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Abstract—We study subspace estimation from coarsly quan-
tized data. In particular, we analyze two stochastic quantization
schemes which use dithering: a one-bit quantizer combined with
rectangular dither and a multi-bit quantizer with triangular
dither. For each quantizer, we derive rigorous high probability
bounds for the distances between the true and estimated signal
subspaces. Using our analysis, we identify scenarios in which
subspace estimation via triangular dithering qualitatively outper-
forms rectangular dithering. We verify in numerical simulations
that our estimates are optimal in their dependence on the smallest
non-zero eigenvalue of the target matrix.

Index Terms—Subspace estimation, quantization, DOA estima-
tion

I. INTRODUCTION

The question of how to estimate an underlying subspace
from noisy data appears in various contexts, e.g., direction-of-
arrivals (DOAs) estimation [23]. Two state-of-the-art methods
for DOA estimation, MUSIC [24] and ESPRIT [22] require
such an estimate as initial step. To be more precise, given
unknown signals x1, . . . ,xn ∈ Cp that are concentrated
around an s-dimensional subspace U ⊆ Cp, e.g., complex
p-variate Gaussians with covariance matrix of rank s and
leading eigenspace U , the task is to estimate U from noisy
observations

yk = xk + ek, for k ∈ [n], (I.1)

where the vectors ek ∈ Cp model random noise. Here, we
focus on the setting where the entries of ek are i.i.d. samples
from a fixed subgaussian distribution with mean zero and
variance ν2, e.g., complex Gaussian with i.i.d. entries.

Defining the observation matrix Y n = [y1, . . . ,yn] ∈
Cp×n, a natural estimator Û of U is obtained by computing
the left singular vectors of a truncated SVD of Y n, or
equivalently, the leading eigenvectors of the sample covariance
matrix 1

nY nY
∗
n. The estimator Û is consistent because the

calculation
E(yky∗

k) = E(xkx∗
k) + ν2Ip,

shows that on average, the noise shifts the eigenvalues of
1
nY nY

∗
n, but not their eigenspaces. In the finite sample

setting, the performance of Û can be measured in terms of
a suitable subspace angle distance dist(Û ,U). Combining

This is an excerpt of the recent journal article [10]. All proof details,
applications of the resulting bounds to DOA estimation, and further numerical
studies will be contained therein.

well-known results on covariance estimation [17] with the
Davis-Kahan theorem [8] then leads to non-asymptotic error
bounds for dist(Û ,U) in terms of the oversampling ratio n/s.
Interestingly, if the noise ek is drawn from certain distributions
and has i.i.d. entries, a better error bound for dist(Û ,U) was
derived in [3].

Since applications like DOA estimation normally lie at
the interface of analog and digital domain, an additional
challenge is to take into account the impact of analog-to-
digital conversion, i.e., quantization [13] of observations. In
this case one has only access to quantized observations Q(yk)
for k ∈ [n], instead of the analog yk. Hereby Q is a suitably
designed quantizer. We restrict ourselves in this work to mem-
oryless scalar quantization, i.e., Q : C → A is a univariate
function from C to a finite alphabet A ⊆ C that is applied
entry-wise to vectors in Cp. Especially in view of modern
large scale applications, there has been growing interest in
coarse quantization schemes for which the number of bits
per scalar is small. Several works [1], [30], [16], [19], [26],
[31], [25], [18] have been examining DOA estimation from
samples that are quantized by the simplest coarse quantizer
Q(·) = sign(·). While this quantizer is cheap to implement,
it looses scaling information and allows recovery only under
restrictive assumptions. A second, more recent line of works
[20], [29] mitigates the shortcomings of this simple quantizing
scheme by considering dithered sign-quantizers of the shape
Q(·) = sign(· + τ) where the dither τ is designed noise.
Whereas [20] examines Gaussian noise as dither, the authors
of [29] follow the ideas in [12] and use uniform dithering
noise together with two-bit observations per sample.

Dithering has a long history in signal processing [21].
In particular, the last decade showed substantial progress in
deriving rigorous non-asymptotic performance guarantees for
signal reconstruction from one-bit measurements [2], [9]. Only
recently the first non-asymptotic (and near-minimax optimal)
guarantees for estimating covariance matrices from one-bit
samples with uniform dither have been derived [12]. In [28],
the results of [12] have been generalized to the complex
domain and applied to massive MIMO; in [11] a data-adaptive
variant of the estimator in [12] has been developed. A recent
work [6] modified the strategy of [12] to cover heavy-tailed
distributions (by using truncation before quantizing). The
work [4] introduced the idea of using triangular (rather than
uniform) dithering.



A. Contribution

In this work, we analyze subspace identification from sam-
ples that are collected via a dithered quantizer. In particular,

(i) we provide non-asymptotic bounds for dist(Û ,U) when
Û is obtained from quantized observations following the
quantization model with uniformly distributed dither as
proposed in [12], [29], see Theorem II.2. Due to the
characteristic shape of the dither density, we refer to this
setting as rectangular dithering, cf. Figure 1.

(ii) we show that, for low noise and higher bit-rates, tri-
angular dithering [14] yields superior error bounds on
dist(Û ,U), see Theorem II.6. Here, the dither τ is a sum
of two independent copies of a uniform random variable,
and the name triangular dithering again stems from the
characteristic shape of the dither density, cf. Figure 1.
The superior performance of triangular dithering in
subspace estimation is particularly surprising since it
stands in stark contrast to recently derived covariance
estimation bounds. Indeed, for covariance estimation the
operator norm error bounds under rectangular dithering
[12] and triangular dithering [5] are comparable.

(iii) we provide numerical simulations to verify that the
theoretical error bounds are sharp, see Section III.

We are not aware of any comparable work that provides
non-asymptotic error bounds for subspace estimation under
coarse quantization. Indeed, almost all previously mentioned
studies on DOA estimation from coarsely quantized samples
are of empirical nature, proposing algorithmic approaches to
the problem and evaluating their performance in simulations.
The only exceptions are [25], [29], and [15]: The authors of
[25] focus on one-bit DOA estimation via Sparse Linear Ar-
rays. They provide conditions under which the identifiability of
source DOAs from unquantized data is equivalent to the one of
one-bit data. Furthermore, they provide a Cramér Rao bound
analysis and a MUSIC-based reconstruction approach with
asymptotic error guarantees. The authors of [29] build upon the
idea of [27] in which DOA estimation from undithered one-bit
samples is performed by Learned Iterative Soft-Thresholding
(LISTA), i.e., unfolding and training ISTA as a network. By
adding a uniform dither to the quantization model and relying
on the theoretical analysis of the corresponding quantized
covariance estimator in [28], they can derive performance
guarantees for the one-bit LISTA approach from the results in
[7]. The authors of [15] used ESPRIT for the quantized single-
snapshot DOA problem, where information is only collected
at one time instance. This setting cannot be treated using
statistical methods. Instead, they exploited analytic properties
of the Fourier transform by using a two-bit beta-quantization
method, which is very different from dithered quantization.

In the extended version of this paper [10], we furthermore
generalize the theory developed in [3] and apply the presented
results to derive novel performance bounds for ESPRIT for
DOA estimation.

B. Notation

We write [n] = {1, ..., n} for n ∈ N and let F ∈ {R,C} be a
placeholder for any of the two fields. We use the notation a ≲α
b (resp. ≳α) to abbreviate a ≤ Cαb (resp. ≥), for a constant
Cα > 0 depending only on α. Similarly, we write a ≲ b if
a ≤ Cb for an absolute constant C > 0. We write a ≃ b if
both a ≲ b and b ≲ a hold (with possibly different implicit
constants). Whenever we use absolute constants c, C > 0, their
values may vary from line to line.

We let scalar-valued functions act entry-wise on vectors and
matrices. In particular, the real-valued sign function is given
by

[signR(x)]i =

{
1 if xi ≥ 0

−1 if xi < 0,

for all x ∈ Rp and i ∈ [p]. We furthermore define the complex-
valued sign-function by

signC(z) = signR(Re(z)) + i signR(Im(z)) ∈ {±1± i}p,

for any z ∈ Cp. Note that sign(x)R ̸= signC(x), for x ∈ Rp
(since for instance signR(0) ̸= signC(0)). Whenever we make
a statement regarding the space Fp where F ∈ {R,C}, we use
signF to refer to the respective sign-function. We abbreviate
the squared modulus of the sign function by cF := |signF(·)|2,
i.e., cR = 1 and cC = 2.

For Z ∈ Fp×p, we denote the operator norm by ∥Z∥ =
supu∈Sp−1 ∥Zu∥2 and the entry-wise max-norm by ∥Z∥∞ =
maxi,j |Zi,j |. For m ≥ n, we let Om×n be the set of m×n ma-
trices over F whose columns are orthonormal. For a Hermitian
matrix A ∈ Cm×m, we let λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A)
denote its eigenvalues in non-increasing order. For a general
matrix B ∈ Cm×n, we let σk(B) :=

√
λk(B

∗B) be
its k-th largest singular value. Its r-th condition number is
denoted by κr(B) := σ1(B)/σr(B) ∈ [1,∞]. For Hermitian
W ,Z ∈ Cp×p we write W ⪯ Z if Z − W is positive
semidefinite.

We denote a real Gaussian random vector with mean µ ∈
Rp and covariance matrix Σ ∈ Rp×p by x ∼ N (µ,Σ) and
a circularly symmetric complex Gaussian random vector with
covariance matrix Σ ∈ Cp×p by z ∼ CN (0,Σ). If µ = 0 and
Σ = Ip, we call x resp. z (complex) standard normal. The
subgaussian (ψ2-)norm of a random variable X is defined by

∥X∥ψ2
= inf

{
t > 0: E e|X|2/t2 ≤ 2

}
.

A mean-zero random vector y in Rp is called K-subgaussian
if

∥⟨y,x⟩∥ψ2
≤ K∥⟨y,x⟩∥L2

for all x ∈ Rp.

We call a random vector y ∈ Cp K-subgaussian if both
Re(y) and Im(y) are subgaussian. For p ≥ 1, we denote by
UR[a, b]

p the uniform distribution on the rectangle [a, b]p and
by UC[a, b]

p the uniform distribution on the set [a, b]p+i[a, b]p,
i.e., X ∼ UC[a, b]

p if and only if Re(X) ∼ UR[a, b]
p and

Im(X) ∼ UR[a, b]
p are independent.



II. SUBSPACE IDENTIFICATION FROM QUANTIZED
OBSERVATIONS

Given the observation model in (I.1), we will work with
the following set of assumptions which is used in various
applications.

Assumption II.1. Fix n, p ∈ N.
(i) Let x1, . . . ,xn ∈ Fp be deterministic (d) or stochastic (s)

vectors. We then set Xn = 1√
n
(x1, . . . ,xn) and either

(d) set Σx := XnX
∗
n = 1

n

∑n
k=1 xkx

∗
k or

(s) assume x1, . . . ,xn
i.i.d.∼ x, where x ∈ Fp is K-

subgaussian, and set Σx := E(xx∗).

(ii) Let e1, . . . , en
i.i.d.∼ e, where e ∈ Fp is K-subgaussian

with uncorrelated entries that are mean-zero and have
variance ν2. If F = C, we assume that the real and
imaginary parts of the entries of e are independent.

(iii) Let x1, . . . ,xn, e1, . . . , en be independent.

We define Σy := Σx+Σe with Σe := E(ee∗). To measure
the distance between subspaces, we will rely on the sine-theta
distance [8] which is defined for two s-dimensional subspaces
of Fp with bases U ,V ∈ Op×s as

dist(U ,V ) = ∥UU∗ − V V ∗∥. (II.1)

A. Rectangular dithering

We begin our study with the quantization model considered
in [12], [29], i.e., a sign-quantizer with uniform dithers. Given
observations yk ∈ Fp as in (I.1), we thus collect quantized
samples q□

k and q̇□
k where{

q□
k , q̇

□
k

}
:=
{
signF

(
yk + τ□

k

)
, signF

(
yk + τ̇□

k

)}
(II.2)

and the dithering vectors τ□
k and τ̇□

k are independently drawn
from UF[−λ, λ]p, for λ > 0 to be determined later. In the
case of real measurements, each entry of τ□

k , τ̇
□
k is uniformly

distributed in [−λ, λ] and q□
k , q̇

□
k ∈ {±1}p, i.e., AR = {±1}

is a one bit alphabet; in the complex case, the real and complex
part of each entry of τ□

k , τ̇
□
k are independently drawn from

U [−λ, λ] and q□
k , q̇

□
k ∈ {±1 ± i}p, i.e., AC = {±1 ± i} is a

two bit alphabet.
According to [12] a natural estimator for Σy from quantized

samples as in (II.2) is given by Σ̂
□
n where

Σ̂
□
n =

1

2
Σ̂

′
n +

1

2
(Σ̂

′
n)

∗ (II.3)

and

Σ̂
′
n =

λ2

n

n∑
k=1

q□
k (q̇

□
k )

∗. (II.4)

By combining the ideas in [12], [28] with the Davis-Kahan
theorem [8], we derive the following result which depends on
the quantities

C∞ = max
k∈[n]

∥E(yky∗
k)∥∞ and Cop = max

k∈[n]
∥E(yky∗

k)∥.

(II.5)

x

p(x)

−2µ 2µ−µ µ0

1
2µ

−3µ −µ
•
0

µ 3µ

Fig. 1. Triangular vs Uniform distribution and Aµ.

Theorem II.2. Suppose Assumption II.1 holds and we have
an eigengap λs(Σx) > λs+1(Σx). Then, there exist constants
BK , CK > 0 that depend only on K such that the following
hold. For any λ2 ≥ BK log(n)C∞, let U , U□

n ∈ Op×s denote

orthonormal bases of the leading eigenspaces of Σx and Σ̂
□
n .

We have with probability at least 1− e−t that

dist(U□
n ,U)

≤ min

{
1,

CK (C
1/2
op + λ)

λs(Σx)− λs+1(Σx)

√
p(log(p) + t)

n

+
CKλ

2

λs(Σx)− λs+1(Σx)

p(log(p) + t)

n

}
.

(II.6)

In particular, if x and e are bounded and λ2 ≥ C∞ a.s., we
have with probability at least 1− e−t that (II.6) holds.

According to Theorem II.2, the estimation error decays
like O(1/λs(Σx)

√
n) if rank(Σx) = s. While this bound

is optimal in n due to minimax optimality of Σ̂
□
n [12], and

we confirm in Section III that it is tight in λs(Σx), it does
not match the best known guarantees in the unquantized case
[3] which are of order O(1/

√
λs(Σx)n). As it turns out, this

discrepancy can be explained by the statistical properties of
the dither.

B. Triangular dithering

In recent works on covariance estimation from quantized
samples [5], [4] the authors suggest to combine a uni-
form infinite-range quantizer Qµ : R → Aµ, Qµ(x) :=

2µ
(⌊

x
2µ

⌋
+ 1

2

)
of resolution µ > 0 with triangular dithering

which is the convolution of two uniform distributions, see
Figure 1. Here, Aµ := 2µZ+ µ.

Remark II.3. For bounded or strongly concentrating data
and noise distributions as in Assumption II.1, Qµ effectively
behaves like the sign-quantizer Q(·) = sign(·) if µ is chosen
sufficiently large. The infinite range is only assumed for
simplifying the analysis.



The statistical properties of such dithered quantizers were
carefully studied [14]. In particular, the quantization noise

ξk := q△
k − xk = Qµ(xk + ek + τ△

k )− xk. (II.7)

has several favorable properties under a mild regularity as-
sumption for e.

Assumption II.4. Assume that the coordinates of the distribu-
tion of e are uncorrelated, absolutely continuous with respect
to the Lebesgue measure on F, and that the characteristic
function of each coordinate of e is twice differentiable.

Lemma II.5. There is an absolute constant C > 0 such that
the following holds. Let x1, . . . ,x ∈ Cp. Let e1, . . . , en

i.i.d.∼ e.
Suppose that e is K-subgaussian for some K ≥ 1 and satisfies
Assumption II.4 with mean zero and entry-wise variance ν2.
Then ξ1, . . . , ξn are independent, CK-subgaussian with mean
zero and covariance 2(µ2 + ν2)Ip.

Given samples y1, . . . ,yn ∈ Rp we thus consider

q△
k = Qµ(yk + τ△

k ) ∈ Ap
µ,

where τ△
k

i.i.d.∼ UR(−µ, µ)p ∗ UR(−µ, µ)p. Since
E(q△

k (q△
k )∗) = Σx + σ2Ip by Lemma II.5, for

σ2 := c2F(ν
2 + µ2) where cR = 1 and cC = 2, we

deduce the following result for the estimator

Σ̂
△
n :=

1

n

n∑
k=1

q△
k (q△

k )∗. (II.8)

Theorem II.6. Suppose Assumptions II.1 and II.4 hold and
that rank(Σx) = s. There are absolute constants C1, C2 >
0, and constants c, α0 > 0 depending only on K such that
the following holds. Let U ,U△

n ∈ Op×s denote orthonormal
bases for the leading left singular spaces of Σx and Σ̂

△
n .

(i) For deterministic x1, . . . ,xn ⊆ Fp and any α ≥ α0, we
have with probability at least 1− e−cαp

dist(U△
n ,U) ≤ (II.9)

min

{
1, C1

√
ν2 + µ2

λs(Σx)

(
1 +

√
ν2 + µ2

λs(Σx)

)√
αp

n

}
.

(ii) For x1, . . . ,xn
i.i.d.∼ x with x ∼ CN (0,Σx) and any

α ≥ α0, we have that if n ≥ C2

∑s
j=1 λj(Σx)

λs(Σx)
then (II.9)

holds with probability at least 1− 3e−cmin{αp,n}.

Theorem II.6 shows that as soon as ν2 + µ2 ≲ λs(Σx),
i.e., the noise is sufficiently small and the quantization res-
olution is sufficiently high, the error bound improves to
O(1/

√
λs(Σx)n). The key for deriving this result are the

properties of the quantization noise in Lemma II.5, cf. [10]. A
generalization of Theorem II.6(ii) to heavy-tailed distributions,
an in-depth comparison with Theorem II.2, and performance
guarantees for ESPRIT in spectral estimation that build on
those results can be found in [10].
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Fig. 2. Dependence on smallest singular value for rectangular dithering. The
black dashed lines are 1/(4n1/16) and 1/(4n1/8).
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Fig. 3. Dependence on smallest singular value for triangular dither, and the
black dashed line is C/σs(Xn).

III. NUMERICAL EXPERIMENTS

In the final section, we will validate our theoretical results.
Let us first confirm that the worse dependence on λs(Σx) in
Theorem II.2 is not an artifact of our proofs. To this end, we
consider Σx = diag(1, ζ, . . . , ζ, 0, . . . , 0), for ζ ∈ (0, 1) and
rank(Σx) = r. We set ν = 0, r = 15 and p = 20, pick an
arbitrary rotation matrix R, and draw x = Rg where g ∼
N(0,Σx). Theorem II.2 predicts that dist(U□

n ,U) ≲p,λ,K
1

λr(Σx)
√
n

. If we vary n and enforce λr(Σx) = ζ ≃ n−β for
β > 0, then the upper bound

(i) remains constant at the critical exponent β = 1/2,
(ii) decreases in n when β < 1/2,

(iii) achieves the trivial upper bound of 1 when β > 1/2.
This is confirmed in Figure 2.

Likewise, Theorem II.6 predicts for ν2 + µ2 ≲ λr(Σx)
that dist(U△

n ,U) ≲ν,µ,α,p 1/
√
λs(Σx)n = 1/σs(Xn). For

a different construction of Σx detailed in [10], we get perfect
agreement with the predicted bound as depicted in Figure 3.
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