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ABSTRACT

Parameter shift rules (PSRs) are key techniques for efficient gradient estimation in
variational quantum eigensolvers (VQESs). In this paper, we propose their Bayesian
variant, where Gaussian processes with appropriate kernels are used to estimate
the gradient of the VQE objective. Our Bayesian PSR offers flexible gradient
estimation from observations at arbitrary locations with uncertainty information,
and reduces to the generalized PSR in special cases. In stochastic gradient descent
(SGD), the flexibility of Bayesian PSR allows reuse of observations in previous
steps, which accelerates the optimization process. Furthermore, the accessibility
to the posterior uncertainty, along with our proposed notion of gradient confident
region (GradCoRe), enables us to minimize the observation costs in each SGD step.
Our numerical experiments show that the VQE optimization with Bayesian PSR
and GradCoRe significantly accelerates SGD, and outperforms the state-of-the-art
methods, including sequential minimal optimization.

1 INTRODUCTION

The variational quantum eigensolver (VQE) (Peruzzo et al.,|2014; McClean et al., 2016 is a hybrid
quantum-classical algorithm for approximating the ground state of the Hamiltonian of a given physical
system. The quantum part of VQEs uses parameterized quantum circuits to generate trial quantum
states and measures the expectation value of the Hamiltonian, i.e., the energy, while the classical part
performs energy minimization with noisy observations from the quantum device. Provided that the
parameterized quantum circuits can accurately approximate the ground state, the minimized energy
gives a tight upper bound of the ground state energy of the Hamiltonian.

The observation noise in the quantum device comes from multiple sources. One source of noise
is measurement shot noise, which arises from the statistical nature of quantum measurements—
outcomes follow the probabilities specified by the quantum state, and finite sampling introduces
fluctuations. Since this noise source is random and independent, it can be reduced by increasing the
number of measurement shots, to which the variance is inversely proportional. Another source of
noise stems from imperfections in the quantum hardware, which have been reduced in recent years
by hardware design (Bluvstein et al.|[2023), as well as error mitigation (Cai et al.,|[2023), quantum
error correction (Roffe, 2019} |Acharya et al.;[2024), and machine learning (Liao et al.,|[2024; Nicoli
et al., |2025) techniques. In this paper, we do not consider hardware noise, as is common in papers
developing optimization methods (Nakanishi et al., 2020; Nicoli et al., [2023b)).

Stochastic gradient descent (SGD), sequential minimal optimization (SMO), and Bayesian optimiza-
tion (BO) have previously been used to minimize the VQE objective function. Under some mild
assumptions (Nakanishi et al., |2020), this objective function is known to have special properties.
Based on those properties, SGD methods can use the gradient estimated by so-called parameter shift
rules (PSRs) (Mitarai et al., 2018), and specifically designed SMO (Platt, |1998) methods, called
Nakanishi-Fuji-Todo (NFT) (Nakanishi et al.|[2020), perform one-dimensional subspace optimization
with only a few observations in each iteration. lannelli and Jansen|(2021) applied BO to solve VQEs
as noisy global optimization problems.

Although Gaussian processes (GPs) (Rasmussen and Williams, [2006) have been used in VQEs as
common surrogate functions for BO (Frazier, |2018), they have also been used to improve SGD-based
and SMO-based methods. [Nicoli et al.|(2023a) proposed the VQE kernel—a physics-informed kernel
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that fully reflects the properties of VQEs—and combined SMO and BO with the expected maximum
improvement within confident region (EMICoRe) acquisition function. This allows for identification
of the optimal locations to measure on the quantum computer in each SMO iteration. [Tamiya and
'Yamasaki (2022) combined SGD and BO, and proposed stochastic gradient line BO (SGLBO), which
uses BO to identify the optimal step size in each SGD iteration. |Anders et al. (2024) proposed the
subspace in confident region (SubsCoRe) approach, where the observation costs are minimized based
on the posterior uncertainty estimation in each SMO iteration.

In this paper, we take a different ap-

proach to leveraging GPs, and in- Prior Posterior
troduce a Bayesian parameter shift S = s

rule (Bayesian PSR), where the gra- v ___________ v §- ?
dient of the VQE objective is es- #(z)
timated using GPs with the VQE ——0 " —0—0_——0
kernel. The Bayesian PSR trans- rx_ 7 Xy g ¥T- T Tt
lates into a regularized variant of 5

PSRs if the observations are per- o As 5 ...
formed at designated locations. How- N

ever, our approach offers significant daf (:Z:) | IS o p) |
advantages—flexibility and direct ac- - ! P — ! m

cess to uncertainty—over existing
PSRs (Mitarai et al., [2018; |Wierichs
et al.; 2022). More specifically, the
Bayesian PSR can use observations
at any set of locations, which allows
the reuse of observations performed in
previous iterations of SGD. Reusing
previous observations along with new
observations improves the gradient es-
timation accuracy, and thus acceler-
ates the optimization process. Further-

Figure 1: TIllustration of our gradient confident region (Grad-
CoRe) approach. Our goal is to minimize the true energy
[*(x) over the set of parameters = € [0, 27)", where we
use a GP surrogate f () for approximating f*(x). Observ-
ing f* at points x_ and x (green circles) along the d-th
direction (solid horizontal line) decreases the uncertainty
(dashed curves) not only for predicting f (x4 ), but also for
predicting 9 f (Z' "), so that the current optimal point Z' "
falls within the GradCoRe (blue square). Our GradCoRe-

more, the uncertainty information can
be used to adapt the observation cost
in each SGD iteration—in a similar
spirit to|/Anders et al. (2024)—which

based SGD uses the minimum number of measurement shots
for achieving required gradient estimation accuracy in each
iteration, and thus minimizes the total observation costs over
the optimization process.

significantly reduces the cost of ob-

taining new observations, while maintaining a required level of accuracy. We implement this adaptive
observation cost strategy by introducing a novel notion of gradient confidence region (GradCoRe)—
the region in which the uncertainty of the gradient estimation is below a specified threshold (see
Figure [I). Empirical evaluations show that our proposed Bayesian PSR improves the gradient es-
timator, and SGD equipped with our GradCoRe approach outperforms all previous state-of-the-art
methods including NFT and its variants.

The main contributions are summarized as follows:

* We propose Bayesian PSR, a flexible variant of existing PSRs that provides access to
uncertainty information.

* We theoretically establish the relationship between Bayesian PSR and existing PSRs, reveal-
ing the optimality of the shift parameter in first-order PSRs.

* We introduce the notion of GradCoRe, and propose an adaptive observation cost strategy for
SGD optimization.

* We numerically validate our theory and empirically demonstrate the effectiveness of the
proposed Bayesian PSR and GradCoRe.

Related work:  Finding the optimal set of parameters for a variational quantum circuit is a
challenging problem, prompting the development of various approaches to improve the optimization
in VQEs. Gradient-based methods for VQEs often rely on PSRs (Mitarai et al., 2018; [Wierichs et al.|
2022), which enable reasonably accurate gradient estimation of the output of quantum circuits with
respect to their parameters. [Nakanishi et al.|(2020) proposed an SMO (Platt, [1998)) algorithm, known
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as NFT, where, at each step of SMO, one parameter is analytically minimized by performing a few
observations. [Nicoli et al.|(2023a) combined NFT with GP and BO by developing a physics-inspired
kernel for GP regression and proposing the EMICoRe acquisition function, relying on the concept
of confident regions (CoRe). This method improves upon NFT by leveraging the information from
observations in previous steps to identify the optimal locations to perform the next observations.
Anders et al. (2024) leveraged the same notion of CoRe, and proposed SubsCoRe, where, instead of
optimizing the observed locations, the minimal number of measurement shots is identified to achieve
the required accuracy defined by the CoRe. The resulting algorithm converges to the same energy
as NFT with a smaller quantum computation cost, i.e., the total number of measurement shots on a
quantum computer. Tamiya and Yamasaki| (2022) combined SGD with BO to tackle the excessive
cost of standard SGD approaches and used BO to accelerate the convergence by finding the optimal
step size. In a general context of BO, Miiller et al. (2021)) proposed a gradient information with BO
(GIBO) approach, where the uncertainty of the GP-estimated gradient is minimized. Our GradCoRe
can be seen as an enhanced version of GIBO, where the theoretically optimal locations are observed
with minimum costs based on strong physical information of VQEs.

2 BACKGROUND

Here we briefly introduce Gaussian process (GP) regression and its derivatives, as well as VQEs with
their known properties.

2.1 GP REGRESSION AND DERIVATIVE GP

Assume that we aim to learn an unknown function f*(-) : X — R from the training data X =
(1,...,zN) €XN y=(y1,...,un) | ERN o= (0},...,0%) € RL that fulfills

Yn = f*(mn) + €n, En NN1(yn;0,U,2L), (1

where Np(+; u, ) denotes the D-dimensional Gaussian distribution with mean g and covariance X.
With the Gaussian process (GP) prior p(f(-)) = GP(f(-); 0(-), k(+,-)), where 0(-) and k(-, -) are the
prior zero-mean and the kernel (covariance) functions, respectively, the posterior distribution of the
function values ' = (f(z}),..., f(x},)) " € RM atarbitrary test points X' = (x'1,...,2'pr) €
XM s given as

p(f'1X,y) = Nu(F's ix 401 S[x,07), Where )
. - T . _
Hix 4oy = K'" (K + Diag(c)) 'y and Six , =K"-K' (K +Diago)) ' K' (3)

are the posterior mean and covariance, respectively (Rasmussen and Williams| 2006). Here Diag(v)
is the diagonal matrix with v specifying the diagonal entries, and K = k(X , X) € RV*N K’ =
E(X,X') € RV*M and K" = k(X', X") € RM*M gare the train, train-test, and test kernel
matrices, respectively, where k(X , X') denotes the kernel matrix evaluated at each column of X
and X' such that (k(X, X"))n.m = k(x,,,,). We also denote the posterior as p(f(-)| X, y) =
GP(f(*); Hix,y,01(), 8[x,0](+, -)) With the posterior mean p[x 4 o](-) and covariance s;x o(:")
functions.

Since the derivative operator is linear, the derivative Vo f = (01f,...,0pf)" € RP of GP samples
also follows a GP. Here we abbreviate 9; = % Therefore, we can straightforwardly handle the
derivative outputs at training and test points by modifying the kernel function. Assume that x is
a training or test point with non-derivative output y = f*(x) 4 ¢, and ' and «’’ are training or
test points with derivative outputs, v/ = 0y f*(x’) + &',y = g f* (") + &”. Then, the kernel
functions should be replaced with

k(z,z') = 59-k(z,x'), k(x,a") = 2 k(x, ). 4)

7 - 7
S de,awd,/

The posterior (2)) with appropriately replaced kernel matrix entries gives the posterior distribution of
derivatives at test points. We denote the GP posterior of a single component of the derivative as

PO4f ()X, ) = CP (0af () iR 4.1 ()55 o () 5)
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with the posterior mean 7i()(-) and covariance 3(?)(-,-) functions for the derivative with respect
to x4. More generally, GP regression can be analytically performed in the case where the training
outputs (i.e., observations) and the test outputs (i.e., predictions) contain derivatives with different
orders (see Appendix [A] for more details).

2.2 VARIATIONAL QUANTUM EIGENSOLVERS AND THEIR PHYSICAL PROPERTIES

The VQE (Peruzzo et al.,|2014; McClean et al., 2016) is a hybrid quantum-classical computing
protocol for estimating the ground-state energy of a given quantum Hamiltonian for a )-qubit
system. The quantum computer is used to prepare a parametric quantum state |1, ), which depends
on D angular parameters = € X = [0,27)P. This trial state |1,) is generated by applying
D'(> D) quantum gate operations, G(x) = Gp: o --- o G1, to an initial quantum state |¢)g), i.e.,
[the) = G()]tho). All gates {Gg} D, are unitary operators, parameterized by at most one variable
xzq. Letd(d) : {1,...,D'} — {1,..., D} be the mapping specifying which one of the variables
{x4} parameterizes the d’-th gate. We consider parametric gates of the form G (z) = Ug (z4(a)) =
exp (—ixq(a) Par /2), where Py is an arbitrary sequence of the Pauli operators {14, o2°, 02 , 0Z }?:1
acting on each qubit at most once. This general structure covers both single-qubit gates, such as
Rx(x) = exp (*Z'QO'ZIX ) and entangling gates acting on multiple qubits simultaneously, such as

Rx x () = exp (—izoy ooz ) for g1 # go, commonly realized in trapped-ion quantum hardware

setups (Kielpinski et al.,|2002; Debnath et al., 2016).
The quantum computer is used to evaluate the energy of the resulting quantum state |1),,) by observing
y=f"(z)+e, where  f*(2) = (Yo H|z) = (Yo|G(x)' HG(z)[),  (6)

and t denotes the Hermitian conjugate. For each observation, repeated measurements, called shots,
on the quantum computer are performed. Averaging over the number Ny ots Of shots suppresses
the variance 0*2(Nshots) x N;nl)ts of the observation noise || Since the observation y is the sum
of many random variables, it approximately follows the Gaussian distribution, according to the
central limit theorem. The Gaussian likelihood (1)) therefore approximates the observation y well
if 02 &~ 0*%(Nghots). Using the noisy estimates of f*(z) obtained from the quantum computer, a
protocol running on a classical computer is used to solve the following minimization problem:

minwE[O,Qﬂ')D f*(ﬂﬁ), @)

thus finding the minimizer Z, i.e., the optimal parameters for the (rotational) quantum gates. Given the
high expense of quantum computing resources, the computation cost is primarily driven by quantum
operations. As a result, the optimization cost in VQE is typically measured by the total number of
measurement shots required during the optimization process We refer to [Tilly et al.| (2022) for
further details about VQESs and their challenges.

Let V; be the number of gates parameterized by x4, i.e., Vg = [{d' € {1,...D'};d = d(d")}|.
Mitarai et al.| (2018) proved that the VQE objective (6)) for V; = 1 satisfies the parameter shift rule
(PSR)

f*(w’+aed)—f*(w/—aed)

daf*(x) = - , vx € [0,27)P, d=1,...,D, a €[0,21), (8)
where {ed}gzl are the standard basis, and the shift « is typically set to 5. |Wierichs et al. (2022)
generalized the PSR () for arbitrary V; with equidistant observations {x,, = ' + %ﬂed}i‘ga L

Oaf*(#) = 7 Tole ' Sy ©)

w=0 2sin2 ( (212;11)« )
Most gradient-based approaches rely on those PSRs, which allow reasonably accurate gradient
estimation from Z?:l 2V, observations. Let

¥, (0) = (7, V2cos6,v2c0s20,...,v/2cos Vyh,V2sinb,v2sin20,...,v/2sin Vz0) T (10)

"We do not consider the hardware noise, and therefore, the observation noise € consists only of the measure-
ment shot noise.

*When the Hamiltonian consists of Nog groups of non-commuting operators, each of which needs to be
measured separately, Nghots denotes the number of shots per operator group. Therefore, the number of shots
per observation is Nog X Ngnots. In our experiments, we report on the total number of shots per operator group,
i.e., the cumulative sum of Ngpots Over all observations, when evaluating the observation cost.
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Figure 2: Illustration of the behavior of the Bayesian PSR when V; = 1 (left) and when V; = 2
(middle). Bayesian PSR prediction (red) coincides with general PSR (green cross) for the designed
equidistant observations (magenta crosses). The right plot visualizes the variance (the second equation
in Eq. (13)) of the derivative GP prediction at ', as a function of the shift « of observations when
V,; = 1. For all panels, the noise and kernel parameters are set to o2 = 0.01,7? = 9, 02 = 100.

be the (1-dimensional) V-th order Fourier basis for arbitrary v > 0. Nakanishi et al.| (2020) found
that the VQE objective function f*(-) in Eq. (6} with an G(-), H, and |1g) can be expressed exactly
as

fr(x) = b vec (D19, (z4)) (11)

for some b € ]RndD:l(l“Vd), where ® and vec(-) denote the tensor product and the vectoriza-
tion operator for a tensor, respectively. Based on this property, the Nakanishi-Fuji-Todo (NFT)
method (Nakanishi et al., 2020) performs SMO (Platt, |1998), where the optimum in a chosen 1D
subspace for each iteration is analytically estimated from only 1 + 2V;; observations (see Appendix [B]
for the detailed procedure). It was shown that the PSR (8) and the trigonometric polynomial function
form are mathematically equivalent (Nicoli et al., 2023a).

Inspired by the function form of the objective, Nicoli et al.|(2023a) proposed the VQE kernel

D 242 Zvvi cos(v(zqg—zl)
ky(z,2') = o2 [, (” ;2+2§d . d)), (12)
which is decomposed as ki (z,z') = ¢ (x)' ¢ («') with feature maps ¢, (x) =

erc (®5_1%.(x4)), for GP regression. The kernel parameter 2 controls the smooth-
d

ness of the function, i.e., suppressing the interaction terms when 42 > 1. When 42 = 1, the Fourier
basis is orthonormal, and the VQE kernel is proportional to the product of Dirichlet kernels
(Rudin| [1964). The VQE kernel reflects the physical knowledge of VQE, and thus allows us
to perform a Bayesian variant of NFT—Bayesian NFT or Bayesian SMO—where the 1D subspace
optimzation in each SMO step is performed with GP (see Appendix [B]for more details and the perfor-
mance comparison between the original NFT and Bayesian NFT). [Nicoli et al.| (2023a) furthermore
enhanced Bayesian NFT with BO, using the notion of confident region (CoRe),

Zix01(K) = {® € X;six,0) (@, ) < K}, (13)

i.e., the region in which the uncertainty of the GP prediction is lower than a threshold . More
specifically, they introduced the EMICoRe acquisition function to find the best observation points in
each SMO iteration, such that the maximum expected improvement within the CoRe is maximized.

3 BAYESIAN PARAMETER SHIFT RULES

We propose Bayesian PSR, which estimates the gradient of the VQE objective (6] by the GP posterior
with the VQE kernel along with its derivatives (4). The advantages of Bayesian PSR include:
1) The gradient estimator has an analytic-form, 2) Estimation can be performed using observations
at any set of points, 3) Estimation is optimal for heteroschedastically noisy observations (from the
Bayesian perspective), as long as the prior with the kernel parameters,  and 03, is appropriately set,

3 Any circuit consisting of parametrized rotation gates and non-parametric unitary gates.
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and 4) The posterior uncertainty can be analytically computed before performing the observations. In
Section 4} we propose novel SGD solvers for VQEs that leverage the advantages of Bayesian PSR.

As naturally expected, our Bayesian PSR is a generalization of exisiting PSRs, and reduces to the
general PSR (9) for noiseless and equidistant observations. Let 15 € R” be the vector with all
entries equal to one.

Theorem 3.1. Forany 2’ € [0,2m)P and d = 1,. .., D, the mean and variance of the derivative
GP prediction, given observations y = (yo, . .. ,ygvd,l)—r € R?Ve at 2V, equidistant training
points X = (w()’ L. 7w2Vd71) c RDP*2Va for Ty = x + %ﬂ'ed with homoschedastic noise
oc=02. 1oy, for 0? < oy, are

2Vt F(l(%))
@ N T peme (gl ot ~(d) AN 2<2Vf+1) ot
A% o) @) = — e H O0(51), Fx (@) =0 (T4 ) + 0(%). (14)
70

The proof, the non-asymptotic form of the mean and the variance, and the numerical validation of the
theorem are given in Appendix [C] Apparently, the mean prediction (the first equation in Eq. (14)) by
Bayesian PSR converges to the general PSR (9) with the uncertainty (the second equation in Eq. (14))
converging to zero in the noiseless limit, i.e., 02 — +0 and hence Yw = [*(xy). In noisy cases,
the prior variance o2 ~ O(c?) suppresses the amplitude of the gradient estimator as a regularizer
through the first term in the denominator in the first equation of Eq. (14).

Figure [2]illustrates the behavior of Bayesian PSR when V; = 1 (left panel) and when V; = 2 (middle
panel). In each panel, given 2V;; equidistant observations (magenta crosses), the blue curve shows
the (non-derivative) GP prediction with uncertainty (blue shades), while the red curve shows the
derivative GP prediction with uncertainty (red shades). Note the 57~ shift of the low uncertainty
locations between the GP prediction (blue) and the derivative GP prediction (red). The green cross
shows the output of the general PSR (9) at ' = 0, which almost coincides with the Bayesian
PSR prediction (red curve) under this setting. Other examples, including cases where the Bayesian
regularization is visible, are given in Appendix [C]

In the simplest first-order case, i.e., where V; = 1,Vd = 1, ..., D, we can theoretically investigate
the optimality of the choice of the shift « in Eq. (8) (the proof is also given in Appendix [C).

Theorem 3.2. Assume that Vy = 1,Yd = 1,...,D. Forany 2’ € [0,2m)? andd = 1,..., D, the

mean and variance of the derivative GP prediction, given observations y = (y1,y2) " € R? at two

training points X = (x' — aeq, ¢’ + aeq) € RP*2 with homoschedastic noise o = (0%,02) 7, are
2

~(d) _ — sin a ~(d) _ o
M[X,y,a'] (x/) - (’y2/2$/12)o:gl/378+2 sin? a? S[X,o‘] (wl’ :E/) T (v?/2+1)02 /0 +2sin? a” (15)

Again, the mean prediction (the first equation in Eq. (15)) is a regularized version of the PSR (8).
The uncertainty prediction (the second equation in Eq. (15))) implies that & = 7/2 minimizes the
uncertainty in the noisy case, regardless of o2, 02 and  (see the right panel in Figure |Z, where the
variance of the derivative GP prediction at ' is visualized as a function of the shift « of observations
for V; = 1). This supports most of the use cases of the PSR in the literature (Mitarai et al.,[2018),
and matches the intuition that the maximum span minimizes the uncertainty.

4 SGD WITH BAYESIAN PSR

In this section, we equip SGD with Bayesian PSR. In the standard implementation of SGD for VQEs,
2V, equidistant points along each direction d = 1, ..., D are observed for gradient estimation by the
general PSR (9) (or by the PSR (8) if V; = 1, Vd) in each SGD iteration.

Bayesian SGD (Bayes-SGD): A straightforward application of Bayesian PSR is to replace existing
PSRs with Bayesian PSR for gradient estimation, allowing for the reuse of previous observations.
We retain R - 2V, - D latest observations for a predetermined R in our experiments. Reusing
previous observations accumulates the gradient information, and thus improves the gradient estimation
accuracy, as shown in Section
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4.1 GRADIENT CONFIDENT REGION (GRADCORE)

We propose an adaptive observation cost control strategy that leverages the uncertainty information
provided by the Bayesian PSR. This strategy adjusts the number of measurement shots for gradient
estimation in each SGD iteration so that the variances of the derivative GP prediction at the current
optimal point Z are below certain thresholds. In a similar fashion to the CoRe (13), we define the
gradient confident region (GradCoRe)

Zixoi(r) = {z € X33 (@ 2) < 63, vd}, (16)

T € RP are the required accuracy thresholds. Our proposed SGD-

where k = (k%,...,Kk%)
based optimizer, named SGD-GradCoRe, measures new equidistant points X = {{a:u‘f =
x+ 2;”‘2 Lreqg}2Ve )0 d=1 for all directions with the minimum total number of shots such that the
current optimal point Z is in the GradCoRe (see Figure [1)).

Before starting optimization, we evaluate the single-shot observation noise variance 0*?(1) = *>
by collecting measurements at random locations, following |Anders et al. (2024). We use this
information to estlglate the observatlon noise variance as a function of the number of shots as
0*?(Nghots) = ~_- Let (X', yt, o) be the training data (all previous observations) at the ¢-th

SGD iteration step, and let &7 € R2V¢P be the vector of the numbers of measurement shots at the new

equidistant measurement points X for all directions. Before measuring at X in the (t 4+ 1)-th SGD
iteration, we solve the following problem:

mNin D[ st.z € Z[(th()?(gt,a(ﬁ))](“(t))a (17)
where & (7)) =72 - (7, 1, .. Dz_vl p) ", and K(t) is the required accuracy dependent on the iteration

step t. Informally, we mimmlze the total measurement budget under the constraint that the posterior
gradient variance along each direction d is smaller than the required accuracy threshold. For simplicity,
we solve the GradCoRe problem by grid search under the additional constraint that all 2V; D
points are measured with an equal number of shots.

We set the required accuracy thresholds to x(t) = x2(t)1p, where

2
K2(t) = mmax (601 % 25:1 (Mg(t yt af}(it)) ) : (18)

Namely, «(t) is set proportional to the L2-norm of the estimated gradient at the current optimal point
at the ¢-th SGD iteration, as long as it is larger than a lower bound. The lower bound ¢y and the
slope c; are hyperparameters to be tuned. This strategy for setting the required accuracy based on the
estimated gradient norm was proposed by [Tamiya and Yamasaki|(2022).

In the experiment plots in Section [5, we will refer to SGD-GradCoRe as GradCoRe. Further
algorithmic details, including pseudo-code and used hyperparameter values, are given in Appendix D.

5 EXPERIMENTS

5.1 SETUP

We demonstrate the performance of our Bayesian PSR and GradCoRe approaches in the same setup
used by |Nicoli et al. (2023a)). For all experiments, we prepared 100 different random initial points,
from which all optimization methods start. Our Python implementation uses Qiskit (Abraham et al.|
2019) for the classical simulation of quantum hardware. The implementation for reproducing our
results is attached as supplemental material.

Hamiltonian and Quantum Circuit: = We focus on the quantum Heisenberg Hamiltonian with
open boundary conditions,

H=- Z’LG{X Y. Z} Z (J Ujgj+1) + Zj 1 hi U ) (19)

where {O’; }ie{x,v,zy are the Pauli operators acting on the j-th qubit. For the quantum circuit, we use
a common ansatz, called the L-layered Efficient SU(2) circuit with open boundary conditions,
where V; = 1, Vd (see Nicoli et al. (2023a) for more details).
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Figure 3: Comparison between SGD with PSR (dashed curves) and SGD with Bayesian PSR (solid
curves), as well as GradCoRe (red solid curve), on the Ising Hamiltonian with a (@ = 5)-qubits
(L = 3)-layers quantum circuit. The energy (left) and fidelity (right) are plotted as functions of the
cumulative Ngpots, 1.€., the total number of measurement shots. Except GradCoRe equipped with
the adaptive shots strategy, the number of shots per observation is set to Ngpots = 128 (blue), 256
(green), 512 (orange), and 1024 (purple).

=—— SGLBO = Bayes-NFT == EmiCoRe == SubsCoRe == GradCoRe (our)
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Figure 4: Energy (left) and fidelity (right) achieved within the cumulative number of measurement
shots for the Ising Hamiltonian with a () = 5)-qubits (L = 3)-layers quantum circuit. The curves
correspond to SGLBO (blue), Bayes-NFT (green), EMICoRe (orange), SubsCoRe (purple), and our
proposed GradCoRe (red).

Evaluation Metrics: We compare all methods using two metrics: the best achieved true energy
*(@), for f*(-) defined in Eq. (6), and fidelity (¢cs|yz) € [0, 1]. The latter is the inner product
between the true ground-state wave function |1gg), computed by exact diagonalization of the target
Hamiltonian H, and the trial wave function, |1z ), corresponding to the quantum state generated by
the circuit using the optimized parameters . For both metrics, we plot the difference (smaller is
better) to the respective target, i.e.,

AEnergy = (Yz|H|vz) — (Yas|H|vas) = () — (Yas|H |Yas), (20)
AFidelity = (Yas|tas) — (Yaslvz) = 1 — (Yas|vz), 1)

in log scale. Here, |¢)gs) and (¢as|H |[t)as) are the wave function and true energy at the ground-state,
respectively, both of which are computed analytically. As a measure of the quantum computation
cost, we consider the total number of measurement shots per operator group (see Footnote 2)) for all
observations over the whole optimization process.

Baseline Methods: We compare our Bayesian SGD and GradCoRe approaches to the baselines,
including SGD with the PSR (8], Bayesian NFT, SGLBO (Tamiya and Yamasaki, [2022), EMICoRe
(Nicoli et al.} 2023a), and SubsCoRe (Anders et al.,[2024). We exclude the original NFT (Nakanishi
let al., 2020) because it is outperformed by Bayesian NFT (see Figure[5 in Appendix [B). We also
exclude GIBO (Miiller et al., [2021), which is an even weaker baseline than the original NFT (see

Appendix [G).

Algorithm Setting:  All SGD-based methods use the ADAM optimizer with [, = 0.05, s =
(0.9,0.999). For the methods not equipped with adaptive cost control (i.e., all methods except SGLBO,
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SubsCoRe and GradCoRe), we set Ngpots = 1024 for each observation—the same setting as inNicoli
et al. (2023a)—unless specified explicitly. To avoid error accumulation, all SMO-based methods
measure the “center”, i.e., the current optimal point without shift, every D + 1 iterations (Nakanishi
et al.,|2020). Bayes-SGD and GradCoRe estimate the gradient from the R -2V, - D latest observations
for R = 5, and GradCoRe initially uses the fixed threshold x2(t) = 7*2 /256 before starting the cost
adaption after D SGD iterations. Further details on the algorithmic and experimental settings are
described in Appendix [D and Appendix [E, respectively.

5.2 IMPROVEMENT OVER SGD WITH BAYESIAN PSR AND GRADCORE

First, we investigate how our Bayesian PSR and GradCoRe improve SGD. Figure [3|compares SGD
with the standard PSR (SGD) and SGD with Bayesian PSR (Bayes-SGD) on the Ising Hamiltonian,
ie., Eq. for Jicixv,zy = (=1,0,0) and hic(x y,zy = (0,0, 1), with a (Q = 5)-qubits
(L = 3)-layers quantum circuit. Both for SGD and Bayes-SGD, the optimization performance
with Ngpots = 128,256,512, 1024 measurement shots are shown. The left and right panels plot
the difference to the ground-state in true energy and fidelity achieved by each method as
functions of the cumulative Ngpots, i.€., the total number of measurement shots. To the right of each
panel, the trial density, i.e., the distribution over the trials computed by kernel-density estimation,
after the use of 1 x 107 total measurement shots is depicted. The median, the 25-th and the 75-th
percentiles are shown as a solid curve and shades, respectively. We observe that Bayesian PSR, with
a more accurate gradient estimator as shown in Figure[7)in Appendix [F] is comparable or compares
favorably to the original SGD. More importantly, we observe that GradCoRe automatically selects
the optimal number of measurement shots in each optimization phase, thus outperforming SGD and
Bayes-SGD with different fixed number Ngpot5 of shots through the entire optimization process.
The adaptively selected number of shots and the accuracy threshold «(t) for GradCoRe are shown
in Appendix

5.3 COMPARISON WITH STATE-OF-THE-ART METHODS

FigureEcompares GradCoRe to the baseline methods, SGLBO, Bayes-NFT, EMICoRe, and Sub-
sCoRe. Our GradCoRe, which significantly improves upon SGD as shown in Figure[3, establishes
itself as the new state-of-the-art, exhibiting faster convergence and achieving lower overall energy
(see Table[3]in Appendix [F.T for statistical significance test results. We also conducted experiments
with different ) and L, as well as for the Heisenberg Hamiltonian, on which the results are reported
in Appendix [F.T.

6 CONCLUSION

The physical properties of variational quantum eigensolvers (VQEs) allow us to use specialized
optimization methods, i.e., stochastic gradient descent (SGD) with parameter shift rules (PSRs)
and a specialized sequential minimal optimization (SMO), called NFT (Nakanishi et al., [2020).
Recent research has shown that those properties can be appropriately captured by the physics-
informed VQE kernel, with which NFT has been successfully improved through Bayesian machine
learning techniques. For instance, observations in previous SMO iterations are used to determine
the optimal measurement points (Nicoli et al.,[2023a)), and observation costs are minimized based
on the uncertainty prediction (Anders et al., [2024). In this paper, we have shown that a similar
approach can also improve SGD-based methods. Specifically, we proposed Bayesian PSR, where
the gradient is estimated by derivative Gaussian processes (GPs). Bayesian PSR generalizes existing
PSRs to allow for flexible estimation from observations at an arbitrary set of locations. Furthermore, it
provides uncertainty information, which enables observation cost adaptation through the novel notion
of gradient confident region (GradCoRe). Our theoretical analysis revealed the relation between
Bayesian PSR and existing PSRs, while our numerical investigation empirically demonstrated the
utility of our approaches. We envisage that Bayesian approaches will facilitate further development
of more efficient algorithms for VQEs and, more generally, quantum computing. In future work, we
aim to explore the optimal combination of existing methods and strategies for selecting the most
suitable approaches for specific tasks, i.e., specific Hamiltonians.
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