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ABSTRACT

Deep ensemble is a simple yet powerful way to improve the performance of deep
neural networks. Under this motivation, recent works on mode connectivity have
shown that parameters of ensembles are connected by low-loss subspaces, and
one can efficiently collect ensemble parameters in those subspaces. While this
provides a way to efficiently train ensembles, for inference, one should still exe-
cute multiple forward passes using all the ensemble parameters, which often be-
comes a serious bottleneck for real-world deployment. In this work, we propose
a novel framework to reduce such costs. Given a low-loss subspace connecting
two modes of a neural network, we build an additional neural network predicting
outputs of the original neural network evaluated at a certain point in the low-loss
subspace. The additional neural network, what we call a “bridge”, is a lightweight
network taking minimal features from the original network, and predicting outputs
for the low-loss subspace without forward passes through the original network.
We empirically demonstrate that we can indeed train such bridge networks and
significantly reduce inference costs with the help of the bridge networks.

1 INTRODUCTION

Deep Ensemble (DE) (Lakshminarayanan et al., 2017) is a simple algorithm to improve both predic-
tive accuracy and uncertainty calibration of deep neural networks, where a neural network is trained
multiple times using the same data but with different random seeds. Due to this randomness, the
parameters obtained from the multiple training runs reach different local optima, called modes, on
the loss surface (Fort et al., 2019). These parameters represent a set of diverse functions serving as
an effective approximation for Bayesian Model Averaging (BMA) (Wilson and Izmailov, 2020).

An apparent drawback of DE is that it requires multiple training runs. This cost can be huge es-
pecially for large-scale settings for which parallel training is not feasible. Garipov et al. (2018);
Draxler et al. (2018) showed that modes in the loss surface of a deep neural network are connected
by relatively simple low-dimensional subspaces where every parameter on those subspaces retains
low training error, and the parameters along those subspaces are good candidates for ensembling.
Based on this observation, Garipov et al. (2018); Huang et al. (2017) proposed algorithms to quickly
construct deep ensembles without having to run multiple independent training runs.

While the fast ensembling methods based on mode connectivity reduce training costs, they do not
address another important drawback of DE; the inference cost. One should still execute multiple
forward passes using all the parameters collected for ensemble, and this cost often becomes critical
for a real-world scenario, where the training is done in a resource-abundant setting with plenty
of computation time, but for the deployment, the inference should be done in a resource-limited
environment. For such settings, reducing the inference cost is much more important than reducing
the training cost.

In this paper, we propose a novel approach to scale up DE by reducing inference cost. We start from
an assumption; if two modes in an ensemble are connected by a simple subspace, we can predict
the outputs corresponding to the parameters on the subspace using only the outputs computed from
the modes. In other words, we can predict the outputs evaluated at the subspace without having
to forward the actual parameters on the subspace through the network. If this is indeed possible,
for instance, given two modes, we can approximate an ensemble of three models consisting of
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Figure 1: Comparing ensembles with a Bezier curve (left) and a type II bridge network (right).

parameters collected from three different locations (one from a subspace connecting two modes,
and two from each mode) with only two forward passes and a small auxiliary forward pass.

We show that we can actually implement this idea using an additional lightweight network whose
inference cost is relatively low compared to that of the original neural network. This additional net-
work, what we call a “bridge network”, takes some features from the original neural network, (e.g.,
features from the penultimate layer), and directly predict the outputs computed from the connecting
subspace. In other words, the bridge network lets us travel between modes in the function space.

We present two types of bridge networks depending on the number of modes involved in prediction,
network architectures for bridge networks, and training procedures. Through empirical validation
on various image classification benchmarks, we show that 1) bridge networks can predict outputs of
connecting subspaces quite accurately with minimal computation cost, and 2) DEs augmented with
bridge networks can significantly reduce inference costs without big sacrifice in performance.

2 PRELIMINARIES

2.1 PROBLEM SETUP

In this paper, we discuss the K-way classification problem taking D-dimensional inputs. A classifier
is constructed with a deep neural network fθ : RD → RK which is decomposed into a feature
extractor f

(ft)
ϕ : RD → RDft and a classifier f

(cls)
ψ : RDft → RK , i.e., fθ(x) = f

(cls)
ψ ◦ f (ft)

ϕ (x).
Here, ϕ ∈ Φ and ψ ∈ Ψ denote the parameters for the feature extractor and classifier, respectively,
θ = (ϕ,ψ) ∈ Θ, and Dft is the dimension of the feature. An output from the classifier corresponds
to a class probability vector.

2.2 FINDING LOW-LOSS SUBSPACES

While there are few low-loss subspaces that are known to connect modes of deep neural networks,
in this paper, we focus on Bezier curves as suggested in (Garipov et al., 2018). Let θi and θj be
two parameters (usually corresponding to modes) of a neural network. The quadratic Bezier curve
between them is defined as{

(1− r)2θi + 2r(1− r)θ
(be)
i,j + r2θj | r ∈ [0, 1]

}
, (1)

where θ(be)
i,j is a pin-point parameter characterizing the curve. Based on this curve paramerization, a

low-loss subspace connecting (θi,θj) is found by minimizing the following loss w.r.t. θ(be)
i,j ,∫ 1

0

L
(
θ
(be)
i,j (r)

)
dr, (2)

where θ(be)
i,j (r) denotes the point at the position r of the curve,

θ
(be)
i,j (r) = (1− r)2θi + 2r(1− r)θ

(be)
i,j + r2θj , (3)
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and L : Θ→ R is the loss function evaluating parameters (e.g., cross entropy). Since the integration
above is usually intractable, we instead minimize the stochastic approximation:

Er∼U(0,1)

[
L
(
θ
(be)
i,j (r)

)]
, (4)

where U(0, 1) is the uniform distribution on [0, 1]. For more detailed procedure for the Bezier curve
training, please refer to Garipov et al. (2018).

2.3 ENSEMBLES WITH BEZIER CURVES

Let {θ1, . . . ,θm} be a set of parameters independently trained as a deep ensemble. Then, for each
pair (θi,θj), we can construct a low-loss Bezier curve. Since all the parameters along those Bezier
curves achieve low loss, we can actually add them to the ensemble for improved performance. For
instance, choosing r = 0.5, we can collect θ(be)

i,j (0.5) for all (i, j) pairs, and construct an ensembled
predictor as

1

m+
(
m
2

)( m∑
i=1

fθi
(x) +

∑
i<j

f
θ
(be)
i,j (0.5)

(x)

)
. (5)

While this strategy provide an effective way to increase the number of ensemble members, for
inference, an additional O(m2) number of forward passes are required. Our primary goal in this
paper is to reduce this additional cost by bypassing the direct forward passes with θ(be)

i,j (r).

3 MAIN CONTRIBUTION

In this section, we present a novel method that directly predicts outputs of neural networks evaluated
at parameters on Bezier curves without actual forward passes with them.

3.1 BRIDGE NETWORKS

Let us first recall our key assumption stated in the introduction; if two modes in an ensemble are con-
nected by a simple low-loss subspace (Bezier curve), then we can predict the outputs corresponding
to the parameters on the subspace using only the information obtained from the modes. The intuition
behind this assumption is that, since the parameters are connected with a simple curve, the corre-
sponding outputs may also be connected via a relatively simple mapping which is far less complex
than the original neural network. If such mapping exists, we may learn them via a lightweight neural
network.

More specifically, let zi := f
(ft)
ϕi

(x) and vi := fθi
(x) = f

(cls)
ψi

(zi) for i ∈ {1, . . . ,m}. Let
vi,j(r) := f

θ
(be)
i,j (r)

(x). In order to use vi,j(r) with vi to get an ensemble, we should forward

x through f
θ
(be)
i,j (r)

, starting from the bottom layer. Instead, we reuse zi to predict vi,j(r) with a
lightweight neural network. We call such lightweight neural network a “bridge network”, since it
lets us directly move from vi to vi,j(r) in the function space, not through the actual parameter
space. A bridge network is usually constructed with a Convolutional Neural Network (CNN) whose
inference cost is much lower than that of fθi

.

From the following, we introduce two types of bridge networks depending on the number of modes
involved in the computation.

Type I bridge networks A type I bridge network h
(r)
i,j takes a feature zi from only one mode, and

predicts vi,j(r) as

vi,j(r) ≈ ṽi,j(r) = h
(r)
i,j (zi). (6)

A type I bridge network can be constructed between any pair of connected modes (θi,θj) and an
ensembled prediction for specific mode θi with its Bezier parameter θ(be)

i,j can be approximated as

1

2

(
vi + h

(r)
i,j (zi)

)
, (7)
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Algorithm 1 Training bridge networks

Require: Training dataset D, a pair of parame-
ters (θ1,θ2) and corresponding Bezier parame-
ter θ(be)

1,2 , a bridge network h
(r)
1,2 (type I) or H(r)

1,2
(type II) with parameters ω, learning rate η, a
regularization scale λ, a mixup coefficient α.

Initialize ω.
while not converged do

Sample a mini-batch B ∼ D.
for i = 1, . . . , |B| do

Take the input xi from B.
xi ← mixup(xi, α)

z1 ← f
(ft)
ϕ1

(xi), v1 ← f
(cls)
ψ1

(z1).
v1,2(r)← f

θ
(be)
1,2 (0.5)

(xi).
if type I then
ṽ1,2(r)← h

(0.5)
1,2 (z1;ω).

else
z2 ← f

(ft)
ϕ2

(xi), v2 ← f
(cls)
ψ2

(z2).

ṽ1,2(r) = H
(0.5)
1,2 (z1, z2;ω).

end if
ℓi ← DKL(v1,2(0.5)||ṽ1,2(0.5))

−λDKL(v1||ṽ1,2(0.5)).
end for
ω ← ω − η∇ω 1

|B|
∑

i ℓi.
end while
return ω.

whose inference cost is nearly identical to
that of vi (nearly single forward pass). One
can also connect θi with multiple modes
{θj1 , . . . ,θjk}, learn bridge networks between
(i, j1), . . . , (i, jk), and construct an ensemble

1

1 + k

(
vi +

k∑
j=1

h
(r)
i,jk

(zi)

)
. (8)

Still, since the costs for h(r)
i,jk

s are far lower than
vi, the inference cost does not significantly in-
crease.

Type II bridge networks A type II bridge
network between (θi,θj) takes two features
(zi, zj) to predict vi,j(r).

vi,j(r) ≈ ṽi,j(r) = H
(r)
i,j (zi, zj). (9)

An ensembled prediction with the type II bridge
network is then constructed as

1

3

(
vi + vj +H

(r)
i,j (zi, zj)

)
, (10)

where we construct an ensemble of three mod-
els with effectively two forward passes (for vi
and vj). Similar to the type I bridge networks,
we may construct multiple bridges between a
single curves and use them together for an en-
semble. Fig. 1 presents a schematic diagram
comparing forward passes of ensembles with-
/without a type II bridge network.

3.2 LEARNING BRIDGE NETWORKS

Fixing a position r on Bezier curves In the definition of the bridge networks above, we fixed the
value r. In principle, we may parameterize the bridge networks to take r as an additional input to
predict vi,j(r) for any r ∈ [0, 1], but we found this to be ineffective due to the difficulty of learning
all the outputs corresponding to arbitrary r values. Moreover, as we empirically observed in Fig. 2,
the ensembling with Bezier parameters are most effective with r = 0.5, and adding additional
parameters evaluated at different r values does not significantly improve the performance. To this
end, we fix r = 0.5 and aim to learn bridge networks predicting vi,j(0.5) throughout the paper.

Training procedure Let {θ1, . . . ,θm} be a set of parameters in an ensemble. Given a set of
Bezier parameters {θ(be)

i,j } connecting them, we learn bridge networks (either type I or II) for each
Bezier curve. The training procedure is straightforward. We first minimize the Kullback-Leibler
divergence between the actual output from the Bezier parameters and the prediction made from the
bridge network. It makes the bridge network imitate the original function defined by the Bezier
parameters in the same manner as a conventional knowledge distillation (Hinton et al., 2015). In
addition, we also maximize the Kullback-Leibler divergence between the base prediction and the
bridge prediction to regularize the bridge to predict differently from the base model. Such regular-
ization is quite important, when the training error of the base model is near zero; the base network
and the target network (the one on the Bezier curve) will produce almost identical outputs. Further,
we apply the mixup (Zhang et al., 2018) method to explore more diverse responses, preventing the
bridge from learning to just copy the outputs of the base model. Refer to Algorithm 1 for the detailed
training procedure.
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Figure 2: Performance of an ensemble of two modes and a parameter from the Bezier curve con-
necting them, evaluated for ResNet-32×4 on CIFAR-100. Here, r ∈ (0, 1) denotes a position on
the curve. Top row shows ensemble performances when one member from Bezier curve r is added
to DE-2. Bottom row shows ensemble performances when members are sequentially added to DE-2
from Bezier curve. For accuracy, higher is the better, and for NLL, ECE and BS, lower is the better.

4 RELATED WORKS

Mode connectivity The geometric properties of deep neural networks’ loss surfaces have been
studied, and one notable property is the mode connectivity (Garipov et al., 2018; Draxler et al.,
2018); there exists a simple path between modes of a neural network on which the network retains
low training error along that path. From this, fast ensembling methods that collect ensemble mem-
bers on the mode-connecting-paths have been proposed (Huang et al., 2017; Garipov et al., 2018).
Extending this idea, Izmailov et al. (2020) approximated the posteriors of Bayesian neural nets via
the low-loss subspace and used them for BMA. Wortsman et al. (2021) also presented a method for
further improving performance by ensembling over the subspaces.

Efficient ensembling Despite the superior performance of DE (Lakshminarayanan et al., 2017;
Ovadia et al., 2019), it suffers from additional computation costs for both the training and the infer-
ence. There have been several works that reduce the computational burden in training by collecting
ensemble members efficiently (Huang et al., 2017; Garipov et al., 2018; Benton et al., 2021), but
they did not consider inference costs that arose from multiple forward passes. On the other hand,
there also exist inference-efficient ensembling methods by sharing parameters (Wen et al., 2020;
Dusenberry et al., 2021) or sharing representations (Lee et al., 2015; Siqueira et al., 2018; Antoran
et al., 2020; Havasi et al., 2021). In particular, Antoran et al. (2020) and Havasi et al. (2021) pre-
sented the methods to obtain an ensemble prediction by a single forward pass. Nevertheless, these
methods do not scale well for complex large-scale datasets or require large network capacity.

5 EXPERIMENTS

In this section, we are going to answer the following three big questions:

• Do bridge networks really learn to predict the outputs of a function from the Bezier curves?
• How much ensemble gain we obtain via bridge networks with lower computational complexity?
• How many bridge networks do we have to make in order to achieve certain ensemble performance?

We sequentially answer them in Sections 5.2 to 5.4 with empirical validation.

5.1 SETUP

Datasets and networks We evaluate the proposed bridge networks on various image classification
benchmarks, including CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNet datasets. Throughout
the experiments, we use the family of residual networks introduced in He et al. (2016) as a base
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Figure 3: Bar plots in the third column depict whether the bridge network (orange) outputs the same
logit values as the base model with the Bezier parameters (blue) for given test inputs displayed in the
first column. We also depict the predicted logits from the base model with θ1 and θ2 in the second
and fourth columns, respectively. Additional results are available in Fig. 6.

Table 1: R2 scores quantify how similar the following models to the target function defined with
Bezier parameters θ(be)

1,2 (0.5) are in output probabilities; ‘Type I/II Bridge’, ‘Other Type I/II Bridge’,
and ‘Other Bezier’. Refer to the main text in Section 5.2 for a detailed description for each model.
All values are measured on the test split of each dataset.

(a) CIFAR-10

Model R2 (↑)

Type I Bridge 0.910 ±0.003
Other Type I Bridge 0.885 ±0.003

Type II Bridge 0.924 ±0.002
Other Type II Bridge 0.895 ±0.002

Other Bezier 0.871 ±0.005

(b) CIFAR-100

Model R2 (↑)

Type I Bridge 0.784 ±0.005
Other Type I Bridge 0.741 ±0.005

Type II Bridge 0.814 ±0.002
Other Type II Bridge 0.752 ±0.003

Other Bezier 0.726 ±0.003

(c) Tiny ImageNet

Model R2 (↑)

Type I Bridge 0.746 ±0.006
Other Type I Bridge 0.728 ±0.007

Type II Bridge 0.765 ±0.003
Other Type II Bridge 0.732 ±0.005

Other Bezier 0.712 ±0.003

model: ResNet-32×2 for CIFAR-10, ResNet-32×4 for CIFAR-100, ResNet-18 for Tiny ImageNet
and ResNet-50 for ImageNet, where ×2 and ×4 respectively denotes doubling and quadrupling of
the number of channels for convolutional layers. We construct bridge networks with CNNs with a
residual path whose inference costs are relatively low compared to those of ResNet base models. For
detailed training settings, including bridge network architectures or hyperparameter settings, please
refer to Appendix A.2.

By changing the channel size of the convolutional layers in the bridge network, we can balance the
trade-off between performance gains with computational costs. We check this trade-off in Table 2.
We refer to a bridge network with less than 15% of floating-point operations (FLOPs) compared to
the base model as Bridgesm(small version), and a bridge with more than 15% as Bridgemd(medium
version).

Efficiency metrics We choose FLOPs and the number of parameters (#Params) for efficiency
evaluation as these metrics are commonly used to consider the efficiency (Dehghani et al., 2021).
Because FLOPs and #Params of the base model are different for each dataset, we report the relative
FLOPs and the relative #Params with respect to the corresponding base model instead for better
comparison.

Uncertainty metrics As suggested by Ashukha et al. (2020), along with the classification accu-
racy (ACC), we report the calibrated versions of Negative Log-likelihood (NLL), Expected Calibra-
tion Error (ECE), and Brier Score (BS) as metrics for uncertainty evaluation. We also measure the
Deep Ensemble Equivalent (DEE) score proposed in Ashukha et al. (2020), which shows the relative
performance for DE in terms of NLL and roughly be interpreted as effective number of models for
an ensemble. See Appendix A.3 for more details.
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Table 2: FLOPs, #Params, R2 scores, and ensemble performance metrics of various type II bridge
network sizes on CIFAR-100. We use ResNet-32×4 as a base model and 3 blocks of CNN with a
residual connection as bridge networks. The number after CNN indicates the number of channels.
R2 scores are measured with respect to the target Bezier r = 0.5.

Bridge FLOPs (↓) #Params (↓) R2 (↑) ACC (↑) NLL (↓) ECE (↓) BS (↓)

CNN 32 ch × 0.012 × 0.009 0.709 ± 0.004 75.62 ± 0.17 0.914 ± 0.005 0.013 ± 0.001 0.342 ± 0.002

CNN 64 ch × 0.029 × 0.022 0.758 ± 0.004 75.78 ± 0.30 0.901 ± 0.004 0.016 ± 0.002 0.338 ± 0.001

CNN 128 ch × 0.079 × 0.060 0.793 ± 0.003 75.98 ± 0.20 0.894 ± 0.003 0.021 ± 0.002 0.335 ± 0.001

CNN 256 ch × 0.246 × 0.188 0.814 ± 0.002 76.13 ± 0.14 0.890 ± 0.004 0.023 ± 0.003 0.334 ± 0.002

Table 3: Performance improvement of the ensemble by adding type I bridges to the single base
ResNet model on Tiny ImageNet dataset. FLOPs, #Params, and DEE metrics are measured with
respect to the single base model. Bridgesm and Bridgemd denote the small and the medium versions
of the bridge network based on their FLOPs.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 63.42 ± 0.23 1.618 ± 0.005 0.037 ± 0.002 0.485 ± 0.003 1.000

+ 1 Bridgesm × 1.088 × 1.093 65.38 ± 0.09 1.444 ± 0.005 0.015 ± 0.001 0.461 ± 0.001 2.179 ± 0.110

+ 2 Bridgesm × 1.176 × 1.186 65.55 ± 0.15 1.405 ± 0.005 0.013 ± 0.001 0.456 ± 0.001 2.750 ± 0.086

+ 3 Bridgesm × 1.264 × 1.279 65.61 ± 0.10 1.388 ± 0.003 0.014 ± 0.002 0.455 ± 0.000 3.022 ± 0.079

+ 1 Bridgemd × 1.277 × 1.290 65.94 ± 0.15 1.418 ± 0.003 0.018 ± 0.002 0.453 ± 0.001 2.562 ± 0.056

+ 2 Bridgemd × 1.554 × 1.580 66.59 ± 0.09 1.372 ± 0.001 0.016 ± 0.002 0.445 ± 0.000 3.437 ± 0.036

+ 3 Bridgemd × 1.831 × 1.870 66.79 ± 0.11 1.353 ± 0.001 0.015 ± 0.001 0.443 ± 0.000 3.967 ± 0.043

DE-2 × 2.000 × 2.000 66.21 ± 0.10 1.456 ± 0.004 0.022 ± 0.002 0.450 ± 0.002 2.000

5.2 CORRESPONDENCE BETWEEN BRIDGE NETWORK AND BEZIER CURVE

To assess the quality of the prediction of bridge networks, we use a set of ensemble parameters
{θ1,θ2, . . . ,θm} and Bezier curves between them. If the bridge network H

(0.5)
1,2 predicts v1,2(0.5)

well compared to the other baselines, we can confirm that there exists the correspondence between
the bridge network and the Bezier curve. To this end, we measure the R2 score which quantifies
how similar outputs of the following baselines to that of the target function f

θ
(be)
1,2 (0.5)

; (1) ‘Type I/II

Bridge’ denote the bridge network imitating the function of θ(be)
1,2 (0.5), (2) ‘Other Type I/II Bridge’

denote the bridge network imitating the function of θ(be)
i,j (0.5) for some (i, j) ̸= (1, 2), and (3)

‘Other Bezier’ denotes the base model with the parameters θ(be)
i,j (0.5) for some (i, j) ̸= (1, 2).

Table 1 summarizes the results. Compared to the baselines (i.e., ‘Other Type I/II Bridge’ and ‘Other
Bezier’), the bridge networks produce more similar outputs to the target outputs. The R2 values be-
tween the predictions and targets are significantly higher than those from the wrong targets, demon-
strating that the bridge predictions indeed are approximating our target outputs of interest.

Fig. 3 visualizes whether the bridge network H
(0.5)
1,2 predicts the logits from θ

(be)
1,2 (0.5). To be more

specific, we visualize the predicted logits from θ1, θ2, θ(be)
1,2 (0.5), and the bridge network H

(0.5)
1,2 ,

for two test examples of CIFAR-10. Indeed, the bridge network predicts well the logits from the
Bezier parameter. Appendix B.1 provides additional examples which further verify this.

Relation between model size and regression result We measure the relation between the size of
bridge networks and the goodness of fits of prediction measured by R2 scores. Table 2 shows that
we can achieve decent R2 scores with a small number of parameters, and the prediction gets better
as we increase the flexibility of our bridge network. Also, the results show that a higher R2 score
leads to better ensemble results.
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Figure 4: The cost-performance plots of type I bridge(s) compared to DE on Tiny ImageNet. The
x-axis denotes the relative FLOPs quantifying the inference cost of the model compared to a single
base model, and the y-axis shows the corresponding predictive performance. On the basis of DE
(black dashed line), the upper left position is preferable in ACC, and the lower left position is
preferable in NLL, ECE, and BS.
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Figure 5: The cost-performance plots of type II bridge(s) compared to DE on Tiny ImageNet. Others
are identical to Fig. 4 except that we extend the DE basis from DE-2 to DE-7 (black dashed lines).

5.3 CLASSIFICATION WITH BRIDGE NETWORKS

5.3.1 TYPE I BRIDGE NETWORKS

Single Model performances with type I bridge networks In situations where multiple forward
passes are not allowed for inference, we can approximate an ensemble of a single base model and the
ones from Bezier curves with type I bridge networks. The results are shown in Table 3. The results
show that for Stochastic Gradient Descent (SGD) trained single base ResNet model, an ensemble
with type I bridge networks improves the performance both in terms of accuracy and uncertainty es-
timation. Only adding one small type I bridge to the base model (ResNet + 1 Bridgesm) dramatically
improves the accuracy (≈ ×1.701) and DEE (≈ ×2.179).

Using multiple type I bridge networks As type I bridge network requires features from only
one mode of each curve for inference, we can use multiple type I bridge networks for a single
base model without significantly increasing inference cost, as we mentioned at Eq. 8. Table 3 re-
ports the performance gain of a single base model with increasing number of type I bridges. Each
bridge approximates the models on different Bezier curves between a single mode and others (i.e.,
Bezier curves between modes A-B, A-C, and so on where A, B, and C are different modes.), not
the models on a single Bezier curve. Adding more bridge networks introduces more diverse out-
puts to the ensembles. One can see that the performance continuously improves as the number of
bridges increases, with low additional inference cost. Fig. 4 shows how much type I bridge networks
efficiently increase the performances proportional to FLOPs.

5.3.2 TYPE II BRIDGE NETWORKS

Performance Table 4 summarizes the classification results comparing DE, DE with Bezier curves,
and DE with type II bridge networks. For the more experimental results including other datasets,
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Table 4: Performance improvement of the ensemble by adding type II bridges as members to exist-
ing DE ensembles on Tiny ImageNet dataset. FLOPs, #Params, and DEE metrics are measured with
respect to corresponding DEs. Type II bridges consistently improve the accuracy and uncertainty
metrics of the ensemble before saturation. Bridgesm and Bridgemd denote the small and the medium
versions of the bridge network based on their FLOPs.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-4 × 4.000 × 4.000 68.16 ± 0.11 1.352 ± 0.001 0.016 ± 0.000 0.427 ± 0.001 4.000

+ 1 Bridgesm × 4.125 × 4.132 68.48 ± 0.07 1.315 ± 0.002 0.013 ± 0.001 0.423 ± 0.000 5.962 ± 0.127

+ 2 Bridgesm × 4.250 × 4.264 68.67 ± 0.10 1.297 ± 0.002 0.015 ± 0.001 0.422 ± 0.000 7.239 ± 0.226

+ 4 Bridgesm × 4.500 × 4.528 68.69 ± 0.18 1.281 ± 0.002 0.012 ± 0.002 0.421 ± 0.000 8.432 ± 0.383

+ 6 Bridgesm × 4.750 × 4.792 68.58 ± 0.04 1.276 ± 0.002 0.011 ± 0.001 0.422 ± 0.000 8.768 ± 0.441

+ 1 Bridgemd × 4.352 × 4.367 68.68 ± 0.17 1.309 ± 0.002 0.016 ± 0.002 0.422 ± 0.000 6.377 ± 0.178

+ 2 Bridgemd × 4.704 × 4.734 68.98 ± 0.14 1.287 ± 0.002 0.016 ± 0.001 0.419 ± 0.000 7.986 ± 0.347

+ 3 Bridgemd × 5.056 × 5.101 69.01 ± 0.17 1.275 ± 0.001 0.015 ± 0.001 0.417 ± 0.000 8.892 ± 0.389

+ 4 Bridgemd × 5.408 × 5.468 69.14 ± 0.13 1.266 ± 0.001 0.015 ± 0.001 0.416 ± 0.000 9.539 ± 0.481

DE-5 × 5.000 × 5.000 68.54 ± 0.08 1.329 ± 0.001 0.018 ± 0.001 0.422 ± 0.001 5.000

please refer to Appendix B. From Table 4, one can see that with only sightly increase in the com-
putational costs, the ensembles with bridge networks achieves almost DEE 1.962 ensemble gain
for DE-4 case. This gain is not specific only for DE-4; the ensembles with type II bridge networks
consistently improved predictive accuracy and uncertainty calibration with negligible increase in the
inference costs. Fig. 5 shows how much our type II bridge network achieve high performance in the
perspective of relative FLOPs.

Computational cost We report FLOPs for inference on Table 4 to indicate how much relative
computational costs are required for the competing models. Fig. 5 summarizes the tradeoff between
FLOPs and performance in various metrics. As one can see from these results, our bridge networks
could achieve remarkable gain in performance, so for some cases, adding bridge ensembles achieved
performance gains larger than those might be achieved by adding entire ensemble members. For
instance, in Tiny ImageNet experiments, DE-4 + 2 bridges was better than DE-5 (DEE ≈ ×7.239).
Please refer to Appendix B for the full results including various DE size and other datasets.

5.4 HOW MANY TYPE II BRIDGES ARE REQUIRED?

For an ensemble of m parameters, the number of pairs can be connected by Bezier curves is
(
m
2

)
,

which grows quadratically with m. In the previous experiment, we constructed Bezier curves and
bridges for all possible pairs (which explains the large inference costs for Bezier ensembles), but
in practice, we found that it is not necessary to use bridge networks for all of those pairs. As
an example, we compare the performance of DE-4 + bridge ensembles with increasing number
of bridges on Tiny ImageNet dataset. The results are summarized in Table 4. Just one bridge
dramatically increases the performance, and the performance gain gradually saturates as we add
more bridges. Notably, only one bridge would suffice to outperform DE-5 (DEE ≈ ×5.962).

6 CONCLUSION

In this paper, we proposed a novel framework for efficient ensembling that reduces inference costs
of ensembles with a lightweight network called bridge networks. Bridge networks predict the neu-
ral network outputs corresponding to the parameters obtained from the Bezier curves connecting
two ensemble parameters without actual forward passes through the network. Instead, they reuse
features and outputs computed from the ensemble members and predict the outputs corresponding
to Bezier parameters directly in function spaces. Using various image classification benchmarks,
we demonstrate that we can train such bridge networks with simple CNNs with minimal inference
costs, and bridge augmented ensembles could achieve significant gain both in terms of accuracy and
uncertainty calibration.

9
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Reproducibility statement Please refer to Appendix A for full experimental detail including
datasets, models, evaluation metrics and computing resources.
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A EXPERIMENTAL DETAILS

A.1 FILTER RESPONSE NORMALIZATION

Throughout experiments using convolutional neural networks, we use the Filter Response Nor-
malization (FRN; Singh and Krishnan, 2020) instead of the Batch Normalization (BN; Ioffe and
Szegedy, 2015) to avoid recomputation of BN statistics along the subspaces. Besides, FRN is fully
made up of learned parameters and it does not utilize dependencies between training examples, thus,
it gives us a more clear interpretation of the parameter space (Wenzel et al., 2020; Izmailov et al.,
2021).

A.2 DATASETS AND MODELS

Dataset We use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), Tiny ImageNet (Li et al., 2017)
and ImageNet (Russakovsky et al., 2015) datasets. We apply the data augmentation consisting of
random cropping of 32 pixels with padding of 4 pixels and random horizontal flipping. We subtract
per-channel means from input images and divide them by per-channel standard deviations.

Network We use CNN with residual path similar to the ResNet block structure. To use the features
of base models, we embed one or more features from different layers of base models.

For CIFAR-10 dataset, we use ResNet-32×2 as a base network which consists of 15 blocks and 32
layers with widen factor of 2, and we use CNN 3 blocks as type I and type II bridge networks. The
bridge networks use the features z of the third to last block.

For CIFAR-100 dataset, we use ResNet-32×4 as a base network which is almost same as ResNet-32
with widen factor of 2, and we use CNN 3 blocks as type I and type II bridge networks. The bridge
networks use the features z of the third to last block.

For Tiny ImageNet dataset, we use ResNet-18 as a base network which consists of 8 blocks and 18
layers, and we use CNN 2 blocks as a type I and type II bridge network. The bridge networks use
the features z of the third to last and the second to last blocks.

For ImageNet dataset, we use ResNet-50 as a base network which consists of 17 blocks and 50
layers, and we use CNN 3 blocks as a type I and type II bridge network. The bridge networks use
the features z of the third to last and the second to last blocks.

Optimization We train base ResNet networks for 200 epochs with learning rate 0.1. We use the
SGD optimizer with momentum 0.9 and adjust learning rate with simple cosine scheduler. We give
weight decay 0.001 for CIFAR-10 dataset, 0.0005 for CIFAR-100 and Tiny ImageNet dataset, and
0.0001 for ImageNet dataset.

Regularization We introduced two additional hyperparameters for training bridge models; 1) the
regularization scale λ and 2) the mixup coefficient α. Since the training error of the base network is
near zero for the family of residual networks on CIFAR-10/100, given a training input without any
modification, the base network and the target network (the one on the Bezier curve) will produce
almost identical outputs, so the bridge trained with them will just copy the outputs of the base
network. To prevent this, we perturb the inputs via mixup, and regularize the bridge to produce
outputs different from the ones computed from the base models. On the other hand, for the datasets
such as ImageNet where the models fail to achieve near zero training errors, the base network and
the target networks are already distinct enough, so we found that the bridge can be trained easily
without such tricks (i.e., we used λ = 0.0 and α = 0.0). We search 0.0 ≤ λ ≤ 0.4 for the
regularization scale λ. We use α = 0.4 for CIFAR-10/100 and Tiny ImageNet datasets. We do not
use mixup(α = 0.0) for ImageNet dataset.

A.3 EVALUATION
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Efficiency metrics Dehghani et al. (2021) pointed out that there can be contradictions between
commonly used metrics (e.g., FLOPs, the number of parameters, and speed) and suggested re-
fraining from reporting results using just a single one. So, we present FLOPs and the number of
parameters in the results.

Uncertainty metrics Let p(x) ∈ [0, 1]K be a predicted probabilities for a given input x, where
p(k) denotes the kth element of the probability vector, i.e., p(k) is a predicted confidence on kth
class. We have the following common metrics on the dataset D consists of inputs x and labels y:

• Accuracy (ACC):

ACC(D) = E(x,y)∈D

[[
y = argmax

k
p(k)(x)

]]
. (11)

• Negative log-likelihood (NLL):

NLL(D) = E(x,y)∈D

[
− log p(y)(x)

]
. (12)

• Brier score (BS):

BS(D) = E(x,y)∈D

[∥∥∥p(x)− y∥∥∥2
2

]
, (13)

where y denotes one-hot encoded version of the label y, i.e., y(y) = 1 and y(k) = 0 for
k ̸= y.

• Expected calibration error (ECE):

ECE(D, Nbin) =

Nbin∑
b=1

nb|δb|
n1 + · · ·+ nNbin

, (14)

where Nbin is the number of bins, nb is the number of examples in the bth bin, and δb is
the calibration error of the bth bin. Specifically, the bth bin consists of predictions having
the maximum confidence values in [(b− 1)/K, b/K), and the calibration error denotes the
difference between accuracy and averaged confidences. We fix Nbin = 15 in this paper.

We evaluate the calibrated metrics that compute the aforementioned metrics with the temperature
scaling (Guo et al., 2017), as Ashukha et al. (2020) suggested. Specifically, (1) we first find the op-
timal temperature which minimizes the NLL over the validation examples, and (2) compute uncer-
tainty metrics including NLL, BS, and ECE using temperature scaled predicted probabilities under
the optimal temperature. Moreover, we evaluate the following Deep Ensemble Equivalent (DEE)
score, which measure the relative performance for DE in terms of NLL,

DEE(D) = min {m ≥ 0 | NLL(D) ≤ NLLDE-m(D)}, (15)

where NLLDE-m(D) denotes the NLL of DE-m on the dataset D. Here, we linearly interpolate
NLLDE-m(D) values for m ∈ R and make the DEE score continuous.

A.4 COMPUTING RESOURCES

We conduct Tiny ImageNet experiments on 8 TPUv2 and 8 TPUv3 cores, supported by TPU Re-
search Cloud1 and the others on 8 RTX3090 cores. We attached code to the supplimentary material.
We use PyTorch (Paszke et al., 2019) with BSD-style license. Visit PyTorch GitHub repository2 for
more details.

1https://sites.research.google/trc/about/
2https://github.com/pytorch/pytorch/blob/master/LICENSE
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B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL EXAMPLES

We visually inspect the logit regression of type II bridge network. Our bridge network very ac-
curately predicts the logits of r = 0.5 from Bezier curve when the two base models (r = 0 and
r = 1) gives similar output logits (deer, ship, and frog). When the base models are not confident on
the samples (airplane, bird, cat and horse), the network recovers the scale of logits approximately.
However it fails to predict some very difficult samples (truck and dog) when even the base models
are very confused.

B.2 FULL TYPE I AND TYPE II BRIDGE RESULTS

We report full experimental results for classification tasks; 1) Type I bridge network results in Ta-
ble 5, Table 7, Table 9, and Table 11, 2) Type II bridge network results in Table 6, Table 8, Table 10
and Table 12.

14



Under review as a conference paper at ICLR 2023

de
er

−2

0

2

4

6

8

lo
gi
t

r=0 r=0.5
Bezier 
Bridge

r=1

ai
rp
la
ne

−4

−2

0

2

4

6

8
lo
gi
t

Bezier 
Bridge

tru
ck

−2

0

2

4

lo
gi
t

Bezier 
Bridge

bi
rd

−2

0

2

4

6

8

lo
gi
t

Bezier 
Bridge

ca
t

−2

0

2

4

6

8

lo
gi
t

Bezier 
Bridge

ho
rs
e

−2

0

2

4

6

lo
gi
t

Bezier 
Bridge

sh
ip

−2

0

2

4

6

8

lo
gi
t

Bezier 
Bridge

fro
g

−2

0

2

4

6

8

lo
gi
t

Bezier 
Bridge

do
g

air
pla
neau
to bir
d ca
t

de
er do
g

fro
g

ho
rse sh
ip

tru
ck

−2

0

2

4

lo
gi
t

air
pla
neau
to bir
d ca
t

de
er do
g

fro
g

ho
rse sh
ip

tru
ck

Bezier 
Bridge

air
pla
neau
to bir
d ca
t

de
er do
g

fro
g

ho
rse sh
ip

tru
ck

Figure 6: Bar plots in the third column depict whether the bridge network (orange) outputs the same
logit values as the base model with the Bezier parameters θ(be)

1,2 (0.5) (blue), for a given test inputs
displayed in the first column. We also depicts the predicted logits from θ1 and θ2 in the second and
fourth columns, respectively.
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Table 5: Full result of performance improvement of the ensemble by adding type I bridges on
CIFAR-10 dataset. We use same settings as described in Table 3.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 91.78 ± 0.10 0.287 ± 0.001 0.019 ± 0.001 0.126 ± 0.001 1.000

+ 1 Bridgesm × 1.062 × 1.048 92.07 ± 0.04 0.254 ± 0.001 0.009 ± 0.001 0.119 ± 0.000 1.606 ± 0.035

+ 2 Bridgesm × 1.124 × 1.096 92.13 ± 0.06 0.250 ± 0.001 0.008 ± 0.001 0.118 ± 0.000 1.677 ± 0.033

+ 3 Bridgesm × 1.186 × 1.144 92.13 ± 0.04 0.250 ± 0.000 0.009 ± 0.000 0.118 ± 0.000 1.692 ± 0.033

+ 4 Bridgesm × 1.248 × 1.192 92.12 ± 0.03 0.250 ± 0.000 0.009 ± 0.001 0.119 ± 0.000 1.695 ± 0.041

+ 1 Bridgemd × 1.205 × 1.159 92.09 ± 0.05 0.253 ± 0.001 0.009 ± 0.000 0.119 ± 0.000 1.623 ± 0.034

+ 2 Bridgemd × 1.410 × 1.318 92.17 ± 0.06 0.249 ± 0.001 0.009 ± 0.000 0.118 ± 0.000 1.705 ± 0.047

+ 3 Bridgemd × 1.615 × 1.477 92.15 ± 0.04 0.248 ± 0.001 0.008 ± 0.001 0.118 ± 0.000 1.729 ± 0.048

+ 4 Bridgemd × 1.820 × 1.636 92.14 ± 0.05 0.247 ± 0.001 0.009 ± 0.001 0.118 ± 0.000 1.736 ± 0.049

DE-2 × 2.000 × 2.000 93.07 ± 0.11 0.233 ± 0.003 0.012 ± 0.001 0.107 ± 0.001 2.000

Table 6: Full result of performance improvement of the ensemble by adding type II bridges on
CIFAR-10 dataset. We use same settings as described in Table 4.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 93.07 ± 0.11 0.233 ± 0.003 0.012 ± 0.001 0.107 ± 0.001 2.000

+ 1 Bridgesm × 2.081 × 2.063 93.09 ± 0.09 0.220 ± 0.003 0.008 ± 0.001 0.104 ± 0.001 2.774 ± 0.084

+ 1 Bridgemd × 2.247 × 2.192 93.07 ± 0.07 0.219 ± 0.003 0.006 ± 0.001 0.103 ± 0.001 2.808 ± 0.105

+ 1 Bezier × 3.000 × 3.000 93.09 ± 0.10 0.227 ± 0.004 0.009 ± 0.000 0.104 ± 0.001 2.357 ± 0.080

DE-3 × 3.000 × 3.000 93.37 ± 0.03 0.216 ± 0.004 0.009 ± 0.001 0.100 ± 0.001 3.000

+ 1 Bridgesm × 3.081 × 3.063 93.46 ± 0.06 0.206 ± 0.002 0.007 ± 0.002 0.098 ± 0.001 3.880 ± 0.118

+ 2 Bridgesm × 3.162 × 3.126 93.50 ± 0.04 0.204 ± 0.002 0.006 ± 0.001 0.097 ± 0.001 4.214 ± 0.143

+ 3 Bridgesm × 3.243 × 3.189 93.50 ± 0.10 0.203 ± 0.002 0.006 ± 0.001 0.097 ± 0.001 4.384 ± 0.178

+ 1 Bridgemd × 3.247 × 3.192 93.45 ± 0.04 0.206 ± 0.002 0.007 ± 0.001 0.097 ± 0.001 3.918 ± 0.117

+ 2 Bridgemd × 3.494 × 3.384 93.54 ± 0.02 0.203 ± 0.002 0.006 ± 0.002 0.097 ± 0.001 4.301 ± 0.157

+ 3 Bridgemd × 3.741 × 3.576 93.53 ± 0.08 0.202 ± 0.002 0.006 ± 0.001 0.097 ± 0.001 4.539 ± 0.171

+ 3 Bezier × 6.000 × 6.000 93.44 ± 0.10 0.207 ± 0.003 0.008 ± 0.001 0.097 ± 0.001 3.852 ± 0.214

DE-4 × 4.000 × 4.000 93.59 ± 0.10 0.205 ± 0.002 0.010 ± 0.001 0.096 ± 0.001 4.000

+ 1 Bridgesm × 4.081 × 4.063 93.58 ± 0.06 0.199 ± 0.002 0.007 ± 0.001 0.094 ± 0.001 5.017 ± 0.088

+ 2 Bridgesm × 4.162 × 4.126 93.64 ± 0.03 0.197 ± 0.002 0.006 ± 0.001 0.094 ± 0.001 5.333 ± 0.044

+ 3 Bridgesm × 4.243 × 4.189 93.58 ± 0.04 0.196 ± 0.002 0.006 ± 0.002 0.094 ± 0.001 5.484 ± 0.090

+ 4 Bridgesm × 4.324 × 4.252 93.64 ± 0.06 0.196 ± 0.002 0.007 ± 0.001 0.094 ± 0.001 5.590 ± 0.123

+ 5 Bridgesm × 4.405 × 4.315 93.58 ± 0.04 0.196 ± 0.002 0.005 ± 0.001 0.094 ± 0.001 5.647 ± 0.165

+ 6 Bridgesm × 4.486 × 4.378 93.60 ± 0.10 0.196 ± 0.002 0.005 ± 0.000 0.094 ± 0.001 5.607 ± 0.120

+ 1 Bridgemd × 4.247 × 4.192 93.57 ± 0.04 0.198 ± 0.002 0.007 ± 0.000 0.094 ± 0.001 5.055 ± 0.064

+ 2 Bridgemd × 4.494 × 4.384 93.61 ± 0.05 0.197 ± 0.002 0.006 ± 0.001 0.094 ± 0.001 5.428 ± 0.069

+ 3 Bridgemd × 4.741 × 4.576 93.64 ± 0.09 0.196 ± 0.002 0.006 ± 0.001 0.094 ± 0.001 5.610 ± 0.141

+ 4 Bridgemd × 4.988 × 4.768 93.64 ± 0.10 0.195 ± 0.002 0.005 ± 0.001 0.094 ± 0.001 5.774 ± 0.183

+ 5 Bridgemd × 5.235 × 4.960 93.58 ± 0.08 0.195 ± 0.002 0.005 ± 0.001 0.094 ± 0.001 5.849 ± 0.156

+ 6 Bridgemd × 5.482 × 5.152 93.62 ± 0.05 0.195 ± 0.002 0.005 ± 0.000 0.094 ± 0.001 5.855 ± 0.114

+ 6 Bezier × 10.000 × 0.000 93.63 ± 0.10 0.197 ± 0.002 0.005 ± 0.001 0.094 ± 0.001 5.322 ± 0.151

DE-5 × 5.000 × 5.000 93.68 ± 0.10 0.199 ± 0.002 0.011 ± 0.001 0.093 ± 0.001 5.000
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Table 7: Full result of performance improvement of the ensemble by adding type I bridges on
CIFAR-100 dataset. We use same settings as described in Table 3.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 73.11 ± 0.10 1.094 ± 0.008 0.047 ± 0.003 0.379 ± 0.002 1.000

+ 1 Bridgesm × 1.062 × 1.047 73.94 ± 0.16 0.981 ± 0.004 0.022 ± 0.003 0.363 ± 0.001 1.802 ± 0.036

+ 2 Bridgesm × 1.124 × 1.094 74.02 ± 0.05 0.957 ± 0.004 0.018 ± 0.002 0.360 ± 0.001 1.984 ± 0.064

+ 3 Bridgesm × 1.186 × 1.141 74.00 ± 0.09 0.948 ± 0.002 0.017 ± 0.001 0.360 ± 0.001 2.078 ± 0.070

+ 4 Bridgesm × 1.248 × 1.188 74.06 ± 0.06 0.944 ± 0.001 0.018 ± 0.001 0.360 ± 0.000 2.143 ± 0.062

+ 1 Bridgemd × 1.211 × 1.161 74.18 ± 0.11 0.965 ± 0.002 0.024 ± 0.001 0.358 ± 0.001 1.914 ± 0.046

+ 2 Bridgemd × 1.422 × 1.322 74.41 ± 0.14 0.940 ± 0.000 0.020 ± 0.001 0.353 ± 0.000 2.228 ± 0.077

+ 3 Bridgemd × 1.633 × 1.483 74.52 ± 0.07 0.930 ± 0.001 0.020 ± 0.002 0.352 ± 0.000 2.416 ± 0.055

+ 4 Bridgemd × 1.844 × 1.644 74.54 ± 0.02 0.925 ± 0.001 0.021 ± 0.001 0.352 ± 0.000 2.517 ± 0.061

DE-2 × 2.000 × 2.000 75.62 ± 0.17 0.952 ± 0.005 0.033 ± 0.002 0.344 ± 0.002 2.000

Table 8: Full result of performance improvement of the ensemble by adding type II bridges on
CIFAR-100 dataset. We use same settings as described in Table 4.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 75.62 ± 0.17 0.952 ± 0.005 0.033 ± 0.002 0.344 ± 0.002 2.000

+ 1 Bridgesm × 2.079 × 2.060 75.98 ± 0.20 0.894 ± 0.003 0.021 ± 0.002 0.335 ± 0.001 3.158 ± 0.061

+ 1 Bridgemd × 2.246 × 2.188 76.13 ± 0.14 0.890 ± 0.004 0.023 ± 0.003 0.334 ± 0.002 3.290 ± 0.084

+ 1 Bezier × 3.000 × 3.000 76.21 ± 0.10 0.909 ± 0.002 0.021 ± 0.003 0.334 ± 0.001 2.818 ± 0.034

DE-3 × 3.000 × 3.000 76.58 ± 0.11 0.899 ± 0.003 0.025 ± 0.003 0.329 ± 0.001 3.000

+ 1 Bridgesm × 3.079 × 3.060 76.74 ± 0.09 0.859 ± 0.003 0.019 ± 0.002 0.325 ± 0.001 4.357 ± 0.107

+ 2 Bridgesm × 3.158 × 3.120 76.82 ± 0.16 0.844 ± 0.002 0.016 ± 0.001 0.323 ± 0.001 5.100 ± 0.109

+ 3 Bridgesm × 3.237 × 3.180 77.04 ± 0.12 0.836 ± 0.003 0.017 ± 0.002 0.322 ± 0.001 5.693 ± 0.089

+ 1 Bridgemd × 3.246 × 3.188 76.82 ± 0.13 0.858 ± 0.003 0.020 ± 0.002 0.324 ± 0.001 4.419 ± 0.095

+ 2 Bridgemd × 3.492 × 3.376 77.06 ± 0.08 0.841 ± 0.002 0.020 ± 0.003 0.321 ± 0.001 5.333 ± 0.093

+ 3 Bridgemd × 3.738 × 3.564 77.09 ± 0.04 0.831 ± 0.002 0.018 ± 0.002 0.320 ± 0.001 6.123 ± 0.098

+ 3 Bezier × 6.000 × 6.000 77.37 ± 0.14 0.840 ± 0.003 0.017 ± 0.001 0.317 ± 0.001 5.407 ± 0.147

DE-4 × 4.000 × 4.000 77.14 ± 0.16 0.867 ± 0.001 0.023 ± 0.001 0.321 ± 0.001 4.000

+ 1 Bridgesm × 4.079 × 4.060 77.29 ± 0.10 0.838 ± 0.003 0.019 ± 0.001 0.318 ± 0.001 5.553 ± 0.116

+ 2 Bridgesm × 4.158 × 4.120 77.35 ± 0.06 0.826 ± 0.002 0.016 ± 0.001 0.317 ± 0.001 6.825 ± 0.122

+ 3 Bridgesm × 4.237 × 4.180 77.34 ± 0.06 0.820 ± 0.001 0.015 ± 0.001 0.317 ± 0.001 7.675 ± 0.280

+ 4 Bridgesm × 4.316 × 4.240 77.38 ± 0.05 0.815 ± 0.002 0.016 ± 0.001 0.317 ± 0.001 8.307 ± 0.331

+ 5 Bridgesm × 4.395 × 4.300 77.33 ± 0.06 0.812 ± 0.002 0.014 ± 0.002 0.317 ± 0.001 8.695 ± 0.363

+ 6 Bridgesm × 4.474 × 4.360 77.35 ± 0.02 0.811 ± 0.002 0.016 ± 0.001 0.317 ± 0.001 8.862 ± 0.381

+ 1 Bridgemd × 4.246 × 4.188 77.40 ± 0.14 0.837 ± 0.002 0.020 ± 0.001 0.317 ± 0.001 5.578 ± 0.079

+ 2 Bridgemd × 4.492 × 4.376 77.34 ± 0.13 0.824 ± 0.001 0.016 ± 0.001 0.316 ± 0.001 7.015 ± 0.156

+ 3 Bridgemd × 4.738 × 4.564 77.44 ± 0.11 0.817 ± 0.001 0.017 ± 0.002 0.315 ± 0.001 7.987 ± 0.347

+ 4 Bridgemd × 4.984 × 4.752 77.41 ± 0.12 0.811 ± 0.001 0.016 ± 0.001 0.315 ± 0.001 8.814 ± 0.398

+ 5 Bridgemd × 5.230 × 4.940 77.45 ± 0.12 0.809 ± 0.002 0.018 ± 0.002 0.315 ± 0.001 9.228 ± 0.529

+ 6 Bridgemd × 5.476 × 5.128 77.41 ± 0.14 0.806 ± 0.002 0.018 ± 0.002 0.315 ± 0.001 9.563 ± 0.528

+ 6 Bezier × 10.000 × 10.000 77.82 ± 0.06 0.808 ± 0.002 0.016 ± 0.002 0.310 ± 0.001 9.270 ± 0.386

DE-5 × 5.000 × 5.000 77.49 ± 0.12 0.845 ± 0.001 0.021 ± 0.001 0.316 ± 0.000 5.000
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Table 9: Full result of performance improvement of the ensemble by adding type I bridges on Tiny
ImageNet dataset. We use same settings as described in Table 3.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 63.42 ± 0.23 1.618 ± 0.005 0.037 ± 0.002 0.485 ± 0.003 1.000

+ 1 Bridgesm × 1.088 × 1.093 65.38 ± 0.09 1.444 ± 0.005 0.015 ± 0.001 0.461 ± 0.001 2.179 ± 0.110

+ 2 Bridgesm × 1.176 × 1.186 65.55 ± 0.15 1.405 ± 0.005 0.013 ± 0.001 0.456 ± 0.001 2.750 ± 0.086

+ 3 Bridgesm × 1.264 × 1.279 65.61 ± 0.10 1.388 ± 0.003 0.014 ± 0.002 0.455 ± 0.000 3.022 ± 0.079

+ 4 Bridgesm × 1.352 × 1.372 65.68 ± 0.06 1.380 ± 0.002 0.012 ± 0.002 0.454 ± 0.000 3.233 ± 0.084

+ 1 Bridgemd × 1.277 × 1.290 65.94 ± 0.15 1.418 ± 0.003 0.018 ± 0.002 0.453 ± 0.001 2.562 ± 0.056

+ 2 Bridgemd × 1.554 × 1.580 66.59 ± 0.09 1.372 ± 0.001 0.016 ± 0.002 0.445 ± 0.000 3.437 ± 0.036

+ 3 Bridgemd × 1.831 × 1.870 66.79 ± 0.11 1.353 ± 0.001 0.015 ± 0.001 0.443 ± 0.000 3.967 ± 0.043

+ 4 Bridgemd × 2.108 × 2.160 66.88 ± 0.15 1.342 ± 0.001 0.018 ± 0.001 0.441 ± 0.000 4.450 ± 0.062

DE-2 × 2.000 × 2.000 66.21 ± 0.10 1.456 ± 0.004 0.022 ± 0.002 0.450 ± 0.002 2.000

Table 10: Full result of performance improvement of the ensemble by adding type II bridges on
Tiny ImageNet dataset. We use same settings as described in Table 4.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 66.21 ± 0.10 1.456 ± 0.004 0.022 ± 0.002 0.450 ± 0.002 2.000

+ 1 Bridgesm × 2.125 × 2.132 67.25 ± 0.26 1.371 ± 0.001 0.017 ± 0.002 0.438 ± 0.001 3.478 ± 0.052

+ 1 Bridgemd × 2.352 × 2.367 67.57 ± 0.13 1.355 ± 0.003 0.016 ± 0.002 0.434 ± 0.001 3.904 ± 0.097

+ 1 Bezier × 3.000 × 3.000 67.43 ± 0.04 1.385 ± 0.004 0.017 ± 0.002 0.436 ± 0.001 3.108 ± 0.121

DE-3 × 3.000 × 3.000 67.56 ± 0.08 1.388 ± 0.001 0.019 ± 0.001 0.435 ± 0.001 3.000

+ 1 Bridgesm × 3.125 × 3.132 67.98 ± 0.09 1.336 ± 0.002 0.017 ± 0.002 0.429 ± 0.001 4.702 ± 0.079

+ 2 Bridgesm × 3.250 × 3.264 68.21 ± 0.21 1.314 ± 0.002 0.015 ± 0.003 0.427 ± 0.001 6.015 ± 0.139

+ 3 Bridgesm × 3.375 × 3.396 68.29 ± 0.25 1.303 ± 0.002 0.014 ± 0.003 0.426 ± 0.000 6.822 ± 0.191

+ 1 Bridgemd × 3.352 × 3.367 68.29 ± 0.14 1.327 ± 0.002 0.016 ± 0.000 0.426 ± 0.000 5.159 ± 0.189

+ 2 Bridgemd × 3.704 × 3.734 68.43 ± 0.15 1.300 ± 0.002 0.014 ± 0.001 0.423 ± 0.000 7.048 ± 0.250

+ 3 Bridgemd × 4.056 × 4.101 68.57 ± 0.17 1.285 ± 0.001 0.014 ± 0.000 0.421 ± 0.001 8.110 ± 0.312

+ 3 Bezier × 6.000 × 6.000 68.72 ± 0.21 1.307 ± 0.002 0.016 ± 0.002 0.420 ± 0.001 6.464 ± 0.140

DE-4 × 4.000 × 4.000 68.16 ± 0.11 1.352 ± 0.001 0.016 ± 0.000 0.427 ± 0.001 4.000

+ 1 Bridgesm × 4.125 × 4.132 68.48 ± 0.07 1.315 ± 0.002 0.013 ± 0.001 0.423 ± 0.000 5.962 ± 0.127

+ 2 Bridgesm × 4.250 × 4.264 68.67 ± 0.10 1.297 ± 0.002 0.015 ± 0.001 0.422 ± 0.000 7.239 ± 0.226

+ 3 Bridgesm × 4.375 × 4.396 68.66 ± 0.09 1.287 ± 0.001 0.012 ± 0.001 0.421 ± 0.000 7.970 ± 0.298

+ 4 Bridgesm × 4.500 × 4.528 68.69 ± 0.18 1.281 ± 0.002 0.012 ± 0.002 0.421 ± 0.000 8.432 ± 0.383

+ 5 Bridgesm × 4.625 × 4.660 68.63 ± 0.11 1.279 ± 0.002 0.013 ± 0.001 0.422 ± 0.000 8.596 ± 0.431

+ 6 Bridgesm × 4.750 × 4.792 68.58 ± 0.04 1.276 ± 0.002 0.011 ± 0.001 0.422 ± 0.000 8.768 ± 0.441

+ 1 Bridgemd × 4.352 × 4.367 68.68 ± 0.17 1.309 ± 0.002 0.016 ± 0.002 0.422 ± 0.000 6.377 ± 0.178

+ 2 Bridgemd × 4.704 × 4.734 68.98 ± 0.14 1.287 ± 0.002 0.016 ± 0.001 0.419 ± 0.000 7.986 ± 0.347

+ 3 Bridgemd × 5.056 × 5.101 69.01 ± 0.17 1.275 ± 0.001 0.015 ± 0.001 0.417 ± 0.000 8.892 ± 0.389

+ 4 Bridgemd × 5.408 × 5.468 69.14 ± 0.13 1.266 ± 0.001 0.015 ± 0.001 0.416 ± 0.000 9.539 ± 0.481

+ 5 Bridgemd × 5.760 × 5.835 69.12 ± 0.12 1.261 ± 0.001 0.014 ± 0.001 0.416 ± 0.000 9.916 ± 0.516

+ 6 Bridgemd × 6.112 × 6.202 69.15 ± 0.19 1.257 ± 0.000 0.015 ± 0.000 0.416 ± 0.000 10.198 ± 0.493

+ 6 Bezier × 10.000 × 10.000 69.26 ± 0.07 1.271 ± 0.002 0.016 ± 0.001 0.414 ± 0.000 9.118 ± 0.383

DE-5 × 5.000 × 5.000 68.54 ± 0.08 1.329 ± 0.001 0.018 ± 0.001 0.422 ± 0.001 5.000
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Table 11: Full result of performance improvement of the ensemble by adding type I bridges on
ImageNet dataset. We use same settings as described in Table 3.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 75.85 ± 0.06 1.618 ± 0.005 0.037 ± 0.002 0.485 ± 0.003 1.000

+ 1 Bridgemd × 1.194 × 1.222 76.57 ± 0.02 1.418 ± 0.003 0.018 ± 0.002 0.453 ± 0.001 2.562 ± 0.056

+ 2 Bridgemd × 1.388 × 1.444 76.74 ± 0.05 1.372 ± 0.001 0.016 ± 0.002 0.445 ± 0.000 3.437 ± 0.036

+ 3 Bridgemd × 1.582 × 1.666 76.85 ± 0.05 1.353 ± 0.001 0.015 ± 0.001 0.443 ± 0.000 3.967 ± 0.043

+ 4 Bridgemd × 1.776 × 1.888 76.96 ± 0.03 1.342 ± 0.001 0.018 ± 0.001 0.441 ± 0.000 4.450 ± 0.062

DE-2 × 2.000 × 2.000 77.20 ± 0.07 1.456 ± 0.004 0.022 ± 0.002 0.450 ± 0.002 2.000

Table 12: Full result of performance improvement of the ensemble by adding type II bridges on
ImageNet dataset. We use same settings as described in Table 4.

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 77.20 ± 0.07 0.880 ± 0.002 0.013 ± 0.001 0.317 ± 0.001 2.000

+ 1 Bridgemd × 2.243 × 2.256 77.43 ± 0.05 0.870 ± 0.001 0.012 ± 0.000 0.314 ± 0.000 2.564 ± 0.046

+ 1 Bezier × 3.000 × 3.000 77.65 ± 0.08 0.861 ± 0.001 0.011 ± 0.001 0.311 ± 0.001 3.059 ± 0.082

DE-3 × 3.000 × 3.000 77.64 ± 0.04 0.862 ± 0.001 0.013 ± 0.001 0.311 ± 0.000 3.000

+ 1 Bridgemd × 3.243 × 3.256 77.76 ± 0.07 0.856 ± 0.001 0.012 ± 0.001 0.310 ± 0.000 3.559 ± 0.038

+ 2 Bridgemd × 3.486 × 3.512 77.82 ± 0.07 0.853 ± 0.000 0.012 ± 0.001 0.309 ± 0.000 3.850 ± 0.069

+ 3 Bridgemd × 3.729 × 3.768 77.92 ± 0.06 0.851 ± 0.001 0.012 ± 0.001 0.308 ± 0.000 4.010 ± 0.063

+ 3 Bezier × 6.000 × 6.000 78.30 ± 0.05 0.834 ± 0.001 0.012 ± 0.000 0.303 ± 0.001 7.821 ± 0.391

DE-4 × 4.000 × 4.000 77.87 ± 0.04 0.851 ± 0.001 0.012 ± 0.001 0.308 ± 0.000 4.000
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Table 13: FLOPs, R2 scores, and model performance metrics between type I bridge network and
CNN(ft) ×n + CNN models with various sizes on CIFAR-100. Here, ×n denotes the number of
convolution layers to use as a frontal feature extractor CNN(ft), and CNN denotes the same architecture
used in the type I bridge network. R2 scores are measured with respect to the target Bezier r = 0.5.

Model FLOPs (↓) R2 (↑) ACC (↑) NLL (↓) ECE (↓) BS (↓)

Type I Bridge × 0.211 0.786 ±0.003 72.18 ±0.19 1.016 ±0.004 0.031 ±0.002 0.379 ±0.001
CNN(ft) ×2 + CNN × 0.230 0.626 ±0.007 63.45 ±0.71 1.318 ±0.019 0.015 ±0.002 0.481 ±0.007
CNN(ft) ×4 + CNN × 0.373 0.682 ±0.005 67.39 ±0.42 1.166 ±0.015 0.013 ±0.001 0.436 ±0.004
CNN(ft) ×6 + CNN × 0.515 0.685 ±0.006 67.43 ±0.55 1.156 ±0.019 0.014 ±0.001 0.433 ±0.006
CNN(ft) ×8 + CNN × 0.648 0.701 ±0.001 68.36 ±0.35 1.121 ±0.009 0.012 ±0.002 0.422 ±0.004

B.3 COMPARISON WITH THE TYPICAL KNOWLEDGE DISTILLATION

We note that mimicking the original function defined by deep neural networks using relatively
cheaper networks reminds of Knowledge Distillation (KD) (Hinton et al., 2015), and thus one can
think of the proposed approach as a special instance of the knowledge distillation. However, the
proposed bridge network differs fundamentally from KD in that; 1) it uses a very small network that
cannot be properly trained with a typical distillation procedure, and 2) while KD builds a student
mapping input to the output, ours reuses outputs from the models related to the target function to be
mimicked, and this actually plays a key role in the function matching.

Here, we empirically validate the claim. Specifically, Table 13 compares bridge networks mimicking
output probabilities from θ

(be)
1,2 1) when it takes inputs x as in the typical knowledge distillation

framework, and 2) when it takes outputs from θ1 and θ2 as we proposed. The former consistently
underperforms compared to the latter, even if we introduce some frontal convolutional layers for
dealing with image inputs. It indicates that the typical knowledge distillation procedure suffers from
an insufficient capacity of the bridge network, while our proposed method does not. Consequently,
our proposed method, which reuses informative outputs from θ1 and θ2, is distinct from the typical
knowledge distillation when the capacity of the bridge network is limited.
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