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Abstract

Depth completion in dynamic scenes poses significant challenges due to rapid
ego-motion and object motion, which can severely degrade the quality of input
modalities such as RGB images and LiDAR measurements. Conventional RGB-D
sensors often struggle to align precisely and capture reliable depth under such
conditions. In contrast, event cameras with their high temporal resolution and
sensitivity to motion at the pixel level provide complementary cues that are ben-
eficial in dynamic environments. To this end, we propose EventDC, the first
event-driven depth completion framework. It consists of two key components:
Event-Modulated Alignment (EMA) and Local Depth Filtering (LDF). Both mod-
ules adaptively learn the two fundamental components of convolution operations:
offsets and weights conditioned on motion-sensitive event streams. In the encoder,
EMA leverages events to modulate the sampling positions of RGB-D features to
achieve pixel redistribution for improved alignment and fusion. In the decoder,
LDF refines depth estimations around moving objects by learning motion-aware
masks from events. Additionally, EventDC incorporates two loss terms to further
benefit global alignment and enhance local depth recovery. Moreover, we establish
the first benchmark for event-based depth completion comprising one real-world
and two synthetic datasets to facilitate future research. Extensive experiments on
this benchmark demonstrate the superiority of our EventDC. Project page.

1 Introduction

Depth completion [48, 33, 36, 47, 65] aims to predict dense depth from sparse measurements,
typically using auxiliary modalities such as RGB images. As a cornerstone of 3D perception, it plays
a crucial role in a wide range of downstream applications including self-driving [70, 57, 26, 52],
augmented reality [45, 60, 54, 66, 71], scene understanding [56, 40, 78, 53, 72], etc. Although
recent methods have demonstrated impressive results in static scenes, dynamic environments remain
highly challenging. As illustrated in Fig. 1(a), the rapid ego-motion results in blurry RGB images
and misalignment with LiDAR measurements, while fast-moving objects further exacerbate depth
inaccuracies in their vicinity. These challenges make precise depth completion even more difficult.

The unique characteristics of event cameras [10, 9, 11] provide a compelling complement to con-
ventional RGB-D sensors in dynamic scenes. Their microsecond-level temporal resolution enables
the reliable capture of rapid ego-motion without introducing motion blur, and their asynchronous
change-driven operation makes them inherently well-suited for detecting fast-moving objects. These
properties help mitigate the limitations of RGB-D measurements by offering temporally consistent
and low-latency signals, particularly in regions where traditional sensors often fail. As a result, event-
based sensing proves especially advantageous for depth completion in highly dynamic environments.

In this work, we present EventDC, a novel depth completion framework that leverages event data to
tackle the challenges posed by dynamic scenes. As shown in Fig. 1(b), the core idea is to exploit the
unique properties of event streams to guide depth completion especially in motion-affected regions.
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Figure 1: Data example and our solution for depth completion in dynamic environments. Leveraging
high temporal resolution and motion sensitivity, event provides valuable complementary information
for depth completion in dynamic scenes. Multiple event streams are aggregated for clear visualization.

To this end, our EventDC incorporates two key components: Event-Modulated Alignment (EMA) and
Local Depth Filtering (LDF). EMA is an encoder-side module that adaptively adjusts convolutional
sampling positions using event information to achieve pixel redistribution for enhanced global
alignment and more effective multi-modal fusion between RGB and LiDAR features. Furthermore, it
incorporates a structure-aware loss to mitigate the RGB-D inconsistency caused by rapid ego-motion.
LDF is a decoder-side module that focuses on refining depth around moving objects. It first learns
motion masks from event streams to get the regions influenced by object motion. The learned
masks are then used by LDF with a local motion-aware constraint to facilitate more accurate depth
predictions in these regions. Concurrently, the two modules enable our EventDC to address both
global misalignment and local depth inaccuracies for handling complex scenarios involving motion.

Additionally, depth completion based on event cameras remains an underexplored area with no
existing event-based depth completion datasets to date. To address this gap, we introduce the first
event-based depth completion benchmark, which includes a real-world dataset EventDC-Real, a
semi-synthetic dataset EventDC-SemiSyn, and a fully synthetic dataset EventDC-FullSyn.

In summary, our contributions are as follows:

• To the best of our knowledge, we are the first to introduce EventDC, a novel event-driven depth
completion framework designed to address the challenges of dynamic environments.

• We present two event-driven modules: EMA and LDF which are designed to mitigate the
global misalignment caused by ego-motion and local depth inaccuracies due to object motion.
Additionally, these two modules are jointly supported by two dedicated loss constraints.

• To foster further research, we build the first event-based benchmark for depth completion.
Extensive experiments across these datasets demonstrate the superiority of our approach, with
up to 12.8% improvement on the best-performing dataset over suboptimal methods.

2 Related Work

Depth Completion. Early depth completion methods [48, 33, 25, 7, 49, 32] focus on predicting dense
depth maps directly from sparse inputs. For example, IP-Basic [25] uses traditional image processing
techniques to densify sparse depth without deep learning. In contrast, Uhrig et al. [48] introduce
Sparsity Invariant CNNs, which adapt convolutional operations to varying input densities to ensure
consistent performance. S2D [33] employs an encoder-decoder architecture to progressively densify
sparse depth input. FusionNet [49] integrates global context and local structures with a confidence-
driven refinement mechanism. Eldesokey et al. [7] present a confidence propagation method within
CNNs to improve sparse depth regression by modeling uncertainty. Guided depth completion using
color images has gained significant traction [46, 70, 65, 20, 69, 73, 47, 63, 64]. Dynamic filtering
techniques [46, 61, 62] generate adaptive filtering kernels from color images for effective extraction
of depth features. Methods such as FuseNet [1], PointDC [67], BEVDC [73], and TPVD [65]
further enhance depth completion by incorporating raw point clouds. Moreover, priors of the depth
foundation models are used to improve generalization [38, 37, 51, 16]. Recently, SigNet [66] redefines
depth completion as enhancement, densifying sparse depth with non-CNN methods, and then refines
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it through a degradation-aware framework. In addition, SPN techniques [3, 4, 36, 59, 20, 28, 65],
which serve as effective refinement modules, can further enhance performance.

Event-Based Depth Estimation. Depth estimation with event cameras [9, 15, 10, 8, 13, 17, 30, 58]
attracts growing interest due to the high temporal resolution, dynamic range, and low latency of
asynchronous vision sensors. Early methods reconstruct depth solely from event streams such as the
end-to-end framework by Hidalgo-Carrió et al. [17], the multi-view stereo pipeline EMVS [39], and
unsupervised learning approaches for depth and egomotion [74]. DERD-Net [18] further exploits
3D convolutions and recurrence on event-based disparity space images, and Zhu et al. [77] propose
a self-supervised framework for joint depth and optical flow estimation. Recent works leverage
additional modalities to enhance event-based depth estimation. EMoDepth [75] temporally aligns
events and intensity frames for self-supervised monocular depth learning. Muglikar et al. [34]
propose event-guided illumination control for active depth sensors. SRFNet [35] fuses frame and
event features for fine-grained depth prediction with improved structure in both daytime and nighttime
scenes. SDT [68] combines spiking neural networks and transformers for efficient depth estimation.
Furthermore, contrast maximization that emerges as a fundamental principle for event-based motion,
depth, and optical flow estimation [9, 41] has inspired many subsequent works.

Dynamic Convolution. Dynamic convolution is a method that adjusts the convolution operation
based on input features, and it gains significant attention in computer vision tasks. Techniques
such as graph convolution and deformable convolution serve as specific manifestations of dynamic
convolution. For example, ACMNet and GraphCSPN build graph structures to enable effective multi-
modal fusion and refinement. STN [21] introduces the concept of spatially transforming features
within a network, although training such a mechanism is a challenging task. Following this, DFN
[23] proposes an approach that adapts filter parameters based on input features despite maintaining
fixed kernel sizes. Deformable Convolution [5, 76] takes a different approach with the focus on
dynamically adjusting sampling locations by generating offsets based on the geometric properties
of objects. Similarly, Active Convolution [22] improves sampling by adjusting the locations while
keeping the kernel shape fixed. More recently, GuideNet [46] develops a guided convolution block
specifically designed for multi-modal data. Despite these innovations, dynamic mechanisms often
add considerable complexity. To address this issue, RigNet [61] simplifies the dynamic guidance
process by employing convolution factorization combined with attention [19].

3 Our Method

3.1 Background

The core of dynamic convolution lies in the adaptive determination of sampling positions and weights.
Graph Convolutional Networks (GCNs) [24, 50] and Deformable Convolutional Networks (DCNs)
[5, 76] serve as representative implementations of this concept. GCNs define sampling locations as
neighboring nodes within the graph structure and compute adaptive weights during the aggregation
stage. On the other hand, DCNs determine sampling locations through learned offsets and obtain
adaptive weights by modulating predefined kernel weights with learned scalars. Both GCNs and
DCNs can be viewed as extensions of standard convolutional operations, where the sampling locations
and weights are made learnable and structure-aware. We use DCNs as an example to illustrate this
dynamic learning process.

Specifically, DCNv1 [5] introduces learnable offsets for each sampling location to shift adaptively.
Subsequently, DCNv2 [76] further incorporates a learnable modulation scalar for each sampling
position that enables the assignment of varying importance to different locations. Given an input
feature map x and a convolutional kernel with K sampling positions, let wk and pk denote the weight
and the pre-defined offset of the k-th position, respectively. DCNv2 can be formulated as:

x̂(p0) =

K∑
k=1

wk · x(p0 + pk +∆pk) ·∆mk, (1)

where p0 denotes the reference location, and ∆pk and ∆mk are the learnable offset and modulation
scalar, respectively. Note that wk and ∆mk can be jointly interpreted as a unified learnable term. As
a result, the adaptive adjustment of offset and weight in DCNv2 provides a foundation for leveraging
event data to tackle the challenges posed by fast motion in depth completion.
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Figure 2: Pipeline of our EventDC. The color image I, sparse depth S, and event stream E are first
processed by three structurally identical encoders. At each stage, the Event-Modulated Alignment
(EMA) block leverages event features to align and fuse RGB-D representations. In the decoder, the
Local Depth Filtering (LDF) unit further enhances depth estimation around moving objects, guided
by the inherent sensitivity of events to motion and reinforced by local motion-aware constraints.

3.2 EventDC Architecture

Overview. In highly dynamic environments, the proposed approach is designed to alleviate the
adverse effects of fast motion that include global misalignment and local depth inaccuracies caused
by ego-motion and object motion, respectively. Fig. 2 illustrates the pipeline of our EventDC,
which begins by employing three structurally consistent encoders to extract features from the color
image I, sparse depth S, and event data E. This yields multi-scale representations {I1, I2, I3, I4},
{S1,S2,S3,S4}, and {E1,E2,E3,E4} at the {1/1,1/2,1/4,1/8} stages, respectively. In the decoder,
three deconvolution layers are applied to progressively generate {D3,D2,D1} at the {1/4,1/2,1/1}
stages, respectively. Furthermore, EventDC incorporates two key components: Event-Modulated
Alignment (EMA) and Local Depth Filtering (LDF). At each encoder stage, EMA predicts spatial
offsets from event features and uses them to adjust the pixel distributions of RGB and depth features.
This enables more precise multi-modal alignment and fusion. In addition, a structure-aware loss is
introduced to further enhance the consistency. At the decoder stage, LDF leverages event features
to estimate motion masks that identify moving objects. It then refines the depth values within these
regions using dynamic convolutions and a local motion-aware loss, ultimately enhancing depth
accuracy around the moving objects.

Event-Modulated Alignment. As depicted in Fig. 2, at the j-th (j ∈ {1, 2, 3, 4}) stage of the
three encoders, the EMA module takes as input the color image feature Ij , sparse depth feature Sj ,
and event feature Ej , each with dimensions RC×H×W , where C, H , and W denote the channel,
height, and width, respectively. These inputs are first individually processed by three separate 3× 3
convolutional layers Fτj1(·), Fτj2(·) and Fτj3(·), with a stride of 1 and output channels of C, 2C,
and C, respectively. The transformed event feature is then fused with the transformed RGB and depth
features, respectively, resulting in the intermediate features:

Q̄j = Fτj1 (Ij) + α · Fs
(
Fτj2 (Ej)

)
, (2a)

Q̃j = Fτj3 (Sj) + β · Fs
(
Fτj2 (Ej)

)
, (2b)

where Fs(·) denotes the operation that splits the 2C-channel feature into two C-channel parts. α
and β are learnable terms 1 that control the contribution of the event term.

Subsequently, these two intermediate features are used to predict the offsets via two additional 3× 3
convolutions, Fτj4(·) and Fτj5(·), producing 2K ×H ×W offsets and K ×H ×W weights:

∆p̄j , w̄j = Fτj4(Q̄j), (3a)

∆p̃j , w̃j = Fτj5(Q̃j). (3b)

1Implemented using torch.nn.Parameter(zeros(1)) with the zero initialization designed to facilitate
the progressive learning of event priors during training.
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This step enables the model to adaptively determine the sampling locations by learning a prior from
event data that is sensitive to fast motion. Consequently, the dynamic convolution in Eq. (1) can be
used to perform pixel-wise adjustment of image and depth features formulated as follows:

Îj = Fψ(Ij ; ∆p̄j , w̄j), (4a)

Ŝj = Fψ(Sj ; ∆p̃j , w̃j), (4b)
where Fψ(·) denotes the generalized form of the operation defined in Eq. (1). Note that Eq.(4)

emphasizes RGB-D pixel redistribution under highly dynamic conditions with offsets instead of
adaptive weights. Consequently, in contrast to Eq.(1), both w̄j and w̃j correspond to the predefined
weights w with ∆m being the identity matrix. Subsequently, the redistributed RGB-D features are
further processed by a 3× 3 convolution Fτj6(·) to obtain the fused feature Fj ∈ RC×H×W , which
is formulated as:

Fj = Fτj6(Îj + Ŝj). (5)
Additionally, a structure-aware loss Lstr is introduced to enhance the consistency. Let G(·) denote a
sequence of single-channel convolution, Min-Max normalization, and gradient computation:

Lstr =
4∑
j=1

1

n
∥G(Îj)− G(Ŝj)∥22. (6)

Local Depth Filtering. As shown in Fig.2, the LDF module takes the depth feature Di and event
feature Ei as inputs to adaptively generate offsets and weights at the i-th stage of the decoder
(i ∈ {1, 2, 3}). Following the strategy used in Eqs.(2)–(4), this results in the updated depth feature:

D̂i = Fψ(Di; ∆p̃i, w̃i). (7)
In contrast, the modulation scalar ∆m within w̃i is learned jointly from the depth and event inputs.
Furthermore, to explicitly model regions of dynamic objects, LDF predicts a motion mask mi based
on Ei using a sigmoid activation σ(·) after a single-channel 3× 3 convolution Fτi6(·):

mi = σ(Fτi6 (Ei)). (8)
By combining Eqs. (7) and (8), LDF refines depth with a focus on dynamic regions to get:

D̊i = m · D̂i + (1−m) ·Di. (9)

Finally, the output D̊1 from the last LDF module is passed through a 3× 3 convolutional tail Fτt(·)
to generate the dense depth prediction:

D = Fτt(D̊1). (10)

Additionally, we introduce a motion-aware loss to enhance the depth recovery around motion areas:

Lmot =
3∑
i=1

1

n
∥bi · H(D̊i)− bi · Fd(Z)∥22, (11)

where Z is the GT depth, H(·) applies ReLU and a single-channel convolution, and bi is a binary mask
with bi = 1 if mi exceeds its mean, and 0 otherwise. Fd(·) denotes the downsampling operation.

Discussion. In summary, EMA and LDF differ from previous dynamic convolution methods in two
key aspects: (1) Unlike traditional methods that typically rely on single-modal and single-path inputs,
our approach adopts a multi-modal and multi-path input design, where key convolutional parameters
are derived from different modalities. (2) Our method is data-driven where we use event-based
adaptation to address global misalignment and local depth inaccuracies caused by fast motion.

3.3 Loss Function

Given the predicted depth D and GT depth Z with n valid pixels, we adopt a commonly used
reconstruction loss [36, 27, 69, 56, 55] to formulate the training objective:

Lrec =
1

n
(
∥∥D− Z∥22 + ∥D− Z∥1

)
. (12)

By combining the reconstruction loss with the structure-constrained loss Lstr in Eq. 6 and motion-
aware loss Lrec in Eq. 11, the overall loss function is formulated as:

Lt = Lrec + λLstr + µLmot, (13)
where λ and µ are weighting hyper-parameters that we empirically set to 1 and 0.1, respectively.
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Table 1: Basic statistics of the EventDC benchmark.
Dataset Color Camera Depth Sensor Event Camera Train Test Resolution

EventDC-Real FLIR BFS-U3-31S4C Ouster OS1-128 LiDAR DAVIS346 14,845 1,000 320× 256
EventDC-SemiSyn PointGrey Flea2 Velodyne HDL-64E LiDAR - 7,094 2,213 1216× 256
EventDC-FullSyn - - - 21,000 500 512× 256
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Color image Sparse depth Event stream GT depth
Figure 3: Visualizations of the proposed EventDC benchmark: EventDC-Real/SemiSyn/FullSyn.

4 EventDC Benchmark

Motivation. Traditional depth completion datasets [14, 42, 65, 44] rely on the fusion of color
images and sparse depth maps to predict dense depth. However, this approach suffers in highly
dynamic environments especially when dealing with fast ego-motion and object motion. This is
due to unreliable low-frame-rate RGB images and sparse depth data from motion blur and sampling
inconsistencies. Event cameras with the capability to capture high temporal resolution and sensitivity
to rapid movements [10] provide an ideal solution to overcome these limitations. By asynchronously
recording minute brightness variations, event cameras can offer accurate depth information in dynamic
scenarios where conventional RGB-D sensors fail. In light of these characteristics, we propose an
event-based depth completion benchmark that leverages the unique advantages of event data to
address the challenges of depth completion in dynamic environments.

Data Collection. Tab. 1 provides an overview of the sensors used in the datasets with their respective
specifications. EventDC-Real is a real-world dataset in which color images and event frames are
captured using the FLIR BFS-U3-31S4C camera and the DAVIS346 sensor, respectively. The ground
truth (GT) depth is acquired from a 128-line Ouster LiDAR, and the sparse depth is derived from its
16 sub-lines. EventDC-SemiSyn is a semi-synthetic dataset based on KITTI [14]. The sparse depth
and GT depth come from the raw data of KITTI. For the color images, we apply radial motion blur by
progressively scaling and transforming the image around its center to simulate a motion blur effect
with adjustable strength and step count. Additionally, VID2E [12] is used to generate the event data
with frames captured within 15 ms before and after the current timestamp. EventDC-FullSyn is a
fully synthetic dataset generated using the CARLA simulator [6]. The color images are processed
similarly with radial motion blur. Finally, to facilitate model training, the resolution of all datasets
has been cropped to multiples of 32. Fig. 3 presents visual examples from these three datasets.

5 Experiment

Metric and Implementation Detail. Following previous depth completion methods [14, 46, 65, 26],
we adopt RMSE (mm), MAE (mm), REL, and threshold accuracy δ (%) as evaluation metrics. Refer
to the appendix for their full definitions. We implement EventDC using the PyTorch framework
and conduct training on two NVIDIA RTX 4090 GPUs using the Distributed Data Parallel strategy
for efficiency. Optimization is performed with the AdamW optimizer [31] in conjunction with the
OneCycle learning rate policy [43]. The training process begins with a warm-up stage that linearly
increases the learning rate from 0.00002 to 0.001 over the first 10% of iterations. Subsequently, a
cosine annealing schedule gradually decays the learning rate to a final value of 0.0002. The batch
size is set to 2 per GPU. In addition, to further enhance model performance, we employ a set of data
augmentation strategies [46, 29], including random horizontal flip, rotation, cropping, and color jitter.
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Table 2: Quantitative depth completion comparisons on the EventDC-Real dataset.

Method RMSE ↓ MAE ↓ REL ↓ δ1.05 ↑ δ1.10 ↑ δ1.15 ↑ Venue

CSPN [2] 858.5 284.6 0.0386 90.0 94.4 96.0 ECCV 2018
S2D [33] 984.1 410.8 0.0565 82.1 90.3 93.4 ICRA 2018
FusionNet [49] 658.1 262.4 0.0384 87.6 93.9 96.0 MVA 2019
RigNet [61] 685.4 234.6 0.0336 87.5 92.3 95.4 ECCV 2022
DySPN [27] 700.1 223.7 0.0285 91.3 95.1 96.6 AAAI 2022
Prompting [38] 670.7 205.1 0.0252 92.1 95.7 97.0 CVPR 2024
OGNI-DC [78] 709.7 231.1 0.0294 90.9 94.8 96.4 ECCV 2024
SigNet [66] 906.4 348.1 0.0345 83.5 90.6 93.2 CVPR 2025
LPNet [55] 911.2 389.0 0.0472 83.6 90.4 93.3 arXiv 2025

EventDC (our) 574.0 179.0 0.0242 92.9 96.3 97.5 -
Improvement ↑ 84.1 26.1 0.0010 0.8 0.6 0.5 -

Prompting OGNI-DC EventDCColor image Event

Figure 4: Depth error comparisons on EventDC-Real. Warmer color indicates higher error.

5.1 Comparisons with State-of-the-arts

In this section, we compare our EventDC with well-known methods: CSPN [2], S2D [33], FusionNet
[49], RigNet [61], DySPN [27], Prompting [38], OGNI-DC [78], SigNet [66], and LPNet [55]. For a
fair comparison, we retrain all methods from scratch on the proposed benchmark. Note that BPNet
[47], TPVD [65], and DMD3C [26] are excluded from the comparison. This is because they require
additional camera parameters during training which are not available in our settings.

EventDC-Real. We first evaluate the proposed EventDC on EventDC-Real, a real-world dataset
collected using various devices such as handheld sensors and robotic platforms. The numerical results
are summarized in Tab 2. Our EventDC achieves the overall lowest errors while maintaining the
highest accuracy across the board. For example, it outperforms the second-best method by 84.1 mm
in RMSE, 26.1 mm in MAE, 0.001 in REL, and 0.8 points in δ1.05. Compared to post-refinement
methods such as CSPN [2] and DySPN [27], our EventDC without any post-processing consistently
achieves better performance. Even when compared to the large-scale depth foundation model
Prompting [38], our approach achieves superior results with significantly fewer model parameters.
Fig. 4 presents the comparisons of depth error. It clearly shows that our EventDC produces more
accurate depth results especially around moving objects.

EventDC-SemiSyn. To further validate the effectiveness of EventDC, we evaluate it on EventDC-
SemiSyn, a semi-synthetic dataset comprising synthetically generated event frames and color images
rendered under highly dynamic conditions. As reported in Tab. 3, our EventDC continues to
deliver outstanding results across all evaluation metrics. On average, it outperforms recent methods:
Prompting [38], OGNI-DC [78], and LPNet [55] by 18.9%, 30.8%, and 27.7% in RMSE, MAE, and
REL, respectively, and by 3.9, 1.6, and 0.9 percentage points in δ1.05, δ1.10, and δ1.15, respectively.
As illustrated in Fig. 5, our EventDC effectively reconstructs accurate depth details and structural
consistency even under highly dynamic scenes.

EventDC-FullSyn. Apart from the real and semi-synthetic settings, we also validate EventDC on the
fully synthetic dataset, EventDC-FullSyn, to further assess its generalization capability under diverse
scenarios. As shown in Tab.4, our EventDC consistently outperforms all competing approaches by
large margins. For example, it surpasses the second-best approach by 53.5 mm in RMSE and 19.4
mm in MAE. In addition, it achieves a 13.0% improvement in REL compared to the foundation
model-based Prompting [38]. These results demonstrate the robustness of our EventDC in reducing
both absolute and relative errors. Fig. 6 shows that our EventDC yields more refined details and
sharper object boundaries than others, which highlight its effectiveness in fully synthetic scenarios.
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Table 3: Quantitative comparisons on the EventDC-SemiSyn dataset.

Method RMSE↓ MAE↓ REL↓ δ1.05 ↑ δ1.10 ↑ δ1.15 ↑

CSPN [2] 989.8 262.8 0.0189 94.6 97.2 98.1
S2D [33] 1097.3 366.4 0.0237 91.0 96.4 97.9
FusionNet [49] 877.6 333.1 0.0258 92.6 98.2 98.8
RigNet [61] 858.2 216.4 0.0156 95.1 97.8 98.1
DySPN [27] 897.7 207.5 0.0149 95.9 97.8 98.6
Prompting [38] 873.9 291.1 0.0198 92.6 97.1 98.4
OGNI-DC [78] 832.0 210.5 0.0143 95.7 98.0 98.7
SigNet [66] 1065.4 321.3 0.0226 91.1 97.0 98.1
LPNet [55] 1283.4 416.3 0.0242 90.0 95.3 97.2

EventDC (ours) 778.8 196.2 0.0134 96.7 98.4 99.0
Improvement ↑ 53.2 11.3 0.0009 0.8 0.2 0.2
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Figure 5: Visual results.

Table 4: Quantitative comparisons on the EventDC-FullSyn dataset.

Method RMSE↓ MAE↓ REL↓ δ1.05 ↑ δ1.10 ↑ δ1.15 ↑

CSPN [2] 864.9 399.5 0.1193 62.7 80.9 87.6
S2D [33] 899.0 376.2 0.1243 69.8 83.8 89.1
FusionNet [49] 670.6 230.9 0.0931 77.3 86.6 90.4
RigNet [61] 723.4 166.3 0.0578 81.1 91.6 92.8
DySPN [27] 679.8 165.6 0.0646 87.2 92.6 94.6
Prompting [38] 709.7 180.9 0.0538 90.7 93.8 95.3
OGNI-DC [78] 673.7 162.5 0.0578 87.8 93.0 95.1
SigNet [66] 904.5 349.2 0.0902 76.3 84.1 90.3
LPNet [55] 920.2 357.3 0.0943 75.1 85.9 90.3

EventDC (ours) 620.2 143.1 0.0468 92.1 95.5 96.8
Improvement ↑ 53.5 19.4 0.0070 1.4 1.7 1.5
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Figure 6: Visual results.

Table 5: Complexity on EventDC-Real.

Method Param. Memo. Time RMSE
(M) ↓ (GB) ↓ (ms) ↓ (mm) ↓

DySPN [27] 26.3 0.9 9.8 700.1
RigNet [61] 65.2 2.3 26.5 685.4
Prompting [38] 326.9 4.1 39.5 670.7
OGNI-DC [78] 84.4 3.7 314.1 709.7
LPNet [55] 29.6 1.1 18.4 911.2

EventDC (our) 43.2 1.5 41.5 574.0

Complexity Analysis. Tab. 5 presents the com-
plexity comparisons between our EventDC and
other competing methods in terms of model param-
eters (Param.), memory consumption (Memo.), and
inference time. Our EventDC not only achieves
outstanding performance, but also maintains com-
petitive efficiency. In particular, compared to the
second-best method Prompting [38], our EventDC
achieves a significantly lower RMSE by 96.7 mm
with only about one-eighth the number of param-
eters and one-third the memory.

5.2 Ablation Studies

Tab. 6 summarizes the ablation results on EventDC-Real. EventDC-i serves as a UNet-style baseline
that takes only sparse depth as input and employs additive skip connections.

(1) EventDC-ii further develops this approach by utilizing RGB images and integrating RGB-D
features through additive fusion. Although depth input is sparse, RGB offers rich structural and
semantic details. This leads to a significant decrease in error and substantial gains in accuracy. For
example, the RMSE is reduced by 41.3 mm and the MAE by 32.1 mm. EventDC-iii enhances support
for event streams, which are advantageous because of their fine temporal detail and motion sensitivity.
Consequently, this makes them very effective in dynamic environments where they supplement depth
data. EventDC-iv combines all three modalities to give consistent improvements across all evaluation
metrics. Specifically, it surpasses the baseline by 12.2%, 20.7%, and 8.5% in RMSE, MAE, and
REL, respectively. It concurrently improves δ1.05, δ1.10, and δ1.15 by 1.0, 0.3, and 0.2 percentage
points. These results underscore the effectiveness of multi-modal fusion, where the integration of
complementary modalities enables more accurate and complete depth reconstruction.
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Table 6: Ablations on EventDC-Real. DConv/Enc/Dec: dynamic convolution/encoder/decoder.

EventDC
Modality DConv EMA LDF

RMSE MAE REL δ1.05 δ1.10 δ1.15Depth RGB Event Enc Dec Enc Dec

i ✓ 727.2 283.2 0.0341 89.3 94.4 96.2
ii ✓ ✓ 685.9 251.1 0.0328 89.8 94.5 96.2
iii ✓ ✓ 696.0 244.3 0.0314 90.0 94.5 96.3
iv ✓ ✓ ✓ 638.3 224.7 0.0312 90.3 94.7 96.4

v ✓ ✓ ✓ ✓ 628.8 219.5 0.0292 91.0 95.0 96.7
vi ✓ ✓ ✓ ✓ 602.8 196.1 0.0276 91.7 95.6 97.1
vii ✓ ✓ ✓ ✓ 630.6 219.8 0.0295 91.0 94.8 96.5
viii ✓ ✓ ✓ ✓ 605.4 198.3 0.0279 91.5 95.6 97.1
ix ✓ ✓ ✓ ✓ ✓ 574.0 179.0 0.0242 92.9 96.3 97.5
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Figure 7: Statistical and visual comparative analyses of the proposed EMA and LDF modules.

(2) EventDC-v to EventDC-ix conduct ablation studies to examine the impact of dynamic convolution
(DConv), EMA, and LDF in the encoder (Enc) and decoder (Dec) stages. Specifically, the introduction
of DConv in EventDC-v brings notable benefits. Furthermore, EventDC-vi with EMA further reduces
RMSE by 26 mm. These results validate the efficacy of our event-based adaptive alignment strategy.
Fig. 7(a) compares the distributions of RGB-D features with and without EMA. EMA works as
intended in promoting better alignment between the two modalities with more consistent feature
representations. Similarly, EventDC-viii with LDF outperforms EventDC-vii with DConv by 25.2
mm. This demonstrates its superior ability to recover fine-grained local depth which is further evident
in Fig. 7(b). Finally, EventDC-ix which integrates both EMA and LDF modules achieves the best
overall performance. It reduces RMSE by 16.0% (from 683.3 mm) and MAE by 20.3% (from 224.7
mm). In summary, each component contributes positively to the overall performance gains.

6 Conclusion

We propose EventDC in this work. Our EventDC is the first depth completion framework that tackles
the challenges of dynamic scenes by harnessing the unique strengths of event data. To mitigate the
adverse effects of fast ego-motion and object motion, our EventDC incorporates two event-driven
modules: event-modulated alignment and local depth filtering. These modules, supported by two
dedicated loss constraints, address global misalignment and local depth inaccuracies, respectively.
To further support research in this area, we construct the first benchmark for event-based depth
completion comprising one real-world and two synthetic datasets. Extensive experiments demonstrate
the effectiveness of our EventDC and its superior performance in challenging dynamic environments.

Limitation and Broader Impact. Despite achieving promising results in dynamic scenes, our
EventDC relies on high-quality event data and precise sensor alignment that may not be easily
attainable in all real-world settings. The EMA and LDF modules introduce additional computational
costs, potentially limiting deployment on resource-constrained devices. Moreover, the scale and
diversity of our real-world dataset are limited, and future work is needed to evaluate generalization
across more diverse environments and motion patterns. Despite these limitations, our EventDC
offers a step forward in robust depth perception under motion blur and rapid dynamics with potential
applications in autonomous driving, robotics, AR/VR, etc. By introducing a dedicated benchmark, we
aim to promote research in event-based depth completion. As with all perceptual systems, responsible
deployment requires attention to reliability, fairness, and safety in complex real-world conditions.
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A Metrics.

We adopt the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Relative Error
(REL), and threshold accuracy δθ as evaluation metrics, where θ is set to 1.05, 1.10, and 1.15. The
definitions of these metrics are shown in Tab. 7.

Table 7: Definition of evaluation metrics.

Given the predicted depth D and GT depth Z with n valid pixels:

– RMSE:
√

1
n

∑
(D− Z)

2 – MAE: 1
n

∑
|D− Z|

– REL: 1
n

∑
|D− Z| /Z – δθ: q

n , q : max
(
D
Z , Z

D

)
< θ

EventDC-Real

Color image Sparse depth Event stream GT depth

EventDC-FullSyn

EventDC-SemiSyn

Figure 8: More visual examples of the proposed event-based depth completion benchmark.

B More Visualizations

Fig. 8 presents some RGB-D-Event examples from our event-based depth completion benchmark,
showcasing its high quality and strong cross-modal consistency, as well as the close correlation
among the RGB, depth, and event modalities. Figs. 9, 10 and 11 show visual comparisons on the
EventDC-Real, EventDC-SemiSyn, and EventDC-FullSyn datasets. These results further validate
that our approach effectively improves depth predictions through the event-driven module designs.
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Figure 9: More depth error comparisons on EventDC-Real. Warmer colors indicate higher errors.
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Figure 10: More depth visualization comparisons on the proposed EventDC-SemiSyn dataset.
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Figure 11: More depth visualization comparisons on the proposed EventDC-FullSyn dataset.
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• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The data and source codes will be publicly available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have made sure to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the section of ‘Limitation and Broader Impact’.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: CC-BY 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

21

paperswithcode.com/datasets


Answer: [Yes]
Justification: We have communicated the details of the dataset/code/model as part of our
submissions via structured templates.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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