) were obtained?543

Answer: [NA]544

Justification: No such study was performed.545
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