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Abstract—In recent years, multi-label feature selection has
been widely used in fields such as bioinformatics, information
retrieval, and multimedia annotation. As an effective data pre-
processing step, multi-label feature selection has shown its
effectiveness in dealing with high-dimensional biological data
in fields such as bioinformatics. Most of the previous multi-
label feature selection methods are directly transformed from the
traditional single-label feature selection methods, or they cannot
make full use of label information. As a result, the selected feature
subset involves features that are redundant or irrelevant to label
information. Moreover, most algorithms do not use discretization
when processing continuous data sets, so they cannot effectively
eliminate the interference of abnormal data. In order to solve
these problems, based on the GRRO (Global Relevance and
Redundancy Optimization) algorithm introduces JS divergence
to measure the correlation between labels and introduces data
discretization pre-processing operations for continuous data sets.
The experimental results after experimental verification on ten
typical high-dimensional biological data sets show that the
GRRO-JS algorithm is superior to the traditional multi-label
feature selection method and the GRRO algorithm in terms of
accuracy and efficiency and has high practical value.

Index Terms—multi-label feature selection, high-dimensional
biological data, JS divergence, data discretization
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I. INTRODUCTION

In traditional single-label supervised learning, each instance
is associated with only one class label. However, in real-world
scenarios, instances are often associated with multiple seman-
tics [1]. For example, in bioinformatics, a single gene can be
associated with multiple labels; in information retrieval, each
document can cover multiple topics; and in image recognition,
different scenes can be used to annotate images, resulting
in multiple categories. Like single-label learning, multi-label
data often contain thousands or even tens of thousands of
features [2]. Given a specific learning task, many of these
features may be redundant or irrelevant, and high-dimensional
data can lead to computational inefficiency, overfitting, and
poor performance in learning models [3]. To address this
issue, researchers have developed multi-label feature selection
algorithms to reduce the dimensionality of multi-label data,
improve classification accuracy, and generate more compact
and generalizable learning models. As a result, multi-label
feature selection has become an important research topic and a
current research hotspot. Nowadays, multi-label feature selec-
tion has been widely applied in fields such as bioinformatics
[4], image annotation [5], and video classification [6]. For
instance, in biomedical fields, multi-label feature selection is
widely used in case data analysis to extract various information
related to cancer, thereby improving the cure rate for cancer.

In recent years, a large number of multi-label feature
selection methods have been proposed. Fan et al. [7] developed
an algorithm called “Multi-label feature selection with local



discriminant model and label correlations.” This method takes
into account the neighboring instances of a given instance,
constructs local clusters for the instances, and globally in-
tegrates local discriminant models to evaluate the clustering
performance of all instances. Dai et al. [8] defined label gain
based on label discriminant functions explored the correlations
between features and proposed a multi-label feature selection
method based on correlated label gain. He et al. [9] proposed
a new method for label-enhanced multi-label feature selection
based on sample correlation to explore the correlation between
samples and labels. We proposed an improved method based
on the GRRO algorithm [10] and JS divergence to address the
problem of multi-label feature selection in high-dimensional
biological data, aiming to enhance its accuracy and efficiency.

The main contributions of this paper can be summarized as
follows:

• We propose the GRRO-JS algorithm, which improves the
existing GRRO multi-label feature selection method by
introducing the JS divergence to more effectively mea-
sure the correlation between labels. The JS divergence
possesses ideal properties such as symmetry and non-
negativity, making it particularly suitable for the multi-
label feature selection process. By incorporating the JS
divergence, we can more accurately capture and quantify
the interdependence among labels, thereby enhancing the
performance and precision of feature selection.

• We perform data discretization preprocessing on continu-
ous datasets, converting continuous variables into discrete
variables, which helps reduce data complexity and makes
subsequent analysis more manageable. Additionally, we
employ parallel computing techniques to measure the
correlation between features, significantly reducing the
algorithm’s time complexity. This combination of data
discretization and parallel computing not only improves
the efficiency of the feature selection process but also
enhances the algorithm’s scalability, making it more suit-
able for handling high-dimensional datasets with many
features.

• We conduct experiments on ten typical high-dimensional
biological datasets, and the results demonstrate that
GRRO-JS outperforms traditional multi-label feature s-
election methods and the original GRRO algorithm in
terms of accuracy and efficiency. This improved perfor-
mance highlights the algorithm’s significant practical ap-
plication value, especially in complex, high-dimensional
data.

II. PRELIMINARIES

A. Multi-label Feature Selection

The goal of multi-label feature selection is to extract an
optimal subset of features from the original features of the
sample data. In multi-label classification, an instance can be
associated with multiple labels. High-dimensional multi-label
datasets not only lead to increased computational costs and
storage requirements but also limit the practical use of machine

learning models [11]. Feature selection has been proven to be
highly effective in removing irrelevant and redundant features
from the feature representation, thereby retaining the most
discriminative information for multi-label learning. Therefore,
it is crucial to design effective methods for multi-label feature
selection.

Multi-label feature selection algorithms based on filter
methods score each feature through statistical tests. This
approach has a low computational cost and effectively avoids
overfitting. Lin et al. [12] proposed the MDMR algorithm,
which evaluates the importance of each feature based on
neighborhood information entropy and uses a strategy of
maximum dependency and minimum redundancy to obtain
feature ranking. Lin et al. [13] proposed a multi-label feature
selection algorithm based on neighborhood mutual information
called MFNMI.

Multi-label feature selection algorithms based on wrapper
methods use classifier performance as the search objective,
continuously selecting and eliminating features until the op-
timal subset is found. This method is more targeted than
filter methods and can improve model performance, but it
also results in higher computational costs. Gharroudi et al.
[14] proposed a wrapper-based feature selection method that
considers label dependency and introduces a random forest-
based multi-label wrapper feature selection method. Similarly,
Zhang et al. [15] relied on principal component analysis and
genetic algorithms to evaluate feature subsets.

Multi-label feature selection algorithms based on embedded
methods integrate feature selection into the model training
process. This approach uses certain feature evaluation prop-
erties inherent to the model as evaluation criteria and then
applies a wrapper-based multi-label feature selection method
to choose the optimal feature subset. However, this method can
increase the training burden on the model. Zhang et al. [16]
proposed an embedded multi-label feature selection method
based on sparsity, which considers multiple regularizations and
leverages local and global label correlations. Jian et al. [17]
considered label correlations, reducing the dimensionality of
the label space and using the selected label information for
feature selection.

B. GRRO Algorithm

The GRRO algorithm is based on an information-theoretic
multi-label feature selection method. The optimization objec-
tive function of the GRRO algorithm is defined as follow:

min
W
‖W − C‖2F + αtr

(
WTGW

)
+βtr

(
RWTW

)
‖W − C‖2F

(1)

it represents the squared Euclidean distance between the pre-
diction matrix W and the true label matrix C, which quantifies
the difference between the predicted values and the true values.
By minimizing the objective function, the GRRO algorithm
aims to make the predictions as close as possible to the true
labels. αtr

(
WTGW

)
+ βtr

(
RWTW

)
is used to control

the model’s complexity and generalization ability. Here, G



and R are positive semi-definite matrices. The notation tr (·)
represents the trace of a matrix, which is the sum of its main
diagonal elements. a and beta are weighting parameters that
control the balance between data terms. By adjusting these
parameters, the GRRO algorithm can avoid overfitting.

The GRRO algorithm has the following features: First,
it takes into account the correlations between labels. In
high-dimensional biological datasets, labels are often inter-
dependent, making it crucial to consider label correlations.
Second, the GRRO algorithm addresses feature redundancy,
which helps avoid selecting duplicate or redundant features,
thereby improving the efficiency and performance of multi-
label feature selection. Additionally, the GRRO algorithm can
handle high-dimensional datasets efficiently, as it only needs
to traverse the correlation and redundancy information once
to obtain the optimal solution easily.

C. Jensen-Shannon Divergence

In probability theory or statistics, the JS divergence mea-
sures the distance between two probability distributions [18].
JS divergence is an improved method based on KL diver-
gence that can completely resolve the asymmetry problem
of KL divergence. Generally, given two discrete probability
distributions P and Q, the JS divergence is defined as:
JS (P ‖Q ) = 1

2KL
(
P
∥∥∥P+Q

2

)
+ 1

2KL
(
Q
∥∥∥P+Q

2

)
. The

range of JS divergence is [0, 1]. For any two discrete prob-
ability distributions P and Q, the more similar P and Q
are, the smaller the JS divergence value; conversely, the more
dissimilar P and Q are, the larger the JS divergence value.

In practical applications of multi-label feature selection,
each label can be viewed as a discrete probability distribu-
tion, with its probability value representing the likelihood of
that label appearing in a specific sample within the dataset.
Using JS divergence for multi-label feature selection allows
for a more comprehensive measurement of the correlations
between labels, thereby improving the model’s performance
and efficiency. This approach aids in the more precise selection
of feature subsets.

III. METHOD

A. CRRO-JS Algorithm

The GRRO algorithm works by finding an optimal feature
matrix W , which ensures that the features correlate highly with
the labels while minimizing redundancy between the features
[10]:

max
W

q∑
u=1

d∑
i=1

I (fi, lu)wiu −
d∑

j=1

I (fi, fj)wiuwju

 (2)

where W ∈ Rd×c represents the feature coefficient matrix,
and wiu ∈ W indicates the importance of feature fi relative
to label lu. I(fi, lu) and I(fi, fj) represent the mutual infor-
mation between feature fi and label lu, and between feature
fi and feature fj , respectively.

Based on Eq. (2), the following optimization problem can
be derived:

min
W
‖W − C‖2F +

q∑
u=1

wT
.uGw.u (3)

where C represents the correlation between features and
labels, with cij ∈ C defined as cij = I(fi, lj). G represents
the redundancy between features, with gij ∈ G defined as
gij = I(fi, fj), and G is a symmetric matrix. ‖ · ‖F denotes
the Frobenius norm.

In Eq. 3, second-order label correlations are introduced to
learn global label relationships, thereby improving the model’s
generalization performance.

q∑
u=1

q∑
j=1

rujw
T
.uw.j (4)

where ruj represents the correlation between label lu and label
lj . The GRRO algorithm directly calculates ruj using cosine
distance.

For high-dimensional biological datasets, the correlations
between labels are often more abstract and complex. To fully
account for these correlations, we used JS divergence as a
measure. We will discuss the advantages of JS divergence over
cosine distance and mutual information in measuring label
correlations.

For cosine distance, it only considers the similarity in
direction between vectors without accounting for differences
caused by other factors, such as the length of the vectors. This
makes it unsuitable for measuring complex label correlations
in high-dimensional biological datasets.

For mutual information, the calculation often includes some
redundant information. This leads to inaccuracies when mea-
suring the complex label correlations in high-dimensional
biological datasets using mutual information. Additionally,
since the calculation of mutual information relies on the joint
probability distribution, it results in extremely high computa-
tional complexity when the number of labels is large.

In contrast, JS divergence can better capture the deviation
information between labels in high-dimensional biological
datasets compared to cosine distance, such as differences in the
frequency of label occurrence in samples. On the other hand,
JS divergence provides a more comprehensive measure of
label correlations than mutual information. Additionally, since
the calculation of JS divergence only requires considering the
distribution information of each label in the dataset, it results
in lower computational complexity.

Therefore, when measuring the correlations between label
lu and label lj , our GRRO-JS algorithm uses JS divergence for
calculation. JS divergence is a particularly suitable method. Its
ability to capture subtle differences in label distributions and
its lower computational complexity makes it an effective tool
for understanding and leveraging label correlations in complex,
multi-label scenarios. This suitability is essential in contexts
where accurately modelling these correlations can significantly
enhance the performance and efficiency of feature selection
algorithms.



Based on Eq. (3) and Eq. (4), the optimization
objective function for GRRO can be derived. Since∑q

u=1 w
T
.uGw.u =

∑q
u=1(W

TGW )uu = tr(WTGW ) and∑q
u=1

∑q
j=1 rujw

T
.uw.j = tr(RWTW ), where R represents

the relevance between labels. The optimization objective can
be further transformed into:

min
W
‖W − C‖2F + αtr(WTGW ) + βtr(RWTW ) (5)

The feature coefficient matrix W is included in all terms
of Eq.(5), indicating that when optimizing the feature weight
matrix using Eq. (5), the influences of feature relevance, fea-
ture redundancy, and label relevance can all be simultaneously
considered. From Eq. (5), we know that the matrices G and
R are semi-definite matrices. By setting the derivative of Eq.
(5), with respect to W to zero, we obtain:

2(W − C) + α(G+GT )W + βW (R+RT ) = 0 (6)

Since G and R are symmetric matrices, Eq. (6) can be
transformed into:

(I + αG)W + βWR = C (7)

where I represents the identity matrix. Eq. (7) is a matrix
equation of the form AW +WB = C, where A = I + αG
and B = βR.

In MATLAB, the lyap function is used to solve linear matrix
equations of the form AW +WB+C = 0, where A, B, and
C are known matrices, and W is the matrix to be solved.
Lyap function employs several numerical stability optimiza-
tion techniques specifically designed to solve linear matrix
equations of the form AW +WB +C = 0. Additionally, the
lyap function offers a simple call syntax, requiring only the
input matrices A, B, and C to solve for matrix W . So, the
importance of each feature can be determined based on the
computed ‖w(i.)‖2 (for 1 ≤ i ≤ d).

B. Pseudocode of the GRRO-JS Algorithm

Algorithm 1 Data Loading and Preprocessing
1: Input: High-dimensional biological multi-label classifica-

tion data Mtrain and Mtext, with F features, L labels,
and N instances

2: function GRRO-JS
3: Load the features and labels of the training set Mtrain and

the test set Mtest for biological multi-label classification
data

4: Set the parameters α and β
5: For continuous training data, determine the value of
numB based on feature values and discretize the con-
tinuous training data into numB groups. This step is not
required for binary training data.

In this paper, we introduce JS divergence into the GR-
RO algorithm to more accurately measure the correlation
between labels. This approach aims to better adapt to multi-
label classification problems in high-dimensional biological

Algorithm 2 Calculating the Correlation Between Features
and Labels

1: for i=1:num feature do
2: for j=1:num label do
3: Calculate the mutual information between F i and
Lj as their correlation and store it in FL

4: end for
5: end for

datasets, enhancing the algorithm’s performance in handling
complex label relationships. By incorporating JS divergence,
the GRRO-JS algorithm can more comprehensively capture
the underlying connections between labels, thereby improving
classification accuracy and efficiency. Algorithm 1 to Algo-
rithm 6 present the detailed pseudocode of the GRRO-JS
algorithm, providing a clear illustration of the core processes
and implementation steps.

Algorithm 3 Calculating the Redundancy Between Features
1: for i=1:num feature do
2: for j=1:num feature do
3: Calculate the mutual information between F i and
F j as their redundancy and store it in FF

4: end for
5: end for

Algorithm 4 Calculating the Correlation Between Labels
1: for i=1:num label do
2: for j=1:num label do
3: Calculate the JS divergence between Li and Lj as

their correlation and store it in LL
4: end for
5: end for

Algorithm 5 Calculating the Weight Matrix W
1: A = I + a ∗ FF
2: B = β ∗ LL
3: C = −FL
4: W = lyap (A,B,C)

C. Flowchart of the GRRO-JS Algorithm

The workflow of the GRRO-JS algorithm begins with
loading the high-dimensional biological dataset. The next
step is to check whether the data type meets the required
standard. If the data type is unsuitable and is not an integer,
a discretization preprocessing step is necessary to convert the
data into integers. If the data type is already appropriate, the
algorithm sets the parameters for the optimization objective
function.

Following this, mutual information is used to measure the
relevance between features and labels (FL) and the redun-
dancy between features (FF). Subsequently, JS divergence is
employed to assess the correlations between labels (LL).



Algorithm 6 Obtaining the Performance Metrics of the Clas-
sifier

1: Output: Performance metrics of the classifier
2: for i=1 to the top 50 features do
3: Train the MLKNN classifier on the selected top i

features
4: Calculate the six performance evaluation metrics
5: Store the performance metrics
6: end for
7: Visualize the performance metrics
8: end function

The algorithm then uses the lyap function to calculate the
weight matrix W and rank the features accordingly. The
top i features are selected as the feature subset, which is
then validated against six evaluation metrics to assess its
performance.

The final steps involve saving the classification performance
metrics obtained from the six evaluation metrics for the
selected feature subset and terminating the function. Figure 1
illustrates the flowchart of the GRRO-JS algorithm, providing
a visual representation of this process.

Fig. 1. Flowchart of the GRRO-JS algorithm.

IV. EXPERIMENT

A. Evaluation Metrics

We use six commonly employed multi-label evaluation
metrics to assess performance, including four instance-based

metrics: Hamming Loss, Ranking Loss, Coverage, and Av-
erage Precision, and two label-based metrics, Macro F1 and
Micro F1.

Hamming Loss indicates the degree of disagreement be-
tween the predicted and actual label sets and the proportion
of incorrect label predictions in the sample.

Ranking Loss calculates the number of labels in which the
probability of a label being 1 is less than the probability of a
label being 0, divided by the product of the number of labels
being 1 and the number of labels being 0. This represents the
ranking error in label predictions.

Coverage measures the extent to which labels with a value
of 1 are covered in the ordered list of predicted labels, ranked
from highest to lowest probability. It is the ratio of the union
to the intersection of the predicted label set and the true label
set. Average Precision indicates the average accuracy of the
predicted label set.

Macro F1 considers the prediction for each label, first
calculating the arithmetic mean of precision (the proportion
of true positives among predicted positives) and recall (the
proportion of true positives among actual positives) for each
label. The harmonic mean of these two averages gives the
Macro F1 score, which is the average F1 score across all
labels.

Micro F1 considers the prediction for each sample, calcu-
lating the total precision and recall across all labels and then
computing their harmonic mean to obtain the Micro F1 score.
This is achieved by merging all prediction results into a single
label set and calculating the F1 score for this combined set.

B. Baselines

To compare the performance of the GRRO-JS algorithm
with other algorithms, this experiment selected four additional
multi-label feature selection methods to be compared across
ten chosen high-dimensional biological multi-label datasets.
These methods include a heuristic search algorithm PMU
[1], a regularization-based multi-label feature selection method
MDFS [19], a mutual information-based multi-label feature
selection method D2F [20], and the GRRO algorithm. First,
in this experiment, the top fifty features, determined by the
sum of feature weights calculated by each algorithm, were
selected for performance comparison between the GRRO-JS
algorithm and the other four information theory-based algo-
rithms. Then, the features ranked from 1 to 50 in each dataset
were sequentially selected to further compare the performance
of the GRRO-JS algorithm with that of the GRRO algorithm.

C. Experimental Design

1) Dataset: In this experiment, we use ten high-
dimensional multi-label biological datasets covering various
categories such as organelles, viruses, plants, and humans, as
well as different levels of biological information, including
genes, pseudo-amino acid sequences, and proteins. Table I
summarizes the detailed characteristics of these datasets.



TABLE I
THE STATISTICAL DATA OF THE TEN DATASETS.

Datasets Train Valid Test Label
EukaryoteGO 4658 3108 12689 22
GnegativeGO 836 556 1717 8
GpositiveGO 311 208 912 4
HumanGO 1862 1244 9844 14
PlantGO 588 390 3091 12
VirusGO 124 83 749 6

EukaryotePseAAC 4658 3108 440 22
GnegativePseAAC 836 556 440 8
GpositivePseAAC 311 208 440 4
HumanPseAAC 1862 1244 440 14

2) Experimental Procedure: Hyperparameter Settings: To
control variables and ensure the validity of the analysis re-
sults, the GRRO-JS algorithm inherits the hyperparameters
from the GRRO algorithm. When solving the feature weight
matrix, two hyperparameters, and , need to be set. In the
label classification after feature selection, the same ML-KNN
classifier is used in this experiment, requiring the setting of
the hyperparameter k. We use grid search to determine the
hyperparameters.

Feature Selection: Feature selection consists of two parts:
solving the feature matrix and sorting features. Before solving
the feature matrix W , we first need to measure the correlation
FL between features and labels, and the redundancy FF
between features using the concept of mutual information.
Then, the correlation LL between labels is measured using the
concept of JS divergence. These three matrices are computed
using nested loops. It is important to note that since the
redundancy of a feature with itself is always 1, the diagonal
elements of the matrix FF are explicitly set to 1. During the
calculation, cases of missing labels or features can lead to
matrix elements being unsolvable, resulting in ‘nan’ values.
Therefore, ‘nan’ elements in the matrices are set to 0. Once
FF, FL, and LL are obtained, the weight matrix W can
be calculated by solving the matrix equation of the form
AW + WB = C, where A = I + αFF , I is the identity
matrix, B = βLL, and C = −FL. Considering the data scale
and equation form, the MATLAB function lyap is used to
solve for the feature weight matrix W . Each column of the
weight matrix W represents the weight of different features
for a single label, while each row represents a feature’s weight
across different labels. Summing W row-wise gives the total
weight of each feature across all labels, which is used as the
basis for ranking the features.

Classification Validation: After obtaining the feature weight
matrix, various classifiers can be used for classification, such
as Random Forests, KNNs, Neural Networks, etc. To suit
the characteristics of multi-label classification and variable
control, this experiment continues to use the ML-KNN clas-
sifier from the GRRO algorithm and maintains the same
hyperparameters.

Performance Evaluation: The performance evaluation func-
tion is defined within the MLKNN function. After running
MLKNN, the six performance metricsHamming Loss, Rank-
ing Loss, Coverage, Average Precision, Macro F1, and Micro

F1can be obtained.

D. Experimental Results and Analysis

1) Comparison of the Performance of the GRRO-JS Algo-
rithm with Other Algorithms: Considering that different bio-
logical datasets contain distinct types of biological information
and may have varying features and that an excessive number of
features can add extra computational burden, this experiment
selects the top 50 features based on the total feature weight
computed by each algorithm for performance comparison.
Tables II to VII present the results of the GRRO-JS algorithm
and other algorithms across six evaluation metrics.

TABLE II
PERFORMANCE COMPARISON OF GRRO-JS ALGORITHM AND OTHER

ALGORITHMS ON HAMMING LOSS

Hamming Loss
Datasets GRRO-JS GRRO PMU MDFS D2F

EukaryoteGO 0.019700 0.019700 0.022040 0.022289 0.026223
GnegativeGO 0.019784 0.019784 0.020683 0.026304 0.023381
GpositiveGO 0.042067 0.042067 0.049279 0.043269 0.044471
HumanGO 0.045475 0.044212 0.045590 0.042375 0.055409
PlantGO 0.040812 0.040812 0.041239 0.045513 0.043590
VirusGo 0.060241 0.060241 0.072289 0.066265 0.072289

EukaryotePseAAC 0.995452 0.997177 0.999079 0.993872 0.999313
GnegativePseAAC 0.976782 0.980551 0.982995 1.000000 0.981769
GpositivePseAAC 0.979240 0.976864 0.997596 0.989292 0.996941
HumanPseAAC 0.997442 0.996894 0.996967 0.996090 0.996711

Average 0.417700 0.417830 0.422776 0.422527 0.424010

The best results are highlighted in bold.

TABLE III
PERFORMANCE COMPARISON OF GRRO-JS ALGORITHM AND OTHER

ALGORITHMS ON RANKING LOSS

Ranking Loss
Datasets GRRO-JS GRRO PMU MDFS D2F

EukaryoteGO 0.021496 0.021496 0.032066 0.032035 0.042475
GnegativeGO 0.011990 0.011990 0.018906 0.019848 0.020898
GpositiveGO 0.046474 0.046474 0.044471 0.041667 0.039663
HumanGO 0.037515 0.038101 0.049318 0.039543 0.067324
PlantGO 0.042100 0.042100 0.040386 0.051131 0.043032
VirusGo 0.034036 0.034036 0.048327 0.063253 0.048327

EukaryotePseAAC 0.118362 0.123835 0.132275 0.166631 0.132400
GnegativePseAAC 0.036241 0.036697 0.045992 0.117485 0.051702
GpositivePseAAC 0.030798 0.032171 0.043510 0.055523 0.043739
HumanPseAAC 0.100876 0.109055 0.112321 0.122744 0.114762

Average 0.047989 0.049596 0.056757 0.070986 0.060432

The best results are highlighted in bold.

TABLE IV
PERFORMANCE COMPARISON OF GRRO-JS ALGORITHM AND OTHER

ALGORITHMS ON COVERAGE

Coverage
Datasets GRRO-JS GRRO PMU MDFS D2F

EukaryoteGO 0.631596 0.631596 0.888353 0.884492 1.129987
GnegativeGO 0.154676 0.154676 0.215827 0.210432 0.232014
GpositiveGO 0.144231 0.144231 0.139423 0.129808 0.125000
HumanGO 0.713826 0.729904 0.877010 0.747588 1.143087
PlantGO 0.546154 0.546154 0.525641 0.633333 0.556410
VirusGo 0.373494 0.373494 0.457831 0.530120 0.457831

EukaryotePseAAC 2.776062 2.894466 3.068533 3.773166 3.075290
GnegativePseAAC 0.848921 0.866906 1.062950 2.568345 1.181655
GpositivePseAAC 0.653846 0.682692 0.918269 1.173077 0.923077
HumanPseAAC 2.438907 2.602090 2.657556 2.881029 2.717846

Average 0.928171 0.962621 1.081139 1.353139 1.154220

The best results are highlighted in bold.



TABLE V
PERFORMANCE COMPARISON OF GRRO-JS ALGORITHM AND OTHER

ALGORITHMS ON AVERAGE PRECISION

Average Precision
Datasets GRRO-JS GRRO PMU MDFS D2F

EukaryoteGO 0.888833 0.888833 0.864452 0.869276 0.841387
GnegativeGO 0.970671 0.970671 0.960552 0.955353 0.961065
GpositiveGO 0.947516 0.947516 0.947917 0.953125 0.954728
HumanGO 0.866900 0.866251 0.837906 0.863344 0.805080
PlantGO 0.876614 0.876614 0.873049 0.862683 0.862356
VirusGo 0.933133 0.933133 0.919478 0.902811 0.923494

EukaryotePseAAC 0.572548 0.554071 0.530864 0.403901 0.530712
GnegativePseAAC 0.770131 0.771615 0.724480 0.360723 0.702032
GpositivePseAAC 0.756811 0.745192 0.644231 0.553285 0.649840
HumanPseAAC 0.575082 0.539849 0.522005 0.511630 0.519622

Average 0.815824 0.809374 0.782493 0.723613 0.775031

The best results are highlighted in bold.

TABLE VI
PERFORMANCE COMPARISON OF GRRO-JS ALGORITHM AND OTHER

ALGORITHMS ON MACRO-F1
Macro-F1

Datasets GRRO-JS GRRO PMU MDFS D2F
EukaryoteGO 0.530511 0.530511 0.402418 0.376189 0.327499
GnegativeGO 0.787441 0.787441 0.748347 0.665250 0.675818
GpositiveGO 0.780734 0.780734 0.727052 0.745140 0.834540
HumanGO 0.524492 0.528244 0.411520 0.485860 0.354071
PlantGO 0.600824 0.600824 0.552985 0.551853 0.529492
VirusGo 0.679621 0.679621 0.495093 0.631810 0.491611

EukaryotePseAAC 0.973666 0.972764 0.971788 0.974524 0.971642
GnegativePseAAC 0.986613 0.986573 0.982758 0.972093 0.983044
GpositivePseAAC 0.985036 0.984518 0.973586 0.978697 0.973967
HumanPseAAC 0.971700 0.972010 0.971897 0.971703 0.971861

Average 0.782064 0.782324 0.723744 0.735312 0.711355

The best results are highlighted in bold.

TABLE VII
PERFORMANCE COMPARISON OF GRRO-JS ALGORITHM AND OTHER

ALGORITHMS ON MICRO-F1
Micro-F1

Datasets GRRO-JS GRRO PMU MDFS D2F
EukaryoteGO 0.812108 0.812108 0.782005 0.782099 0.748704
GnegativeGO 0.922535 0.922535 0.919298 0.896000 0.908289
GpositiveGO 0.914842 0.914842 0.901679 0.913462 0.911695
HumanGO 0.717546 0.720610 0.708731 0.736617 0.622900
PlantGO 0.756066 0.756066 0.756005 0.722295 0.739130
VirusGo 0.846939 0.846939 0.797753 0.825397 0.795455

EukaryotePseAAC 0.975593 0.974718 0.973752 0.975514 0.973628
GnegativePseAAC 0.987380 0.987335 0.984156 0.975416 0.984747
GpositivePseAAC 0.987228 0.986595 0.977818 0.981554 0.978141
HumanPseAAC 0.973796 0.974068 0.974025 0.974377 0.974129

Average 0.889403 0.889582 0.877522 0.878273 0.863682

The best results are highlighted in bold.

Compared to other algorithms, the GRRO and GRRO-JS
algorithms generally performed better across the six evaluation
metrics. Although the specific performance metrics varied
significantly across different datasets, the overall trends among
the algorithms remained consistent. For instance, the GRRO-
JS algorithm consistently produced better evaluation results
on the EukaryoteGO, GnegativeGO, and GnegativePseAAC
datasets. However, on the GpositiveGO dataset, the evaluation
results of the GRRO-JS algorithm were generally unsatisfacto-
ry, which may be related to the appropriateness of the dataset
labeling or the suitability of the feature selection. Additionally,
it can be observed that across these six evaluation metrics, the
GRRO-JS algorithm outperformed most datasets. The average

values further highlight that the GRRO-JS algorithm exhibits
superior average performance and generalization capability.

Fig. 2. Comparison of performance between GRRO-JS and GRRO algorithms
on the EukaryoteGO dataset.

Fig. 3. Comparison of performance between GRRO-JS and GRRO algorithms
on the GnegativeGO dataset.

Fig. 4. Comparison of performance between GRRO-JS and GRRO algorithms
on the GpositiveGO dataset.

2) Comparison of the Performance Between the GRRO-
JS Algorithm and the GRRO Algorithm: Although GRRO-JS
achieved better performance than GRRO on multiple datasets,
the numerical differences between the two are very close. To
further compare their performance, we conducted a more de-
tailed comparison of the selected ten high-dimensional biologi-
cal multi-label datasets. To distinguish the differences between



Fig. 5. Comparison of performance between GRRO-JS and GRRO algorithms
on the HumanGO dataset.

Fig. 6. Comparison of performance between GRRO-JS and GRRO algorithms
on the PlantGO dataset.

the two more precisely, we evaluated their performance by
selecting the top 1 to top 50 ranked features for each dataset,
respectively.

The features of EukaryoteGO, GnegativeGO, GpositiveGO,
HumanGO, PlantGO, and VirusGO datasets are all binary
(0/1). Fig. 2 to Fig.7 show that the classification performance
of GRRO and GRRO-JS algorithms on these high-dimensional
biological information datasets is very similar. As seen in Fig.
2, GRRO and GRRO-JS achieved good classification results on
the EukaryoteGO dataset for the multi-label classification of

Fig. 7. Comparison of performance between GRRO-JS and GRRO algorithms
on the VirusGO dataset.

Fig. 8. Comparison of performance between GRRO-JS and GRRO algorithms
on the EukaryotePseAAC dataset.

Fig. 9. Comparison of performance between GRRO-JS and GRRO algorithms
on the GnegativePseAAC dataset.

eukaryotes. Although there are two points of sudden change in
Hamming Loss and Micro F1, overall, the performance metrics
gradually improve and converge as the number of selected
features increases. Similar characteristics can be observed in
the HumanGO and PlantGO datasets.

In contrast, the performance metrics of both algorithms
on the GnegativeGO, GpositiveGO, and VirusGo datasets
also improve as the number of selected features increases.
Still, they exhibit two distinct phases: a sudden increase and
stabilization. For example, as shown in Fig. 2 to Fig. 7, when

Fig. 10. Comparison of performance between GRRO-JS and GRRO algo-
rithms on the GpositivePseAAC dataset.



Fig. 11. Comparison of performance between GRRO-JS and GRRO algo-
rithms on the HumanPseAAC dataset.

the number of selected features is less than 5, the Hamming
Loss, Ranking Loss, and Coverage of the GpositiveGO dataset
decrease rapidly as the number of features increases, while the
Average Precision, Macro F1, and Micro F1 increase rapidly.
After selecting more than five features, the values of the
performance metrics gradually converge. We can observe that
the GRRO-JS algorithm’s performance is similar to that of
the GRRO algorithm when handling multi-label classification
tasks on high-dimensional biological data with binary features.

EukaryotePseAAC, GnegativePseAAC, GpositivePseAAC,
and HumanPseAAC have continuous variable feature values.
Fig. 8 to Fig. 11, respectively, illustrate the classification
performance of the GRRO and GRRO-JS algorithms on these
datasets.

As shown in Fig. 8 to Fig. 11, GRRO-JS achieves a
significant advantage in all six performance metrics across
the four datasets when dealing with continuous features.
Taking the HumanPseAAC dataset as an example, GRRO-JS
consistently outperformed the GRRO algorithm in ranking loss
and coverage, with its scores almost always lower than those of
GRRO. Similarly, in terms of average precision, GRRO-JS had
consistently higher scores than GRRO, demonstrating a clear
advantage. Both algorithms’ performance scores gradually
converged as the number of selected features increased in these
three metrics. In Hamming loss, Macro F1, and Micro F1,
GRRO-JS outperformed GRRO, although these three metrics
did not show a convergence trend.

3) Parameter Sensitivity Analysis of the GRRO-JS Algo-
rithm: We use the parameters a and beta, conducting a grid
search over the values [10−3, 10−2, 10−1, 100, 101, 102, 103].
The ML-KNN classifier is employed for performance eval-
uation. The optimal parameters are determined by minimiz-
ing the average classification result (ACR) on the PlantGO
dataset. The formula for ACR is given as ACR (para) =∑50

i=1 (HLi (f, u) +RLi (f, u)), where para represents the
set of algorithm parameters, u represents the test set, and
f represents the classifier. HLi (f, u) and RLi (f, u) are the
sums of Hamming Loss and Ranking Loss, respectively, when
selecting the top i features. The parameter sensitivity analysis
for a and beta is shown in Fig. 12. As the figure shows, when a

is set to 100 and beta to 0.1, the GRRO-JS algorithm achieves
the best performance.

Fig. 12. Sensitivity analysis of parameters a and β.

V. CONCLUSION

Building on the GRRO algorithm, we introduce JS diver-
gence to measure the correlation between labels. Additionally,
we implement data discretization preprocessing for continuous
datasets. Furthermore, we employ parallel computing for cor-
relation measurement, significantly reducing the algorithm’s
time complexity. We conduct a detailed analysis and formula
derivation of the GRRO algorithm. By incorporating JS di-
vergence, the GRRO-JS algorithm optimizes the handling of
label correlations, enhancing the accuracy and computation
speed of the GRRO algorithm. Experimental results on ten
high-dimensional biological datasets, evaluated using six per-
formance metrics, demonstrate that the GRRO-JS algorithm
improves the accuracy and efficiency of feature selection.
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