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Abstract

Deep learning methods have shown remarkable per-
formance in image denoising, particularly when trained
on large-scale paired datasets. However, acquiring such
paired datasets for real-world scenarios poses a significant
challenge. Although unsupervised approaches based on
generative adversarial networks (GANs) offer a promising
solution for denoising without paired datasets, they are dif-
ficult in surpassing the performance limitations of conven-
tional GAN-based unsupervised frameworks without signif-
icantly modifying existing structures or increasing the com-
putational complexity of denoisers. To address this prob-
lem, we propose a self-collaboration (SC) strategy for mul-
tiple denoisers. This strategy can achieve significant perfor-
mance improvement without increasing the inference com-
plexity of the GAN-based denoising framework. Its basic
idea is to iteratively replace the previous less powerful de-
noiser in the filter-guided noise extraction module with the
current powerful denoiser. This process generates better
synthetic clean-noisy image pairs, leading to a more pow-
erful denoiser for the next iteration. In addition, we pro-
pose a baseline method that includes parallel generative
adversarial branches with complementary “self-synthesis”
and “unpaired-synthesis” constraints. This baseline en-
sures the stability and effectiveness of the training net-
work. The experimental results demonstrate the superiority
of our method over state-of-the-art unsupervised methods.
https://github.com/linxin0/SCPGabNet

1. Introduction
Image denoising aims to recover noise-free images from

noisy observations by reducing the potential noise. Al-
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Figure 1. A real noisy image from the SSID Validation dataset.
Our SCPGabNet achieves better results compared to other denois-
ing methods.

though it is one of the oldest and most classical tasks in
low-level computer vision, its fundamental nature continues
drawing much interest. In general, existing image denoising
algorithms can be divided into three groups: filtering-based
[11, 9, 5, 14, 35], model-based methods [16, 31, 7, 19, 48,
41] and learning-based [46, 28, 36, 30, 42, 44, 29, 8, 2, 20]
methods.

The additive white Gaussian noise (AWGN) assumption
is widely used in image denoising. However, it is com-
plex and challenging to adaptively achieve denoising based
on filtering-based or model-based methods for high perfor-
mance. In contrast, learning-based methods have demon-
strated their superiority in image denoising. However, these
methods [47, 36, 20, 39, 37, 45] are data-driven and typi-
cally require pairs of clean-noisy datasets to train their mod-
els. These noise samples are usually obtained through a
predefined AWGN formulation that assumes the noise is
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signal-independent.
On the contrary, the real-world noise is more com-

plex and much different from the ideal AWGN assump-
tion. Using the AWGN model directly for the real scenes
leads to poor performance. Therefore, numerous methods
[4, 44, 2, 8, 38, 22, 37] have been proposed to capture paired
clean-noisy image datasets from real scenes to promote the
training of deep networks. However, these paired image-
based methods focus on enhancing performance by improv-
ing network structures, and acquiring well-aligned pairs of
clean-noisy images is time-consuming and laborious.

To solve the aforementioned problems, unsupervised
denoising-based methods [10, 21, 15, 43] have emerged.
The existing approaches are typically based on genera-
tive adversarial network (GAN) frameworks, which mainly
focus on generating higher quality pseudo-noisy images.
GAN2GAN [6] identified one of the key limitions of unsu-
pervised denoising frameworks is the gap between the real
and synthetic images, and proposed a novel approach using
multiple generators and discriminators to generate images
that closely conform to the real noise distribution. However,
the performance of existing unsupervised denoising frame-
works remains unsatisfactory due to the difficulty of adver-
sarially training. Moreover, after training the model, the
existing frameworks cannot further maximize the denoising
potential without significantly changing its structure or in-
creasing the inference complexity (e.g., using certain self-
ensemble strategy) for denoisers. To address the previous
limitations, we innovatively propose an unsupervised real-
world denoising network called Self Collaboration Parallel
Generative Adversarial Branches (SCPGabNet). The self-
collaboration (SC) strategy, which provides the framework
a powerful self-boosting capability. This enables the de-
noisers obtained from the conventional GAN framework to
continuously evolve themselves and significantly improve
their performance. The major contributions of our method
are as follows:

• We design a novel filter-guided synthetic noisy image
generator with the noise extraction (NE) module to
synthesize high-quality clean-noisy image pairs, which
serve as the foundation for implementing the SC strat-
egy.

• We propose an effective parallel generative adversar-
ial branches framework with complementary “self-
synthesis” and “unpaired-synthesis” constraints as our
powerful baseline.

• We are the first to propose the SC strategy, which sig-
nificantly enhances the performance of the GAN-based
denoising framework without increasing its inference
complexity. Experimental results demonstrate the su-
periority of our SCPGabNet over state-of-the-art unsu-

pervised image denoising methods with large margins
on the SIDD and DND benchmarking datasets.

2. Related Work
2.1. Denoising for Synthetic Noisy Image

Image denoising techniques for synthetic noisy im-
ages, such as AWGN, can be classified into classical
non-deep-learning-based, and deep-learning-based denois-
ing approaches. Classical non-deep-learning-based ap-
proaches include filtering-based [11, 9, 5, 14, 35], model-
based [16, 31, 7, 19, 48, 41], and traditional learning-based
methods. However, the filtering-based methods require
manually designed filters, and model-based methods re-
quire several preset hyperparameters and entail a significant
computational burden. These limitations restrict their flex-
ibility and efficacy. To address these challenges, DnCNN
[46] was proposed and achieved significant performance
improvements over traditional methods. Subsequently, deep
network-based methods [46, 49, 39] became the mainstream
in AWGN image denoising. For instance, several learning-
based methods with advanced network designs have been
proposed after DnCNN, including FFDNet [47], N3Net
[36], and MemNet [39]. However, as pointed out by Guo
et al. [20], AWGN-based training methods suffer in real-
world denoising due to the domain differences between real
and synthetic noise.

2.2. Denoising for Real-World Image

Real paired-dataset based supervised denoising meth-
ods. These approaches typically involve designing high-
performance denoising networks that are trained in a super-
vised manner using pairs of clean-noisy image datasets cap-
tured from real scenes. Anwar et al. [2] proposed a method
that combines synthetic and real images during training to
enhance the generality of the denoising model. Cheng et al.
[13] generated a set of image basis vectors from the noisy
input images and reconstructed them from the subspace
formed by these basis vectors to obtain image-denoising re-
sults. Ren et al. [37] proposed a novel model-based de-
noising method that informs the design of the network for
both synthetic and real denoising. Rencently, Ren et al. [38]
proposed a novel depth-unfolding network based on a latent
space blind model via self-correction alternative optimiza-
tion.
Synthetic paired-dataset based two-step denoising meth-
ods. While several real-world noisy datasets have been in-
troduced, the limited number of training datasets motivates
some approaches to divide the denoising task into two steps
based on noise modeling: 1) synthesizing paired datasets by
modeling noise or incorporating a priori noise information,
and 2) training the denoiser. By leveraging prior knowledge
of the image signal processing (ISP) pipeline, CBDNet [20]
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Figure 2. The architecture of our proposed SCPGabNet framework consists of two branches: Branch1: “Self-synthesis - Unpaired-
synthesis” (Left: obtain Self-synthesis image ys−syn from yrec and ny; Right: obtain Unpaired-synthesis image yu−syn from yrec and
nx) and Branch2: “Unpaired-synthesis - Self-synthesis” (Left: obtain Unpaired-synthesis image xu−syn from x and ny; Right: obtain
Self-synthesis image xs−syn from nx and xrec). Each branch contains a self-collaborative operation that involves a noise extraction
module NE and a denoiser DN. This process is essentially an R (replacement)-B (boosting) iteration, where the NE module extracts noise
from the noisy image, and the DN removes the noise from the noisy image to generate a clean image.

emulated the pipeline using a gamma correction and demo-
saicking process. Then, the synthesized anisotropic Gaus-
sian noise is transformed into a realistic noise signal that is
used to generate training pairs for supervised learning. Liu
et al. [29] employed a priori information on image degrada-
tion to synthesize realistic noisy images and achieve good
denoising performance. Zhou et al. [18] generated synthetic
Gaussian-distributed noisy images and trained a Gaussian
denoiser on a paired dataset of such images. For testing,
they applied a conventional noise distribution conversion
method that approximates real noise as Gaussian through
pixel shuffling. Jang et al. [23] proposed a Clean-to-Noisy
generator network based on a GAN that learns the features
of real-world noises, capable of accurately representing var-
ious noise types. The generated pairs are then used to train
a denoiser.
Image Denoising without Paired Dataset. Obtaining
paired datasets in practice is extremely challenging, which
has led to the emergence of simple unsupervised methods.
These methods do not require prior knowledge of the noise
model but instead combine image synthesis and denoising
within a single framework. Chen et al. [10] firstly pro-
posed a noise generator that can create pseudo-noisy images
to train a denoiser. Cha et al. [6] proposed GAN2GAN,
which uses a multi-generator/discriminator structure to bet-
ter extract noisy information and generate pseudo images
that better match the real noise distribution. Hong et al. [21]
proposed UIDNet, which employs a sharpening processing
mechanism to achieve noise separation and better train un-
paired denoising models. In addition, several methods have
been proposed to train models using only noisy images. Ne-

shatavar et al. [32] developed a self-supervised network that
can handle real-world signal-dependent noise with greater
adaptability to realistic noise. LEE et al. [27] proposed an
unpaired learning approach that combines cyclic adversarial
learning and self-supervised residual learning.

3. Proposed Method
In this section, we introduce a promising denoising net-

work called SCPGabNet. The details are illustrated in the
following subsections.

3.1. Parallel Generative Adversarial Branches for
Unsupervised Denoising (PGabNet)

To apply the SC strategy, we first propose a high-
performance baseline in this subsection, named PGabNet,
which ensures the stability and effectiveness of the training
process.

3.1.1 Filter-Guided Synthetic Noisy Image Generator

While supervised denoising frameworks generally outper-
form unsupervised ones (e.g., [17] 40.30dB, [37] 39.35dB
vs. [32] 34.71dB, [27] 34.90dB on the SIDD Benchmark),
they require a large number of paired datasets. Conversely,
unsupervised denoising frameworks are more robust to sit-
uations where training images are inadequate or unpaired,
compared to supervised methods. Acording to [6, 23], the
reason for this performancec gap is the difference between
the synthetic noisy images and the real ones. The more re-
alistic the training images are, the better the denoiser’s per-
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formance will be. If the quality of the synthetic image is
good enough (infinitely close to the real image), then the
performance of the denoiser will not differ between super-
vised and unsupervised frameworks. Therefore, improving
the quality of the synthetic image is a general method to
enhance the performance of unsupervised denoising frame-
work.

As depicted in Figure 3, synthesizing real noisy images
with high quality can be challenging due to the influence
of different image contents. To mitigate this difficulty, we
propose a novel filter-guided synthetic noisy image genera-
tor for our GAN model, which better captures noise infor-
mation. Since it is difficult to learn the noise distribution
directly, instead of directly inputting a noisy image and a
clean image into G, we use the NE module to obtain the
noise. Specifically, a learnable convolutional block called
DN0 is used for denoising, and the noise is then obtained
by subtracting the denoised image from the original noisy
image. This approach reduces the learning difficulty of the
generator and encourages it to focus more on synthesizing
high-quality noisy images, thereby improving the overall
denoising performance.

3.1.2 Parallel Generative Adversarial Branches

The overall framework is a GAN structure that utilizes un-
paired clean and noisy images. We employ a Resnet with
6 residual blocks as the generator, a PatchGAN as the dis-
criminator [51] and a DeamNet [37] as the denoiser. The
specific structures of these variants are shown in detail in
the Supplementary Material.

There are two cases in learning synthetic pseudo noisy
images in PGabNet: (1) when the clean and noisy images
are different; (2) when the clean and noisy images are the
same. Unpaired synthesis is a common approach in many
computer vision works, where one degraded image guides
the generation of a synthetic image from another clean im-
age (e.g., [15, 23]). The goal is to learn the noise distribu-
tion properties from the input noise of one noisy image to
guide the generation of a similar pseudo-signal-dependent
noisy image from another clean image. This method im-
poses unpaired constraints on the generator, which captures
more prior information and improves the quality of syn-
thetic noisy images. A robust generator should learn the
real noise distribution properties of different inputs. To bal-
ance the noise extracted from “same image” and “different
images”, we propose self-synthesis. These two complemen-
tary constraints can improve the adversarial performance of
the generator-discriminator and produce synthetic noisy im-
ages that are more consistent with the true noise distribu-
tion.

As illustrated in Figure 2, the PGabNet comprises two
branches, with each branch implementing the complemen-

Figure 3. The architecture of the filter-guided synthetic noisy
image generator is designed to extract real noise through the noise
extraction (NE) module and project the noise distribution directly
onto the clean image. This approach reduces the difficulty for the
generator to synthesize better noisy images.

tary “self-synthesis” and “unpaired synthesis” constraints,
respectively. Branch 1 utilizes “self-synthesis - unpaired
synthesis” architecture, while branch 2 employs the “un-
paired synthesis - self-synthesis” architecture. Specifi-
cally, branch 1 generates the self-synthesis noisy image
ys−syn and the unpaired synthesis noisy image yu−syn,
while branch 2 generates the unpaired synthesis noisy im-
age xu−syn and the self-synthesis noisy image xs−syn.
These images are then fed as inputs to the discriminator,
along with the real noisy image y. The “self-synthesis” con-
straint and the “unpaired synthesis” constraint are strongly
complementary within each branch of PGabNet. Addition-
ally, the “self-synthesis” constraint and the “unpaired syn-
thesis” constraint between these two branches are also com-
plementary.

3.1.3 GAN-based Noise Synthesize and Loss function

As depicted in Figure 2, x and y represent the clean and
real-world noisy images. Correspondingly, X and Y de-
note the clean and real-world noisy domains. The genera-
tor G aims to perform domain transformation by learning
the image distribution in an unsupervised GAN framework.
Simultaneously, the discriminator D (Due to space limita-
tion, it is not given in this figure. Please see Supplemen-
tary Material for details.) evaluates whether the output of
the generator belongs to the same domain as the target im-
age. The generator and discriminator are trained in an ad-
versarial manner to accomplish the domain transformation.
Many studies [23, 20, 50] have demonstrated that signal-
dependent noise can be modeled by additivity. The G in
Figure 3, we first extract the noise ny from the noisy im-
age using the NE module, and then input both the noise and
clean image into G to synthesize a pseudo noisy image:

xu−syn = G(x,NE(y)) (1)

We simultaneously train a discriminator D to distinguish
whether a given noisy image is synthesized by our genera-
tor G or sampled from a real-world dataset. Here, y and
xu−syn denote the real-world image and synthetic image,
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Figure 4. Example of BGM loss.

respectively. To prevent model degradation during train-
ing and improve the representation capability of the net-
work, we use the least squares loss as the adversarial loss
for Ladv2. The mathematical expression is as follows:

Ladv2(D,G) =− Ey∼Y [∥D(y)− 1∥22]
− Exu−syn∼S [∥D(xu−syn)− 0∥22]

(2)

That means for the generated image xu−syn, its adver-
sial loss Ladv2 is constrained between y and xu−syn. The
other three dversial losses can be constructed similarly by
constraining the current generated image and y. Then, the
total loss can be given by:

LGAN = Ladv1 + Ladv2 + Ladv3 + Ladv4 (3)

Inspired by [24], we further apply a Background Guid-
ance Module (BGM) to provide additional reliable super-
vision. The BGM maintains the consistency of the back-
ground between the synthetic noisy image and the clean
image, constraining their low-frequency contents to be sim-
ilar. Specifically, we illustrate this approach using LBGM

in branch 2. Low-frequency contents are extracted by using
several low-pass filters and constrained to be similar to each
other through the L1 norm loss :

LBGM =Exu−syn∼S,x∼X

[
∑

σ=3,9,15

λσ∥Bσ(x)−Bσ(xu−syn)∥1] (4)

where Bσ(•) denotes the Gaussian filter operator with blur-
ring kernel size σ, and λσ denotes the weight for the level
σ. An example of the BGM loss is shown in Figure 4. We
empirically set σ-s to 3, 9 and 15, and λ-s to 0.01, 0.1, and
1, respectively.

In our image denoising framework, we utilize pseudo-
paired samples denoted by xi and (xrec)i. The denoiser is
trained by optimizing the following loss functions:

LDN (Θ) =
1

2m

m∑
i=1

[∥(xrec)i − xi∥1

+ λSSIMLSSIM ((xrec)i, xi)]

(5)

Figure 5. Visual illustration of the SC strategy. In NE, k denotes
the number of iterations. It is a learnable convolutional block when
k=0. However, when k>0, the iterative collaboration of DN0 and
the denoiser DN is conducted. Specifically, the weaker denoiser
DN0 is successively replaced by the current more powerful de-
noiser DN, which enables the synthesis of better clean-noisy im-
age pairs. This iterative process results in a series of increasingly
powerful denoisers. 1⃝: the current denoiser DN is applied to re-
place the previous weaker denoiser DN0. This replacement allows
for the creation of a new and more powerful denoiser DN. 2⃝: the
updated NE is obtained to generate better clean-noisy image pairs
that are used to train the denoiser DN. 3⃝: the denoiser DN is
trained using the updated clean-noisy image pairs, which further
boosts its performance.

where m denotes the total number of the sample pairs,
(xrec)i is the clean image estimated by the denoising net-
work, LSSIM (•) represents the structural information used
by SSIM loss to constrain the image, and λSSIM is the
weight for LSSIM . In conclusion, the total loss function
is:

L = min
G

max
D

LGAN + λBGMLBGM + LDN (Θ) (6)

where λBGM denotes the hyperparameter of background
consistency loss.

3.2. Proposed SC based PGabNet (SCPGabNet)

In the previous subsection, we introduced our powerful
baseline, PGabNet. However, as PGabNet is still a con-
ventional GAN-based unsupervised framework, it is highly
challenging to further improve its performance without sig-
nificantly altering the network architecture or increasing in-
ference complexity. To address this problem, we propose
SC-based PGabNet (SCPGabNet).
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3.2.1 Self-Collaboration Strategy

Our SC strategy is an innovative approach that enables a de-
noiser trained in conventional structures to self-correct and
improve its performance without requiring modifications to
the denoiser’s structure or increased complexity. By incor-
porating the SC strategy into PGabNet, we aim to surpass
the performance limit of conventional GAN-based unsuper-
vised frameworks.

The SC strategy is illustrated in Figure 5, and it func-
tions more like an outer loop than an inner loop. The struc-
ture consists of a noise extraction module (NE) and a de-
noiser (DN). As described in the previous sub-sections, the
NE module extracts noise from a noisy image and guides
the generator to produce high-quality synthetic noisy im-
ages. To train the PGabNet, we initially use a simple and
learnable linear convolutional layer as DN0

0 in the NE mod-
ule. Then, the denoiser is iteratively replaced and boosted,
with k denoting the number of iterations. During each iter-
ation, the current more powerful denoiser DN replaces the
previous weaker denoiser DN0 in the NE module, signifi-
cantly improving the performance of the updated denoiser.
By using the SC strategy for the denoiser inside and out-
side the NE module, better DN0 can be obtained, which
can extract more accurate noise. This results in the produc-
tion of more realistic synthetic noisy pairs, and iteratively
improves the performance of the updated DN with higher-
quality synthetic samples. Excitingly, we observe a signif-
icant improvement in the performance of DN by using the
SC strategy than the original one without SC.

During the SC stage, the loss functions of G and D are
the same as before. The loss function of DN:

LDN−SC =LDN +
1

2m
[

m∑
i=1

∥(xrec)i −DN0(xu−syn)∥1

+ ∥(yrec)i −DN0(yi)∥1)
+ λSSIMLSSIM ((xrec)i, DN0(xu−syn))

+ λSSIMLSSIM ((yrec)i, DN0(yi))]

(7)

The basic idea of the SC is to use the result of the pre-
vious stage as feedback information to guide and improve
the subsequent stages. The ‘feedback information’ can ei-
ther be a structure or an output image. This approach has
significant potential in low-level vision tasks.

3.2.2 Analysis of SC for PGabNet

To develop a more powerful denoising framework, we inte-
grate the SC strategy with our previous PGabNet, which we
now refer to as SCPGabNet. At the start of each iteration,
the new NE can more accurately capture noise in the noisy

image by replacing DN0 in the NE module with a more
powerful DN. This reduces the impact of the image content
on the synthetic noisy image generation process. As illus-
trated in Figure 2, with more precise noise extracted from
the noisy image y, our denoiser can achieve better results
in both self-synthesis in branch 1 and unpaired synthesis in
branch 2, resulting in a higher quality synthetic noisy im-
age. Similarly, more accurate noise extracted from the syn-
thetic noisy image xu−syn can improve unpaired synthesis
in branch 1 and self-synthesis in branch 2, thus promoting
complementary constraints between the two branches and
making the modules in the network more interconnected.
As a result, our SC strategy creates a self-boosting frame-
work that enables better denoiser training and performance.

The implementation of SC strategy in SCPGabNet in-
volves several steps: First, after the original framework
(PGabNet) has reached convergence, we replace DN0 in
the NE module with the latest DN and fix its parameters to
generate better pseudo-noisy images. Next, we retrain G,
D, and DN until convergence is achieved. Finally, we re-
peat the previous processes until the performance of DN no
longer improves.

4. Experiments

In this section, we first describe the experimental set-
tings, including the datasets and training details. After that,
to evaluate the effectiveness, the proposed method is com-
pared with some representative supervised/unsupervised
methods. Finally, we analyze the proposed method in-
depth.

4.1. Experimental Setting

Training and Testing Data. To train and test the model,
we first equally divide the SIDD Medium training set (con-
sisting of 320 pairs of noise images and corresponding clean
images captured by multiple smartphones) into separate
noisy and clean image parts. Then, we use 160 clean im-
ages from the first part and 160 noisy images from the sec-
ond part to construct an unpaired dataset of real images for
training the algorithm presented in this paper. We evaluate
the denoising performance on three widely used real-world
noisy datasets SIDD[1] Validation, SIDD[1] Benchmark,
and the DND[40] Benchmark. Note that the denoised im-
ages of SIDD Benchmark and DND Benchmark can be up-
loaded to the SIDD and DND websites to obtain the PSNR
and SSIM results.

Implementation Details. To optimize the proposed net-
work, we adopt the Adam optimizer algorithm with β1=0.9,
β2=0.999, and the initial learning rate is set to 10−4. The
mini-batch size is set to 10, the used framework is Py-
Torch, and the used GPU is GeForce RTX 3090. For noise
learning, the background consistency loss hyperparameter

12647



Table 1. Denoising results of several competitive methods on SIDD Validation, SIDD Benchmark, and DND Benchmark

Methods Conference/Journal
SIDD Validation SIDD Benchmark DND Benchmark

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Non-learning BM3D [14] TIP 2007 31.75 0.7061 25.65 0.6850 34.51 0.8510
WNNM [19] CVPR 2014 − − 25.78 0.8090 34.67 0.8650

Real pairs( Supervised)

TNRD [12] TPAMI 2016 26.99 0.7440 24.73 0.6430 33.65 0.8310
DnCNN [46] TIP2017 26.20 0.4414 28.46 0.7840 32.43 0.7900
FFDNet [47] TIP 2018 26.21 0.6052 29.30 0.6940 34.40 0.8470
RIDNet [3] CVPR 2019 38.76 0.9132 37.87 0.9430 39.25 0.9530

AINDNet [25] CVPR 2020 38.96 0.9123 38.84 0.9510 39.34 0.9520
InvDN [29] CVPR 2021 38.30 0.9064 39.28 0.9550 39.57 0.9520

DeamNet [37] CVPR 2021 39.40 0.9169 39.35 0.9550 39.63 0.9531
ScaoedNet [38] NeurIPS 2022 39.52 0.9187 39.48 0.9570 40.17 0.9597

Synthetic pairs(two pipeline)

DnCNN [46] TIP 2017 − − 23.66 0.5830 32.43 0.7900
CBDNet [20] CVPR 2019 30.83 0.7541 33.28 0.8680 38.06 0.9420

PD+ [18] AAAI 2020 34.03 0.8810 34.00 0.8980 38.40 0.9450
C2N+DnCNN [23] ICCV 2021 − − 33.76 0.9010 36.08 0.9030
C2N+DIDN [23] ICCV 2021 − − 35.02 0.9320 36.12 0.8820

Unsupervised

N2V [26] CVPR 2019 29.35 0.6510 27.68 0.6680 − −
GCBD [10] CVPR 2018 − − − − 35.58 0.9220
UIDNet [21] AAAI 2020 − − 32.48 0.8970 − −

R2R [34] CVPR 2021 35.04 0.8440 34.78 0.8980 36.20 0.9250
CVF-SID (S2) [32] CVPR 2022 − − 34.71 0.9170 36.50 0.9240

AP-BSN[27] CVPR 2022 34.46 0.8501 34.90 0.9000 37.46 0.9240
PGabNet(baseline) − 34.66 0.8517 34.67 0.8950 36.87 0.9267
SCPGabNet(ours) − 36.53 0.8860 36.53 0.9250 38.11 0.9393

λBGM in the loss function of Eq. 4 is set to 6. For the de-
noising network, the hyperparameter λSSIM of the SSIM
constraint term in Eq. 5 is set to 1.

4.2. Real-World Image Denoising Analysis

In this subsection, we evaluate the denoising perfor-
mance of our method on real images from the SIDD Val-
idation, SIDD Benchmark, and DND Benchmark. We com-
pare our method with a range of traditional-based methods,
representative supervised methods based on paired images,
and latest unsupervised methods based on unpaired images
from recent years. We utilize evaluation metrics (PSNR and
SSIM) to assess the effectiveness of each method.

Table 1 presents the quantitative evaluation of various
methods on the SIDD Validation, SIDD Benchmark, and
DND Benchmark in the sRGB space. It is observed that
SCPGabNet achieves the best performance among the un-
supervised approaches. Specifically, compared with the lat-
est unpaired methods AP-BSN and CVF-SID presented at
CVPR 2022, SCPGabNet provides a PSNR gain of 1.63
dB and 1.82 dB, and an SSIM gain of 0.25 and 0.008 on
the SIDD benchmark. Moreover, SCPGabNet outperforms
CBDNet, which is a classic supervised real denoising net-
work. In terms of the two-stage synthetic denoising method,
SCPGabNet outperforms two-stage pipeline methods with
self-ensemble (e.g., C2N+DnCNN∗, C2N+DIDN∗) on both
SIDD and DND datasets. Although PD+[18] performs
slightly better than SCPGabNet on the DND Benchmark,
SCPGabNet’s performance is significantly superior to PD+
on both SIDD Benchmark and SIDD validation by more
than 2dB. SCPGabNet is trained only on the SIDD training
set and still exhibits a greater advantage on other bench-

marks, indicating its greater generalizability than two-step
methods. Although our method’s denoising performance is
not as good as some of the latest supervised methods based
on real image pairs, such as ScaoedNet[38], the majority
of these methods depend on a large number of paired im-
ages. Consequently, they may not be effectively applied
to real-world image-denoising tasks when training images
are insufficient or cannot be paired. In contrast, our SCP-
GabNet can achieve image denoising without using paired
images, making it flexible enough to handle a wide range of
real-world denoising scenarios. Figure 6 depicts denoised
examples on the SIDD Validation dataset. Our method out-
performs comparable unsupervised and two pipeline meth-
ods in noise removal and detail preservation.

4.3. Ablation Study

In this subsection, we demonstrate the importance of the
PGabNet structure and BGMloss in Table 2. V1 is the
GAN-based unsupervised denoising network with only un-
paired synthesis. V2 is the V1 + BGMloss, V3 is the V2
+ NE module. V4 is the branch U-S, i.e., SGabNet and V5
is our baseline (PGabNet). Due to the limited space, the
specific structure of these variants are provided in the Sup-
plementary Material.

By comparing V1 with V2, we found that adding the
BGMloss to the GAN-based unsupervised denoising net-
work can lead to a more stable training process. Further-
more, adding the NE module to V2 to obtain V3, the PSNR
increase is about 0.20dB, verifying the effectiveneess of the
NE module and the improvement in the quality of synthetic
images. Comparing V3 with V4 (SGabNet), we observed
that the denoiser experienced a more significant improve-
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Figure 6. Visual comparison of our method against other competing methods. The quantitative PSNR(dB)/SSIM results are listed as well.

Table 2. V1: (U) Conventional GAN-based unsupervised denois-
ing network only with unpaired synthesis; V2: V1 + BGMloss;
V3: V1 + BGMloss + NE module; V4: (S) SGabNet(V1 + BGM-
loss + NE module + self-synthesis) V5: (P) PGabNet(our base-
line).

Methods V1 V2 V3 V4 V5(ours)

U ✓ ✓ ✓ ✓ ✓
BGMloss ✓ ✓ ✓ ✓

NE module ✓ ✓ ✓
S ✓ ✓
P ✓

PSNR(dB) 33.14 33.26 33.45 34.27 34.67

ment after adding the “self-synthesis” constraint. Specifi-
cally, the PSNR improved by 0.82dB on the SIDD Bench-
mark, demonstrating that “self-synthesis + unpaired syn-
thesis” can better train the network and enhance the de-
noiser’s performance. Finally, compared PGabNet with
SGabNet, we observed a significant performance improve-
ment in PGabNet with PSNR gains of 0.40dB on the SIDD
Benchmark. This is because PGabNet enhances PGabNet
with SGabNet, leading to the production of better synthetic
noisy images that are more consistent with the real image
distribution and improving the denoiser’s performance.

4.4. Effectiveness of SC strategy

In this subsection, we apply the SC strategy to our base-
line method (PGabNet) and obtain SCPGabNet. The details
of this process are as follows: In the first stage, the batch
size is 8 and the patchsize is 112. In the second stage, we
increase the patchsize to 128 and reduce the batchsize to 4
for fine-tuning. The learning rate is keep at 10−4 for both
stages. As shown in Figure 7, we display the performance
of the SC on the SIDD Benchmark. In the initial few itera-

Figure 7. The entire process involves eight iterations, consisting
of two stages. In the first stage: the batchsize=8 and the patch-
size=112. In the second stage, fine-tuning is performed with a
batch size of 4 and a patch size of 128. The upper part of the
figure shows the results of SCPGabNet on the SIDD Benchmark
after each iteration, while the lower part displays the improvement
achieved in each iteration.

tions, we observe a notable improvement in denoising per-
formance, especially in the first iteration where the denoiser
improves by more than 0.5dB. Based on the PSNR incre-
ments observed between adjacent iterations, the ∆PSNR
decreases as the iterations progress, with the last iteration
resulting in only a 0.02dB improvement. By comparison
with PGabNet, with a PSNR of 36.53dB, significantly im-
proved by 1.86dB on the SIDD Benchmark. This improve-
ment highlights the effectiveness of our proposed approach
in achieving state-of-the-art performance in image denois-
ing.
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4.5. Analysis on Transferability

To evaluate the generality and transferability of our ap-
proach, we apply the proposed SC strategy to several clas-
sical and the latest denoising networks, including DnCNN
[46], UNet [33], DeamNet [37] and DBSNL [43], which
serves as the denoisier for the AP-BSN [27]. The frame-
work still adopts the PGabNet proposed in section 3 with
different denoiser networks.

Table 3 illustrates that our proposed SC strategy is ef-
fective to these networks. For instance, after applying the
SC strategy to DnCNN, the PSNR/SSIM improvements on
SIDD Validation are 0.96dB/0.0085. For UNet and DB-
SNL, the gains are 1.58dB/0.0373 and 1.52dB/0.0035 re-
spectively. Consequently, the results demonstrate that our
SC strategy has strong transferability and can be potentially
applied to other unsupervised denoising methods.

Table 3. The effects of SC for different denoisers.

Networks Self-Collaboration
SIDD Validation SIDD Benchmark DND Benchmark

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DnCNN [46] No 30.60 0.8553 30.56 0.8150 29.79 0.7876
Yes 31.56 0.8638 31.52 0.8260 30.77 0.7892

UNet [33] No 34.46 0.8417 34.63 0.8960 35.81 0.9140
Yes 36.04 0.8790 36.00 0.9180 38.04 0.9401

DBSNL [43] No 34.38 0.8757 34.29 0.9100 36.51 0.9257
Yes 35.90 0.8792 35.86 0.9160 37.72 0.9295

Deamnet [37] No 34.66 0.8517 34.67 0.8950 36.87 0.9267
Yes 36.53 0.8860 36.53 0.9250 38.11 0.9393

5. Conclusion

In this paper, we first introduce a parallel generative ad-
versarial branches for unsupervised real-world image de-
noising as our baseline. Furthermore, we innovatively pro-
pose an SC strategy that can provide the denoiser a self-
boosting capacity and significantly improve denoising per-
formance. Our experimental results demonstrate that the
proposed method achieves state-of-the-art performance. In
addition, we validate the transferability of the SC strategy
on various denoisers and anticipate its potential applicabil-
ity to many low-level computer vision tasks.

6. Limitations and Future Work

Our current focus is on unsupervised tasks, with super-
vised tasks slated for future exploration. We specifically
investigate the denoising task and, at the same time, con-
sider the potential to delve into restoration tasks. In the
SC strategy, each iteration necessitates manually selecting
the optimal model iteration or retraining within the phase
based on metrics, which is labour-intensive. The SC strat-
egy can be simplified in the future by using automated iter-
ation. The overall framework is based on CNNs, and better
performance can be obtained in the future with transform-
ers.

Acknowledgement This work was supported by the Na-
tional Natural Science Foundation of China under Grant
62171304, and in part by 62276176.

References
[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S

Brown. A high-quality denoising dataset for smartphone
cameras. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1692–
1700, 2018. 6

[2] Saeed Anwar and Nick Barnes. Real image denoising with
feature attention. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3155–3164,
2019. 1, 2

[3] S. Anwar and N. Barnes. Real image denoising with feature
attention. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3155–
3164, 2019. 7

[4] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,
Dillon Sharlet, and Jonathan T Barron. Unprocessing images
for learned raw denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11036–11045, 2019. 2

[5] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel
Morel. A non-local algorithm for image denoising. In 2005
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 2, pages 60–65 vol.
2, 2005. 1, 2

[6] Sungmin Cha, Taeeon Park, Byeongjoon Kim, Jongduk
Baek, and Taesup Moon. Gan2gan: Generative noise learn-
ing for blind denoising with single noisy images. In Inter-
national Conference on Learning Representations (ICLR),
pages 1712–1722, 2019. 2, 3

[7] Antonin Chambolle. An algorithm for total variation min-
imization and applications. Mathematical Imaging and Vi-
sion, 20(1):89–97, 2004. 1, 2

[8] Meng Chang, Qi Li, Huajun Feng, and Zhihai Xu. Spatial-
adaptive network for single image denoising. In European
Conference on Computer Vision, pages 171–187. Springer,
2020. 1, 2

[9] Jingdong Chen, J. Benesty, Yiteng Huang, and S. Doclo.
New insights into the noise reduction wiener filter. IEEE
Transactions on Audio, Speech, and Language Processing,
14(4):1218–1234, 2006. 1, 2

[10] J. Chen, J. Chen, H. Chao, and M. Yang. Image blind denois-
ing with generative adversarial network based noise model-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3155–3164,
2018. 2, 3, 7

[11] Tao Chen, Kai-Kuang Ma, and Li-Hui Chen. Tri-state me-
dian filter for image denoising. IEEE Transactions on Image
Processing, 8(12):1834–1838, 1999. 1, 2

[12] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction
diffusion: A flexible framework for fast and effective image
restoration. IEEE transactions on pattern analysis and ma-
chine intelligence, 39(6):1256–1272, 2016. 7

12650



[13] Shen Cheng, Yuzhi Wang, Haibin Huang, Donghao Liu,
Haoqiang Fan, and Shuaicheng Liu. Nbnet: Noise basis
learning for image denoising with subspace projection. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4896–4906, 2021.
2

[14] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on Image
Processing, 16(8):2080–2095, 2007. 1, 2, 7

[15] Wenchao Du, Hu Chen, and Hongyu Yang. Learning in-
variant representation for unsupervised image restoration. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 14483–14492, 2020.
2, 4

[16] Michael Elad and Michal Aharon. Image denoising via
sparse and redundant representations over learned dictionar-
ies. IEEE Transactions on Image Processing, 15(12):3736–
3745, 2006. 1, 2

[17] Chen L et al. Simple baselines for image restoration. In
ECCV, 2022. 3

[18] Yuqian Zhou et al. When awgn-based denoiser meets real
noises. In AAAI, 2020. 3, 7

[19] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu
Feng. Weighted nuclear norm minimization with application
to image denoising. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2862–2869, 2014. 1,
2, 7

[20] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1712–
1722, 2019. 1, 2, 4, 7

[21] Zhiwei Hong, Xiaocheng Fan, Tao Jiang, and Jianxing Feng.
End-to-end unpaired image denoising with conditional ad-
versarial networks. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 4140–4149, 2020. 2,
3, 7

[22] Jie Huang, Zhibo Zhao, Chao Ren, Qizhi Teng, and Xiaohai
He. Aprior-guideddeepnetworkforrealimagedenoisingandits
applications. Knowledge-Based Systems, 255:109776, 2022.
2

[23] Geonwoon Jang, Wooseok Lee, Sanghyun Son, and Ky-
oungmu Lee. C2n: Practical generative noise modeling for
real-world denoising. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 2350–
2359, 2021. 3, 4, 7

[24] Xin Jin, Zhibo Chen, Jianxin Lin, Zhikai Chen, and Wei
Zhou. Unsupervised single image deraining with self-
supervised constraints. In IEEE International Conference on
Image Processing (ICIP), pages 2761–2765, 2019. 5

[25] Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik
Cho. Transfer learning from synthetic to real-noise denois-
ing with adaptive instance normalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 7

[26] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug.
Noise2void-learning denoising from single noisy images. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2129–2137, 2019.
7

[27] Wooseok Lee, Sanghyun Son, and Kyoung Mu Lee. Ap-bsn:
Self-supervised denoising for real-world images via asym-
metric pd and blind-spot network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 17725–17734, 2022. 3, 7, 9

[28] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and
Thomas S Huang. Non-local recurrent network for image
restoration. Advances in Neural Information Processing Sys-
tems, 2018:1673–1682, 2018. 1

[29] Yang Liu, Zhenyue Qin, Saeed Anwar, Pan Ji, Dongwoo
Kim, Sabrina Caldwell, and Tom Gedeon. Invertible denois-
ing network: A light solution for real noise removal. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13365–13374, 2021. 1, 3, 7

[30] Jan Lukas, Jessica Fridrich, and Miroslav Goljan. Digital
camera identification from sensor pattern noise. IEEE Trans-
actions on Information Forensics and Security, 1(2):205–
214, 2006. 1

[31] Julien Mairal, Michael Elad, and Guillermo Sapiro. Sparse
representation for color image restoration. IEEE Transac-
tions on Image Processing, 17(1):53–69, 2008. 1, 2

[32] Reyhaneh Neshatavar, Mohsen Yavartanoo, Sanghyun Son,
and Kyoung Mu Lee. Cvf-sid: Cyclic multi-variate function
for self-supervised image denoising by disentangling noise
from mage. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 17583–
17591, 2022. 3, 7

[33] Ronneberger O, Fischer P, and Brox T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pages 234–241, 2015. 9

[34] Tongyao Pang, Huan Zheng, Yuhui Quan, and Hui Ji.
Recorrupted-to-recorrupted: Unsupervised deep learning for
image denoising. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2043–2052, 2021. 7

[35] Shibin Parameswaran, Enming Luo, and Truong Q Nguyen.
Patch matching for image denoising using neighborhood-
based collaborative filtering. IEEE Transactions on Circuits
and Systems for Video Technology, 28(2):392–401, 2016. 1,
2
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