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Abstract

Mutual information quantifies the dependence between two random variables. In this work,
we explore the pointwise mutual information profile, which is the distribution of the point-
wise mutual information values. We analytically describe the profiles of multivariate normal
distributions and introduce a novel family of distributions, Bend and Mix Models, for which
the profile can be accurately estimated using Monte Carlo methods. We then show how
Bend and Mix Models can be used to study the limitations of existing mutual information
estimators and understand the effect of experimental outliers on mutual information esti-
mation. Finally, we show how Bend and Mix Models can be used to obtain model-based
Bayesian estimates of mutual information, suitable for problems with available domain
expertise in which uncertainty quantification is necessary.

1. Introduction

Mutual information (MI) is a non-parametric statistical measure used to determine the
dependency between two random variables (r.v.s) and numerous approaches have been pro-
posed to estimate mutual information from finite samples (Kay, 1992; Kraskov et al., 2004;
Cellucci et al., 2005; Belghazi et al., 2018). Recently, Czyż et al. (2023) proposed an ex-
tensive benchmark based on transformed normal and Student distributions and compared
the performance of mutual information estimators empirically. They found that different
estimators are better suited for particular problems: the KSG estimator (Kraskov et al.,
2004) performs well in low- to moderate-dimensional tasks, but is outperformed by neu-
ral estimators when dimensionality is sufficiently high or interactions between the r.v.s are
sparse. An expected but interesting observation is that a simple model-based estimator
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based on canonical correlation analysis (CCA; Kay (1992); Brillinger (2004)) significantly
outperforms all other estimators on normal r.v.s. Although model-based estimators have
been used in settings with discrete r.v.s (Hutter, 2001; Brillinger, 2004), CCA is the only
model-based MI estimator for continuous r.v.s. We consider the development of more ad-
vanced model-based MI estimators to be an important open problem.

Additionally, we note a major limitation of the benchmark proposed by Czyż et al.
(2023): transforming simple variables cannot yield arbitrary continuous distributions. We
prove this by studying the pointwise mutual information profile, a more general functional
invariant. To address this problem we introduce a novel class of distributions, Bend and Mix
Models (BMMs), which can be efficiently sampled from and allow for reliable estimation
of the true MI using Monte Carlo sampling. BMMs include normalizing flows (Kobyzev
et al., 2021; Papamakarios et al., 2021) and Gaussian mixtures, and thus can approximate
arbitrary distributions. We show how to construct novel benchmark tasks with BMMs in
Sec. 3, which fill the gaps in previous benchmarks (Czyż et al., 2023), and allow us to
study the robustness of MI estimation to outlier and inlier noise, which is of interest in
experimental sciences.

BMMs can also be used for model-based MI estimation, generalizing the existing CCA
estimator and estimators for discrete variables of Brillinger (2004); Hutter (2001) and Wu
and Yang (2016). Although constructing a BMM estimator requires imposing additional
assumptions compared to general-purpose estimators, explicit modeling assumptions can
provide useful biases for specific families of distributions, as seen by the success of CCA
estimators in the work of Czyż et al. (2023). Moreover, BMMs allow for principled Bayesian
inference, which provides sound quantification of epistemic uncertainty in mutual informa-
tion estimates.

Contributions We show that the method of generating tasks used by Czyż et al. (2023)
cannot model arbitrary distributions. In particular, we prove that marginal transformations
do not change the PMI profile and analytically determine the PMI profile for multivariate
normal distributions (Sec. 2). To address this limitation, we introduce the class of Bend
and Mix Models (BMMs), for which the true MI can be reliably estimated using Monte
Carlo sampling (Sec. 2). We present three distinct applications of Bend and Mix Models.
First, we show that this class can be used to approximate arbitrary distributions and thus
fill in the gaps in existing benchmarks: in Sec. 3.1 we present examples of novel tasks which
could not be obtained by the method of Czyż et al. (2023). Second, we investigate the
robustness of mutual information estimators to inliers and outliers (Sec. 3.2). Last, we
show how BMMs can be used to estimate MI, together with its epistemic uncertainty, when
a suitable parametric model of the generative process is available (Sec. 3.3), generalizing
the CCA estimator.

2. Theoretical framework

We consider r.v.s valued in smooth manifolds without boundary (Lee, 2012, Ch. 1) equipped
with reference measures. For a given pair of smooth manifolds X and Y, we equip their
product X × Y with the product measure and define the set P(X ,Y) to consist of all
probability measures PXY on X × Y such that the joint measure PXY , as well as the
marginal measures PX(A) = PXY (A × Y) and PY (B) = PXY (X × B), have smooth and
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Figure 1: First two panels: a bivariate normal distribution and a transformed distribution
sharing the same PMI profile (blue histogram in the fourth panel). Third panel:
mixture distribution with distinct PMI profile, which cannot be obtained as a
transformation of multivariate normal distribution due to a different PMI pro-
file (pink histogram).All three distributions have the same mutual information,
marked with the black line in the fourth panel.

positive PDFs (or PMFs) pXY , pX and pY with respect to the reference measures on X ×Y,
X and Y, respectively. The primary reason for studying P(X ,Y) is a convenient formula
for pointwise mutual information (Pinsker and Feinstein, 1964, Ch. 2) and its profile:

Definition 1 Let X and Y be r.v.s valued in X and Y, respectively, such that PXY ∈
P(X ,Y). Pointwise mutual information (PMI) is defined1 as PMIXY (x, y) = log pXY (x, y)−
log(pX(x)pY (y)). The PMI profile2 ProfXY is the distribution of a r.v. T = PMIXY (X,Y ).

The mutual information is the first moment of the profile, I(X;Y ) = ET∼ProfXY
[T ], and

is known to be invariant under diffeomorphisms (Kraskov et al., 2004, Appendix). More
generally, in Appendix A.1 we show that the whole profile is invariant (see Fig. 1):

Theorem 2 Let PXY ∈ P(X ,Y) and f : X → X and g : Y → Y be diffeomorphisms. Then
for X ′ = f(X) and Y ′ = g(Y ) it holds that PX′Y ′ ∈ P(X ,Y) and ProfXY = ProfX′Y ′ .

In Appendix A.2 we characterize the profiles of simple distributions, the most important
result being:

Theorem 3 Let X and Y be r.v.s such that the joint distribution PXY ∈ P(Rm,Rn) is
multivariate normal. If k = min(m,n) and ρ1, ρ2, . . . , ρk are canonical correlations between
X and Y , then the profile ProfXY is a generalized χ2 distribution, namely the distribution
of the variable T = I(X;Y ) + 0.5

Pk
i=1 ρi(Qi − Q′

i), where Qi and Q′
i are i.i.d. variables

sampled according to the χ2
1 distribution.

Since the PMI profile is invariant under diffeomorphisms, the approach employed by
Czyż et al. (2023) cannot construct distributions with PMI profiles different from the trans-
formed distribution. However, we can obtain distributions with new PMI profiles by using
mixtures of distributions (Fig. 1). Hence, we introduce Bend and Mix Models which combine

1. We use the natural logarithm, meaning that all quantities are measured in nats.
2. Although we are not aware of a prior formal definition and studies of the PMI profile, histograms of

approximate PMI between words have been studied before in the computational linguistics commu-
nity (Allen and Hospedales, 2019).
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both tactics: bending a distribution (transforming with diffeomorphisms, i.e., normalizing
flows) and mixing (combining multiple models into a mixture model). Although the mixing
operation generally leads to distributions whose PMI profile is not available analytically, we
can efficiently construct numerical approximations. To ensure this, we require the following
property:

Definition 4 Every distribution PXY ∈ P(X ,Y) for which we can efficiently sample (X,Y ) ∼
PXY and numerically evaluate the densities pXY (x, y), pX(x) and pY (y) at every point
(x, y) ∈ X × Y is considered a Bend and Mix Model.

Any distribution that satisfies this definition can be used as a basic building block and
more complex distributions can then be constructed using bending and mixing operations
(see Appendix A.4 for further details). The properties of BMMs are chosen so that we can
estimate the PMI profile and mutual information with Monte Carlo approaches. Namely, we
can sample T ∼ ProfXY by sampling a data point (x, y) and evaluating t = PMIXY (x, y).
Then, MI can be approximated with a Monte Carlo estimate of the integral I(X;Y ) = E[T ].
Assuming I(X;Y ) < ∞, the Monte Carlo estimator of the mutual information is guaranteed
to be unbiased. For a detailed discussion of Monte Carlo standard error (MCSE) under dif-
ferent regularity conditions see Flegal et al. (2008) and Koehler et al. (2009). Analogously,
to estimate the PMI profile, we can approximate it with a histogram: for a bin B ⊂ R one
can introduce its indicator function 1B and integrate E[1B(T )]. Its cumulative density func-
tion can be approximated with an empirical sample using the expectations E[1(−∞,an](T )]
for a given sequence (an). As the characteristic functions are bounded between 0 and 1,
the Monte Carlo estimator of both quantities is unbiased and has standard error bounded
from above by 1/

√
4n due to the inequality of Popoviciu (1935).

3. Case studies

In this section, we apply Bend and Mix Models to three distinct problems. In Sec. 3.1 we
demonstrate how they can be used to extend existing benchmarks of mutual information
estimators. In Sec. 3.2 we show how BMMs can be used in experimental sciences to inves-
tigate the robustness of mutual information to outliers and inliers. In Sec. 3.3 we show how
BMMs can be used to provide mutual information estimates in a Bayesian manner.

3.1. Novel distributions for estimator evaluation

Czyż et al. (2023) benchmarked mutual information estimators using r.v.s (X,Y ) distributed
according to multivariate normal and Student distributions for which mutual information
is analytically tractable and their transformations (f(X), g(Y )), where f and g are chosen
so that I(f(X); g(Y )) = I(X;Y )). However, transforming simple distributions does not
ensure that the family of distributions is diverse enough: if f and g were diffeomorphisms,
the diversity of the PMI profiles would be very limited due to Theorem 2. The proposed
family of BMMs can be used as a more expressive alternative to the multivariate normal
and Student distributions.

We implemented four low-dimensional distributions (we visualise samples from the dis-
tributions considered in Fig. 2 and defer the detailed description to Appendix C.1), sampled
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Figure 2: Samples from the proposed distributions. Distributions X and AI represent
one-dimensional variables X and Y . Distributions Waves and Galaxy plot two-
dimensional X variable using spatial coordinates, while one-dimensional Y vari-
able is represented by color. The rightmost plot presents MI estimates compared
to the ground-truth (dotted line).
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Figure 3: Left: increasing the contamination level α with inlier noise distribution. Middle:
increasing the contamination level α with outlier noise distribution. Right: in-
creasing the variance of the noisy normal distribution for constant contamination
of 20%. Outliers have less impact than inliers.

ten data sets with N = 5 000 points and applied five estimators: the histogram-based es-
timator (Cellucci et al., 2005; Darbellay and Vajda, 1999), the popular KSG estimator
(Kraskov et al., 2004), canonical correlation analysis (Kay, 1992; Brillinger, 2004) and two
neural estimators: InfoNCE (Oord et al., 2018) and MINE (Belghazi et al., 2018) (see
Appendix C.2 for hyperparameters used). The estimates are shown in Fig. 2.

Even though the considered problems are low-dimensional and do not encode more
information than 1.5 nats, they pose a considerable challenge for the estimators. The KSG
estimator, which performs well in low-dimensional tasks, gave the best estimate in all tasks.
However, the Waves task was not solved by any estimator. The CCA estimator, excelling at
distributions that are close to multivariate normal (Czyż et al., 2023), is not able to capture
any information at all. This suggests that Bend and Mix Models can provide a rich set of
distributions that can be used to test mutual information estimators.

3.2. Modeling outliers

In this section, we use BMMs to study the effect of inliers and outliers on mutual information
estimation. Consider an electric circuit or a biological system modeled as a communication
channel pY |X(y | x): the researcher controls the input variable X and measures the outcome

5
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Figure 4: From left to right: data generated according to the AI distribution, data generated
according to a single MCMC sample, posterior distribution of the mutual infor-
mation (red line denotes posterior mean and black line denotes the ground-truth
value), and the posterior distribution of the PMI profile (black curve denotes the
ground-truth value).

variable Y . The mutual information I(X;Y ) is then estimated based on the experimental
samples (Na lȩcz-Jawecki et al., 2023).

However, every experimental system can suffer from occasional failures. We model the
output of a failing system with a noise distribution with a PDF n(y). If the probability of
system failure and the distribution of noise n(y) does not depend on the input value x, the
communication channel becomes a mixture: pY ′|X(y | x) = (1 − α)pY |X(y | x) + αn(y).

If the system failure is unnoticed, one can only measure the r.v. Y ′, rather than Y .
It is therefore of interest to understand how much I(X;Y ) and I(X;Y ′) can differ. In
Appendix A.3 we prove that I(X;Y ′) ≤ (1 − α)I(X;Y ); however, BMMs can evaluate this
quantity exactly. We consider a setting with a two-dimensional input variable X and two-
dimensional output variables Y and Y ′. As the joint density pXY we used a multivariate
normal with unit scale and correlations Corr(X1, Y1)=Corr(X2, Y2)=0.8 and for the noise
n(y) we used a multivariate normal distribution with covariance σ2I2. If σ2 ≈ 1 this results
in inliers, where the noise distribution is hard to distinguish from the signal. For σ2 ≪ 1
the system failures are all close to 0, while outliers are present for σ2 ≫ 1.

In Fig. 3 we present the results of three experiments: in the first two, we changed the
contamination level α ∈ [0, 0.5] for σ2 = 1 (inlier noise) and σ2 = 52 (outlier noise) respec-
tively. In the third experiment, we fixed α = 0.2 and varied σ2 ∈

�
2−7, 28

�
. We see that the

inlier noise results in a slightly faster decrease of mutual information, while the outlier noise
decreases almost linearly following the upper bound (1 − α)I(X;Y ). Interestingly, in this
low-dimensional setting, the KSG, MINE, and InfoNCE estimators reliably estimate the
mutual information I(X;Y ′), which can significantly differ from I(X;Y ). Although CCA
would be the preferred method to estimate I(X;Y ) without any noise (Czyż et al., 2023),
even a small number of outliers (α = 5%) can result in unreliable estimates.

3.3. Model-based estimation

As the final application of BMMs, we consider the problem of model-based Bayesian esti-
mation of mutual information. Consider a statistical model {Pθ | θ ∈ Θ} such that all Pθ

are BMMs and a prior P (θ). By I(Pθ) we will understand I(Xθ;Yθ), where (Xθ, Yθ) ∼ Pθ.
Once the data sample is observed, one can apply Bayesian inference algorithms to con-

6



Pointwise Mutual Information Profiles

struct a sample θ1, . . . , θM from the posterior distribution. Although the exact values for
I(Pθ1), . . . , I(PθM ) are not available, they can be approximated as in Sec. 2. Hence, we can
construct an approximate posterior distribution and quantify epistemic uncertainty of the
estimate (Fig. 4). Since BMMs include a wide family of distributions, this approach can be
used as a general technique for building model-based mutual information estimators, where
the generative model can be constructed using domain knowledge. Moreover, this is the
first Bayesian estimator of the PMI profile: as all distributions Pθm are BMMs, one can
construct M histograms (or CDFs) approximating the profile.

To illustrate this approach we implemented a sparse Gaussian mixture model (see Ap-
pendix D) to obtain a Bayesian posterior conditioned on 500 data points from the AI dis-
tribution (see Fig. 4). We see that the posterior is concentrated around the ground-truth
mutual information value and the ground-truth PMI profile is well-approximated by the
posterior samples.

4. Conclusion

In this article, we have studied pointwise mutual information profiles, determining them
analytically for multivariate normal distributions (Theorem 3), and proposed the family of
Bend and Mix Models (BMMs), which include multivariate normal and Student distribu-
tions, mixture models and normalizing flows, for which the profile can be approximated
using Monte Carlo methods. We showed how BMMs can be used to provide novel bench-
mark tasks to test mutual information estimators, calculate mutual information transmit-
ted through a communication channel in the presence of inliers and outliers, and to provide
Bayesian estimates of mutual information between continuous r.v.s. Although this approach
is not universal, we find it suitable for problems with precise domain knowledge available
and in which uncertainty quantification is desired.
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Appendix A. Technical results

A.1. Proof of the invariance of the pointwise mutual information profile

Recall a well-known result (Kraskov et al., 2004, Appendix):

Lemma 5 (Invariance of PMI) Let X ′ = f(X) and Y ′ = g(Y ), where f and g are
diffeomorphisms. Then for every x′ and y′ we have

PMIX′Y ′(x′, y′) = PMIXY (x, y),

where x = f−1(x′) and y = g−1(y′).

Proof From
pX′Y ′(x′, y′) = pXY (x, y)

��detD
�
f−1 × g−1

�
(x′, y′)

��

and analogous quantities we conclude that pX′Y ′ as well as pX′ and pY ′ are smooth and
everywhere positive functions, so that PMIX′Y ′ is well-defined. As D(f−1 × g−1)(x′, y′) is
a block matrix with Df−1(x′) and Dg−1(y′) blocks on the diagonal and other blocks zero,
we have detD(f−1 × g−1)(x′, y′) = detDf−1(x′) · detDg−1(y′).

Now we can prove:

Theorem 2 Let PXY ∈ P(X ,Y) and f : X → X and g : Y → Y be diffeomorphisms. Then
for X ′ = f(X) and Y ′ = g(Y ) it holds that PX′Y ′ ∈ P(X ,Y) and ProfXY = ProfX′Y ′ .

Proof From the proof of Lemma 5 we conclude that PX′Y ′ ∈ P(X ,Y). Then, we note the
profile is the pushforward measure

ProfXY := (PMIXY )#PXY .
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Now let B ⊆ R be any set in the Borel σ-algebra and 1B be its characteristic function.
Using the change of variables formula for pushforward measure and invariance of PMI:

ProfX′Y ′(B) =

Z
1B(t) d((PMIX′Y ′)#PX′Y ′)(t)

=

Z
1B

�
PMIX′Y ′(x′, y′)

�
dPX′Y ′(x′, y′)

=

Z
1B (PMIX′Y ′(f(x), g(y))) dPXY (x, y)

=

Z
1B (PMIXY (x, y)) dPXY (x, y)

= ProfXY (B)

A.2. Pointwise Mutual Information Profiles

The following result shows that the distributions in all P(X ,Y) classes with zero mutual
information have the same profile:

Proposition 6 Let X and Y be r.v.s with joint distribution PXY ∈ P(X ,Y). Then,
I(X;Y ) = 0 if and only if ProfXY = δ0 is the Dirac measure with a single atom at 0.

Proof If ProfXY = δ0, then the expected value is I(X;Y ) = 0. To prove the converse,
if I(X;Y ) = 0, then X and Y are independent. Hence, pXY (x, y) = pX(x)pY (y) at every
point (x, y) and PMIXY (x, y) = 0 everywhere.

The following result characterizes the PMI profiles for discrete r.v.s:

Proposition 7 If X and Y are discrete r.v.s with PXY ∈ P(X ,Y), then the PMI profile
is discrete:

ProfXY =
X

x∈X

X

y∈Y
pXY (x, y) δPMIXY (x,y).

Proof The measure PXY is discrete and given by

PXY =
X

x∈X

X

y∈Y
pXY (x, y)δ(x,y),

so its pushforward by the PMIXY function has the form

ProfXY = (PMIXY )#PXY =
X

x∈X

X

y∈Y
pXY (x, y)δPMIXY (x,y).

The final result characterizes PMI profiles of multivariate normal distributions and is
based on the notion of canonical correlations (Jendoubi and Strimmer, 2019).
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Theorem 3 Let X and Y be r.v.s such that the joint distribution PXY ∈ P(Rm,Rn) is
multivariate normal. If k = min(m,n) and ρ1, ρ2, . . . , ρk are canonical correlations between
X and Y , then the profile ProfXY is a generalized χ2 distribution, namely the distribution
of the variable T = I(X;Y ) + 0.5

Pk
i=1 ρi(Qi − Q′

i), where Qi and Q′
i are i.i.d. variables

sampled according to the χ2
1 distribution.

Proof Without loss of generality assume that m ≤ n. As the PMI profile is invariant
to diffeomorphisms (Theorem 2), we can also assume that variables X and Y have been
whitened by applying canonical correlation analysis (Jendoubi and Strimmer, 2019), that
is E[X] = 0, E[Y ] = 0 and the covariance matrix is given by

Σ =

�
Im ΣXY

ΣT
XY In

�
=



Im R 0
R Im 0
0 0 In−m




where
ΣXY =

�
R 0m×(n−m)

�

is an m×n matrix with the last n−m columns being zero vectors and R = diag(ρ1, . . . , ρm)
being the m×m diagonal matrix representing canonical correlations.

We will write the inverse in the block form

Σ−1 =

�
ΛX ΛXY

ΛT
XY ΛY

�
=



ΛX R̃ 0

R̃ ΛX 0
0 0 In−m




where the blocks have been calculated using the formula from Petersen and Pedersen (2012,
Sec. 9.1):

ΛX = (Im − ΣXY Σ
T
XY )−1 = diag (u1, . . . , um)

ΛY = (In − ΣT
XY ΣXY ) = diag (u1, . . . , um, 1, . . . , 1)

ΛXY = −ΣXY ΛY =
�
R̃ 0m×(n−m)

�
,

where R̃ = −diag (u1ρ1, . . . , umρm) and ui = 1/
�
1 − ρ2i

�
.

We define a quadratic form

s(x, y) = xTΛXx + yTΛY y + 2xTΛXY y

=
mX

i=1

ui
�
x2i + y2i − 2ρixiyi

�
+

nX

j=m+1

y2j

which can be used to calculate log-PDFs:

log pXY (x, y) = −1

2
s(x, y) − 1

2
log detΣ− m + n

2
log 2π,

log pX(x) = −1

2
xTx− m

2
log 2π,

log pY (y) = −1

2
yT y − n

2
log 2π.
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Hence,

PMIXY (x, y) =
xTx + yT y − s(x, y)

2
− 1

2
log detΣ.

We recognize the last summand as

I(X;Y ) =
1

2
log

�
det Im · det In

detΣ

�
= −1

2
log detΣ.

Define quadratic form

q(x, y) = 2
�
PMIXY (x, y) − I(X;Y )

�
= xTx + yT y − s(x, y)

=
mX

i=1

�
(1 − ui)

�
x2i + y2i

�
+ 2ρiuixiyi

�
,

which has a corresponding matrix

Q =



K F 0
F K 0
0 0 0


 ,

where
K = diag(1 − u1, . . . , 1 − um)

and
F = diag(ρ1u1, . . . , ρmum).

We are interested in the distribution of

q(X,Y ) =
�
XT Y T

�
Q

�
X
Y

�
,

where (X,Y ) ∼ N (0,Σ).
Imhof (1961) presents a general approach to evaluating the distributions of such quadratic

forms. Consider a r.v.

Z =



η
ϵ
ξ


 ∼ N (0, Im+n)

which is split into blocks of sizes m, m and n−m. We will construct a linear transformation
A such that

�
X
Y

�
= A



η
ϵ
ξ


 .

Then, the distribution of q(X,Y ) is the distribution of

ZTATQAZ, Z ∼ N (0, Im+n).

We will construct A as

A =




P− P+ 0
−P− P+ 0

0 0 In−m



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where

P− = diag

 r
1 − ρ1

2
, · · · ,

r
1 − ρm

2

!
, P+ = diag

 r
1 + ρ1

2
, · · · ,

r
1 + ρm

2

!
.

We calculate

AAT =



P 2
− + P 2

+ P 2
+ − P 2

− 0
P 2
+ − P 2

− P 2
− + P 2

+ 0
0 0 In−m


 =



Im R 0
R Im 0
0 0 In−m


 = Σ

and

ATQA =




2P 2
−(K − F ) 0 0

0 2P 2
+(K + F ) 0

0 0 0


 ,

where

2P 2
−(K − F ) = diag (−ρ1, . . . ,−ρm) , 2P 2

+(K + F ) = diag (ρ1, . . . , ρm) .

Hence, the distribution of q(X,Y ) is the same as the distribution of

mX

i=1

ρi(−η2i + ϵ2i ) +

n−mX

j=1

0 · ξ2j ,

where (η,ϵ, ξ) ∼ N (0, Im+n). To summarize, let Q1, . . . , Qm, Q′
1, . . . , Q

′
m be i.i.d. random

variables distributed according to the χ2
1 distribution. The quadratic form q(X,Y ) has the

distribution the same as
mX

i=1

ρi(Qi −Q′
i),

which can also be written as

q(X,Y ) ∼
mX

i=1

�
ρiχ

2
1 − ρiχ

2
1

�
.

Note that this distribution is symmetric around 0. We can now reconstruct the profile from
q(X,Y ):

ProfXY = I(X;Y ) +

mX

i=1

�ρi
2
χ2
1 −

ρi
2
χ2
1

�
,

which is symmetric around I(X;Y ) and, in agreement with Proposition 6, degenerates to
the atomic distribution δ0 if and only if I(X;Y ) = 0, which is equivalent to ρi = 0 for all i.

As a linear combination of independent χ2
1 variables, profile has all finite moments.

Using the fact that the variance of χ2
1 distribution is 2, and quadratic scaling of variance,

each term has variance 2·(ρi/2)2 = ρ2i /2. As variances of independent variables are additive,
we can sum up all the 2m terms to obtain ρ21 + · · · + ρ2m.
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Proposition 8 With fixed mutual information, the variance of the PMI profile is maxi-
mized when ρ21 = ρ22 = . . . = ρ2m.

Proof Let ai = 1 − ρ2i . To maximize the variance we equivalently have to minimize
a1 + . . . + am preserving given constraint on mutual information and ai ∈ (0, 1].

The constraint on mutual information takes the form

I(X;Y ) = −1

2

mX

i=1

log
�
1 − ρ2i

�
= −1

2
log (a1 · · · am) .

Hence, the product a1 · · · am has to be constant. Denote this constant by Am for A ∈ (0, 1]
as well.

Let a1, . . . , am be any minimum of a1 + . . . + am under the constraints a1 · · · am = Am

and ai ∈ (0, 1]. From the inequality between arithmetic and geometric means we note that

a1 + . . . + am
m

≥ m
√
a1 · · · am = A,

where the equality holds only if a1 = . . . = am = A. Hence, this is the unique minimum
under constraints provided. It follows that ρ21 = · · · = ρ2m. Writing ρ2 for the common
value, we have

ρ2 = 1 − exp (−2I(X;Y ) /m)

and
V = mρ2 = m (1 − exp (−2I(X;Y ) /m)) .

The mutual information can also be written as function of variance

I(X;Y ) = −1

2
m log

�
1 − ρ2

�
= −1

2
m log(1 − V/m).

Proposition 9 With fixed non-zero mutual information the variance of the PMI profile is
minimized when ρi ̸= 0 for exactly one i.

Proof Let ai ∈ (0, 1] be any numbers. We have

(1 − a1)(1 − a2) ≥ 0

which is equivalent to
1 + a1a2 ≥ a1 + a2

where the equality holds if and only if a1 = 1 or a2 = 1.
Using the principle of mathematical induction one can prove a more general inequality:

a1a2 · · · am + (m− 1) = 1 + a1(a2 · · · am) + (m− 2)

≥ a1 +
�
a2 · · · am + (m− 2)

�

≥ a1 + a2 +
�
a3 · · · am + (m− 3)

�

...

≥ a1 + a2 + · · · + am.
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Let us analyze when the equality can hold. To obtain equality in the first step, we need
a1 = 1 or a2 · · · = am = 1, which, given the constraints ai ∈ (0, 1] would mean that
a2 = · · · am = 1. Reasoning inductively, one proves that equality holds only when at least
m− 1 among these numbers are 1.

Let us apply the above reasoning to the numbers ai = 1 − ρ2i and note that we are
solving a maximization problem ai ∈ (0, 1] under a constraint

a1 · · · am = P.

Using the argument above we note that all the maxima for the above problem are permu-
tations of the sequence P, 1, 1, . . . , 1. This proves that at most one ρ2i ̸= 0, what results in
at most one ρi ̸= 0.

A.3. Proof of the failing channel inequality

In this section we prove:

Proposition 10 Consider variables X, Y and Y ′, s.t.

pXY ′(x, y) = (1 − α)pXY (x, y) + αn(y)pX(x)

with α ∈ [0, 1]. Then, I(X;Y ′) ≤ (1 − α) I(X;Y ) .

Proof Let Z ∼ Bernoulli(1 − α) be an auxiliary variable. We have (X,Y ′) | Z = 1 ∼ PXY

and (X,Y ′) | Z = 0 ∼ PX ⊗NY .
From the data processing inequality and chain rule we conclude that

I
�
X;Y ′� ≤ I

�
X;Y ′, Z

�
= I(X;Z) + I

�
X;Y ′ | Z

�
.

Now note that X and Z are independent, so I(X;Z) = 0. Hence,

I
�
X;Y ′� ≤ I

�
X;Y ′ | Z

�

= αDKL

�
PXY ′|Z=0 ∥ PX|Z=0 ⊗ PY ′|Z=0

�
+ (1 − α)DKL

�
PXY ′|Z=1 ∥ PX|Z=1 ⊗ PY ′|Z=1

�

= αDKL

�
PXY ′|Z=0 ∥ PX ⊗NY

�
+ (1 − α)DKL (PXY ∥ PX ⊗ PY )

= αDKL (PX ⊗NY ∥ PX ⊗NY ) + (1 − α)I(X;Y )

= (1 − α)I(X;Y ) .

A.4. Constructing new Bend and Mix Models

In this section we prove:

Proposition 11 If PXY is a BMM and f and g are diffeomorphisms with numerically
tractable Jacobians, then Pf(X)g(Y ) is a BMM. Moreover, if PX1Y1 , . . . , PXKYK

are BMMs
and w1, . . . , wK are positive weights, s.t. w1 + · · · + wK = 1, then the mixture distribution
PX′Y ′ = w1PX1Y1 + · · · + wKPXKYK

is a BMM.
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Proof From the proof of Lemma 5 and the assumption of tractability of the Jacobians of f
and g we obtain the tractability of the formulae for the densities pf(X)g(Y ), pf(X) and pg(Y ).
Sampling (f(X), g(Y )) amounts to sampling (X,Y ) and then transforming the sample using
f and g.

To prove that mixtures are fine, note that we can evaluate the densities pX′Y ′(x, y),
pX′(x) and pY ′(y) of the mixture distribution using the weighted sums of pXkYk

(x, y), pXk
(x)

and pYk
(y), respectively. To sample (X ′, Y ′) ∼ PX′Y ′ from the mixture distribution we can

sample an auxiliary variable Z ∼ Categorical(K;w1, . . . , wK). Then, we have
�
(X ′, Y ′) |

Z = k
�

= (Xk, Yk), so that we can sample from PXkYk
.

A.5. Approximation with smooth densities

In this section, we prove the following result:

Theorem 12 Let X and Y be random variables with joint distribution PXY and finite mu-
tual information I(X;Y ) < ∞. Then, there exists a sequence of random variables (Xk, Yk)
for k = 1, 2, . . . such that:

1. Each PXkYk
∈ P(m,n).

2. Distributions PXkYk
weakly converge to PXY as k → ∞.

3. Mutual information is preserved:

lim
k→∞

I(Xk;Yk) = I(X;Y ) .

The proof will automatically follow from two lemmata.

Lemma 13 Let X be a random variable on Rk. Let N be a r.v. independent of X dis-
tributed according to the multivariate normal distribution N (0,σ2I) with σ > 0. Then the
distribution of X + N has a PDF which is everywhere smooth and positive.

Proof Let PX be the distribution of X and f be the PDF of the multivariate normal dis-
tribution N (0,σ2I), which is bounded, smooth, and everywhere positive. The convolution
of PX and normal density has a PDF

(f ∗ PX)(x) =

Z
f(x− y) dPX(y) = E[f(x−X)].

From the dominated convergence theorem it follows that all the partial derivatives of ∂j(f ∗
PX) exist and are given by (∂jf) ∗ PX . From the principle of mathematical induction we
conclude that f ∗ PX is smooth.

Positivity follows from the fact that the random variable f(x −X) is strictly positive,
so that its expected value is strictly positive as well.

The second lemma is the following:
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Lemma 14 Assume that I(X;Y ) < ∞. Let Xk = X + Nk and Yk = Y + Mk where Nk

and Mk are independent noise variables distributed according to N (0, k−2I). Then

lim
k→∞

I(Xk;Yk) = I(X;Y ) .

Proof Observe that for every k the equality I(Xk;Yk) ≤ I(X;Y ) holds. This is a simple
corollary of the data processing inequality applied to the variables (Xk, Nk) and (Yk,Mk).
Then, note that PXkYk

converges weakly to PXY . As mutual information is assumed to be
finite, it is given by the Kullback–Leibler divergence, which is lower semicontinuous. This
proves the reverse inequality.

A.6. Creating and destroying information with mixtures

Let A = (0, 1) and B = (1, 2) be two disjoint intervals of unit length. We define two pairs
of random variables:

(X1, Y1) ∼ Uniform(A×A), (X2, Y2) ∼ Uniform(B ×B).

Note that
I(X1;Y1) = I(X2;Y2) = 0.

If (X,Y ) ∼ 0.5PX1Y1 + 0.5PX2Y2 is distributed according to a mixture, we have

pXY (x, y) =
1

2
1[(x, y) ∈ A×A ∪B ×B]

and

pX(x) =
1

2
1[x ∈ A ∪B], pY (y) =

1

2
1[x ∈ A ∪B].

Hence,
PMIXY (x, y) = log 2 · 1[(x, y) ∈ A×A ∪B ×B]

and

I(X;Y ) =
1

2
log 2 +

1

2
log 2 = log 2.

For a second example, demonstrating vanishing mutual information, recall the distribu-
tion constructed as above:

pXY (x, y) =
1

2
1[(x, y) ∈ A×A ∪B ×B]

and a symmetric one

pUV (x, y) =
1

2
1[(x, y) ∈ A×B ∪B ×A].

We have
I(X;Y ) = I(U ;V ) = log 2.

On the other hand, the mixture distribution

(Z, T ) ∼ 0.5PXY + 0.5PUV
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Figure 5: Top row: two distributions with zero MI can be mixed to obtain a distribution
with non-zero MI. Bottom row: two distributions with non-zero MI can be mixed
to obtain a distribution with zero MI.

has zero mutual information, I(Z;T ) = 0, as

pZT (x, y) =
1

4
1[(x, y) ∈ (A ∪B) × (A ∪B)]

=
1

2
1[x ∈ A ∪B] · 1

2
1[y ∈ A ∪B]

= pZ(x) · pT (y).

Note that similar examples can be constructed using BMMs by using mixtures of mul-
tivariate normal distributions.

This demonstrates that mixtures can create and destroy information. There is however
an upper bound on the amount of information mixtures can create (see Haussler and Opper
(1997) and Kolchinsky and Tracey (2017)):

Proposition 15 Consider r.v.s (Xk, Yk) such that I(Xk;Yk) < ∞ for k = 1, . . . ,K. Let
(X ′, Y ′) be their mixture with weights w1, . . . , wK . Then,

0 ≤ I
�
X ′;Y ′� ≤ logK +

KX

k=1

wk I(Xk;Yk) .

Moreover, these inequalities are tight:
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1. There exists a mixture such that I(X ′;Y ′) = logK even though I(Xk;Yk) = 0 for all
k.

2. There exists a mixture such that I(X ′;Y ′) = 0 even though I(Xk;Yk) > 0 for all k.

Proof The examples provide explicit constructions of distributions with the specified prop-
erties. To prove the upper bound, consider a variable Z ∼ Categorical(K;w1, . . . , wK).
The random variables corresponding to the mixture distribution, (X ′, Y ′), have conditional
distributions

(X ′, Y ′) | Z = k ∼ PXkYk
.

From the data processing inequality and chain rule we have

I
�
X ′;Y ′� ≤ I

�
X ′;Y ′, Z

�
= I

�
X ′;Z

�
+ I

�
X ′;Y ′ | Z

�
.

As Z is discrete, the first summand, I(X ′;Z), is bounded from above by the entropy
H(Z) (Polyanskiy and Wu, 2022, Th. 3.4(e)), which cannot exceed logK (Polyanskiy and
Wu, 2022, Th. 1.4(b)). The second summand can be written as

I
�
X ′;Y ′ | Z

�
=

KX

k=1

P (Z = k) DKL

�
PX′Y ′|Z=k ∥ PX′|Z=k ⊗ PY ′|Z=k

�

=

KX

k=1

wk DKL (PXkYk
∥ PXk

⊗ PYk
) =

KX

k=1

wk I(Xk;Yk) .

Appendix B. Distributions involving discrete variables

The formalism in Section 2 is applicable to both continuous and discrete random variables,
although in Section 3.1 we focus on the distributions in which both X and Y are continuous.
If X and Y are discrete, mutual information I(X;Y ) can be calculated analytically from the
joint probability matrix and there exist numerous approaches to estimate it from collected
samples (Hutter, 2001; Brillinger, 2004).

In this section we consider the mixed case, in which one variable is continuous and the
other one is discrete. For example, Carrara and Ernst (2023) describe a particle physics
experiment in which X is an 18-dimensional random variable, but Y is binary. Grabowski
et al. (2019) consider a cell transmitting information through the MAPK signalling pathway,
assuming the input signal X to be discrete and the measured response Y to be continuous.

Yet, there are only a few distributions PXY with known ground-truth mutual information
assuming this discrete-continuous case. Gao et al. (2017, Sec. 5) describe a discrete random
variable X which is uniformly sampled from the set X = {0, . . . ,m− 1} and the continuous
Y variable is sampled as

(Y | X = x) ∼ Uniform(x, x + 2),
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Figure 6: Left: samples from the PXY distribution, colored by the value of the binary
variable Y . Right: the PMI profile of PXY distribution.

which is therefore distributed on Y = (0,m + 1). Gao et al. (2017) prove that mutual
information in this case is

I(X;Y ) = logm− m

m− 1
log 2

for m ≥ 2 and I(X;Y ) = 0 for m = 1 and consider a multivariate analogue of this distribu-
tion, in which pairs of variables (Xk, Yk) for k = 1, . . . ,K are sampled independently using
the above procedure. Then, they are concatenated into multivariate vectors (X1, . . . , XK)
and (Y1, . . . , YK) with K times larger mutual information.

We will show how to relate the bivariate example to the framework of Bend and Mix
Models (multivariate case can be constructed analogously). Note that the joint distribution
PXY is not strictly in P(X ,Y), as it is supported on the one-dimensional manifold M ⊂
X × Y with m connected components (cf. Politis (1991) and Marx et al. (2021)), on which

pXY (x, y) =
1

2m
1[y ∈ (x, x + 2)],

but it is possible to extend the definitions of Section 2, so that this technical difficulty is
resolved. The marginal distributions are tractable and admit PDFs:

pX(x) = 1/m,

pY (y) =
m−1X

x=0

pXY (x, y).

Although pY is not smooth on Y (at integer points), this technical difficulty can also be
resolved as this set is of measure zero. Hence, although this distribution is not strictly a
BMM, it can still be modelled using the introduced framework.

Next, Gao et al. (2017, Sec. 5) consider the zero-inflated Poissonization of the exponen-
tial random variable valued in X = {x ∈ R | x ≥ 0}, with: X ∼ Exp(1) and Y being a
discrete random variable valued in the set of non-negative integers Y = {0, 1, 2, . . . }:

(Y | X = x) ∼ p δ0 + (1 − p) Poisson(x).
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They show that

I(X;Y ) = (1 − p)

 
2 log 2 − γ −

∞X

k=0

log k · 2−k

!
,

where γ is the Euler–Mascheroni constant.
To use BMMs in this case, one has to formally extend the definition of P(X ,Y) as X

is a manifold with boundary (Lee, 2012, Ch. 1). The joint probability distribution is then
given by

pXY (x, y) = pX(x) · pY |X(y | x) = e−x ·
�
p · 1[y = 0] + (1 − p)

e−xxy

y!

�

and the PMF function of the Y variable is also analytically known:

pY (y) = p · 1[y = 0] + (1 − p) · 2−(1+y)

Hence, the framework of BMMs, with minor technical adjustments, can accommodate the
above distributions.

However, it also allows one to create more expressive distributions, for which analytical
formulae for ground-truth mutual information are not available, but can be approximated
with the Monte Carlo methods as explained in Section 2: consider a continuous random
variable X and a discrete random variable Y . To introduce a dependency between X and
Y variable, we can use a mixture of distributions in which the component variables are
independent, i.e., PXkYk

= PXk
⊗PYk

. Therefore, we consider a graphical model X ← Z →
Y , in which the distributions PXk

= PX|Z=k are known and have tractable PDFs. The
distributions of PYk

= PY |Zk
are given by probability tables. Monte Carlo estimators of

Section 2 can then be used to estimate I(X;Y ) with high accuracy. Note also that this
general procedure includes the case X ← Y by setting Z = Y .

We illustrate it in a simple example with X = R2, Y = {0, 1} and K = 3 components.
The first component will model a cluster in the X space, strongly associated with Y = 1

value. For PX1 we use a bivariate Student distribution centered at (1, 1) with isotropic
dispersion Ω = 0.2 · I2 and 8 degrees of freedom. We take PY1 to be the Bernoulli variable
with probability P (Y1 = 1) = 0.95.

Analogously, we define a second cluster, strongly associated with Y = 0 value: PX2 is
a bivariate Student distribution with the same dispersion matrix, but centered at (−1,−1)
and with 8 degrees of freedom. Then, Y2 is a Bernoulli variable with P (Y2 = 1) = 0.05.

We then define a third component using a bivariate normal distribution centered at
(0, 0) and with covariance matrix

Σ = 0.1

�
1 0.95

0.95 1

�
.

This component is not informative of Y , that is P (Y3 = 1) = 0.5.
We used weights w1 = w2 = 1/4 and w3 = 1/2, what resulted in the distribution

visualised in Fig. 6. We estimated both the profile and the mutual information using
N = 106 samples and obtained I(X;Y ) = 0.224 with MCSE of 5.1 · 10−4.

In principle, the above construction can be used to generate realistic high-dimensional
data sets (e.g., audio or image) with known ground-truth mutual information, by assuming
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the generative model Y → X (i.e., Z = Y ) and modelling each PXk
using a normalizing

flow or an autoregressive model (Murphy, 2023, Ch. 22) trained on an auxiliary data set
with fixed label Yk = yk. Hence, at least in principle, one could obtain highly-expressive
generative process pX|Y (x | y) with tractable probability and sampling. Pairing this with
an arbitrary probability vector pY (y) one can obtain pXY (x, y) and pX(x) even for high-
dimensional data sets, so that Monte Carlo estimator can be used to determine the ground-
truth mutual information. However, we anticipate possible practical difficulties with scaling
up the proposed approach to high-dimensional data and we leave empirical investigation of
this topic to future work.

Appendix C. Experimental details

C.1. New distributions

All distributions have been implemented in TensorFlow Probability on JAX (Dillon et al.,
2017; Bradbury et al., 2018). In this section we assume that X and Y are valued in Euclidean
spaces. In Appendix B, we consider cases involving discrete variables.

We constructed the X distribution as a mixture of bivariate normal distributions with
equal weights, zero mean and covariance matrices specified by

Σ± = 0.3

�
1 ±0.9

±0.9 1

�
.

Note that the marginal distributions of each of component distributions is N (0, 0.32) and
subsequently their mixture has exactly the same marginal distributions. This is therefore
an interesting example of a distribution in which the joint probability distribution is not
multivariate normal, although the marginal distributions of X and Y variables are normal
individually.

The AI distribution was constructed as an equally-weighted mixture of six bivariate
normal distributions with equal weights and the following parameters:

µ1 = (1, 0)

Σ1 = diag(0.01, 0.2)

µ2 = (1, 1)

Σ2 = diag(0.05, 0.001)

µ3 = (1,−1)

Σ3 = diag(0.05, 0.001)

µ4 = (−0.8,−0.2)

Σ4 = diag(0.03, 0.001)

µ5 = (−1.2, 0)

Σ5 =

�
0.04 0.085
0.085 0.2

�

µ6 = (−0.4, 0)

Σ6 =

�
0.04 −0.085

−0.085 0.2

�
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The Galaxy distribution was constructed as an equally-weighted mixture of isotropic
multivariate normal distributions with µ± = ±(1, 1, 1) and unit covariance matrix and the
X variable was transformed using the spiral diffeomorphism with v = 0.5 (cf. Czyż et al.
(2023)).

The Waves distribution was created as an equally-weighted mixture of 12 multivariate
normal distributions with equal covariance matrices Σ = diag(0.1, 1, 0.1) and mean vectors

µi = (x, 0, xmod 4), i ∈ {0, 1, . . . , 11}.

This construction results in a distribution where different vertical components of the X
variable are assigned Y values calculated modulo 4. Then, we transformed the X variable
with a continuous injection

f(x1, x2) = (x1 + 5 sin(3x2), x2),

which does not change the mutual information. Finally, we applied the affine mappings

a1(x) = 0.1x− 0.8, a2(y) = 0.5y,

to make the range of the typical values comparable with other distributions.
To estimate the ground-truth mutual information we used the Monte Carlo approach

described in Section 2 with N = 200 000 samples.

C.2. Estimator hyperparameters

Czyż et al. (2023, Appendix E.4) study the effects of hyperparameters on mutual informa-
tion estimators. We decided to use the histogram-based estimator (Cellucci et al., 2005;
Darbellay and Vajda, 1999) with a fixed number of 10 bins per dimension and the pop-
ular KSG estimator (Kraskov et al., 2004) with k = 10 neighbors. Canonical correlation
analysis (Kay, 1992; Brillinger, 2004) does not have any hyperparameters. Finally, we em-
ployed neural estimators (InfoNCE (Oord et al., 2018) and MINE (Belghazi et al., 2018))
with the neural critic being a ReLU network with 16 and 8 hidden neurons, as it obtained
competitive performance in the benchmark of Czyż et al. (2023, Appendix E.4).

As a preprocessing strategy, we followed Czyż et al. (2023, Appendix E.3) and trans-
formed all samples to have zero empirical mean and unit variance along each dimension.

Appendix D. Gaussian Mixture Models

Recall from Sec. 3.3 that Bayesian estimation of mutual information consists of the following
steps:

1. Propose a parametric generative model of the data, Pθ := P (X,Y | θ), and assume a
prior P (θ) on the parameter space.

2. Use a Markov chain Monte Carlo method to obtain a sample θ(1), . . . , θ(m) from the
posterior P (θ | X1, Y1, . . . , XN , YN ).

3. Estimate mutual information (and the PMI profile) for each θ(m) using the Monte
Carlo method described in Sec. 2.
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4. Validate the findings using e.g., posterior predictive checks and cross-validation.

We consider the following sparse Gaussian mixture model with K = 10 components:

π ∼ Dirichlet(K; 1/K, 1/K, . . . , 1/K),

Zn | π ∼ Categorical(π), n = 1, . . . , N,

µk ∼ N
�
0, 32ID

�
, k = 1, . . . ,K,

Σk ∼ ScaledLKJ(1, 1), k = 1, . . . ,K,

(Xn, Yn) | Zn, {µk,Σk} ∼ N (µZn ,ΣZn), n = 1, . . . , N.

Sampling a single covariance matrix Σ from ScaledLKJ(σ, η) distribution corresponds
to sampling the correlation matrix R from the Lewandowski-Kurowicka-Joe (LKJ) distri-
bution (Lewandowski et al., 2009):

p(R) ∝ (detR)η−1,

sampling the scale parameters

λ1,λ2, . . . ,λD ∼ HalfCauchy(scale=σ),

and then constructing the covariance matrix as Σij = Rijλiλj .
The sparse Dirichlet prior is a finite-dimensional alternative to the Dirichlet process,

which truncates the number of occupied clusters depending on the data (Frühwirth-Schnatter
and Malsiner-Walli, 2019). In particular, the a priori expected number of clusters depends
on the number of data points to be observed.

To perform Markov chain Monte Carlo sampling, we implemented the model in NumPyro (Phan
et al., 2019), with local latent variables Zn marginalized out and performed sampling us-
ing the NUTS sampler (Hoffman and Gelman, 2014). We used 2000 warm-up steps and
collected 800 samples.

The mth sample is therefore given by

θ(m) =

�
π(m),

�
µ
(m)
k ,Σ

(m)
k

�
k=1,...,K

�

which is then used to parametrize a Gaussian mixture distribution Pθ(m) .
Finally, using Monte Carlo method described in Sec. 2 (with 100,000 samples) we then

estimated mutual information I(Pθ(m)) and the profile.
We used the above procedure to perform inference in the model applied to the X, AI,

Waves and Galaxy distributions, changing the number of data points N ∈ {125, 250, 500, 1000}.
We visualise the observed sample, a single posterior predictive sample and posterior on mu-
tual information and the PMI profile in Fig. 7, Fig. 8, Fig. 9 and Fig. 10.

We can see that the performance of this method relies on an appropriate model of the
true data-generating distribution. As observed in Sec. 3.1, the CCA estimator can yield
unreliable estimates when the model is misspecified, that is, the true data-generating process
PXY does not belong to the assumed multivariate normal family Pθ (Watson and Holmes,
2016). To illustrate the risks of using misspecified models, we applied the same Gaussian
mixture model to 500 points from the Galaxy distribution (Fig. 4). The misspecification in
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this case can be diagnosed via posterior predictive checking (Gelman et al., 2013, Ch. 6):
in Fig. 4 we see that a data sample simulated from the model looks substantially different
from the observed data, meaning that the model did not capture the distribution well
(cf. Appendix D). This provides a clear indication that the estimates should not be trusted:
most of the probability mass of the Bayesian posterior is far from the ground-truth mutual
information. Similarly, the posterior on the PMI profile is biased. We therefore recommend
using extensive model-checking techniques discussed by Sankaran and Holmes (2023, Sec. 4)
and Piironen and Vehtari (2017). Alternative approaches to inference with misspecified
Bayesian models, as proposed by Grünwald and van Ommen (2017) and Lyddon et al.
(2018), may also be applicable in this case, although we leave systematic investigation of
their properties to future work.
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Figure 7: Gaussian mixture model fitted to the X distribution with 125, 250, 500 and 1000
samples.
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Figure 8: Gaussian mixture model fitted to the AI distribution with 125, 250, 500 and 1000
samples.
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Figure 9: Gaussian mixture model fitted to the Waves distribution with 125, 250, 500 and
1000 samples.
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Figure 10: Gaussian mixture model fitted to the Galaxy distribution with 125, 250, 500 and
1000 samples.
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