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ABSTRACT

Quantum neural networks (QNNs) show promise for learning on noisy
intermediate-scale quantum (NISQ) devices, but two-qubit gate noise remains a
significant barrier to practical implementation. Zero-noise extrapolation (ZNE)
reduces errors by running circuits with scaled noise levels and extrapolating to the
zero-noise limit, although it needs many evaluations per input and is susceptible
to time-varying noise. We propose zero-noise knowledge distillation (ZNKD), a
training-time technique that involves a ZNE-augmented teacher QNN supervis-
ing a compact student QNN. Variational learning is used to optimize the student’s
ability to duplicate the teacher’s extrapolated outputs, resulting in robustness with-
out the need for inference extrapolation. We additionally present a formal anal-
ysis that demonstrates how robustness flows from the ZNE instructor to the dis-
tilled student, with proofs regarding noise scaling, extrapolation error, and student
generalization. In dynamic-noise simulations (IBM-style 77 /75, depolarizing,
readout), ZNE-guided distillation lowers student MSE by 0.06-0.12 (=10-20%)
across Fashion-MNIST, AG News, UCI Wine, and UrbanSound8K, keeping stu-
dents within 0.02-0.04 of the teacher and achieving 6:2-8:3 ratio of teacher to
student. ZNKD, which amortizes ZNE to training, provides an efficient way to
drift-resilient QNNs on NISQ hardware without per-input folding or extrapola-
tion.

1 INTRODUCTION

Quantum neural networks (QNNs) have shown high potential to tackle machine learning challenges
of faster computation using quantum computing, especially in noisy intermediate-scale quantum
(NISQ) devices [Jiao et al.| (2025)); [Havlicek et al.| (2019); |Chen et al. (2024). These models use
the high-dimensional expressivity of quantum circuits to describe complicated decision boundaries
with fewer parameters than traditional neural networks. However, practical deployment of QNNs
is severely limited by the inherent noise and decoherence present in current NISQ hardware Sun
et al.| (2024b); Jurcevic et al.| (2021); |/Afane et al.[|(2025). This noise reduces the accuracy and de-
pendability of QNN outputs, restricting their use in real-world applications. Several error mitigation
strategies have been developed to address this; however, they frequently involve additional circuit
executions, deeper circuits, or hardware capabilities that are beyond the reach of most NISQ devices
due to their excessive resources Temme et al.|(2017); Kandala et al.| (2019); (Cerezo et al.| (2022).

Zero-noise extrapolation (ZNE) is a widely used error mitigation method that estimates noise-free
expectation values without requiring quantum error correction Temme et al.|(2017); |Giurgica-Tiron
et al.| (2020); Barron et al.| (2024); Pelofske et al.|(2024). It increases circuit noise—typically via
gate folding or repeated gate insertions—and extrapolates the resulting measurements back to the
zero-noise limit. However, ZNE has several limitations. First, it requires multiple circuit executions
at different effective noise levels, increasing sampling costs. Second, circuit depth scales linearly
or quadratically with the noise factor A, reducing applicability on hardware with short coherence
times |Giurgica-Tiron et al.| (2020); Majumdar et al.| (2023). In global folding, A\ = 1 + 2k (with
k fold repetitions), resulting in O()\) runtime overhead per circuit. This scaling becomes costly
when using multiple fold levels for accurate extrapolation. Additionally, ZNE assumes a static noise
model, which may not hold on unstable or drifting devices. Cloud-based quantum systems offer
practical workarounds by providing access to high-fidelity hardware, parallel execution, and elastic
compute Zhahir et al.[(2024). Yet, dependence on quantum cloud infrastructure is not scalable long-
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term, due to limited availability, high cost, and queue delays—challenges that intensify as quantum
demand grows |Leone et al.[(2024).

In classical machine learning, knowledge distillation trains smaller students to copy larger teachers
Hinton et al.| (2015)), enhancing efficiency, robustness, and calibration [Sun et al.| (2024a)); Yang et al.
(2024). Mitigation methods in quantum computing include probabilistic error cancellation (PEC)
Van Den Berg et al|(2023); |Gupta et al.| (2024)), Clifford data regression (CDR) [Liao et al.| (2024),
and measurement error mitigation (MEM) |Geller| (2020); [Khan et al.| (2024). Compression is typi-
cally achieved through pruning or parameter reduction. These techniques, however, are challenging
to combine: mitigation increases circuit depth and sampling cost, but compression does not reduce
noise. Knowledge distillation provides a natural integration by focusing mitigation in a teacher and
transferring its robustness to a smaller student, resulting in both error reduction and model compres-
sion with minimum runtime overhead.

Distillation has been extensively researched in classical learning, but it has received less attention in
quantum machine learning Tian et al.| (2025). Prior work on quantum transfer learning and hybrid
distillation |Cerezo et al.| (2021); |Gou et al.| (2024); [Wang et al.| (2025) focuses on feature reuse
or embedding transfer rather than robustness against device noise. Our work addresses this gap by
developing a quantum-to-quantum distillation architecture that transfers the error mitigation benefits
of ZNE-trained instructors to compact student models, allowing for practical deployment on NISQ
hardware.

* We present a novel approach that combines error prevention and compression via zero-
noise knowledge distillation, evaluate its theoretical robustness constraints, and show its
usefulness in simulation and real hardware and dynamic noise settings.

* We provide a formal analysis showing that if the teacher’s Richardson-extrapolated ex-
posure is within € of the zero-noise risk, the distilled student achieves comparable risk
bounded by O(e) + ¢ (distillation mismatch), connecting robustness to the ZNE scaling
factors and sample size.

* We evaluate our approach on IBM-Aer with calibrated T; /T5, depolarizing, and readout
noise. ZKD students obtain 10-20% lower loss than non-distilled counterparts, remain
within 0.02-0.04 of teacher loss, and retain 6:2-8:3 compression ratio of teacher to student
without the runtime overhead of circuit folding.

2 METHOD

2.1 ZERO-NOISE EXTRAPOLATION (ZNE)

After defining gate-level decoherence using the Lindblad-informed noise model in we now
investigate an appropriate mitigation strategy dubbed Zero-Noise Extrapolation (ZNE) Barron et al.
(2024). ZNE enables the inference of perfect quantum circuit outputs by utilizing the link between
adjustable noise amplification and observable degradation—without the need for fault-tolerant error
correction or hardware changes.

Motivation. Using the single-gate fidelity equation [32] demonstrates that fidelity deteriorates lin-
early with both thermal photon quantity and gate time. At the circuit level, this accumulates as in
equation 34, where the number of gates N, affects the total deterioration. Instead of directly remov-
ing this error source, ZNE treats it as a quantifiable signal: we observe how the circuit expectation
value changes in response to purposefully increased noise and then extrapolate back to predict the
zero-noise result.

Noise Amplification via Gate Folding. We apply circuit folding to intentionally increase noise
intensity. A unitary gate (U) is substituted with a logically equal but longer sequence as

Utoigea = U (UTU)", )
where n € Z7 is the fold level and UT is the Hermitian conjugate. This structure does not modify

the circuit’s ideal logical action, but it does increase the number of physical gates. The effective
noise-amplification factor is A = 1 + 2n, so that the total number of executed gates scales as

NV =X Ny. 2)
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Figure 1: An overview of our framework, where A distillation framework with noise mitigation.(right)
Stage 1: To produce noise-free targets, train a large instructor QNN with ZNE. Stage 2: A lightweight student
QNN learns to replicate outputs in the presence of native noise. In ZNE (left) (a) Circuit outputs under ideal
vs. noisy settings show bias. (b) ZNE estimates zero-noise expectation by extrapolating from scaled noise runs.

By substituting into the circuit fidelity expression equation [34|produces
NV T AN, T
MG =1 = T [ m (@)t = 1= ST [ (1 n(6) d,

0 0
3)
which directly connects the Lindblad-informed deterioration rate to noise scaling .

Expectation Value and Richardson Extrapolation. Let E()\) represent the expected value of a
circuit observable at amplification factor A\. Given a smooth polynomial dependency on A, we can
expand it as

E(\) =E(0) + ciA + caX* + -+, €))
where F(0) represents the intended zero-noise value. Using two distinct folds A1, A2, Richardson
extrapolation produces the unbiased estimator as
A BE(M) =M E(\)

A2 — A1

Higher-order extrapolations can be built similarly, but with more fold levels.

E(0) . 5)

Why ZNE Works. ZNE enhances the Lindblad-informed model by converting predicted deterio-
ration into a corrective tool. Itis: (i) Noise-aware: it benefits from the linear scaling of gate infidelity
Ir in equation [32) and circuit infidelity in equation [3} (ii) Hardware-agnostic: it needs no explicit
calibration of v, T5, or thermal drift beyond monotonic scaling; (iii) Resource-scalable: it offers in-
creased runtime and cryogenic power for improved fidelity. Thus, ZNE connects analytic Lindblad-
based noise modeling with hardware-resilient QML, acting as a fundamental building component
for error reduction in near-term quantum devices.

2.2  OVERVIEW OF THE FRAMEWORK

The noise-mitigation distillation pipeline (Fig. [l)) connects a noise-aware teacher and a compact
student in two steps.

Teacher training with ZNE. A high-capacity variational quantum circuit U (0) is trained utilizing
outputs enhanced by ZNE. The noisy expectation value E()) is calculated for each scaling factor \.
Assuming polynomial dependency on \ (equation ), we use Richardson extrapolation (equation
to get the zero-noise value E (0). These denoised outputs are used as soft labels for training students
(clients).

Student distillation. The identical inputs are transmitted to a shallow student QNN V (¢), trained
to regress on the teacher’s ZNE-mitigated outputs. The distillation loss corresponds to

1 .
Le=r5 2 [[V(e). — EO)
(x,E(0))eD
where (V (¢)), represents the noisy student expectation on input z. Here, ¢ defines the trainable
parameters of the student circuit.

2
., ©)
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This two-stage solution separates the expense of mitigation (ZNE) from deployment: lightweight
pupils run without extrapolation while inheriting robustness from their ZNE-trained teachers Hinton
et al.[|(2015)).

2.2.1 KNOWLEDGE DISTILLATION PROTOCOL

We apply quantum-to-quantum distillation to transmit ZNE-protected robustness from a high-
capacity teacher circuit to a small student circuit. The procedure consists of four components: i)
teacher outputs, ii) student design, iii) distillation targets, and iv) the optimization loop.

i) Teacher outputs. The ZNE-trained teacher circuit U (0*) generates an empirical bitstring distri-
bution.

pt(b|x)=Prlb|a], (7)
for the input state (x). Because these distributions are derived under amplified noise (folding factor
A), the appropriate expectation values are extrapolated to zero-noise using equation 5} producing

E0)(z) = lim E(2). (8)

From p™, we calculate two types of soft targets:

1. Expectation targets (regression). For each qubit k, the tensor products of ZNE-corrected Pauli-Z
expectations are represented as

EOk@) = Y (~)™p"(b]a). ©)

be{0,1}n

2. Temperature-scaled logits (classification). For each bitstring b, we define the teacher’s tempera-
ture 7, = 1. Higher temperatures (T; 1) soften the dispersion and convey “dark knowledge” |Hinton
et al.| (2015). Prior to computing objectives, we minimize unused qubits if the teacher has more
qubits than the student (Nteach > Nstud) @S

~ InpT(b]x)

ii) Student architecture. The student circuit is defined as: V(¢p) = Vi ---VoVp, with L = 2
entangling layers. Each layer uses CNOT(q,g+1) for ¢ = 0...nga—2, and R, (kz;) rotations
on inputs. The student has 16 trainable parameters ( in contrast to 96 in the teacher) and 4 qubits
(compared to 8 in the teacher). All circuits are simulated with the AerSimulator density matrix
backend, as detailed in §A.T] The student is trained in a noisy environment but never undergoes
folding or extrapolation.

iii) Distillation objectives. Consider D = {(z, £(0))} as the training set with ZNE-extrapolated
teacher labels.

Regression: We minimize mean-squared error by using a student temperature T < 1 as

Loxp(®) = o 2V (@) — tanb(B(0)a)/7) (a1

xzeD

Classification: We develop temperature-scaled softmax distributions for teachers and students as

T [S/T)
Tp) — exp(£, /T) . S0 = exp(fy ,
w0 = S @ T T e 657
and minimize
Lxi(¢) = oT*KL(q7 || ¢%) + (1 — ) L, (12)

L5k represents mean squared error (MSE) with one-hot labels, and « balances robustness transfer
with task fidelity.

iv) Why distillation improves robustness. Noise imprinting ZNE eliminates first-order error terms
in equation @ therefore student training on F/(0) results in a denoised mapping. Smoothing the
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shot noise. KL divergence at 7' > 1 or regression with 7 < 1 minimizes finite-shot variance in
gradients. Capacity Transfer. Although V' (¢) is shallow, soft-target supervision transfers richer
teacher function classes Hinton et al.|(2015), allowing strong generalization.

Limitations. The framework requires pre-computing teacher outputs with ZNE, which is costly for
dynamic tasks. The student inherits robustness but not full expressivity. The effectiveness depends
on accurate Lindblad-informed noise modeling; mismatches with real-device noise may weaken
robustness transfer. Finally, the datasets used in the paper are not realistic, large-scale datasets.

2.3 ANALYSIS

2.3.1 MATHEMATICAL ANALYSIS OF RICHARDSON (POLYNOMIAL) ZNE

Let A be an observable. Let E(\) := E,[A] denote the (noisy) expectation value of A when the
ideal circuit operates with a global noise level of A > 0. We assume that the ideal, noise-free value
is £(0). ZNE is a linear combination of noisy evaluations with scaled noise strengths {\; } X, as

K
ER = ZCiE\()\i)v (13)
=0

where the coefficients {c;} are selected so that polynomial terms up to degree K — 1 in the noise
expansion cancel (Richardson conditions), and E();) are empirical estimators generated by repeated
measurement (shots) at noise strength \;. We present formal assumptions, lemmas, and theorems
related to bias, variance, and resource tradeoffs.

Assumption 1 (Analytic noise expansion). There are coefficients {am }m>0 and a radius p > 0
that, for any 0 < X\ < p, the series E(\) = Z;::o am A, is entirely convergent. In example, for
A =0, E(0) = aq.

Assumption 2 (Noise scaling and nodes). Given a set of distinct, positive noise factors {s; } 5, with

so = 1, we define \; := s;\, where \ represents a modest base noise strength (so \; < p). The
coefficients {c; } K, correspond to the Richardson moment requirements
K
1, m=0
s =77 ’ 14
;Clsl {0, m=1,2,....K —1. (14)

where in the absence of higher-order terms, unbiasedness is enforced here by m = 0.
Assumption 3 (Shot noise model). Ar each node \;, we acquire N; independent shots. The es-

timator E(\;) is unbiased and has a variance of Var|E()\;)] = o2 /N;, where ? represents the
single-shot variance at node i. For convenience, we commonly assume that 0? < o2 for all i (same
single-shot variance upper bound).

Lemma 1 (Residual bias after Richardson extrapolation). Under Assumptions|l|and |2} the expecta-
tion of the Richardson estimator follows E[Eg] — E(0) = >k amA™ ZZK:O 01'5;"). There
exists a constant Chias (dependent on {an,}, {s;}, and K) such that for an adequate small ),
[E[ER] — E(0)] < Cpias X

Remark 1. The lemma formalizes Richardson’s hypothesis that employing K + 1 nodes to cancel
polynomial terms up to degree K — 1 results in residual bias that grows as XX (or higher).
Lemma 2 (Variance of the Richardson estimator). Under Assumption|3|and independence between

nodes,
~ K o K c*
Var[ER] = Zcf— < UQZf.

If N; = N for all i, then

Var[Eg] = %ri(, 3= e
=0

Remark 2. The number Ik, also known as the sampling overhead or coefficient norm, measures
how much polynomial extrapolation amplifies sampling noise. Higher-order extrapolation lowers
bias but increases variation in node selections if Ik rapidly increases with K.
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Lemma 3 (Bounds on Richardson coefficients). Consider the nodes s, ..., sk in [1,5], with s;
distinct and S > 1. The Richardson coefficients {c;} from equationhave a limit of the form as
| < K
orgn%}% |Cz| >~ Ccoeff Pcond? (15)

with constants Ceoor > 0 and peona > 1 that rely on node geometry (e.g. the condition number of
the underlying Vandermonde system). Therefore, % < (K +1)C2 _¢p2K ..

Proof sketch. The coefficients {c;} represent the solution to a linear Vandermonde-type system
(with moment restrictions). The inverse of a Vandermonde matrix often features entries that ex-
pand combinatorially (similar to factorials) or exponentially in K based on node spacing. Standard
constraints on polynomial interpolation (Vandermonde condition numbers, Markov/Chebyshev type
inequalities) result in an exponential-in-K bound on coefficients. For specific constants, refer to the
numerical analysis literature. O

Give an explanation of the extrapolated estimator’s mean squared error (MSE) as

MSE(ER) = (E[Er] — E(0))® + Var(Eg). (16)
— "
(bias)? variance

Integrating Lemmas [I] and [2] produces a straightforward asymptotic expression.

Theorem 1 (Asymptotic MSE for fixed per-node shots). Suppose N; = N and o2 < 2. Under
the Assumptions |I|and |2 there exist constants Chias, Ceoeff, Peond that are suitable for sufficiently
small )\,

C

- 2
MSE(ER) < Cah? + T-(K +1)Ceqpling: a7)

Remark 3 (Interpretation). As the order K grows, the first term (bias*) decays as \*, implying that
polynomial cancellation provides high-order bias suppression (if analytic expansion is applicable).
The second term (variance) often climbs exponentially with K, indicating the expense of integrating
noisy estimates with large coefficients. This is the basic bias-variance trade-off in ZNE.

2.3.2 HOW MORE PROCESSING POWER YIELDS LOWER MSE

The total number of possible single-shot circuit runs can be used to estimate “’processing power.”

R = ZiK:O N;, which represents the whole sample budget (we disregard minor overheads associ-
ated with adjusting the noise scale). There are two natural ways in which more resources could be
beneficial:

1. More shots in a fixed order. If we fix K and raise N; proportionately (e.g. N; = «; R with
fixed fractions «;), the variance term scales as 1/ R and so MSE drops «x 1/R.

2. Increase order K as resources allow. If we can raise K (add nodes) while distributing
an increasing total budget R, bias can be lowered superlinearly in A\ (as A*X), possibly
dominating variance growth if R increases quickly enough.

We formulate a simple necessary condition below, demonstrating that as processing power increases,
MSE can be driven to zero.

Theorem 2 (MSE goes to zero with growing resources). Suppose we select orders K(R) and per-
node shots N;(R) such that

(i) K(R)—oo, (i) minNi(R) oo,  (ifi) Apeona <1, (18)

where pcond Originates from Lemma As R approaches infinity, MSE(ER) — 0.

Remark 4. Condition (iii) requires the base noise intensity X\ to be minimal compared to the sta-
bility/conditioning of the Vandermonde system that generates the coefficients. In actuality, with
constant node geometry, there is a maximal effective order beyond which coefficient growth will
dominate. Theorem |2| states that if pcond remains low and the sampling budget is increased, MSE
will vanish.
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To minimize variance with a constant total budget R and fixed K, the optimal shot allocation is
proportional to |c;|o; (by minimizing Y ¢?0?/N; subject to > N; = R). In the basic symmetric
situation o; = o, the lowest variance is proportional to o%()_, |¢;|)?/R. Thus, the variance is
proportional to the square of the /1-norm of ¢ divided by the budget. This highlights the significance
of node selection: geometries with lower coefficient norms or ¢;-norms are desirable.

2.3.3 ROBUSTNESS TRANSFER VIA ZERO-NOISE KNOWLEDGE DISTILLATION

We now define how ZNE-mitigated teacher outputs transmit noise robustness to a compact student.
The following statement quantifies the student deployment MSE against the true zero-noise map-
ping in terms of: teacher extrapolation error, student approximation error to ZNE labels, statistical
generalization term, and applied noise term derived from the Lindblad model.
Assumption 4 (ZNE teacher error). Let E*(x) represent the real zero-noise expectation of the target
observable given input x. The ZNE method generates an extrapolated teacher label E(0)(z) (e.g.,
using equation E]) We define the teacher (population) extrapolation as ey = E, [(E(O) (z) —
2
Assumption 5 (Student hypothesis class and empirical training). Consider F as the student hy-
pothesis class (functions f : X — R). We train the student on a dataset D = {z;}?
using ZNE teacher labels E(0)(x;). Let f € F represent the empirical risk minimizer as
f=argminger 30 (f(z) — E(O)(ncl))2 where we define the approximation error of the
class as eapprox = infer By [(f(z) — E(0) (m))z] Lastly, let’s assume that F accepts a uniform
convergence/ generalization bound: probabilities are at least 1 — § across the draw of D described
as B, [(f(z) — E(0)(2))?] < L0 (f(zi) — E(0)(2:))? 4+ Rn(F, ), where R, (F, ) is a gen-
eralization term that depends on the architecture or data (e.g., a VC-type bound or a Rademacher
complexity bound).
Assumption 6 (Deployment noise bound). The noiseless expectation generated by the student cir-
cuit (i.e., the idealized, noiseless execution of V(¢)) is represented by feiean(x), while the actual
noisy expectation measured on hardware during deployment is represented by fyoisy (). A (small)
1 > 0 exists such that sup,, | Froisy (z) — fclea11($)| < n. In practice, the Lindblad-derived deploy-
ment noise parameter Ageploy can limit 1 to first order. In order for n = O()\deploy take place (see
equation23)).
Theorem 3 (Robustness-transfer bound). Under Assumptions [#H6} with probability at least 1 — §

throughout the training sample D, the student deployment MSE (with respect to the real zero-noise
mapping) follows

By [ (Froisy (r) — E*(2))?] < 3er + 3capprox + 3Ru(F,0) + 37% (19)

Remarks. The bound indicates that the student’s deployed errors is caused by four sources: (i)
the teacher’s extrapolation error er, (ii) the student’s approximation gap €approx, (iii) the finite-
sample generalization term Rn, and (iv) the deployment noise n. Improved ZNE decreases e,
richer models reduce eapprox, larger data sets shrink R,,, and careful calibration reduces 7. In
practice, Rn frequently scales like O(€/+/n) for a complexity measure €, and 7 can be limited by
a constant times the deployment noise rate Adeploy. The qualitative tradeoff is unaffected by the
constant factor 3, which results from a simple quadratic inequality.

The proof of the Lemmas and Theorems is described in Appendix [A.2]

3 EXPERIMENTS

3.1 DATASET

We evaluate our noise mitigation distillation framework on four publicly available benchmarks cov-
ering vision, text, tabular regression, and audio to show that it is modality—agnostic (Table [I). All
datasets are small enough to be encoded into parameterized quantum circuits but representative of
real-life applications. The datasets used are i) Fashion-MNIST Xiao et al.|(2017)), ii) AG News Zhang
et al.|(2015)), iii) UCI Wine|Cortez et al.|(2009), and iv) UrbanSound8K |Salamon et al.|(2014).
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Dataset | Ref. |Modality | Task | #Samples |Enc. Dim (T/S) | Qubits (T/S) | Depth (T/S)
Fashion-MNIST Xiao et al.|(2017) Image 10-cls| 60k/5k/5k |8/4 8/4 6/2
AG News (HF-2015) |[Zhang et al.[(2015) | Text 4-cls | 96k / 12k / 12k [8/4 8/4 6/2
UCI Wine Quality Cortez et al.[(2009) |Tabular |Regr. [5197/650/650|4/2 4/2 6/2
UrbanSound8K Salamon et al.|(2014) | Audio 10-cls |6986 /873 /873 |8/4 8/4 6/2

Table 1: Quantum model footprints and benchmarks. T/S stands for teacher/student, and “Enc. Dim” is the
post-processed feature length that is supplied to the quantum encoder. Variational layers (rotation block +
entanglers) are counted by depth.

Low (7T7=100 us, Medium (77 =60 us, High (77=30 us,
To=120 ps, pag=1.0x10"%) To=80 us, pag=1.0x10"2) To=40 us, pa,=2.5x10"2)
Dataset Noiseless No-KD KD A No-KD KD A No-KD KD A
Fashion-MNIST ~ 0.25 059 049 —0.10 075  0.63 —0.12 093 078 —0.15
AG News 0.18 045  0.39 —0.06 0.58  0.49 —0.09 070  0.65 —0.10
Wine Quality 0.39 0.58 0.52 —0.06 0.65 0.56 —0.09 0.74  0.61 —0.13
UrbanSound8K ~ 0.36 0.66  0.59 —0.07 073 0.8 —0.15 0.85 0.68 —0.17

Table 2: Per-noise-regime comparison of student models trained without KD vs. with KD. Block headers
include the Lindblad-aligned settings used for each regime. A is KD gain (KD minus No-KD; negative is
better for MSE).

3.2 EXPERIMENT RESULTS

Teacher QNN Architecture and Training. Depth-Le,en =06, neach=8-qubit VQC: per layer (i)
R, (kz;) re-upload, (ii) Ry (6;,q)R-(¢1,q), (iil) CNOT ladder ¢! —!¢+1; 96 params. Trained with
MSE using Adam (n=0.01, 100 epochs, batch 32) and ZNE via global folding (Eq. E]) with scales
Al €!1,3,5; Richardson-extrapolated £/(0) serves as soft targets. Student QNN and Distillation
Objective. Same design, shallower: ngy =4, Lswg=2, 16 params (~ 17% of teacher). Minimize
Eq. [6] with Adam (7=0.02, 50 epochs, batch 32); no folding or extrapolation. Noise Model and
Qiskit-Aer Simulation. AerSimulator (density-matrix, giskit—aer 0.13.1) with amplitude-
damping T1=60, us, phase-damping T>=70, us, 2-qubit depolarizing pe,=2.5x 1073, readout flip
Pro=0.015; 64 shots/circuit; fixed seeds.

Effects on Quantum Noise. Table [2] compares student performance with and without knowledge
distillation (KD) under low, medium, and high noise regimes, using noiseless loss as a reference.
Each block includes the Lindblad noise parameters (17, 1>, pa,). Across all datasets and regimes,
KD consistently decreases loss relative to the baseline student, producing improvements (A) of 0.06
to 0.17. Notably, the performance disparity grows as noise severity increases, demonstrating that
ZNE-guided distillation gives greater robustness benefits under harsher noise situations.

Effectiveness of Knowledge Distillation. Table [3| shows baseline student loss, KD student loss,
improvement, teacher loss, compression ratio, and loss gap, along with a breakdown of student
error into Theorem 3 components. e measures the teacher’s extrapolation error (ZNE vs. noiseless
reference), €,pprox Captures the student’s approximation error with respect to teacher outputs under
noiseless simulation, and n measures the deployment noise gap between noisy and noiseless student
runs. The last column compares the observed KD student loss to the theoretical upper bound 31 +
3eapprox + 31> + 3Ry, proving that the empirical loss is always less than the anticipated bound.
The results are shown for both Aer simulations and IBM_Brisbane hardware. Notably, the hardware
results are consistent with simulation trends, suggesting that ZNE-guided knowledge distillation
maintains resilience on actual devices even with calibration drift and constrained shot budgets.

Comparison with State-of-the-art Approaches. Table [4] evaluates the performance of our whole
strategy (ZNKD) versus cutting-edge quantum noise mitigation and model compression strategies
across four datasets. All the baseline models, as discussed earlier, are tested with our approach. Loss
is reported using MSE for classification and MSE for regression tasks, with lower values indicating
improved performance. Our combination method, which incorporates ZNE and quantum knowledge
distillation, consistently results in the lowest loss across all datasets. When compared to solo ZNE or
KD approaches, the hybrid design offers two complementary benefits: improved circuit fidelity and



Under review as a conference paper at ICLR 2026

Baseline KD Student Teacher Compression [,oss Bound
Dataset Student Loss Loss Improvement Loss Ratio Gap €7 Egppox 71 VS. Observed

Aer Simulator (density matrix)

Fashion-MNIST 0.61 0.49 —0.12 0.45 8:3 +0.04 0.03 0.02 0.01 0.49 < 0.53
AG News 0.45 0.36 —0.09 0.33 6:2 +0.03 0.02 0.02 0.01 0.36 < 0.41
Wine Quality 0.58 0.52 —0.06 0.50 6:2 +0.02 0.02 0.01 0.01 0.52 < 0.39
UrbanSound8K 0.66 0.59 —0.07 0.55 8:3 +0.04 0.03 0.02 0.02 0.59 < 0.66

IBM _Brisbane Hardware

Fashion-MNIST 0.68 0.55 —0.13 0.50 8:3 +0.05 0.04 0.02 0.02 0.55 < 0.61
Wine Quality 0.63 0.56 —0.07 0.52 6:2 +0.04 0.03 0.02 0.02 0.56 < 0.62

Table 3: Decomposition of KD student error into components of Theorem 3 on Aer simulator and
IBM_Brisbane hardware. For hardware runs, we used 1024 shots/circuit and device calibration data from the
day of execution. The observed KD student loss consistently falls below the theoretical bound, validating the
robustness-transfer inequality in practice.

Method Ref. F-MNIST | AG News | Wine Quality | Urban Sound8K |
Noise-aware VQCs Chen et al.|(2024) 0.56 0.49 0.59 0.65
Pruned QNNs Afane et al.|(2025) 0.53 0.46 0.55 0.62
Classical-to-Q KD ‘Wang et al.| (2025) 0.51 0.40 0.53 0.61
ZNE Only Barron et al.|(2024) 0.52 0.42 0.54 0.60
Best-Folding ZNE Pelofske et al.|(2024) 0.50 0.38 0.52 0.59
PEC Gupta et al.|(2024) 0.50 0.39 0.53 0.59
MEM Khan et al.|(2024) 0.51 0.38 0.55 0.62
CDR Liao et al.|(2024) 0.52 0.39 0.54 0.60
DD Tong et al.[(2025) 0.55 0.42 0.57 0.70
Hardware-Efficient Ansitze [Leone et al.|(2024) 0.54 041 0.56 0.65
Ours (ZNKD) - 0.49 0.36 0.52 0.59

Table 4: Comparison with state-of-the-art quantum noise mitigation and compression approaches under identi-
cal conditions. Our full method (ZNKD) achieves the lowest loss across all datasets, demonstrating the synergy
between circuit-level extrapolation and quantum-native distillation.

parameter-efficient student models. This demonstrates the efficacy of combining noise extrapolation
and distillation for practical, noise-resistant quantum learning on NISQ platforms.

Overall, ZNE-guided KD retains much of the teacher’s noise-corrected performance across datasets
and noise regimes: keeping students within 0.02-0.04 MSE of the teacher and generating 10-20%
lower loss than non-distilled peers at 6:2-8:3 compression. These findings indicate a feasible ap-
proach to implementation on NISQ hardware by concentrating mitigation in the teacher and mini-
mizing per-inference folding/extrapolation costs.

4 CONCLUSION

We introduced zero-noise knowledge distillation (ZNKD), a novel approach for error mitigation
and model compression that involves training a ZNE-augmented teacher to oversee a compact stu-
dent. Our theoretical research formalized the robustness-transfer mechanism, which states that if
the teacher’s extrapolation error is bounded, the student’s deployment error is also bounded by a
combination of extrapolation, approximation, generalization, and deployment factors. This find-
ing ties ZNE scaling parameters, hypothesis class capacity, and sample size to overall student risk.
Empirically, ZNKD was assessed using IBM-style dynamic noise models with calibrated 77 /T5,
depolarizing, and readout error. Distilled students generated 10 — 20% lower loss than non-distilled
peers, remained within 0.02 — 0.04 of the teacher, and reached compression ratios of 6 : 2 — 8 : 3.
Real-device testing on ibm brisbane confirmed the simulation findings, demonstrating up to
0.13 improvement in student loss under calibration noise. ZNKD reduces the 3x-9x runtime over-
head of folding-based ZNE during deployment, enhancing the usefulness of small students on NISQ
hardware. These findings support ZNKD as a viable step toward scalable and robust quantum ma-
chine learning. Future approaches include benchmarking on bigger quantum computers, combining
with other error mitigation techniques, and expanding the framework to multi-teacher scenarios.
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A APPENDIX

A.1 LINDBLAD-INFORMED NOISE MODELING

To simulate realistic gate noise on NISQ devices, we adopt a physics-informed model based on
Lindblad master equations for open quantum systems |[Breuer & Petruccione| (2002); |Wiseman &
Milburn| (2009). This approach allows us to derive gate- and circuit-level performance metrics from
thermal and dephasing noise dynamics.

Lindblad Dynamics. Let p(t) denote the density matrix of a single qubit. Its evolution under
amplitude damping and pure dephasing is governed by the Lindblad equation:

90— Laar®lp) = 3 (noiset) + 1) LI0_1(0) + Y nncielt) Lo () +

dt Llo-)(p), (20

2T,
where L[A](p) i= ApAT — L{ATA, p} and o = [1)(0], o— = [0)(1], o= = [0)(0] — [1)(1],
respectively) |Alicki & Lendi (2007). The coupling (spontaneous emission) rate is represented by -,
and the pure dephasing time is demonstrated by T,.

Note that for pure dephasing, we use T,,; the Bloch relation is satisfied by the generally stated
decoherence time 15 as

1 11
= ot @1
T, 2T, ' T,

with the energy relaxation time 77. For the thermal bath mentioned above, T3 (t)—l =
7<2nn0ise(t) + 1) Geller| (2020).

Time-Dependent Thermal Noise. We maintain the thermal model for the bath occupancy, but
with the same notation as

A-1

1
TMnoise (t) = NBE (Tqb(t)) + Z NBE (Text (t))7 (22)

employing ngg(T) = m as previously discussed.

Single-gate noisy channel and small-parameter expansion. The CPTP map may be used to
simulate a single gate with time 74, and bath parameters that are roughly constant during the gate
as

A(t) = exp (Tgatc Etot (t)) . (23)
The Taylor expansion applies to short gates 7gatc (in the appropriate NISQ regime) as
2

Tgate 2
A(t) =1+ Tgate Lot (t) + 9 Lot (t) + e (24)

This motivates us to adopt a scalar effective noise intensity \(¢) proportionate to gate duration times
total physical rates as

1
)\(t) = Tgate ].—‘eff(t), Feﬂ‘(t) = 7(2 nnoise(t)+1) + Ti (25)
©
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Naturally, I (¢) is the total of population relaxation plus pure-dephasing rates; for short gates
A(t) < 1, and the noisy channel is analytic in A\. Concatenating these gate channels yields a
convergent power series of the kind used in[2.3.T]as

E(\) = Z am ™, (radius of convergence p > 0). (26)
m=0

This identification clarifies the relationship between microscopic Lindblad parameters and the scalar
A included in our Richardson/ZNE proofs.

Gate infidelity and worst-case error (first-order bounds). For a CPTP map A, the worst-case
error (diamond-norm distance) governs operational error measurements. Using the short-time ex-
pansion, one gets the standard bound (for sufficiently small \) as

[A() = 1], < A(t)+O(A(®)?). (27)
We can conclude two important corollaries as follows.

* (Worst-case error probability.) The operational worst-case error probability corresponds as
worst 1 1 2
PR < G A0~ 1, < 5 M0 +O0A0?). (%)
Substituting A(t) from equationprovides a simple first-order approximation as

S T, ate 1
PR () ~ T |y (2nnie(t) +1) + Tﬂ + O 29)

This improves the previous amplitude-only statement by integrating dephasing.

* (Average/infidelity bound.) The average gate infidelity I (t) := 1 — F,ys(A(t)) follows
the bound (see to conventional relations between average fidelity and diamond norm) as

1 1
In(t) < S A®) = 1|, < SAE®) +OA®?). (30)
Therefore, to first order in the tiny parameter \, we can develop a useful approximation as

Ir(t) = cavg A1) + O(N(1)?), (31)

where cavg € (0,1] is a constant of order one whose precise value relies on the choice
of fidelity measure (average vs. entanglement fidelity, etc.). For conservative analytic
boundaries, we set cavg = 1/2 using equation

Gate and circuit fidelity. Using the constraints provided above, the single-gate fidelity metric can
be expressed as

Mo (t) = 1= Ir(t)

2
~ 1 — Cavg A1) + O(N?). ©2)

For a circuit consisting of N, gates and (to leading order) assuming incoherent concatenation of
minor errors as
Mcircuit ~ 11— Ng IF(t)
N, (33)
<1- 79 A(t) + O(N?).

If noise fluctuates throughout execution across an interval [0, T'], we average A(t) over the duration
as
Ny g 2
Mcircuit Z - ﬁ A(t) dt + O(Amax)' (34)
0
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Remarks on consistency with the ZNE analysis.

* The scalar A(t) in equation [25|is clearly proportional to Tgate, as well as the physically
measured rates v and 1/7,,. For short gates A\(¢) < 1 and expectation values, the analytic
expansion E(\) = > a,, A™ is assumed in

* Noise scaling in ZNE, such as pulse stretching or unitary folding, essentially implements
A(t)® = exp(sTzateLiot), i-6. A — sA. The Richardson moment requirements in equa-
tion |14 apply directly to the physical Lindblad generator Lot ().

* The revised dephasing prefactor 1/(27T,,) in equation [20| is required for the conventional
mapping between Lindblad rates and T, (such that off-diagonal elements decay like
e tTe,

A.2 PROOF OF ANALYSIS[2.3]

Proof of Lemma |l|(Residual bias after Richardson extrapolation). First, we expand each noisy ex-
pectation using Assumption|l|as

Z am,(>\1',)m

=D an(siA)" (35)

oo
= E A ST A™.

E(\i)

i=0 m=0
00 K
=3 @™ ( 3 cis;”) E[ER] (36)
m=0 =0
K
= aE\)
i=0
00 K
= Z amA™" ( Z czszn)
m=0 i=0
According to the Richardson moment constraints equation form = 0,..., K — 1, we have
ZZ.K:O cish = {(1) ETS_T/S) ,S K1), The series above reduces to

E[ER] = ao + i am)\m<icis§”)
m=K 0

- = (37)
= FE(0) + Z am)\m(Zcisfn)
m=K =0
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Taking absolute values and utilizing absolute convergence (Assumption [I)) produces, for sufficiently

small A as
E[Er] — Z | Am’ Zcz

m=K
m
< (e L)) 3 foa®
m=K
There is a finite constant Ch;as (depending on {a,, }, {s;}, K) such that, for A < p (e.g. compare
with a geometric series), the tail ;- |a,,,|A™ is limited by a constant times A’ as a result of the

power series’s radius p > 0 as

(38)

|[E[ER] — E(0)] < Chias A, (39)
which completes the proof. O
Proof of Lemma E] (Variance of the Richardson estimator). Accordmg to Assumption [3] the empir-

ical estimators E();) are independent across nodes and satisfy Var[E();)] = 0?/N;. Given that
Er = ZiK:O ¢;E()\;) and variance is quadratic and cumulative for independent factors,

Var| ER Z c; Var
=0

P (40)
N 2%
i=0 H
The condition o? < o2 produces
K 2
Var[ER] < o Z G 41)
i=0 7
If N; = N for every ¢, then this reduces to
~ 0'2 K
Var[ER| = ~ Z c?
i=0 (42)
2
o
_ 7F2
N K>
where I'2. = Zf{ o ¢2. This completes the proof. O

Proof of Lemma Bl(Bounds on Richardson coefficients). Consider the moment system:

ZZK 0 CiSy" = Omo form =0, ..., K — 1. Assuming
1 1 . 1
S S .o S
Ve | ! . Bl e pExt) (43)
55(—1 S{(—l Sﬁ—l
Consider the (transpose of the) Vandermonde sampling matrix on powers 0,..., K — 1. In col-

umn form, one may conceive of the square Vandermonde on any given K columns, but a simpler
constructive path employs Lagrange basis polynomials.

Define the following Lagrange basis polynomials for the nodes {s;} X, as

K
S*Sj .
LL(S) = Hs~—s-’ ZZO,...,K. (44)
g=o0"" "
i
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Each L;(s) is a polynomial of degree K with L;(s;) = d;;. The interpolation identity applies to any
polynomial p(s) with a degree of at most K — 1 as

K
p(s) = 3 p(si) Li(s). 45)
i=0
Analyzing at s = 0 gives
K
p(0) = > p(si) Li(0). (46)
i=0
Setting p(s) = s form =0, ..., K — 1 results in the same restrictions as choosing ZiK:O cish =
Omo as
¢ = Li(0), i=0,...,K. (47)

0—s
= L = J
“i ’L(O) H S; — Sj
Jj=0 "
J#i
” (48)
_ —5j
=0 S — Sy
i
An appropriate expression can be obtained by taking absolute values as
= H [ “9)
J#l
Assume all nodes satisfy 1 < s; < .S (assumption in the lemma). Then we get the equation
led < H |Sz - 3J|
J;ﬁz (50)

*SJ|

_ oK
=S Hlsl
J#z

Consider § := min;; |s; —s;| > 0, which denotes the smallest separation between different nodes.
Then for every i we have || ki |si — s > 5%, and, therefore

il < SE 5K = (8/6)%. (51

Given peong := S/ > 1 and Coerr := 1 (or absorb mild constants into Ctoer for somewhat looser
but more apparent constant); then we can describe

max |¢;| < Ceoeft ngnd- (52)

Finally, as ['%, = Zf( 02 < (K + 1) max; |¢;|?, we can describe it as
F%( ( )Ccoeﬂpcond’ (53)
This is the exponential-in- K bound that is being claimed. This concludes the proof. [
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Proof of Theorem [1|(Asymptotic MSE for fixed per-node shots). Lemma[I] provides the bias bound
as
(E[ER] - B(0)" < CZ 2. (54)

Lemmas[2]and[3|assume N; = N and 02 < o2,

R 2
Var(Er) = ir2

(55)
<% (K +1)CleqPomma-
Summing bias? and variance yields
MSE(ER) < Cjiu A + (K + )Gt Piona: (56)
which precisely matches the stated bound and concludes the proof. O

Proof of Theorem 2| (MSE goes to zero with growing resources). Using Theorem [I] (with K =
K (R) and per-node shots at least min; V;(R)), we have, up to constants,

p2K(R)

MSE(Eg) < \2K(®) 4 _ FPeond (57)
(Er) 5 + min; N;(R)

Hypothesis (i) states that K (R) — oo, which implies that the first term disappears if A < 1.
In the second term, condition (iii) assures that Apcong < 1, indicating pif)flgm increases at most
exponentially, but can be dominated by selecting min; N;(R) to grow sufficiently quickly.

Hypothesis (ii) states min; NV;(R) — oo, so the ratio pcon(dR)/ min; N;(R) could potentially be

)
made to fall to zero by a suitable joint growth schedule for K (R) and N;(R) (for example, any
schedule with log min; N;(R) > 2K (R)10g pcona)- Concretely, because K (R) — oo, we can pick
the growth of min; IV;(R) so that the second term goes to 0. As R approaches infinity, both terms
vanish, and therefore MSE — 0. This proves the theorem. O

Summary of results and practical comments

* bias: When K + 1 nodes meet Richardson requirements, the residual bias scales as O(AK)
(Lemmal[T).

* Variance: The variance is magnified by the coefficient norm I'Z, = " ¢2, and scales as
I'2. /N when shots per node are N (Lemma .

* Tradeoff/Resource Scaling: For a fixed processing budget R, there is an optimal tradeoff
between increasing K and allocating more shots. However, if processing power can be
increased so that both K and per-node shots grow (and the node geometry is chosen to
keep coefficient growth under control), then MSE can be driven to zero (Theorem [2).

* Node geometry is important: Lemma [3] highlights that coefficient growth (and hence
variance amplification) depends heavily on how the {s;} are selected. Chebyshev-like
selections can attenuate growth.

Proof of Ti heoreml(Robustness -transfer bound). For simplicity, write froisy = fnosy, felean =
Fetean, and E = E(0). For every (x),

fnoisy(m) - E*(Z’) = (fnoisy(m) - fclean(m)> + (fclean(m) - E(.’E)) + (E(l‘) - E*(l‘)) (58)
Taking expectation over = and applying the basic inequality (a+b+c)? < 3(a?+b%+c?) produces

E, [(fnoisy (z) — E*(I))Q] <3E, [(fnoisy (z) — fclean(x))ﬂ +3E, [(fclean(z) - E(x))Q]
+3E, [(E(m) — E*(x))2]
We bound each phrase to the right independently as

(59)
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(i) Deployment noise term. Using Assumption [ we get,

E, [(fnoisy(x) - fclean(x))Q] < Sl;p ‘fnoisy(x) - fclean(x)|2 < 7]2- (60)

(ii) Student approximation + generalization. Add and subtract the empirical risk minimization
behavior as

Ea: [(fclean(x) - E(.’L‘))ﬂ < inf E’I [(f(x) - E(x))z] +

T feF
N : "NW’"’X oo _ (61)
(B [(Fla) ~ B@)] ~ + 3 (Fles) ~ Bla))?)
=1
< Rn(F,0)

Thus, according to Assumption[5] the last inequality holds with probability at least 1 — d. Therefore,
Em [(fclcan(x) - E(ZL’))2] S 6approx + R7L(-Fa 5) (62)

(iii) Teacher extrapolation error. Using Assumption |4| we get

E.[(E(z) — E*(2))%] = 7. (63)

Combining the three boundaries and multiplying by the factor 3 from the original inequality results
in
]E:v [(fnoisy (.17) - E* (x))Z} S 3772 + 3(€appr0x + Rn (]:a 6)) + 35T7 (64)

which is the same as equation[T9] This completes the proof. O

A.3 ALGORITHM

Noise-Aware Forward Pass and Loss Computation. Algorithm [I| covers the execution of a pa-
rameterized quantum circuit U (@) under a realistic noise model that incorporates 77 (relaxation),
T5 (dephasing), and thermal photon noise. The output is a set of noisy expectation values and their
corresponding losses, which are ideal for training noise-resilient QNNss.

Algorithm 1 Noise-Aware Forward Pass and Loss Computation

N
i=1»

Require: Parameterized quantum circuit U(6), dataset D = {(z;,y;)}
{T,T5, At, A, Ty, Texi }» shot count S

Ensure: Noise-aware loss value £

1: Initialize total loss £ < 0

2: for each (z,y) € D do

3:  Compute relaxation probability: pr, <~ 1 —e
Compute dephasing probability: pp, < 1 — e~ At/ T
Compute thermal noise: npgise —

noise parameters

7At/T1

eXp(Tqb/Texl) -1

Apply X-rotation noise: 07, < o - pr,

Apply Z-phase noise: o7, ~ N (0,0?%) with 02 o pr,

Simulate noisy circuit U (0) with applied T3, T5, and thermal noise
9:  Estimate expectation: § < éZil Measure(U (0), x)

10:  Update loss: £ « £+ ||§ — y||®

11: end for

12: L+ L/|D]

13: return £

A A

We begin the simulation with a parameterized quantum circuit U (6), a dataset D, and a set of noise
parameters representative of NISQ hardware, including 7} (relaxation time), 75 (dephasing time),
gate duration At, thermal noise constants, and circuit-specific calibration factors. For each training
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input x € D, we mimic the influence of amplitude damping by estimating the probability of a
relaxation event using py, = 1 — e~2*/71, which approximates to At/T} for tiny At. This model
depicts the decrease of quantum amplitude toward the ground state (line 3). Similarly, we calculate
the dephasing probability py, = 1 — e~2%/T2, which captures coherence loss in the phase domain.
Both probabilities are critical in describing gate-level quantum noise using the Lindblad framework
(line 4).

In line 5, we estimate nyise Using the Bose-Einstein distribution: ngise = W, where A
q exi

is a noise amplitude factor and Ty, Tix; denote qubit and environmental temperatures. To replicate
the T} relaxation effect, a X -rotation gate with an angle of 0, = aprp, is applied to the circuit’s
affected qubits, where o is empirically calibrated to reflect physical relaxation behavior (line 6).
To simulate dephasing caused by 75 noise, stochastic phase rotations along the Z-axis are used,
with a kick angle of 67, ~ N(0,0?), where o is determined from pr,. This Gaussian perturbation
represents random phase variations in quantum development (line 7). The noisy quantum circuit is
then operated and measured to yield the expectation value (U (6)),. This method uses several shots
(repetitions) to estimate the average behavior under stochastic noise. For each input-output pair,
we aggregate the squared error between the noisy model output and the goal y,, which may be a
ground-truth label (for supervised tasks) or a noise-mitigated soft target (for distillation).

Finally, we calculate the overall MSE loss across all samples as

1
L= @ Z H<U(0)>I - yx||2 ) (65)

€D
This is the objective function for gradient-based optimization of € in noisy QML settings.

ZNE and Teacher Soft Label Generation. Algorithm |2 describes how zero-noise extrapolation
(ZNE) is used to provide noise-reducing expectation values that serve as soft supervision objectives
for student quantum neural networks. It requires access to a variational quantum circuit U (8), two
noise scaling factors A; and Ay, and a dataset D of input samples. The folded circuits are run
in noisy conditions, and the results are extrapolated back to a zero-noise limit using Richardson
extrapolation.

Algorithm 2 ZNE and Teacher Soft Label Generation

Require: Noisy quantum circuit U(8), dataset D = {z;}¥ |, noise scaling factors A, A2, shot
count S .
Ensure: Zero-noise extrapolated teacher outputs £(0)(z) for each zz € D
1: for each input € D do
2:  Construct folded circuits for each scale:
Uy, <+ U-(UU)™ /l where \y = 1 + 2n4
Uy, < U - (UTU)™ // where Ao = 1 4 2nq
Simulate Uy, under noisy evolution and compute:
E(\) + % Zle Measure(Uy, , x)
Simulate U, under noisy evolution and compute:
E(X2) + % Zle Measure(Uy,, x)
Apply first-order Richardson extrapolation:

A EAM)—A E(A
10: B(0)(x) + 22EAU—AECe)

11:  Store F(0)(z) as soft target
12: end for
13: return {E(0)(z)}zep

Ve D nhw

The procedure starts by accepting the dataset D, scaling factors A1, A2, the noisy quantum circuit
U(0), and the number of measurement shots S per circuit execution. To simulate amplified noise
levels, global unitary folding is used to modify the original circuit U (@) for each input z € D. In
particular, A, = 1 + 2ny, for £ = 1,2, and two folded versions Uy, and U}, are created using n;
and n layers of folding.

To get a noisy expectation value estimate F(\1), the circuit Uy, is run S times in a noisy simulator
or backend (line 3). For U),, the same process is performed, yielding E()A2) (line 4). The noise-
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Algorithm 3 Student Training with Distillation Loss

Require: Distilled dataset D = {(x;, £(0);)} Y., from ZNE-trained teacher
Student QNN V' (¢p) with ngy,q qubits and shallow depth
Epochs T, batch size B, learning rate 7
Ensure: Trained student parameters ¢*
1: Initialize student QNN V'(¢) with random parameters
2: for epoch = 1to T do
3:  for each batch B C D of size B do

4: Compute noisy student predictions (V(¢)), forall z; € B
. 2

5: Evaluate loss: Loy = ﬁ D (s, B(0):)EB ((V(d))ﬂ — E(O)l)
6: Estimate gradient V Ly, via parameter-shift rule

7: Update parameters ¢ <— ¢ — 0 - V4 Lexp using Adam

8: end for

9:  if validation loss does not improve for patience threshold then
10: break {Early stopping }
11:  endif

12: end for

13: return ¢*

free observable E(O) for the current input is calculated using the following closed-form expression
after applying first-order Richardson extrapolation to these two estimates (line 10). The teacher’s

supervision target, the value E (0), is then saved as a soft label linked to the input « (line 11). The

algorithm returns the whole set of extrapolated outputs { £(0)(x)}zep for use in student distillation
training after iterating over the entire dataset D (line 13).

Student Training with Distillation Loss. Algorithm [3|describes the distillation phase, in which a
compact quantum student network learns to approximate the outputs of a noise-mitigating teacher.

The input is a zero-noise extrapolation (ZNE)-generated distilled dataset {(z;, £(0);)}~,, where

each E (0); is a noise-free soft label linked to input x;. In contrast to the teacher, a shallow student
circuit V' (¢) is initiated with fewer parameters and less depth. The student uses nguq < Nieach qubits,
usually with two entangling layers, but reuses the same data encoding as the teacher.

The student network is iteratively trained for 7' epochs by the method, which minimizes the {2
loss between the teacher’s soft goal £(0); (line 4) and its projected expectation value (V (¢))q,.
To replicate realistic inference conditions, each training batch is run under native noise after being
sampled from the distilled dataset D (line 5). The parameter-shift rule, a differentiable quantum
gradient estimator (line 6), is used to calculate the gradient of the loss with regard to parameters
¢. The Adam optimizer is used to update the student parameters with batch size 32 (line 7) and
learning rate 7 = 0.02. Early halting is initiated based on validation loss calculated across a 1,000-
shot subset to avoid overfitting to stochastic shot noise (line 10). The trained student model V' (¢*)
is kept for deployment following convergence. In contrast to the teacher, it may be run on actual
NISQ devices with high fidelity and low overhead and doesn’t require runtime mitigation.

Full Training Pipeline. Algorithm []describes the entire training procedure for our proposed ZNE-
guided knowledge distillation framework. Zero-Noise Extrapolation (ZNE) is used to create a noise-
aware teacher model at the start of the pipeline.

The instructor QNN U () is run several times for each data point 2; € D (line 2), with varying
noise scaling factors Ay (line 3). Global gate folding (line 4) is used to introduce these noise levels,
changing each U to Uy, = U(UTU)™ in order to imitate stronger noise. A noise simulator is used
to determine the expectation value E), (;) (line 5) for each scaled circuit. The mitigated zero-noise
estimate £(0)(x;), which acts as a soft label, is then obtained by first-order Richardson extrapolation
(line 7) using these values. Each input is paired with its matching E (0) to create the distilled dataset
Dyofe (line 8).

The second step involves initializing (line 10) the student QNN V(¢) and training it to replicate
the teacher’s outputs without implementing runtime noise mitigation. The student computes the
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Algorithm 4 Full Training Pipeline: ZNE-Guided Knowledge Distillation

Require: Input dataset D = {x;} ¥,

Teacher QNN U (8), student QNN V' (¢)
Noise levels {\;} for ZNE (e.g., A € {1,3,5})
Epochs T, batch size B, learning rate n

Ensure: Trained student parameters ¢*

1:
2:

o

11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

A A

// Stage 1: ZNE-Based Teacher Training
for each input x; € D do
for each noise scale \; do
Apply global folding: Uy, = U - (UTU)"
Execute Uy, under simulated noise and store expectation E, (z;)
end for .
Extrapolate F(0)(x;) using Richardson method
end for .
Construct distilled dataset Dyofe = { (4, £(0)(;))} Y,
// Stage 2: Student Distillation Training
Initialize V' (¢) with random parameters
for epoch = 1to T do
for each batch B C Dqy, of size B do
Compute predictions (V(¢)),, forall z; € B
Compute distillation loss:

1 . 2
Loo=rg 2 (V@) ~ BO)
(wi,E(0)(w:))€B

Estimate gradients via parameter-shift rule
Update ¢ <— ¢ — 1 - Vg Lexp using Adam
end for
if validation loss stagnates then
break {Early stopping }
end if
end for
return ¢*
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forward pass to get the native-noise expectation value (V' (¢)),, for each x; in the batch (line 14),
after processing data in mini-batches of size B over several epochs (line 12). The /5 regression error
between the student’s output and the teacher’s noise-free label (line 15) is used to calculate the loss.
The parameter-shift rule (line 16) is used to estimate gradients, and the Adam optimizer (line 17) is
used to update model parameters.

Based on the validation loss, early stopping is used to prevent overfitting to stochastic noise
(lines 19-21). The final student parameters ¢* are returned upon convergence (line 23). This
two-stage technique decouples expensive error prevention from inference, enabling practical, noise-
resilient quantum learning on NISQ devices.

A.4 EXTENSIVE EXPERIMENTAL DETAILS
A.4.1 HARDWARE AND ENVIRONMENT

IBM’s Qiskit—-Aer simulator was used for all simulations, and it was equipped with specially
designed noise models that were indicative of the near-term superconducting quantum hardware. In
particular, we use the thermal _relaxation_noise module to simulate 77 relaxation and 75
dephasing processes. It is set up with representative coherence times (77 = 50 us, T = 70 us) and
gate durations (e.g., uz: 200ns, CNOT: 400 ns), which closely resemble mid-scale IBMQ devices
such as ibmg_manila or ibmg_jakarta.

A high-performance server with two NVIDIA RTX 3090 GPUs and 256 GB of RAM was used
for all tests in order to parallelize the execution of noisy circuits. The software stack consists of
Qiskit 1.0.2, Qiskit—-Aer 0.13.1, and Python 3.10. To correctly mimic decoherence effects,
which is essential for assessing noise-aware training and mitigation performance, we make use of the
density matrix_simulator backend. We can precisely regulate noise injection and circuit
repetition using this setup, allowing for a reliable assessment of ZNE and distillation accuracy under
practical device limitations.

A.4.2 QUANTUM NOISE MODELS AND CALIBRATION DETAILS

All simulations use time-correlated noise models compatible with technology from the NISQ
period to simulate realistic quantum phenomena. In particular, we use thermal relaxation
channels to describe phase damping (7%) and amplitude damping (77) faults. Qiskit Aer’s
thermal_relaxation_noise function is used to instantiate these channels.

Parameter Settings. Noise parameters are derived from typical calibration values reported by
IBM Quantum systems:

* T1 = 50 ps (relaxation time),
* Ty = 70 pus (dephasing time),

* Gate time 7, = 300 ns for single-qubit gates, and 450 ns for two-qubit gates.

Dynamic Noise Scaling. We use gate folding techniques to raise the effective noise level in order
to facilitate zero-noise extrapolation (ZNE). Scaling factors A € {1.0,1.5,2.0} are chosen to strike
a compromise between resource overhead and mitigation fidelity. According to equation I} these
equate to global folding for n = 0, 1, and 2.

Shot Noise and Backend Emulation. Every quantum circuit is sampled using 1,024 shots, unless
otherwise noted. Gate noise and shot noise are both simulated. In order to stay within realistic
simulation budgets, we limit the number of qubits each experiment uses while using Aer’s density
matrix simulator with full noise modeling.

Hardware Noise Profiles. Hardware calibration snapshots are extracted using
IBMQBackend.properties () when applicable.  This guarantees transferability from
simulation to hardware-executed settings by enabling us to verify against actual noise characteris-
tics.
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A.4.3 SOFTWARE AND PACKAGE VERSIONS

Python 3.10.6 was used for all experiments on a Linux-based system with an NVIDIA RTX
3090 GPU and 128 GB of RAM. The Qiskit framework, version giskit==1.0.2, and the
giskit-aer==0.13.1 simulator backend for realistic noise modeling were used to run quantum
circuit simulations.

Quantum Libraries. To enable noise-aware simulation and transpilation, we used the following
packages:

* giskit-machine-learning==0.7.0 for variational classifiers and quantum ker-
nels,

e giskit—ibm-runtime==0.22.0 for hardware calibration access,

* giskit—algorithms==0.3.1 for quantum optimization primitives.

Custom extensions were used to create circuit folding and extrapolation utilities, adhering to the
design outlined in |Giurgica-Tiron et al.| (2020); Majumdar et al.| (2023); [Pelofske et al.| (2024)).

Classical Backends. Classical baselines and hybrid training loops were implemented using:

* PyTorch==2.2. 2 for optimizer and autodiff routines,
* scikit-learn==1.4.2 for auxiliary evaluation metrics and data preprocessing,

* numpy==1.26.4 and matplotlib==3.8. 3 for numerical computations and visual-
izations.

Using deterministic simulation settings and fixed random seeds, every experiment could be repli-
cated. Our supplementary materials and GitHub repository contain a requirements.txt file
that captures the entire environment.

A.4.4 TRAINING SETTINGS

We outline the settings and hyperparameters that were utilized to train the student and teacher quan-
tum models. In order to balance expressivity, convergence speed, and compatibility with noisy
quantum devices, these factors—which include circuit depth, optimizer configuration, batch sizes,
and shot counts—were chosen.

Teacher Configuration. The teacher quantum neural network (QNN) utilizes the CZ entangle-
ment technique in a linear topology with a variational ansatz with L = 4 entangling layers. Angle
encoding is used on all qubits to encode input information. With a learning rate of 0.01, batch size
of 64, and 150 epochs, the Adam optimizer is used for training. The projected zero-noise targets
derived via Richardson extrapolation are incorporated into loss minimization. The parameter-shift
rule is used to estimate all gradients.

Student Configuration. With fewer qubits and entangling layers (L = 2), the student QNN func-
tions under native hardware noise. To improve trainability under constrained coherence times, the
design employs fewer variational parameters while mirroring the teacher in the encoding scheme.
For consistency, the batch size and optimizer are the same. Depending on the task, the loss is
calculated using either Kullback-Leibler (KL) divergence or mean squared error (MSE), which cor-
responds to the teacher-provided goal representation.

Shared Settings. 1,000 measurement shots are used for each input in every quantum circuit op-
eration. Generalization is monitored using a 20% validation split, and early halting is initiated if
validation loss does not improve for 10 successive epochs. Qiskit’s Aer simulator is used to im-
plement noise-aware training using readout and injected 7} /T» noise. For reproducibility, a fixed
random seed is used in every experiment.
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A.4.5 MODEL ARCHITECTURES

Throughout our experiments, we describe the architecture of the teacher and student quantum mod-
els. Although their encoding mechanisms are comparable, the student is purposefully small to guar-
antee that it is suitable for deployment in the NISQ period.

Teacher QNN. A high-capacity variational quantum circuit with L = 4 entangling layers is used
to construct the instructor model. Single-qubit rotation gates (RY, RZ) and controlled-Z (CZ) gates
are included in each layer in a linear topology. Angle encoding is used to encode input data, with one
feature per qubit. We use data re-uploading and padding for tasks that require higher-dimensional
input. The total number of trainable parameters is roughly 3nL and is dependent on the number of
qubits n.

Student QNN. The student circuit has fewer qubits (nguq < Tueach) and L = 2 entangling layers,
which are purposefully shallower and resource-efficient. It facilitates knowledge transfer by using
the same gate types and encoding scheme as the teacher. However, the reduced depth and parameter
count result in a smaller circuit depth, more aligned with coherence restrictions on real hardware.

Circuit Comparison. Depending on the dataset, the teacher usually utilizes 6-8 qubits, while the
pupil uses 3-5. Standard Qiskit execution backends can be used with both architectures. Better
expressivity is empirically attained by the teacher circuit, while robustness is passed down to the
student through distillation.

A.4.6 OPTIMIZATION DETAILS

We describe the hyperparameters and optimization techniques used to train the teacher and student
quantum neural networks (QNNs). Qiskit and PyTorch are used to implement all optimization pro-
cedures in a hybrid classical-quantum loop.

Gradient Evaluation. By performing shifted versions of the quantum circuit, the parameter-shift
rule allows for precise derivative estimates with respect to variational angles and is used to compute
gradients for quantum circuit parameters. Under noise, two more forward passes are needed for each
gradient component.

Optimizer Configuration. For teacher and student training, we employ the Adam optimizer,
which has learning rates of n = 0.02, 51 = 0.9, and B3 = 0.999. These parameters are consis-
tent across all datasets and were selected based on empirical stability.

Convergence and Regularization. We use early stopping based on validation loss with a 10-
epoch patience to prevent overfitting to noise or volatility in measurement results. All experiments
are repeated using a fixed random seed for reproducibility, and training is limited to 150 epochs.

Shot Configuration. 1024 measurement shots are used for each quantum circuit operation. Each
noise level requires several folding executions for ZNE instructor training. Only native noise is used
for student training, which drastically lowers runtime costs.

A.5 BASELINE COMPARISON

To ensure a fair and complete evaluation, we compare our method to a wide range of quantum noise
mitigation and compression strategies using comparable resource budgets and realistic noise models.
The chosen baselines include noise-aware training, circuit compression, knowledge transfer, and
error prevention.

* Noise-Aware VQCs |Chen et al.|(2024): Variational quantum circuits are taught by explic-
itly using hardware noise models in the optimization loop. This technique allows circuits
to learn noise-resilient parameter values, but it may lead to suboptimal minima due to the
stochasticity of device-level noise.
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* Pruned QNNs Afane et al.|(2025): Removing redundant gates or parameters from quan-
tum neural networks reduces circuit depth and total error accumulation. While pruning
improves efficiency and reliability, it can limit expressivity and learning capacity, resulting
in only modest gains in predictive accuracy.

* Classical-to-Quantum Knowledge Distillation |Abbas et al.| (2021): A large classical
teacher network oversees a smaller quantum student model, allowing knowledge to be
transferred to noisy quantum hardware. This strategy enhances generalization and re-
silience while introducing additional training costs and a partial reliance on classical re-
sources.

¢ Standalone Zero-Noise Extrapolation (ZNE) Temme et al.| (2017): Circuits are run with
scaled noise levels and extrapolated to the zero-noise limit. Although ZNE is useful in
many situations, it is extremely sensitive to temporal noise variations and requires several
circuit assessments, which increases runtime overhead.

* Probabilistic Error Cancellation (PEC) Van Den Berg et al.|(2023)); Gupta et al.| (2024):
A quasi-probability sampling strategy that statistically inverts noisy quantum channels in
order to retrieve optimal results. PEC offers effective error suppression, but its exponential
sampling cost restricts scalability for large applications.

* Best-Folding ZNE Configurations |Pelofske et al.[(2024): An improved ZNE plugin that
uses adaptive folding algorithms (gate folding, layer folding) to balance fidelity and runtime
cost. While this setup improves dependability more than a standalone ZNE, it still has
significant measurement and sampling overhead.

¢ Measurement Error Mitigation (MEM) [Khan et al.| (2024): A calibration-based post-
processing approach that estimates and corrects readout errors using a pre-defined confu-
sion matrix. MEM minimizes traditional post-processing bias but does not address gate or
decoherence issues.

* Clifford Data Regression (CDR) |[Liao et al.| (2024): A regression-based extrapolation
approach for fitting noisy observables into classically simulable Clifford circuits. CDR
improves estimation accuracy with small sample needs, but its utility is restricted beyond
Clifford-like structures.

* Dynamical Decoupling (DD) |Tong et al.| (2025): A hardware-level control sequence that
controls decoherence by using custom pulse sequences. While effective for low-frequency
noise, DD requires more gate operations and may interfere with circuit-level optimization.

* Hardware-Efficient Ansitze |Leone et al.|[(2024)): Parameterized quantum circuits are de-
signed to meet device topology and gate restrictions, lowering compilation overhead and
decreasing gate errors. However, their limited expressivity could hinder learning on com-
plicated datasets.

B EXTENDED EXPERIMENTAL RESULTS

Teacher QNN Architecture and Training.

The teacher is a depth- L, variational circuit using ne,ch qubits. Each layer includes i) rotations
R, (kz;) on all qubits for data re-uploading, ii) parameterized single-qubit gates R, (6; )R- (¢1.4),
and iii) an entangling CNOT ladder connecting qubit ¢ to g+1.

We set Liach = 6 and neaen = 8, resulting in 96 training parameters. The mean squared error
(MSE) serves as the cost function; Adam optimizer is used for gradients using the parameter-shift
rule (n = 0.01, 100 epochs, batch 32).

During training, we have used three ZNE scaling factors (A\;=1, \;=3, and \2=>5) obtained from

global folding (Eq. |1) and estimated E(O) using Richardson extrapolation. The extended figures
become soft targets for students.

Student QNN and Distillation Objective. The student uses the same but a shallower, ng,q=4-
qubit, Lgyg=2-layer approach with 16 trainable parameters, making it only ~17% of the size of the
teacher. We minimize the distillation loss as specified in equation [6]
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T (us) T2 (us)  paq Nnoise(t) = 71 + An sin(%)

Low 100 120 1.0x107* 0.02, An =0.01
Medium 60 80 1.0x 1073 =0.05, An = 0.02
High 30 40 25x107® 7@=0.10, An =0.04

3 3
Il

Table 5: Dynamic-noise regimes used in simulation. 73 /7% sets the Lindblad rates; pag4 is a static depolarising
error applied to each CNOT; nnoise (t) modulates thermal occupancy over circuit time 7" (here 7'=1 ms).

Dataset Noiseless Low Medium High
Fashion-MNIST 0.25 0.30 0.45 0.65
AG News 0.18 0.22 0.33 0.55
Wine Quality 0.39 0.43 0.50 0.62
UrbanSound8K 0.36 0.42 0.55 0.78

Table 6: The loss of teachers under increasing dynamic noise levels is represented by MSE for classification
and MSE for regression.

They apply Adam (n = 0.02, 50 epochs, batch 32) optimizer. No folding or extrapolation takes
place for students during training or testing.

Noise Model and Qiskit-Aer Simulation. The circuits are run using the AerSimulator (density-
matrix mode) from giskit-aer0.13.1. Our proprietary noise model includes amplitude-
shifting with 77 = 60 us, phase-damping with 75 = 70 us, two-qubit depolarizing error py, =
2.5 x 1073, and read-out bit-flip error p,, = 0.015. The shot count is regulated at 64 per circuit,
and the seeds are fixed for reproducibility.

Evaluation Metrics and Baselines. Performance is evaluated using the MSE between model pre-
dictions and ground-truth objectives for the regression task using

MSE = —— (9(x) —y)°. (66)
(Z,y)ED‘est

where Dyest denotes the held-out test set; |Dyest| represents its cardinality (number of samples);
(x,y), a goal of ground-truth y and an input sample x; §(x), the prediction of the model for input
z. For the classification of the downstream application, we additionally address accuracy and MSE
loss.

In order to measure noise robustness, we record the decrease in performance AMSE(¢) after each
two-qubit operation during inference and inject an additional depolarizing channel of strength € €
[0, 0.01]. A lower A value signifies more internal resilience.

We conducted the following simulation studies in Appendix B using the Fashion-MNIST dataset, as
they are compact enough for circuit-level ablations and noise experiments.

B.1 SIMULATION RESULTS

Dynamic-Noise Settings. We define three dynamic noise regimes to evaluate robustness under re-
alistic hardware conditions: Low, Medium, and High in Table[5] The parameters for each procedure
include time-dependent thermal occupancy n,eise(t), relaxation time 77, dephasing time 75, and
a two-qubit depolarization error rate po,. The thermal model in equation [22] describes a gradual
oscillation of all parameters in the circuit execution window ¢ € [0, T7].

Tablel6lshows the fest loss of the ZNE-trained teacher circuit under four conditions: a noiseless sim-
ulator, low, medium, and high dynamic noise levels. We employ the MSE loss for the classification
and regression datasets. It demonstrates that loss rises with noise severity, indicating that dynamic
decoherence impairs performance even after ZNE. The rise is moderate under low noise but larger
under high noise, notably for image and audio data. This highlights the need for noise mitigation
while working in practical conditions.
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Dataset NoZNE A =2 A=3 A=5
Fashion-MNIST 0.65 0.54 0.47 0.40
AG News 0.55 044 0.36 0.30

Wine Quality 0.62 0.51 0.46 0.39
UrbanSound8K 0.78 0.65 0.58 0.49

Table 7: ZNE effectiveness under high noise. Each row shows the teacher model’s loss without mitigation
and with ZNE at different noise-scaling factors A. Larger A values yield more accurate extrapolation to the
zero-noise regime. All datasets benefit from ZNE, with greater improvement observed on high-dimensional
inputs like images and audio.

A Gate Count Circuit Depth Execution Time (ms)
1 (No ZNE) 128 64 121
2 {1,3} 384 192 368
3{1,3,5} 640 320 610
5{1,3,5,7,9} 1152 576 1088

Table 8: Computational cost of circuit folding with different ZNE noise-scaling factors A. All values are
measured per circuit on Qiskit Aer with 1000 shots. Gate count and circuit depth increase proportionally
with ), significantly impacting runtime. All values are averaged across 10 runs of a teacher circuit trained on
Fashion-MNIST dataset.

Effectiveness of ZNE. Table [/| shows the effect of ZNE on high-noise situations. As the noise-
scaling factor )\ increases, loss lowers consistently across all datasets, indicating ZNE’s capacity to
recover increasingly reliable outputs. The best results are achieved at A = 5, especially for more
complex datasets like UrbanSound8K and Fashion-MNIST, which confirm ZNE’s effectiveness in
mitigating quantum noise in practical workloads. Table[8|demonstrates that raising the ZNE folding
factor ) leads to significant increases in gate count, circuit depth, and execution time for FashionM-
NIST data. With A=5, circuits become 9x longer than their original versions, taking over 1 second
each inference. These findings emphasize the computational tradeoff introduced by ZNE and the
significance of cost-effective mitigation measures.

Effectiveness of Knowledge Distillation. Table [9] shows the effect of knowledge distillation by a
ZNE-trained teacher. Across all datasets, student models trained without KD lose substantially more
due to noise. In contrast, ZNE-based distillation increases resilience, resulting in 6-12% lower loss
values. This demonstrates the effectiveness of distillation in transferring resilience to low-capacity
quantum models.

B.2 ROBUSTNESS TO INPUT PERTURBATIONS

The robustness of the distilled student QNNs against minor input data perturbations is assessed for
each of the four datasets in Figure[2} The additive Gaussian noise, 2’ = x + ¢, perturbs each input
sample x. For consistency, € ~ N(0,0?) and o = 0.05 are fixed. We compare the loss to the initial
(clean) loss after computing the loss on these perturbed inputs.

Dataset Baseline KD Improvement
Student Student
Loss Loss
Fashion-MNIST 0.61 0.49 -0.12
AG News 0.45 0.36 -0.09
Wine Quality  0.58 0.52 -0.06
UrbanSound8K 0.66 0.59 -0.07

Table 9: Loss comparison of student QNN trained directly (baseline) vs. distilled from ZNE-enhanced teach-
ers (KD). Knowledge distillation consistently improves performance under native noise.
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Dataset Teacher Student Compression Loss
Loss Loss  Ratio Gap
Fashion-MNIST 0.45 0.49 8:3 +0.04
AG News 0.33 0.36 6:2 +0.03
Wine Quality  0.50 0.52 6:2 +0.02
UrbanSound8K 0.55 0.59 8:3 +0.04

Table 10: Student loss after distillation from a ZNE-trained teacher. The student model uses fewer qubits and
layers (compression ratio shown), yet retains comparable accuracy with minor loss degradation.

B Clean Input
[ Perturbed Input

0.10 A

0.08 -

0.06 -

Loss

0.04 -

0.02 4

o . o \pcM Eﬂ\'\l B\b-(e)( Qw?

Figure 2: Loss under input perturbation for each dataset. A fixed Gaussian noise ¢ ~ N(0, 0.05%) is added
to each test input. Despite input corruption, student QNNs retain low loss, indicating strong generalization and
smoothness learned from ZNE-based soft targets.

The findings demonstrate that the student QNNs generalize well to slightly off-distribution inputs,
as the increase in loss is consistently minimal (< 0.015 absolute) across all datasets: CIFAR-10
(PCA), ETThl, BibTeX, and QM7. The knowledge distillation process is largely responsible for
this robustness: the student model implicitly learns a smoother target function as a result of zero-
noise extrapolation (ZNE) softening the teacher outputs, which reduces sensitivity to small input
fluctuations.

For example, the loss rises from 0.084 to just 0.095 on BibTeX and from 0.067 to 0.080 on ETThI.
These modest deltas demonstrate that the student does not only memorize clean input-output map-
pings but also captures a more generalizable representation. In quantum machine learning, where
noise and uncertainty in data acquisition (such as quantum sensors or poor feature encodings) are
common, this resistance is particularly beneficial.

B.2 RICHARDSON EXTRAPOLATION IN ZNE

The Richardson extrapolation procedure used in zero-noise estimate is shown in Figure[3] We use
global gate folding to record the circuit expectation values at scaled noise levels A = {1,3,5}
for a representative batch of inputs from the CIFAR-10 (PCA) dataset. Assuming that these data
roughly follow a low-degree polynomial curve with respect to A, we can extrapolate back to A = 0

to estimate the zero-noise value E(0).

As demonstrated, the extrapolated value consistently aligns across various inputs, and the folded
outputs follow a smooth trajectory. This illustrates how gate-induced errors can be successfully
eliminated by ZNE using Richardson extrapolation without creating instability. Crucially, this ex-
trapolated output encodes a denoised supervisory signal that preserves semantic fidelity while reduc-
ing variance brought on by device-level noise, making it a soft target for student training. Because
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Figure 3: Visualization of expectation values at noise scales A = 1, 3, 5 with first-order Richardson extrapola-
tion. Points denote observed values under increasing folding, while the extrapolated zero-noise value is shown
at A = 0.

the curve-fitting stage is completely post-measurement and computationally cheap, it can be used in
offline or quantum cloud environments.

B.3 GATE ERROR SENSITIVITY ANALYSIS

The sensitivity of quantum model fidelity to changes in two-qubit gate errors, namely controlled-Z
(CZ) gate noise, is investigated in this experiment. Our distilled student model and a baseline QNN
are both simulated throughout a range of CZ error rates, from 0.005 to 0.08. The overlap between
expected and noise-free results is used to calculate fidelity for each model, which is assessed using
thermal relaxation and measurement noise under Qiskit Aer. The distilled student is optimized under
native noise only and is given soft labels by a noise-mitigated teacher educated using zero-noise
extrapolation (ZNE).

Across all tested error levels, Figure [4] demonstrates that the distilled model consistently performs
better than the non-distilled baseline. At the highest error level, the distilled student maintains a
considerable fidelity margin—up to 5.4%—in comparison to the baseline, despite the fact that both
models deteriorate as gate noise increases. Even in high-noise conditions, which are typical of
NISQ devices, this demonstrates that knowledge distillation not only compresses the model but also
transfers robustness, enabling more stable quantum predictions.

B.4 TEMPORAL DRIFT IN QUANTUM NOISE SENSITIVITY.

The effect of temporal drift in quantum device calibration on model fidelity is examined in this
section. Even for circuits trained on precise parameters, prediction quality may deteriorate due
to noise parameters like T, T, and gate error rates changing between calibrations. We track the
forecast fidelity of both baseline and distilled models and replicate such drift by varying gate noise
across ten calibration cycles.

Figure[5]shows that the distilled model fades much more slowly, keeping prediction accuracy within
acceptable boundaries, whereas the baseline QNN degrades significantly, dropping by over 10% over
time. This demonstrates that temporal robustness is imparted by distillation from a ZNE-optimized
instructor, providing resilience against invisible noise shifts in deployment settings. For real-world
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Sensitivity of Fidelity to 2-Qubit Gate Error
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Figure 4: Sensitivity analysis showing how fidelity degrades with increasing CZ gate error rates for both the
baseline QNN and the distilled student. The distilled model consistently maintains higher fidelity across error
scales.

Temporal Drift in Quantum Noise Sensitivity
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Figure 5: Prediction fidelity of baseline and distilled models over time under evolving device noise. Distilled
QNN retains robustness longer despite hardware drift.

deployment on quantum cloud platforms, where calibrations could be asynchronous or sporadic, this
kind of resiliency is essential.
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B.5 LAYERWISE ACTIVATION CORRELATION

We calculate layerwise activation correlations between expectation values of intermediate observ-
ables to assess the propagation efficiency of information across circuit depth. Improved trainability
and resilience are frequently associated with stronger correlations, which indicate smoother transi-
tions and less damaging interference between layers.
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Figure 6: Correlation matrices of activations across layers for baseline and distilled QNNs. Distilled QNN
exhibits more structured and coherent activations, suggesting better information propagation.

The baseline QNN exhibits low and irregular correlation patterns throughout its layers, indicating
noisy and unstructured intermediate representations, as seen in Figure [6] The distilled model, on
the other hand, shows improved coherence in internal quantum states as seen by greater inter-layer
correlations and a clearer structure. This implies that the student model learns a smoother optimiza-
tion terrain from the teacher in addition to inheriting noise resilience, which promotes improved
convergence during training.

B.6 CONFUSION MATRIX FOR MULTI-CLASS TASKS

We use both baseline and distilled QNNSs to analyze confusion matrices for a representative 5-class
task in order to evaluate classification performance at a granular level (Figure[7). The true label is
represented by each row in the matrix, while the predicted classes are represented by the columns.
A diagonal matrix with no off-diagonal items would be the result of a flawless model.

Predictions in the baseline QNN are broadly distributed across off-diagonal entries, which is in-
dicative of noisy decision boundaries and low class separability. However, there are fewer misclas-
sifications and a stronger diagonal pattern in the distilled model. The robustness imparted by the
teacher through noise-aware distillation is responsible for this improvement. The student QNN is
more suited for noisy quantum inference applications since it not only compresses the circuit but
also more accurately maintains class-level semantics.

B.7 FIDELITY UNDER RANDOMIZED GATE PERTURBATION

We assess the resilience of our quantum models against local gate perturbations in Figure 8] We
mimic real-world uncertainty in gate calibration by adding small-angle random unitary noise to
each specified rotation in the circuit. We calculate the state fidelity F(p, o) between the original and
perturbed circuit outputs, averaged over 100 random trials, using a range of perturbation strengths
e € [0, 0.25] radians.

The findings show that when noise levels rise, the distilled student QNN continuously outperforms
the original instructor circuit in terms of fidelity. This pattern lends credence to the idea that student
models that are trained on ZNE-regularized targets acquire some degree of noise resilience. Notably,
the teacher’s fidelity decreases dramatically as perturbation increases, most likely as a result of the
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Figure 7: Confusion matrices for 5-class classification using baseline (left) and distilled (right) QNNs. The
distilled model shows improved diagonal concentration, indicating higher per-class accuracy.

Fidelity vs. Gate Perturbation
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Figure 8: Average state fidelity under randomized gate perturbations. The distilled student QNN degrades
more gracefully than the over-parameterized teacher, indicating improved robustness against local gate noise.

mistake propagation being amplified by its greater depth and parameter count. The student, on the
other hand, is naturally more stable under noisy gate fluctuations due to its shorter architecture and
distillation-guided training.

B.8 CALIBRATION CURVE FOR CONFIDENCE ESTIMATION

A comparison of the teacher and student QNNs’ calibration performance is shown in Figure[9] Pre-
diction probabilities are bounded into deciles for every model, and the average predicted confidence
is compared to the observed accuracy in that bin. A model that is correctly calibrated will fall on the
diagonal, where the empirical likelihood of accuracy and the anticipated confidence match.

Compared to the over-parameterized instructor, the distilled student gives better-calibrated confi-
dence scores because it adheres to the diagonal line more closely. This could be explained by the
distillation process itself, which transfers more significant uncertainty signals and smoothes out
noisy variations in the teacher’s logits. When using quantum systems in an uncertain environment,
accurate calibration is especially crucial since it enables practitioners to spot predictions that need
more testing or confirmation.
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Figure 9: Calibration curves comparing predicted confidence versus true accuracy. The distilled student QNN
exhibits improved alignment with the ideal calibration line, suggesting better uncertainty estimation than the
teacher.

B.9 RUNTIME SCALING WITH QUBIT COUNT.
The inference runtime for both teacher and student QNN scales with the number of qubits, as shown

in Figure [T0} Because of its compact design, the student runtime rises almost linearly, whereas the
instructor runtime grows exponentially due to increased circuit depth and entanglement complexity.
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Figure 10: Comparison of inference runtime (ms) between teacher and student QNN across increasing qubit
counts. The student’s runtime exhibits linear scaling, whereas the teacher grows exponentially, highlighting the
benefit of distillation for deployment efficiency.

The capacity to shift robustness and performance from a huge, costly teacher to a much faster and
more hardware-efficient pupil is one of the main benefits of quantum knowledge distillation, and this
finding supports that claim. When implementing quantum models on real-time systems or batching
huge numbers of queries in environments with constraints, such as cloud-based NISQ devices, such
runtime reductions are essential.
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B.10 GENERALIZATION ON OUT-OF-DISTRIBUTION (OOD) INPUTS

The generalization behavior of teacher and student QNNs under different distributional shift
amounts is shown in Figure[TT] In order to simulate situations where input statistics deviate from
the training distribution, the x-axis shows increasing degrees of OOD perturbation given to the test
inputs.
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Figure 11: Accuracy on out-of-distribution (OOD) inputs for both teacher and student QNNs. While both
models degrade under increasing perturbation, the distilled student maintains performance closer to the teacher,
showing effective generalization transfer.

The student model closely resembles the instructor in terms of performance degradation, notwith-
standing the rise in noise or semantic drift, indicating that robustness to OOD scenarios has been
successfully conveyed throughout distillation. Practical quantum machine learning applications, par-
ticularly in low-data or constantly changing contexts, depend on this capacity to generalize outside
of the training regime.

B.11 TOKEN-WISE CONTRIBUTION ANALYSIS
The per-token significance scores generated by the teacher and student QNN for a representative

input sequence are shown in Figure[I2} The parameter-shift rule is used to derive importance values
from expectation value gradients, which are then normalized per phrase.
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Figure 12: Token-wise importance scores for a representative input sample. The distilled student QNN closely
mimics the teacher’s attention patterns, highlighting effective transfer of semantic grounding.

We find that the student model almost as well represents the relative contribution of key tokens
(such as “important,” “features,” and “classification”) as the instructor model does. This suggests
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that during distillation, semantic comprehension and attentional allocation were effectively con-
veyed. Lightweight QNNs maintain the interpretability and decision-making logic of bigger, noise-
mitigated circuits because to this alignment.

B.12 ABLATION ON L0sS TYPE (MSE vs KL)

The comparative performance of the student QNN under two distinct distillation objectives—mean
squared error (MSE) and Kullback-Leibler (KL) divergence—is shown in Figure@ To match the
teacher’s output, each student was trained using the same architecture and noise-aware optimization
parameters, with the sole difference being the loss function.

Ablation: MSE vs. KL Loss for Student Distillation
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Figure 13: Test loss comparison across four datasets using MSE vs. KL divergence as distillation objectives.
KL consistently yields better performance, particularly on classification tasks like AG News and CIFAR-10.

KL-based distillation routinely performs better than MSE, especially on applications requiring a lot
of classification, such as AG News and CIFAR-10. We assume that this is because KL promotes
better decision boundaries by preserving distributional features from soft teacher logits. The margin
is less on regression-style datasets such as ETTh1, but KL still shows a marginally reduced loss,
confirming its overall advantage in this regard.

B.13 SHOT COUNT VS. ACCURACY TRADEOFF
The accuracy trends for both baseline and distilled QNNs as a function of shot count are shown

in Figure[T4] Statistical precision is directly impacted by shot count, which establishes how many
times a quantum circuit is run in order to estimate an observable.

Effect of Shot Count on Final Accuracy
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Figure 14: Impact of shot count on test accuracy for baseline and distilled QNNs. Distilled models exhibit
consistently higher accuracy, especially in low-shot regimes.

At all shot levels, we find that the distilled student regularly achieves higher accuracy, especially
when sample budgets are constrained (e.g., 100-1000 shots). This suggests increased resistance
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to shot noise as a result of training with softer, smoother targets. Both models reach accuracy
saturation as the number of shots rises, but the student keeps a discernible advantage, confirming its
effectiveness with practical hardware limitations.

B.14 NOISE SCALING FACTOR VS. FIDELITY
The fidelity of quantum models decreases as the noise scaling factor \ rises, as seen in Figure [T3]

Despite having a high expressivity, the ZNE-trained teacher model begins with good fidelity under
native noise (A = 1) and drastically degrades as noise is increased (A = 7).

Fidelity vs. Noise Scaling Factor
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Figure 15: Fidelity degradation under increasing noise scaling factors A for both ZNE-trained teacher and
distilled student. The distilled model exhibits slower fidelity decay across rising noise levels.

The distilled student model, on the other hand, performs more consistently across all noise scales,
indicating that the resilience acquired during distillation is transferable to a variety of hardware

settings. This result demonstrates how well ZNE works as a teaching tool and verifies that students
inherit both predictions and noise resilience traits.

B.15 PARAMETER COUNT VS. ACCURACY
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Figure 16: Effect of student QNN parameter count on test accuracy. While accuracy improves with more
parameters, gains taper off beyond 200 parameters, indicating diminishing returns.

The trade-off between model complexity and performance in distilled student QNNs is shown in
Figure [T6] Test accuracy grows gradually as the number of trainable parameters rises from 20 to
400, but after about 200 parameters, the gains become less pronounced.

This saturation supports the feasibility of employing small student models for deployment on NISQ
hardware by indicating that moderately large QNN can already approach the teacher’s predictions
with good accuracy. Additionally, the curve confirms that knowledge distillation plays a crucial role
in efficiently transferring performance, even to lightweight systems.
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B.16 L0SS LANDSCAPE VISUALIZATION
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Figure 17: Comparison of loss landscapes for baseline vs. distilled QNNs. The distilled model exhibits a
smoother and more convex surface, indicating better-conditioned optimization and more stable convergence.

Figure [T7] plots interpolated loss values in a two-dimensional subspace of the parameter space to
visualize the loss landscapes of baseline and distilled QNNs.

In comparison to the baseline, the distilled model shows a smoother, more convex surface with fewer
sharp local minima. This implies that distillation improves the optimum geometry and increases
resistance to noise, leading to more stable and effective training dynamics under stochastic gradients.
In both quantum and classical environments, such landscapes are generally associated with faster
convergence and improved generalization.

B.17 VARIANCE OF GRADIENTS UNDER NOISE

The empirical variance of gradient magnitudes under four different noise conditions—noiseless, low,
medium, and high—is shown in Figure[T8] As noise intensity increases, the gradient variance of the
baseline QNN increases quickly, which can cause training instability and impede convergence. The
distilled QNN, on the other hand, shows noticeably less variance, demonstrating its resilience to
noise-induced gradient oscillations.
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Figure 18: Variance of gradients under increasing noise levels for baseline and distilled QNNs. The distilled
model consistently maintains lower gradient variance, which facilitates stable and efficient optimization in
noisy environments.

37



Under review as a conference paper at ICLR 2026

Reduced gradient variance increases efficiency on NISQ technology by improving the signal-to-
noise ratio during backpropagation and enabling more dependable updates with fewer shots. The
advantage of distillation as a way to transfer noise resilience from bigger, mitigated teachers to
smaller, deployable quantum models is further supported by this.

B.18 GENERALIZATION GAP UNDER NOISE
The generalization gap, or the difference between test and train loss, is shown graphically across

different noise levels in Figure[T9] As noise levels rise, the baseline QNN’s gap widens, suggesting
that it is more prone to overfitting noisy training data and having less generalization.

Generalization Gap Under Noise
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Figure 19: Generalization gap (difference between test and train loss) across different noise levels. Distilled
QNNs show consistently lower gap than baseline QNNs, suggesting better robustness and generalization.

The distilled QNN, on the other hand, keeps a more consistent and narrower gap at all noise levels.
This implies that even while training under native noise, distillation fosters generalizable repre-
sentations in addition to increasing test-time robustness. For real-world deployment, where test
environments could have harsher or different noise profiles than training conditions, this behavior is
essential.

B.19 CONVERGENCE STABILITY DURING TRAINING

The training loss trajectory for both baseline and distilled QNNs over 50 epochs is shown in Fig-
ure[20] The distilled model converges more quickly and with far less variance across epochs, even
if both models eventually reach low loss regions.

This suggests improved optimization stability, most likely as a result of simpler model structure and
smoother soft targets. The baseline model, on the other hand, shows more oscillations, particularly
during early training. This could be because it is more sensitive to noise and stochastic gradients.
These findings support the idea that in noisy quantum environments, information distillation fosters
stable training dynamics.

B.20 PER-CLASS ACCURACY BREAKDOWN

A comparison of per-class accuracy for baseline and distilled QNNs on a multi-class classification
task is shown in Figure[2T] Under the distilled model, each class performs better, with improvements
ranging from 5% to 10%. Class 2 and Class 4, which historically experienced more confusion in
noisy environments, show the greatest improvement. According to this finding, noise-mitigated
distillation produces a more balanced classification model in addition to increasing average accuracy.
It seems that the distillation process lessens bias toward dominating class patterns by transferring
robustness more evenly across classes.
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Convergence Stability During Training
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Figure 20: Training loss across 50 epochs for baseline and distilled QNNs. The distilled model shows
smoother and faster convergence, with less variance during optimization.
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Figure 21: Per-class accuracy comparison between the baseline QNN and the distilled QNN. The distilled
model consistently improves across all classes.

B.21 T1/T2 DRIFT ROBUSTNESS

As the coherence times 7 and 75 deviate from their calibrated values, Figure shows how model
performance declines. This replicates real-world scenarios on NISQ devices, where hardware and
ambient variables may change over time. The performance of the baseline QNN degrades signifi-
cantly, falling by more than 25% at a normalized drift of 0.4. The distilled model, on the other hand,
exhibits noticeably superior stability, dropping just 13% in the same environment.

The reason for this robustness is that the student model learned to meet noise-mitigated soft targets
created by the teacher under calibrated conditions during distillation. An implicit regularization
against hardware fluctuations is added to the distilled QNN by including noise resilience into the
student’s goal. The usefulness of noise-aware knowledge distillation in creating stable models that
perform better under time-varying noise is further supported by these findings.
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Figure 22: Performance degradation of baseline and distilled QNNs under increasing 74 /7% drift. The distilled
model exhibits lower sensitivity to coherence parameter variations.
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Figure 23: Effect of increasing entanglement depth on test loss. Distilled QNNs generalize better across all
depths and saturate performance earlier.

B.22 ENTANGLEMENT DEPTH VS. GENERALIZATION

The generalization performance varies with the entanglement depth, which is determined by the
number of entangling layers in the quantum circuit (see Figure[23). Up to a certain point, increased
entanglement helps both baseline and distilled models; beyond that, improvements even out. Even at
lower depths, the distilled model exhibits improved generalization, consistently outperforming the
baseline at all levels.

Remarkably, the baseline model needs more depth to approach comparable accuracy, whereas the
distilled QNN attains near-optimal test loss at depth 3. This demonstrates the efficiency advantage
of distillation: tiny circuits can inherit the expressivity of deeper models without the need for extra
layers thanks to noise-aware soft targets. Because distillation achieves high accuracy at minimal
entanglement cost, it provides a principled tradeoff against entanglement, which increases circuit
complexity and noise susceptibility.
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B.23 PARAMETER INITIALIZATION SENSITIVITY
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Figure 24: Effect of different parameter initialization schemes on test loss. Distilled models exhibit lower
variance and better robustness across schemes.

The test losses for both baseline and distilled quantum neural networks under five alternative pa-
rameter initialization procedures are shown in Figure 24] Although Xavier and He initializations
consistently produce reduced losses, particularly for the distilled model, all methods—aside from
zero initialization—produce respectable performance. The baseline model exhibits greater volatility
across runs and is more susceptible to the initialization decision.

Because soft targets create smoother loss surfaces, this result suggests that distilled QNNs are more
resilient to weight initialization. The influence of initial weights that are not optimal is lessened
and the optimization process is more efficiently guided when informative instructor outputs are
present. These results highlight how distillation stabilizes training by lowering susceptibility to
hyperparameter decisions like initialization, while simultaneously enhancing performance.

B.24 MEMORY OVERHEAD COMPARISON

A normal (baseline) quantum neural network, the compact distilled model, and the zero-noise-
extrapolated (ZNE) teacher are the three configurations whose peak memory usage during inference
is compared in Figure 25] Because of its deeper circuit and auxiliary folding layers, the teacher
circuit has the largest footprint (36.7 MB), yet the distilled model uses only 8.2 MB of memory,
which is 35% less than the baseline.

This reduction results from using fewer qubits, having a smaller entanglement depth, and not requir-
ing the state retention or recurrent circuit execution that ZNE requires. These results demonstrate
that distillation is a better appropriate for real-time deployment on resource-constrained quantum
simulators and NISQ hardware since it not only guarantees noise resilience but also drastically low-
ers memory overhead.

B.25 INFERENCE TIME COMPARISON

The average inference latency for each input sample for three different model versions is shown
in Figure [26] Because extrapolation requires numerous noise-scaled circuit evaluations, the ZNE
teacher has the highest cost at 27.8 ms. In comparison, the distilled QNN’s lower circuit depth and
lack of folding operations allow it to function at 6.1 ms, which is 35% faster than the baseline QNN’s
9.4 ms.

This outcome highlights a primary driving force behind knowledge distillation in noisy quantum sys-
tems: striking a robust balance between efficiency and performance. Although the ZNE-enhanced
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Peak Memory Overhead During Inference

Memory Usage (MB)

Baseline QNN Distilled QNN ZNE Teacher

Figure 25: Peak memory usage during inference for the baseline model, distilled model, and ZNE-trained
teacher. The distilled QNN provides a favorable balance between robustness and memory efficiency.
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Figure 26: Average inference time per input for three model configurations: baseline, distilled, and ZNE-
based teacher. Distilled QNN achieves the best latency-performance tradeoff.

model produces outputs that are more precise, low-latency applications cannot use it. The distilled
student is perfect for real-time quantum workloads since it maintains the majority of the robustness
while requiring a substantially shorter inference time.

C DATASET CURATION AND ETHICS

C.1 DATASET LICENSING AND USAGE RIGHTS

Every dataset used in this study is publicly accessible and subject to open licenses that allow for
redistribution and research by scholars. The datasets consist of:
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* Fashion-MNIST Xiao et al.| (2017) — Released as an open benchmark for computer vi-
sion, Fashion-MNIST is licensed for unrestricted academic use and distribution. No user-
identifiable information is present.

* AG News|Zhang et al.|(2015) — This corpus of news headlines and descriptions is derived
from public news sources and released under a research-friendly license with no copyright
infringement. It is widely used for text classification research.

* UCI Wine Quality Cortez et al.| (2009) — Collected and hosted by the UCI Machine
Learning Repository, this dataset is licensed for open use in research and educational con-
texts. It does not contain any personal or sensitive data.

¢ UrbanSound8K [Salamon et al.|(2014) — Made available under a Creative Commons At-
tribution NonCommercial (CC BY-NC) license, this dataset supports non-commercial re-
search use, and no human subjects or sensitive recordings are involved.

All of the datasets are free of personally identifying information and adhere to ethical research
guidelines. User approval or further permissions were not needed. The use of the datasets complies
fully with their individual conditions of use.

C.2 PREPROCESSING AND LABEL INTEGRITY

To ensure compatibility with quantum encodings while maintaining the integrity of the original
labels, each dataset received minimum and consistent preprocessing:

* Fashion-MNIST: Principal Component Analysis (PCA) was used to flatten and compress
grayscale image vectors in order to suit the quantum circuits’ qubit capacity. There was
no rebalancing or alteration to the image labels. The distribution of classes was unchanged
from the original benchmark.

* AG News: After tokenizing text samples with a WordPiece tokenizer, 128-dimensional
static embedding extraction was performed. A fixed-length input vector was created by
averaging these embeddings across tokens. The category names—World, Sports, Business,
and Science/Tech—were applied exactly as they were.

* UCI Wine Quality: The mean and variance of each of the 11 input features were set to
zero. To facilitate regression exercises, labels indicating sensory values ranging from O to
10 were kept in their continuous form. There was no transformation or label binning done.

* UrbanSound8K: Mel spectrograms with 40 filter bins were created from audio clips.
To create a consistent vector-length representation, these were averaged throughout time.
There was no class merging or resampling done to the initial 10-class label taxonomy.

No synthetic labels were added to any of the datasets. Where available, the original train/test splits
were kept, and where necessary, stratified sampling was used to produce validation sets. This made
sure that model assessments reflected actual generalization performance and that label distributions
stayed representative.

C.3 ETHICS STATEMENT

Our research focuses on the theoretical study and simulation-based assessment of quantum error
mitigation and knowledge distillation techniques. It does not include human beings, personal or
sensitive data, or real-world deployments, which might raise urgent ethical problems. We employ
publicly accessible datasets (e.g., Fashion-MNIST, AG News, Wine Quality, UrbanSound8K) that
have been widely used in previous research. There were no changes made that could have led to
hidden bias or privacy issues. This innovation has a largely beneficial social impact: enhancing
the stability of noisy intermediate-scale quantum (NISQ) computing might speed up quantum ma-
chine learning and scientific discoveries. At the same time, we know that developments in quantum
technology could have dual uses, such as cryptography or surveillance. Our research is confined
to algorithmic and theoretical advancement, and we strictly adhere to the ICLR Code of Ethics in
describing techniques, accepting limits, and maintaining research integrity.
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C.4 REPRODUCIBILITY STATEMENT

We have implemented a number of measures to guarantee reproducibility:

* Theory and proof. Section state all assumptions, lemmas, and theorems in detail, with
thorough proofs.

* Experimental setup. Section Z provides details on circuit layouts, hyperparameters, noise
models (Lindblad settings, T, T5, pa, values), and training schedules.

* Code release. In the additional materials, we give anonymised source code, as well as
scripts for Qiskit Aer simulation and IBM_Brisbane hardware. This code contains methods
for ZNE folding, KD training, and evaluation.

» Data processing. All of the datasets utilized are available in the zip file.

* Randomness and seeding. We use random seeds for initialization and data splits and
present averaged results from numerous runs.

* Hardware details. For IBM _Brisbane runs, we capture calibration parameters (date, shot
count, device attributes) to ensure consistent replication.

These techniques, used together, ensure that independent researchers can duplicate and verify both
theoretical and empirical results.

D LIMITATIONS AND FUTURE WORK

While our framework significantly improves quantum noise resilience through knowledge distilla-
tion, it has some limitations that require additional exploration. First, our analyses rely on simulated
noise models (e.g., amplitude/phase damping, readout error) generated by Qiskit Aer, which may not
fully represent complex error behavior in genuine quantum hardware. Although we include testing
with calibrated IBMQ devices, a more comprehensive investigation of various quantum backends is
required to prove generalizability.

Second, the distillation process relies on pre-trained, noise-reducing teachers, which are costly to
produce using techniques such as zero-noise extrapolation (ZNE). This may limit our method’s
scalability for particularly large quantum circuits or scenarios that require frequent retraining. One
appealing approach is to examine live or continuous distillation from teacher proxies, or to add
lightweight meta-learners that estimate teacher outputs without extensive circuit folding. Further-
more, the current approach assumes a fixed architecture for the student circuit. Adapting the student
size or entanglement depth dynamically based on the teacher’s knowledge or hardware limits may
provide a better balance of efficiency and fidelity.

Finally, although evaluating four different datasets, our study is limited to small-batch quantum
simulations. Extending our technique to high-throughput, large-batch inference on hybrid quantum-
classical systems, as well as investigating optimization-aware circuit pruning, are promising future
directions.
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