PPGWeaver: Diffusion-Augmented Models for Real-
Time Heart Rate Estimation on Microcontrollers

Vinayak Narasimhan Raimi Shah
Samsung System LSI Synthefy
Samsung Semiconductor Austin, TX, USA
Pasadena, CA, USA raimi@synthefy.com
v.narasim@samsung.com
Shailabh Kumar Sang Kyu Kim
Samsung System LSI Samsung System LSI

Samsung Semiconductor
Pasadena, CA, USA
shailabh.k@samsung.com

Samsung Electronics
Hwaseong, South Korea
sangq.kim@samsung.com

Abstract—We present a compact, deployable heart rate (HR)
estimation system using photoplethysmography (PPG) and
inertial measurement unit (IMU) data, combining TimeWeaver, a
conditional diffusion model for metadata-aware synthetic
augmentation, with progressive structured pruning of Temporal
Convolutional Networks (TCNs). Our smallest model, with 1.56k
parameters, achieves a mean absolute error (MAE) of 4.92 BPM
on the PPG-DaLiA dataset and supports real-time inference
(<40 ms latency) on a 64 MHz ARM Cortex-M4F microcontroller
(MCU) without requiring quantization. Synthetic data
conditioned on subject metadata, HR, and activity type
significantly enhances model generalization, enabling pruned
models to match or exceed the accuracy of larger baselines,
achieving over a 23% improvement compared to training on real
data alone. Our work establishes a new Pareto frontier for real-
time, on-device HR monitoring using diffusion-augmented
training and sub-2k parameter models.

Keywords—Heart Rate Estimation, Photoplethysmography,
PPG, Synthetic Data, Diffusion Models, Model Pruning, Edge Al,
Temporal Convolutional Networks, Microcontrollers, Wearables

I. INTRODUCTION

PPG sensors, often combined with IMU data, are widely
used in wrist-worn HR devices but suffer from motion artifacts
in real-world use. While deep learning models have
outperformed traditional signal-processing approaches on
benchmark datasets like PPG-DaLiA, the de facto benchmark
for HR estimation used in nearly all state-of-the-art (SOTA)
studies, challenges persist when deploying these models on
constrained MCUs. Most SOTA methods compromise either
accuracy, latency, or model size, and performance often
degrades sharply when compressed below 10k parameters.

This work uses TimeWeaver [1], a conditional diffusion
model that introduces a novel approach to PPG data synthesis
by leveraging subject metadata, such as age, gender, body type,
activity type and skin tone to enhance training data diversity.
Our hypothesis is that targeted synthetic injection helps
compensate for performance degradation at higher pruning
levels by populating underrepresented HR ranges and activity
classes, particularly for subjects and transitions poorly
represented in the real training distribution. We integrate these

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Shubhankar Agarwal Sai Shankar Narasimhan
Synthefy Synthefy
Austin, TX, USA Austin, TX, USA
somi@synthefy.com sai@synthefy.com

Sandeep Chinchali Radwanul Hasan Siddique

Synthefy Samsung System LSI
Austin, TX, USA Samsung Semiconductor
sandeep@synthefy.com Pasadena, CA, USA

r.siddique@samsung.com

synthetic signals with real PPG-DalLiA data to train a
structurally pruned TCN-based model with only 1.56k
parameters, achieving real-time inference on an ARM Cortex-
MA4F in under 40 ms. Our system delivers SOTA accuracy
(4.92BPM MAE) among ultra-lightweight models without
requiring quantization or hardware-specific tuning establishing
a new Pareto frontier for real-time HR estimation (Fig. 1).

II. BACKGROUND & RELATED WORK

The PPG-DaliA dataset (~36 hours of PPG and
accelerometer data from 15 subjects) has emerged as the
benchmark for HR estimation under real-world conditions [2].
Traditional digital-signal processing (DSP) pipelines were
effective in lab settings but lack generalizability on
unconstrained datasets like PPG-DaLiA.

Deep learning methods now dominate [2-10]. Early efforts
like DeepPPG and NAS-PPG improved accuracy but were
impractical for deployment due to size [2, 3]. Q-PPG introduced
quantized TCNs with variants running on STM32 MCUs,
showing that sub-2 kB models could achieve 7.73 BPM MAE
with real-time performance [4]. EnhancePPG wused self-
supervised learning and classical augmentation to achieve
3.54 BPM MAE, albeit at the cost of higher latency and larger
model size [5]. KID-PPG demonstrated further gains using
domain knowledge but omitted deployability metrics [6]. Recent
works like AugmentPPG introduced synthetic augmentation via
sensor fusion and demonstrated efficient deployment on GAP8
[7]. However, these methods either rely on handcrafted
transformations or fail to meet all constraints of low parameter
count, high accuracy, and real-time performance
simultaneously.

Recent notable studies have predominantly employed DSP-
based augmentation techniques, which offer limited signal
diversity and yield only modest performance gains (~5%) [5-7].
These insights motivate our approach of using TimeWeaver [1],
a state-of-the-art diffusion model, to generate realistic,
metadata-conditioned synthetic data. By coupling this with
structured pruning, we address the dual challenge of improving
generalization and accuracy while reducing model size and
latency. This method yields a test performance improvement of

over 23% while producing ultra-compact models (<2K
parameters) suitable for deployment on resource-constrained
MCUs, without compromising full-precision accuracy.

@ DeepPPG[2] @® MHPULSE[8]
10 ® @ NASPPG[3] BeliefPPG [9]
® QPPG[4] @® MH Conv-LSTM [10]
[] 5] PGWeaver
9 @® AugmentPPG[7] === Fgreko Front
= 8
E @STM32WB55/71.6 ms °
2
w7
<
= ©
® ®
g 6 C
>
o]
5le @ GAP8 /232 ms
_______ !] @@sTV32WB55/19s
4 [t 1
1
@5STM32 NUCLEO-H743212 1 431.6 ms
3 4 5 6 7 8
10 10 10 10 10 10

Total trainable parameters (#)

Fig. 1. PPGWeaver establishes a new Pareto frontier for PPG-based HR
estimation, achieving lower error at significantly smaller model sizes. Models
deployed on MCUs are annotated with reported runtime latencies.
Deployability metrics are shown only for works with reported MCU results.

III. METHODS

A. Seed Architecture

Our starting model adopts a lightweight TCN inspired by the
seed TEMPONet [11] used in Q-PPG, which itself underpins a
design space exploration framework producing Pareto-optimal
tradeoffs between complexity and accuracy on the PPG-DaLiA
dataset [4]. Our modified 512k-parameter seed network, called
PPGNet-512k (Fig. 2a), consumes 256 sample windows from
four channels (PPG + 3-axis IMU), and applies three stacked
convolutional blocks featuring increasing dilation rates (1—>2—
4), interleaved with pooling and SE attention modules to capture
temporal context while suppressing motion artifact noise.
Feature maps expand from 32 to 128 channels across blocks,
after which the representation is flattened and passed through
fully connected layers (256— 128 units with BatchNorm and
ReLU), culminating in a scalar regression head for HR output.
This over-parameterized architecture provides capacity for
pruning and augmentation. We trained the seed on real PPG-
DaLiA samples using Log Cosh regression loss for smooth
convergence, with BatchNorm + ReLU ensuring stability during
pruning and later quantization.

B. Structured Pruning With Synthetic Injection

To reduce model size while maintaining predictive accuracy,
we applied structured pruning iteratively to the seed network
described in Section 3.1, generating a progressively smaller set
of architectures (PPGNet-512k— PPGNet-1.56k) by reducing
convolutional channel widths and dense layer sizes in a
controlled manner. Each pruned architecture was first trained
and evaluated using only the real PPG-DaLiA dataset following
a robust 4xLeave-One-Group-Out cross-validation protocol [2,
4]. In this setup, outer folds were created by grouping subjects,
with inner folds assigning individual subjects as held-out test
sets. Each model was trained on real windows and validated on
unseen subjects. This real-data-only evaluation defined the

baseline accuracy of each pruned model. To improve
performance, we then incrementally introduced synthetic
training windows generated by TimeWeaver, into the same
training folds, beginning with 5% of available synthetic data and
progressing up to 100%. Synthetic windows were never
included in validation or test sets. For a given test subject,
synthetic time-series data was generated using the metadata of
that subject. At each increment, models were warm-started from
previous weights, using the same architecture, optimizer, and
stopping strategy. The result is a series of Pareto-efficient
models whose size-performance trade-off improves
significantly with synthetic augmentation.

C. Synthetic Data Generation Via Conditional Diffusion

To generate high-fidelity synthetic PPG signals for data
augmentation, we utilized TimeWeaver, a conditional diffusion
model trained to synthesize PPG + IMU + ECG signals
conditioned on rich metadata. Importantly, ECG signals are used
only to generate ground-truth HR labels during training and are
never inputs to the deployed predictor model. Unlike adversarial
generative models, TimeWeaver follows a denoising score-
matching framework that iteratively learns to reverse a noise
process applied to real time-series waveforms. By leveraging
heterogeneous, time-varying metadata, 7imeWeaver achieves
up to 40x better performance than GANs and conventional
methods on real-world datasets [1]. Each synthetic window is
512 samples long, corresponding to an 8-second segment at
64 Hz. These windows are later downsampled to 32 Hz during
model training. Metadata including subject ID, activity type,
target HR, skin tone (binned via Fitzpatrick scale), and session
time are embedded and injected into both the conditioning and
denoising paths of the model using a Conditional Score-based
Diffusion Imputation (CSDI) architecture. Categorical variables
are encoded through learned embeddings, while continuous
metadata is projected via dense layers and fused with attention
mechanisms. The model is trained end-to-end on PPG-DaLiA
data using a linear noise schedule over 200 timesteps and was
selected based on minimum validation loss.

D. MCU Deployment

To enable MCU deployment, each trained TensorFlow
model was converted to TFLite using four quantization
strategies: FP32, FP16, INT8, and dynamic-range mixed
precision. INT8 required a representative dataset from PPG-
DaLiA, while others used default optimizations. All variants
were benchmarked on a CPU (13th Gen Intel i7-1360P,
2.20 GHz) for latency, memory, and HR accuracy. Despite
testing quantized models, the final deployment used FP32
TFLite due to its small size and full-precision fidelity. Models
were serialized into C arrays via xxd for ARM Cortex M4F
toolchain compatibility. Note that TimeWeaver is used only
offline during training to generate synthetic data; the deployed
MCU runs solely the compact 1.56k-parameter predictor.

The final pruned FP32 TensorFlow Lite model was deployed
to an Arduino Nano 33 BLE Rev 2, which features a Nordic
nRF52840 MCU with a 32 bit ARM Cortex M4F core running
at 64 MHz, along with 256 kB SRAM and 1 MB flash. Model
inference is implemented in an Arduino sketch, which receives
one 8-second (256 samples x 4 channels) window over serial,
runs inference using TFLite Micro, and sends back a predicted

a) Seed Architecture: PPGNet-512k b)

c)

PPG & ACC Input 6.00 1 G
Shape: (window=256 samples, channels=4 PPGNet Tppgnet
5757 Model deployed on -1.56k L6k i
ConvID (filters=32, kemel=5, stride=1, dilation rate=1) AR Cortex MiRIMCH 8 PPGNet | TopGNet
ConvlD (filters=: ilation rate=1) 5.50 4 T ppGN-egt()k -110k
ConvID ide=1) = 7 -23k
AvgPool (= = T
SE Block (ratio=8) & 5.251 £ Pﬁgg‘fﬁ
v =)
ConvID (filters=64, kemel=5, stride=1, dilation rate=2) | % = 3
ConvlD (filters=64, kemnel=5, stride=1, dilation rate=2) | = 5-007 < T
Conv1D (filt nel=S, stride=2) = = T (aL T
AvePool (s tride=2) C 4751 o, Y 1 W o] C—
SE Block (ratio=8) g @ T 1
v [e] > \ [Gl 17 SN)
Conv1D (filters=128, kernel=5, stride=1, dilation rate=4) 4.50 4 04 Model
ConvlD (filters=128, kernel=5, stride=1, dilation rate=4) deployed
Conv1D (filters= s, stride=4) .
4.25 3] Cortex
L mar mcu +
4.00 4
0510 20 40 80 100 2
FC (units=256) % of synthetic windows added 10% 104 105 106

FC (units=128

—— PPGNet-521k —&— PPGNet-90k
~#- PPGNet-110k —4— PPGNet-23k

—¥— PPGNet-6.4k Total Trainable Parameters (#)

#— PPGNet-1.56k @ Realonly @ Real + synthetic

Fig. 2. a) PPGNet-512. b), c¢) Synthetic augmentation to improve test MAE maintaining pareto efficiency

HR and measured latency. The code allocates a 20 kB tensor
arena, resolves all necessary ops, and invokes the TFLite
interpreter on the input window stored in the flat float tensor.

IV. RESULTS

A. Traversing The Pareto Frontier With TimeWeaver

To explore the trade-off between model compactness and
predictive accuracy, we evaluated eight structurally pruned
architectures under progressive synthetic data augmentation
using the TimeWeaver generator. For each model, we
performed end-to-end training on real-only data (129,369
windows), then repeated training with synthetic windows
added in increasing proportions up to 100% (an additional
107,238 windows), maintaining the same cross-validation
protocol.

Across all model variants, adding even a small fraction (5—
10%) of synthetic data significantly improved performance,
with the strongest gains (> 23%) observed in mid-size models.
For instance, PPGNet-436k (not shown) improved from
529BPM MAE to 4.06BPM with just 5% synthetic
augmentation. Similarly, PPGNet-110k improved from 5.16
to 4.21 BPM MAE at 60% augmentation. Notably, compact
models such as PPGNet-1.56k-Dilated saw MAE drop from
5.82 to 4.80 BPM with 80% synthetic data, a substantial gain
despite limited capacity (Fig. 2b, c).

The benefit of synthetic augmentation plateaued between
60%-80% for most architectures, beyond which
improvements plateaued or reversed slightly. These results
suggest diminishing marginal returns at high augmentation
ratios. Overall, synthetic injection helped recover or even
surpass baseline performance levels for models that had been
heavily pruned, effectively shifting the accuracy—efficiency
Pareto frontier upward.

B. Synthetic Data Generated With TimeWeaver

To evaluate the fidelity and utility of synthetic data
generated by TimeWeaver, we conducted a series of statistical
and downstream analyses. First, we assessed signal realism by
comparing the distributions of amplitude and spectral energy
between real PPG and synthetic data. As shown in Fig. 3a, b,

TimeWeaver-generated samples align closely with ground-
truth distributions in both time and frequency domains, while
GAN baselines fail to capture multimodal or skewed
properties under high-motion or high-HR conditions.

Next, to assess whether TimeWeaver can generate
physiologically plausible PPG signals, we performed
qualitative analysis on held-out metadata conditions. In one
set of experiments, we aimed to simulate subjects with high
resting HRs. For example, Subject S5 in PPG-DaLiA naturally
exhibits a baseline HR of approximately 125 BPM. As shown
in Fig. 3c, the synthesized waveform from Subject SI1,
conditioned on a target HR of 125 BPM, closely resembled
the ground-truth waveform of Subject S5 in both periodic
structure and amplitude morphology.

C. MCU Deployment

We evaluated the full inference pipeline from TensorFlow
to TFLite conversion and final deployment on a resource-
constrained MCU. The smallest pruned model, PPGNet-
1.56k, trained with 80% synthetic data, was converted to
TFLite using four quantization configurations: FP32, FP16,
INT8, and mixed precision. Notably, all TFLite variants of
PPGNet-1.56k achieved sub-0.025 ms average latency per
256-sample window on a 13th Gen Intel i7 CPU, with FP32
executing in just 0.019 ms. Due to its extremely small size,
PPGNet-1.56k exhibited minimal memory and latency
overhead even at full-precision (FP32), enabling real-time
inference (~37 ms latency) without requiring INTS
quantization on resource-constrained MCUs like the ARM
Cortex-M4. This suggests that, in certain cases, model
compression and data-driven regularization can eliminate the
need for aggressive quantization, even for deployment on low-
power devices.

Given these findings, the FP32 variant of PPGNet-1.56k
was selected for deployment on a 64 MHz Arm Cortex-M4F
MCU with 256 KB SRAM. Inference results across all 15
PPG-DaLiA test subjects revealed identical performance to
the parent TensorFlow model, with an overall MAE of
4.92 BPM (Figs. 4a-c). Importantly, this confirms that the
MCU deployment retained full numerical fidelity without
requiring quantization, made possible by an extremely

compact Pareto-efficient model enabled by TimeWeaver-
generated synthetic data. This establishes the feasibility of
real-time HR estimation directly on MCU-class wearables
without compromising on accuracy or throughput.

|

|
\/ ¢) Ground truth (S5) vs Synthetic (S11)
- - with HR + 30 BPM

I — sswo
I\ aime

\

Densit
°
M
e v K
&

]
|
N
\

\
&
\
|
N

=2) 2 4003 =2 0 B a
Time Sertes value Fime Sartes vaiue
Distribution of FFT Coefficients ‘\
s | os |

0.6 7 w = = 0 =

6 8 10%° 0o 2 a2 6 8 10
e of the FFT Coefficient Absolute value of the FFT Coefficient

Real Data GAN Synthetic Data

Fig. 3. a), b) TimeWeaver-generated PPG signals (orange) closely match
unseen ground truth (blue), outperforming GANs (green) in both time and
frequency domains. ¢) Comparison of real PPG from Subject S5 (blue) and
TimeWeaver-generated data by increasing Subject S11°s HR.

V. CONCLUSION

This work presents a complete pipeline for real-time,
MCU-based HR estimation using PPG and IMU data,
addressing the longstanding trade-off between accuracy,
model size, and deployability. Through structured pruning and
novel synthetic augmentation via TimeWeaver, we achieve
over 23% performance gains and show that ultra-lightweight
sub-2 k parameter models can match or surpass SOTA
accuracy. Our smallest model, with only 1.56k parameters,
achieved 4.92BPM MAE and maintained identical
performance when deployed on a 64 MHz ARM Cortex M4F
MCU without requiring quantization. This underscores the
strength of combining generative augmentation with
hardware-aware compression.

Future work will focus on applying TimeWeaver to
proprietary datasets with richer sensing modalities and more
diverse activities and user populations. Our goal is to extend

a) b) c).

180 Edge-deployed
model on MCU
Parent TF model
on laptop CPU

MCU Predicted HR (BPM)

SHHH H i H

0 m

> ¢ SO O Oo© £

“© & T S S =
o¥ V@ 3

4 60 80 100 120 140 160 180 % S 2
Ground Truth HR (BPM) <& 2

-

this approach toward commercial-grade wearable algorithms
capable of robust HR estimation on edge platforms, paving the
way for scalable, low-power, on-device health monitoring.

REFERENCES

[11 S.S. Narasimhan, et al., “Time Weaver: A Conditional Time Series
Generation Model,” in *Proc.41st International Conference on
Machine Learning (ICML)*, Vienna, Austria, Jul. 2024, vol. 235,
pp- 37293-37320.

[2] A. Reiss et al., “Deep PPG: Large-Scale Heart Rate Estimation with
Convolutional Neural Networks,” Sensors, vol. 19, no. 14, p. 3079,
2019

[3] S.B. Song, J. W. Nam, and J. H. Kim, “NAS-PPG: PPG-Based Heart
Rate Estimation Using Neural Architecture Search,” IEEE Sensors
Journal, vol. 21, no. 13, pp. 14941-14949, Jul. 1, 2021.

[4] A. Burrello ef al., “Q-PPG: Energy-Efficient PPG-Based Heart Rate
Monitoring on Wearable Devices,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 15, no. 6, pp. 1196-1209, Dec. 2021.

[51 L. Benfenati et al., “EnhancePPG: Improving PPG based Heart Rate
Estimation with Self Supervision and Augmentation,” arXiv,
Dec. 2024.

[6] C.Kechris ez al., “KID-PPG: Knowledge Informed Deep Learning for
Extracting Heart Rate From a Smartwatch,” IEEE Transactions on
Biomedical Engineering, vol. 72, no. 3, pp. 870-877, Mar. 2025.

[71 A. Burrello et al., “Improving PPG-based Heart-Rate Monitoring with
Synthetically Generated Data,” in Proc. 2022 IEEE Biomedical
Circuits and Systems Conference (BioCAS), Taipei, Taiwan, 2022, pp.
153-157.

[8] P.Kasnesis et al., “Multi Head Cross Attentional PPG and Motion
Signal Fusion for Heart Rate Estimation,” arXiv preprint
arXiv:2210.11415, Oct. 2022.

[9]1 V. Bieri et al., “BeliefPPG: Uncertainty-aware Heart Rate Estimation
from PPG Signals via Belief Propagation,” arXiv, June 2023.

[10] M. Wilkosz and A. Szczgsna, “Multi-Headed Conv-LSTM Network
for Heart Rate Estimation during Daily Living Activities,” *Sensors*,
vol. 21, no. 15, art. 5212, Jul. 31, 2021.

[11] M. Zanghieri et al., “Robust Real-Time Embedded EMG Recognition
Framework Using Temporal Convolutional Networks on a Multicore
10T Processor,” *IEEE Trans. Biomed. Circuits Syst.*, vol. 14, no. 2,
pp. 244-256, Apr. 2020.

Transition Stairs Cycling Lunch Working
Sitting Table soccer Driving Walking

Test subject S7 | End-to-end frame rate: 5.65 win/s | Runtime MAE: 2.92 BPM

@ Groundtruth HR

. MCU predicted HR

e

MCU inference latency: ~37 ms / window

2000 4000 000 8000

8-sec window index

Fig. 4. a) Correlation (R? = 0.86) between MCU-predicted HR from PPGNet-1.56k and ground-truth HR (color-coded by subject). b) MCU accuracy matches parent
TensorFlow model via full-precision deployment. c) Real-time inference on Subject S7 with <40 ms per-window latency.

