
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WAPITI: A WATERMARK FOR FINETUNED OPEN-
SOURCE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Watermarking of large language model (LLM) generations embeds impercepti-
ble statistical patterns within text, enabling algorithmic detection. It provides a
promising defense for ensuring traceability, accountability, and integrity of open-
source models. However, current watermarking approaches face two key limita-
tions: incompatibility with fine-tuned models and intense training cost. In this
work, we propose WAPITI, a watermark framework tailored for fine-tuned mod-
els. Our contributions are threefold: (1) We introduce a train-efficient watermark-
ing that eliminates the need for large domain-specific datasets and requires sub-
stantially less training. (2) We enable seamless integration of our framework with
existing watermarking techniques, making it broadly compatible with diverse wa-
termarking schemes. (3) We provide an in-depth empirical analysis of the mech-
anism underlying watermark transfer, offering insights into how parameter-level
operations influence both watermark strength and model capabilities. Extensive
experiments across architectures and watermarking strategies demonstrate that
WAPITI effectively injects watermarks into fine-tuned models while preserving
their adapted capabilities and robustness.

1 INTRODUCTION

Large language models (LLMs; Touvron et al., 2023; OpenAI et al., 2024) have been integrated into
many workflows and now play an increasingly important role in daily life. This rapid adoption also
raises concerns: it is often difficult to distinguish LLM-generated text from human-written content,
which may lead to misinformation or misuse. To address this, watermarking has been proposed
as a promising solution. Watermarking embeds hidden signals in model outputs that can later be
detected, enabling reliable identification of AI-generated text. This not only allows users to separate
AI content from human content for verification but also makes it possible to trace text back to the
source model, providing a technical foundation for regulatory oversight of language models.

Most prior work on watermarking has focused on closed-source models (Kirchenbauer et al., 2023;
Aaronson, 2023; Kuditipudi et al., 2024), which are black boxes to users. In this setting, the threat
model assumes adversaries try to remove the watermark without access to the model’s internal struc-
ture; they can only modify generation hyperparameters or apply text post-processing. Methods de-
signed for closed-source models usually insert watermark signals by adding extra components into
the model (Liu et al., 2024).

With the rise of powerful open-source models (Grattafiori et al., 2024; Qwen et al., 2025) and their
many finetuned variants, oversight of open-source models is equally important. However, the key
challenge is that the threat model here is fundamentally different: adversaries can access the full
model parameters and structure. This makes watermarking methods developed for closed-source
models difficult to adapt to open-source settings.

For open-source watermarking, Gu et al. (2024) has proposed using model distillation to embed
watermarks into models. However, this approach faces a serious limitation: it is incompatible with
fine-tuning. As shown in Gu et al. (2024), when a distilled model is finetuned on non-watermarked
data, its watermark quickly disappears. We further extend this setting and provide comprehensive
evidence of the incompatibility between watermark distillation and the fine-tuning process. In ad-
dition, distillation itself is resource-intensive. For example, current watermark distillation requires

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Δ� :=

Legends: Base Model Fine-tuned Model Watermark Distillation WAPITI Editing

�Base
Fine-tuning

Watermark Distillation

Unwater-
marked

Water-
marked

Undermined
Model Capability

Fine-tuning

Watermark Parameter Integration (ours)

�Base
†

�Base

Effective Watermark Integration
w/o Scacrifying Model Capability

+ � ⋅ Δ�

Compute
Watermark Vector

�Base
† − �Base

D
is

til
la

tio
n

Watermark Detection

Detector

Watermarked
P-value = 10−6

Model Output Watermark Detector

Unwatermarked
P-value = 0.7

Figure 1: Watermark distillation (left) impairs models’ finetuned capabilities. WAPITI (middle)
uses watermark parameters to transfer watermarking from the base model to finetuned models. This
method can preserve the finetuned model’s capabilities while enabling it to generate watermarked
texts, where the green tokens indicate the watermarked tokens (right).

nearly 20M tokens (batch size 16, 256 tokens per step). Considering the countless finetuned model
variants, this overhead becomes prohibitive.

To address these limitations and make watermarking more practical for open-source models, we
propose a training-efficient strategy called WAPITI (WAtermark Parameter InTegratIon). Instead
of repeatedly distilling each finetuned model, WAPITI transfers watermark information from a dis-
tilled base model to finetuned models using parameter integration (see Figure E.2). This approach
significantly reduces the cost: watermark distillation is performed only once on the base model, and
the resulting watermark parameters can then be reused. (See Table 1 for overall comparison)

Our theoretical analysis and empirical experiments show that integrated finetuned models retain
their task-specific performance while exhibiting clear watermark signals. Moreover, by adjusting
the coefficient of injected watermark parameters, we can further reduce the training cost of the
initial distillation, lowering the overall computational burden.

Our main contributions are as follows:

• Problem. We systematically identify the vulnerability of watermark distillation: its incom-
patibility with fine-tuning, a key obstacle for watermarking open-source models.

• Method. To the best of our knowledge, we propose the first transfer-based watermark-
ing method for finetuned models (WAPITI). Our design is based on the observation that
watermarking causes an aligned distribution shift before and after distillation.

• Analysis. We provide a theoretical analysis of WAPITI’s utility and examine the relation-
ship between watermark parameters and finetuned vectors to explain the mechanism of
watermark transfer.

• Evaluation. We evaluate WAPITI on Llama-2-7B, Llama-3-8B, and Qwen-2.5-3B. We
select medical QA and legal summarization as fine-tuning tasks. WAPITI achieves high
detectability, with a true positive rate (TPR) of 0.98 at a false positive rate (FPR) of 0.05,
while successfully retaining finetuned performance.

2 PRELIMINARIES OF WATERMARKING

Large Language Models (LLMs) are typically neural networks based on the transformer architecture.
Formally, we denote an LLM as fθ : V∗ → ∆(V), which maps a prefix string x ∈ V∗ to a
probability distribution over the vocabulary ∆(V) for predicting the next token. The conditional
distribution of the next token is written as fθ(· | x). The generation process involves two main
steps: logit generation followed by token sampling (Vaswani et al., 2017).

Watermarking modifies the generation process so that hidden, traceable information is embedded
into the output text. This is usually done during decoding, either at the logit stage or the sampling
stage, in a way that guides the output distribution toward patterns recognizable by a detector. For

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Method
Closed-source Open-sourced Open-sourced Application

LLMs Base LLMs Fine-tuned LLMs Efficiency Vulnerability

Decoding-based ✓ ✗ ✗ N/A Architecture Modification
Distillation-based N/A ✓ ✗ CFT Finetune Incompatibility
WAPITI N/A N/A ✓ CFT /N N/A

Table 1: A taxonomy of LLM watermarking. ”N/A” indicates that the method is not designed for
the corresponding setting. And CFT indicates the computation cost of watermark distillation. N
denotes the number of models of the same type, highlighting that WAPITI requires only a single
watermark distillation to apply across all models of that type.

example, KGW (Kirchenbauer et al., 2023) increases the probability of certain tokens during gener-
ation. A detector can then identify AI-generated text based on the frequency of token occurrence.

Formally, a watermarking algorithmW uses a secret key ϕ to modify the original output distribution
fθ(· | x) into a watermarked version. A detector D, given the same key ϕ, attempts to recover the
embedded signal. For a given text x and key ϕ, the detector computes a p-value under the null
hypothesis that x is not watermarked. If the p-value is below a predefined threshold, the text is
classified as model-generated. Further details are provided in Appendix A.

The key evaluation metrics for watermarking are: (i) Detectability: The watermark should allow
reliable detection of all model-generated outputs. (ii) Utility: The watermark should not signifi-
cantly degrade the model’s original performance. (iii) Security: The watermark should be hard to
remove without heavily altering the output. For open-source models, removal should not be possible
without impairing their overall capability.

Logit-based watermarking (KGW). This method directly modifies output logits (Kirchenbauer
et al., 2023). At each step, the vocabulary is split into green and red lists based on the previous
k tokens. For k = 0 (Zhao et al., 2023b), the split is fixed; for k ≥ 1, it depends on context. A
fraction γ of tokens are marked green, and their logits are increased by δ, making them more likely
to be sampled. Detection tests whether the observed proportion of green tokens exceeds γ, yielding
a p-value.

Sampling-based (AAR). This method (Aaronson, 2023) applies Gumbel-Max sampling. For token
xi, the previous k tokens and key ϕ generate a pseudorandom score vector ri ∈ [0, 1]|V|. Given
next-token distribution pi ∈ ∆(V), AAR samples

xi = argmax
j∈V

(
log pi,j − log(− log ri,j)

)
,

introducing controlled randomness. This yields higher cumulative score sums in watermarked text,
so detection uses the score sum to compute a p-value under the null hypothesis.

3 LIMITATIONS OF WATERMARK DISTILLATION

A key characteristic of open-source models is their flexibility: base models can be fine-tuned to gain
new capabilities. Therefore, for watermarking methods designed for open-source models, compati-
bility with fine-tuning is critical. In this section, we investigate whether watermark distillation (Gu
et al., 2024) can embed watermarks into fine-tuned models. While Gu et al. (2024) briefly noted
that fine-tuning could be considered an attack against watermarks, we extend their setting and sys-
tematically evaluate whether watermark distillation remains compatible with fine-tuning. In simple
terms, the goal is to obtain a model that preserves watermark detectability while also retaining strong
fine-tuned performance.

Setup. We evaluate three strategies for integrating watermarking with fine-tuning: (i) fine-tuning a
watermark-distilled model on the domain dataset, (ii) applying watermark distillation to a model that
has already been fine-tuned, and (iii) paraphrasing the domain dataset with a watermarked model and
then fine-tuning on the resulting watermarked corpus. These settings cover the main possible orders
of applying watermarking and fine-tuning. The full experimental details are provided in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(i) finetune a watermark-distilled model on the domain dataset. (ii) Apply watermark distillation to
an already fine-tuned model. (iii) Use a watermarked model to paraphrase the domain dataset and
finetune on the resulting watermarked corpus.

0 2 4 6

− log10(Watermark p-value)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

B
E

R
T

S
co

re
-F

1

Stronger Detectability

Stronger Capability

Distill-Finetune

Finetune-Distill

Watermarked-Finetune

WAPITI

Figure 2: Watermark distillation cannot en-
sure both strong detectability and fine-tuning
performance.

Our experiments use the Llama-3.1-8B-Instruct
model as the backbone, ensuring alignment with
state-of-the-art instruction-tuned models. We adopt
the KGW watermarking scheme (Kirchenbauer
et al., 2023) and select legal summarization (Shen
et al., 2022) as the fine-tuning task, as it is a high-
entropy generative domain well-suited for testing
watermark detectability.

Analysis. Figure 2 shows the results for the three
strategies, along with WAPITI.

Approach 1 (watermark-then-finetune). As reported
in Gu et al. (2024), fine-tuning a watermarked model
on non-watermarked content quickly degrades wa-
termark strength. We observe the same effect: the
model’s watermark detectability drops to a p-value
of 0.45, close to random (0.5), effectively erasing the
watermark.

Approach 2 (finetune-then-watermark). Applying watermark distillation after fine-tuning causes the
model to forget its domain-specific knowledge. Since watermark distillation itself is essentially a
form of fine-tuning, this leads to catastrophic forgetting (Luo et al., 2025). The resulting model
performs similarly to the base model, losing most of the gains from domain fine-tuning.

Approach 3 (joint watermark–finetune). Here we paraphrase the domain dataset with a watermarked
model and finetune on the watermarked data. However, this approach also fails: the resulting model
achieves neither strong watermark detectability nor strong fine-tuned performance. We attribute this
to two reasons: (1) the paraphrased dataset is of lower quality than the original dataset, and (2) the
domain dataset is relatively small, less than 10% of the size of our watermark distillation dataset,
making it insufficient to sustain both watermarking and fine-tuning.

Overall, our findings show that watermark distillation fails to embed watermarks into fine-tuned
models, as it can’t simultaneously preserve watermark detectability and domain-specific knowledge.

4 METHOD: WATEMRARK PARAMETER

In this section, we focus on deriving the watermarked parameters of fine-tuned models. As men-
tioned in §2, watermarks only perturb the next-token generation xt according to previous k to-
kens xt−k, · · · , xt−1 and watermark key ϕ, so that watermark perturbation in next-token probability
fθ(x)

1 remains the same across different models, where x is the input prompt. We denote the
watermark perturbation as δ · g(x), where δ represents the intensity of the shift, analogous to the
watermark shift δ in KGW and g(x) is analogous to the mask of green list in KGW watermarking
that indicates which part of vocabulary will be applied watermark shift. Let θBase,θ

†
Base represent

parameters of the base model and the watermark-distilled base model, respectively. So we have:

fθ†
Base

(x) = fθBase(x) + δBase · g(x). (1)

Similarly, we use θFT and θ†
FT to represent the parameters of the fine-tuned (FT) models, as well as

their watermark-distilled counterparts, respectively. Our ultimate goal is, given an unwatermarked
θ, to find the parameter θ†

FT such that:

fθ†
FT
(x) = fθFT(x) + δFT · g(x), (2)

where δFT is a hyperparameter that controls the watermark detectability.

1For brevity, we identify the next-token probability predictor fθ(· | x) : V → R as a vector fθ(x) ∈ ∆(V).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Then by using the assumption from previous research (Ilharco et al., 2023; Jiao et al., 2024; Yang
et al., 2024), we find that the gradient difference between the fine-tuned and base models, when
multiplied by the watermarked parameter difference of bthe ase model, is approximately zero. The
detailed derivation of the assumption can be found in Append B:

(∇θfθFT(x)−∇θfθBase(x))∆θBase ≈ 0. (3)

By rearranging Eq. (18), we conclude that the gradients of the fine-tuned and base models are ap-
proximately equal when applied to the watermarked parameter difference:

∇θfθFT(x)∆θBase ≈ ∇θfθBase(x)∆θBase. (4)

In this way, we obtain the relationship between the gradient of the fine-tuned model and base models.
And we now proceed to derive our target fθFT(x). First, by substituting g(x) from Eq. (1) into Eq. (2)
and use Eq. (19:

fθ†
FT
(x) = fθFT(x) +

(
δFT

δBase
⟨∇θfθBase(x),∆θBase⟩+O(∥∆θBase∥2)

)
. (5)

We define λFT = δFT
δBase

, where δFT is a hyperparameter, making λFT a tunable factor. Next, we
substitute the gradient of base model in Eq. (5) with the gradient of fine-tuned model using Eq. (19):

fθ†
FT
(x) ≈ fθFT(x) + ⟨∇θfθFT(x), λFT ·∆θBase⟩+O

(
∥∆θBase∥2

)
, (6)

≈ fθFT+λFT·∆θBase(x). (7)

We treat Eq. (6) as a Taylor expansion of the next-token probability of the model with respect to its
parameters. Based on Eq. (7), we can select:

θ†
FT := θFT + λFT ·∆θBase. (8)

According to derivation, we propose WAtermark Parameter InTegratIon (WAPITI), which inte-
grates watermark-related parameters of base model to fine-tuned models. The algorithm is shown
in Alg. 1. WAPITI is compatible with various watermarking strategies: after distilling a base model
with the desired watermark (Step 1), the watermark can be seamlessly transferred to fine-tuned mod-
els without additional costs (Step 3). This approach provides an efficient and effective solution for
regulating open-source models.

Algorithm 1 WAPITI
Input: base model parameter θBase, fine-tuned model parameter θFT, watermark coefficient λFT

Output: watermarked fine-tuned model parameter θ†
FT

1: θ†
Base ←WatermarkDistillation(θBase)

2: ∆θBase ← θ†
Base − θBase

3: θ†
FT ← θFT + λFT ·∆θBase

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

We design experiments to evaluate the performance of WAPITI from two perspectives: watermark
strength and fine-tuning ability, tested across multiple models and watermarking strategies.

Watermarks and hyperparameters. Since our framework is compatible with different water-
marking schemes, we select two representative watermarking method spanning logit-based water-
mark KGW, and sampling-based watermark AAR, each with standard hyperparameter settings. To
ensure fair comparison, we adopt the configurations used by Gu et al. (2024). Specifically, for KGW
we set k = {0, 1}, γ = 0.25, and δ = {1, 2} and select AAR’s hyperparameter k = {2, 3, 4} The
watermark coefficient, λFT, is varied in the range [0, 4].

Datasets and models. To evaluate the generality of WAPITI, we experiment on three widely
used open-source LLMs: Llama-2-7B, Llama-3.1-8B, and Qwen2.5-3B. These models differ in size

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and architecture, and their popularity ensures the practical relevance of our results. For watermark
distillation, we use the RealNewsLike subset of the C4 dataset (Raffel et al., 2020). To avoid data
leakage and ensure valid detectability results, we apply deduplication to remove overlapping samples
before distillation.

Training parameters. We adopt standard fine-tuning settings with AdamW optimizer, linear
warmup, and cosine decay scheduling. Each model is trained for 5k steps with a moderate batch
size and bf16 mixed precision. Full hyperparameter details, including learning rates, prompt con-
struction, and hardware configurations, are provided in Appendix E.

5.2 EVALUATION METRICS

We assess WAPITI using three criteria: watermark detectability, generation quality, and down-
stream fine-tuned performance. These capture both watermark strength and the preservation of
model abilities across instruction-following, question answering, and summarization tasks.

Watermark detectability. We measure detectability using the median p-value and the true pos-
itive rate (TPR) at fixed false positive rate (FPR) thresholds. The p-value is computed using the
z-score method; a lower p-value indicates stronger detectability. TPR is computed using equal-sized
sets of human-written and watermarked model outputs, truncated to the same length for consistency.
We report TPR at FPR values of 0.05 and 0.1 to reflect watermark applicability under realistic de-
tection settings.

Generation quality. We assess generation quality using two metrics: perplexity and seq-rep-3
(trigram repetition). Perplexity is computed with Llama-3.1-8B-Instruct (Grattafiori et al., 2024)
to ensure consistency across models. Seq-rep-3 quantifies repetition by measuring the proportion
of repeated trigrams in the generated outputs (Welleck et al., 2019). For evaluation, we use the
OpenWebText dataset (Gokaslan & Cohen, 2019), which differs from the watermark distillation
dataset, ensuring that the results reflect the generalizability of WAPITI.

Fine-tuning abilities. To verify that WAPITI preserves task performance, we evaluate on:
i) Question Answering: MedicalQA (Divi, 2023), with 6.3k domain-specific medical questions.
ii) Summarization: Multi-LexSum (Shen et al., 2022), containing 9.2k legal case summaries. We
use Bertscore (Zhang et al., 2019) as a metric since we are testing on open-ended generation tasks.

5.3 RESULTS

Scheme Model

Watermark Detectibility Generation Quality Training Cost
p-value(↓) TPR@0.05(↑) Perplexity(↓) seq-rep-3(↓) GPU Hours

WD WAPITI WD WAPITI WD WAPITI WD WAPITI WD WAPITI

KGW
Llama-2 3.60× 10−06 3.80× 10−15 1.00 1.00 6.17 10.37 0.05 0.05 32.00 1.60
Llama-3.1 6.05× 10−08 2.36× 10−18 0.81 1.00 8.58 15.34 0.04 0.04 32.00 1.60
Qwen2.5 7.19× 10−06 4.67× 10−13 0.98 1.00 10.20 14.15 0.03 0.04 6.00 0.30

AAR
Llama-2 3.62× 10−12 4.13× 10−14 0.91 0.89 17.32 21.21 0.04 0.05 32.00 1.60
Llama-3.1 9.13× 10−12 6.89× 10−16 0.94 0.88 12.43 15.31 0.03 0.04 32.00 1.60
Qwen2.5 3.21× 10−13 1.89× 10−14 0.90 0.90 17.68 16.68 0.04 0.03 6.00 0.30

Table 2: Main results on watermark detectability, generation quality, and training cost (GPU hours)
for WAPITI compared with traditional Watermark Distillation (WD). WAPITI achieves stronger
detectability with significantly lower computation cost.

Performance Comparison We first compare the watermark performance of WAPITI with tra-
ditional watermark distillation (WD) on base models. Table 2 presents the overall results. In this
experiment, WAPITI uses watermark parameters extracted from a model trained with only 1000
steps of watermark distillation, while WD models are trained for 5000 steps. The watermark coef-
ficient λFT is set to 1.5, which provides a balance between watermark detectability and generation
quality.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Summary QA
Llama-2-7B

0.75

0.80

0.85

0.90

B
er

tS
co

re
-F

1

Summary QA
Llama-3.1-8B

Summary QA
Qwen2.5-3B

Base WAPITI-KGW WAPITI-AAR Finetuned

Figure 3: WAPITI compared with base and fine-tuned mod-
els. WAPITI preserves the capabilities of the fine-tuned model,
achieving performance close to the original finetuned models.

0.0 0.2 0.4 0.6 0.8

Proportion of tokens edited

0.0

0.1

0.2

0.3

0.4

M
ed

ia
n

p
-v

al
u

e

K0-delta1

K0-delta2

K1-delta1

K2-delta2

Figure 4: Watermark p-values of
generations with various propor-
tions of random corruption.

The results show that WAPITI achieves watermark detectability comparable to, and in some cases
better than, full watermark distillation, while largely preserving model generation quality. For the
KGW watermark, WAPITI even surpasses WD in detectability, though with slightly higher perplex-
ity. However, the seq-rep-3 values remain nearly identical, indicating that the watermark parameters
avoid the common repetition issues seen in watermarked models. But for the AAR watermark,
WAPITI shows slightly inferior TPR@0.05, which is still significantly distinctive.

In terms of training cost, WAPITI is significantly more efficient. Because watermark strength can be
enhanced by adjusting the watermark coefficient λFT , fewer distillation steps are needed to extract
meaningful watermark parameters. Our experiments show that 1000 steps are sufficient, reduc-
ing training cost by about 80% compared with traditional WD. Moreover, the extracted watermark
parameters can be reused to transfer watermarks to other fine-tuned models, further reducing the
per-model cost. For example, when applied across four different models, the average cost of water-
marking per model is only 5% of that required by traditional distillation.

Model Task p-value (↓) TPR@0.1 (↑) TPR@0.05 (↑) Perplexity / seq-rep-3 (↓)

KGW AAR KGW AAR KGW AAR KGW AAR

Llama-2
QA 2.32× 10−15 1.57× 10−12 1.00 0.91 1.00 0.89 8.13/0.03 22.41/0.09
Instruct 3.39× 10−09 3.92× 10−13 1.00 0.90 1.00 0.85 4.96/0.06 15.70/0.05
Sum 4.67× 10−13 6.84× 10−13 1.00 0.90 1.00 0.86 8.11/0.09 19.54/0.06

Llama-3
QA 4.00× 10−21 1.20× 10−14 1.00 0.87 1.00 0.84 14.89/0.03 18.51/0.04
Instruct 5.20× 10−17 3.27× 10−13 1.00 0.88 1.00 0.86 17.94/0.03 18.53/0.04
Sum 1.18× 10−06 7.80× 10−15 1.00 0.88 1.00 0.86 14.05/0.06 16.02/0.06

Qwen-2.5
QA 9.36× 10−05 8.52× 10−14 1.00 0.92 1.00 0.90 18.09/0.01 19.28/0.03
Instruct 8.50× 10−07 2.41× 10−13 1.00 0.90 1.00 0.87 16.78/0.02 18.27/0.04
Sum 3.21× 10−05 1.65× 10−13 1.00 0.91 1.00 0.89 21.14/0.02 20.50/0.03

Table 3: Results of WAPITI on fine-tuned models with KGW and AAR. Each task corresponds to
the fine-tuning type. TPR@0.1 denotes the true positive rate at a false positive rate of 0.1.

Watermark Detectability

Table 3 reports the results for watermark detectability and generation quality on three different
finetuned models to prove its compatibility with finetuned models. For the main comparison, we
focus on the KGW (k = 1, γ = 0.25) and AAR (k = 2) watermark settings; full experimental
results are provided in Appendix E. For WAPITI, all watermark parameters are extracted from a
model trained with 1000 steps of watermark distillation, and we select the most suitable watermark
coefficient λFT to balance detectability and generation quality.

The results show that both watermark types achieve strong detectability after transfer. The near-
perfect TPR scores (close to 1.0) indicate that the watermarks are highly reliable. In addition, model

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4

Coefficient

10−56

10−46

10−36

10−26

10−16

10−6

P
-V

al
u

e
(l

og
sc

al
e)

Watermarked P-Value

Checkpoint 1000

Checkpoint 2000

Checkpoint 3000

Checkpoint 4000

Checkpoint 5000

0 1 2 3 4

Coefficient

0

200

400

600

800

P
er

p
le

x
it

y

Watermarked Perplexity

Checkpoint 1000

Checkpoint 2000

Checkpoint 3000

Checkpoint 4000

Checkpoint 5000

0 1 2 3 4

Coefficient

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
eq

-R
ep

-3

Watermarked Seq-Rep-3

Checkpoint 1000

Checkpoint 2000

Checkpoint 3000

Checkpoint 4000

Checkpoint 5000

Figure 5: Effect of watermark coefficient λFT on detectability and generation quality.

generation quality is largely preserved: perplexity shows only minor increases, while seq-rep-3
remains almost unchanged.

When comparing across models, we observe that different architectures respond differently to wa-
termark parameters. Between the two watermark schemes, KGW consistently outperforms AAR in
both detectability and generation quality. We attribute this to the relative complexity of the water-
marking process: KGW modifies logits directly, which can be interpreted as learning a “vocabulary
preference” during distillation. In contrast, AAR involves more complex semantic encoding, making
it harder for the model to fully capture during distillation and subsequent parameter transfer.

Fine-tuned Capability. Figure 3 shows model performance before and after fine-tuning. The
WAPITI fine-tuned models achieve gains in both question answering and summarization tasks com-
pared with the base model, and their performance remains close to that of models fine-tuned without
watermarking. This demonstrates that WAPITI is compatible with the fine-tuning process.

To ensure fairness, we distilled watermarks using the RealNewsLike subset of the C4 dataset, ap-
plying careful deduplication with LLM assistance. For evaluation, we specifically selected Medical
QA and legal summarization tasks, which introduce domain-specific knowledge not contained in
the base models. This ensures that performance improvements in the WAPITI fine-tuned models are
derived from the fine-tuning process itself, rather than from watermark parameters.

6 ANALYSIS

In this section, we further analyze the mechanism behind WAPITI. We focus on three aspects: (i)
the role of the watermark coefficient λFT and its effect on watermark detectability and generation
quality, (ii) robustness of WAPITI against random-edit attacks, and (iii) why WAPITI remains com-
patible with fine-tuned models from a parameter-level perspective.

6.1 EFFECT OF THE WATERMARK COEFFICIENT

We first examine the role of the watermark integration coefficient λFT . By varying λFT , we measure
how watermark detectability and generation quality change. For this experiment, we use the KGW
watermark (k = 1, δ = 2) and evaluate on three models: Llama-3.1-8B, Llama-2-7B, and Qwen2.5-
3B. Complete results are provided in Appendix E.

Figure 5 shows the effect of increasing λFT . For watermark detectability, when λFT is in the range
[0, 2], the p-value decreases along an exponential trend with respect to log probability, confirming
that λFT effectively controls watermark strength. For generation quality, when λFT is small (ap-
proximately ≤ 0.2), both perplexity and seq-rep-3 remain stable, indicating that model quality is
preserved.

However, as λFT increases further, both detectability and generation quality collapse, showing that
watermark parameters begin to interfere strongly with the fine-tuned model. Therefore, λFT pro-
vides a controllable trade-off between watermark detectability and generation quality in WAPITI.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

K0-delta1 K0-delta2 K1-delta1 K1-delta2 AAR-K2 AAR-K3 AAR-K4

QA 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
Summary 0.3% 0.5% 0.2% 0.2% 0.3% 0.3% 0.3%
Instruct 0.2% 0.2% 0.1% 0.2% 0.6% 0.5% 0.5%

Table 4: Cosine similarity between task vectors and watermark parameters, showing that watermark
parameters are nearly orthogonal to task vectors.

6.2 ROBUSTNESS TO RANDOM EDITS

To test robustness, we apply random-edit attacks by replacing tokens in generated text with ran-
dom alternatives and then evaluating watermark detectability. Details of the setup are given in
Appendix D. As shown in Figure 4, watermark p-values remain statistically significant until the edit
proportion reaches about 20%–30%. This indicates that WAPITI maintains strong robustness even
under substantial perturbations.

6.3 PARAMETER-LEVEL ANALYSIS

To understand why WAPITI remains compatible with fine-tuned models, we analyze parameter di-
rections following (Ilharco et al., 2023). In short, we compare watermark parameters with task
vectors (parameter differences induced by fine-tuning) and find them to be nearly orthogonal (Ta-
ble 4). This orthogonality explains why, at small λFT , the model retains both generation quality and
fine-tuned capabilities.

7 RELATED WORK

Text watermarking. Earlier works in text watermarking typically embedded information through
post-processing of texts, closely resembling steganography (Venugopal et al., 2011; Yang et al.,
2021). More recent studies have shifted towards decoding-based watermarking, hiding information
by perturbing the text during the decoding phase (Kirchenbauer et al., 2023; Aaronson, 2023; Zhu
et al., 2024; Krishna et al., 2023; Kuditipudi et al., 2024; Zhao et al., 2023a; Christ et al., 2023; Wu
et al., 2024; Liu & Bu, 2024; Giboulot & Teddy, 2024; Lu et al., 2024; Ren et al., 2024; Wang et al.,
2024).

Model interventions. Beyond fine-tuning, researchers have explored parameter-level interven-
tions to modify model behaviors. Key approaches include model patching (Goel et al., 2020; Ilharco
et al., 2023; Murty et al., 2022; Sung et al., 2021), parameter editing (Mitchell et al., 2022a;b; San-
turkar et al., 2021), and model alignment (Askell et al., 2021; Glaese et al., 2022; Kasirzadeh &
Gabriel, 2022). Compared to retraining or fine-tuning, model intervention offers a more efficient
way to introduce new capabilities into models.

8 CONCLUSION

In this paper, we tackle the challenge of watermarking fine-tuned open-source language models,
where existing distillation methods are costly and incompatible with fine-tuning. We propose
WAPITI, a training-efficient approach, thereby enabling reliable watermarking without the need
for repeated distillation.

Our theoretical analysis and empirical evaluations on Llama-2-7B, Llama-3-8B, and Qwen-2.5-3B
show that WAPITI preserves the fine-tuned performance of models on tasks such as medical QA and
legal summarization while achieving strong detectability. These results demonstrate that parameter
integration offers a practical and scalable path for watermarking open-source models.

Future work could further improve WAPITI by exploring watermarking strategies specifically de-
signed for transfer, refining the extraction and injection of watermark parameters to minimize inter-
ference, and optimizing the distillation of the base watermark model to reduce resource demands.
Together, these directions may enhance the robustness, efficiency, and applicability of watermarking
in open-source ecosystems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.

The paper uses only publicly available datasets and evaluates in a transparent, responsible manner
in accordance with the code of ethics of ICLR.

REPRODUCIBILITY STATEMENT.

To ensure reproducibility, for datasets details, we include detailed statistics and descriptions of the
datasets in Sec. 5.2. For experimental setup, we include a detailed description of adopted evaluation
metrics, machines, dataset splits, and hyperparameter settings in Section 5.1 and Appendix E.

LLM USAGE DISCLOSURE

We use GPT-4 to assist with grammar polishing and drafting some background text. All scientific
claims, analyses, proofs, and experiments were verified and written by the authors. No experimental
design, result interpretation, or mathematical content was generated by an LLM without author
oversight.

REFERENCES

Scott Aaronson. Watermarking of large language models. Large Language Models and Trans-
formers Workshop at Simons Institute for the Theory of Computing, 2023. URL https:
//www.youtube.com/watch?v=2Kx9jbSMZqA. Accessed: September 16, 2024.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Her-
nandez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack
Clark, Sam McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a labora-
tory for alignment, 2021. URL https://arxiv.org/abs/2112.00861.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models, 2023.
URL https://arxiv.org/abs/2306.09194.

Eswar Divi. Medical qa dataset. https://huggingface.co/datasets/eswardivi/
medical_qa, 2023. contains ∼6.31k training examples in the “train” split.

Eva Giboulot and Furon Teddy. Watermax: breaking the llm watermark detectability-robustness-
quality trade-off, 2024. URL https://arxiv.org/abs/2403.04808.

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
beth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham,
Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth
Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona
Mokra, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William
Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey
Irving. Improving alignment of dialogue agents via targeted human judgements, 2022. URL
https://arxiv.org/abs/2209.14375.

Karan Goel, Albert Gu, Yixuan Li, and Christopher Ré. Model patching: Closing the subgroup
performance gap with data augmentation, 2020. URL https://arxiv.org/abs/2008.
06775.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and Abhishek Kadian. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

10

https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2306.09194
https://huggingface.co/datasets/eswardivi/medical_qa
https://huggingface.co/datasets/eswardivi/medical_qa
https://arxiv.org/abs/2403.04808
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2008.06775
https://arxiv.org/abs/2008.06775
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of
watermarks for language models. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=9k0krNzvlV.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=6t0Kwf8-jrj.

Cathy Jiao, Gary Gao, and Chenyan Xiong. In-context probing approximates influence function for
data valuation, 2024. URL https://arxiv.org/abs/2407.12259.

Atoosa Kasirzadeh and Iason Gabriel. In conversation with artificial intelligence: aligning language
models with human values, 2022. URL https://arxiv.org/abs/2209.00731.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 17061–17084. PMLR, 2023. URL
https://proceedings.mlr.press/v202/kirchenbauer23a.html.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. Trans. Mach. Learn. Res., 2024, 2024. URL https://
openreview.net/forum?id=FpaCL1MO2C.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip S. Yu. A survey of text watermarking in the era of large language models,
2024. URL https://arxiv.org/abs/2312.07913.

Yepeng Liu and Yuheng Bu. Adaptive text watermark for large language models, 2024. URL
https://arxiv.org/abs/2401.13927.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text watermarking
detection method, 2024. URL https://arxiv.org/abs/2403.13485.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning, 2025. URL
https://arxiv.org/abs/2308.08747.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale, 2022a. URL https://arxiv.org/abs/2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
based model editing at scale, 2022b. URL https://arxiv.org/abs/2206.06520.

Shikhar Murty, Christopher D. Manning, Scott Lundberg, and Marco Tulio Ribeiro. Fixing model
bugs with natural language patches, 2022. URL https://arxiv.org/abs/2211.03318.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, and Diogo Almeida. Gpt-4 technical report, 2024. URL https://arxiv.
org/abs/2303.08774.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, and Bo Zheng. Qwen2.5 technical
report, 2025. URL https://arxiv.org/abs/2412.15115.

11

https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/2407.12259
https://arxiv.org/abs/2209.00731
https://proceedings.mlr.press/v202/kirchenbauer23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://arxiv.org/abs/2312.07913
https://arxiv.org/abs/2401.13927
https://arxiv.org/abs/2403.13485
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/2211.03318
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.15115

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL https://jmlr.org/
papers/v21/20-074.html.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A
robust semantics-based watermark for large language model against paraphrasing, 2024. URL
https://arxiv.org/abs/2311.08721.

Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and Alek-
sander Madry. Editing a classifier by rewriting its prediction rules, 2021. URL https:
//arxiv.org/abs/2112.01008.

Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg, Margo Schlanger, and Doug Downey. Multi-
lexsum: Real-world summaries of civil rights lawsuits at multiple granularities. Advances in
Neural Information Processing Systems, 35:13158–13173, 2022.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks, 2021.
URL https://arxiv.org/abs/2111.09839.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, and Amjad Almahairi. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.
09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz Och, and Juri Ganitkevitch. Watermark-
ing the outputs of structured prediction with an application in statistical machine translation.
In Regina Barzilay and Mark Johnson (eds.), Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 1363–1372, Edinburgh, Scotland, UK., July
2011. Association for Computational Linguistics. URL https://aclanthology.org/
D11-1126.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
Towards codable watermarking for injecting multi-bits information to llms, 2024. URL https:
//arxiv.org/abs/2307.15992.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and
accessible distribution-preserving watermark for large language models, 2024. URL https:
//arxiv.org/abs/2310.07710.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu.
Tracing text provenance via context-aware lexical substitution, 2021. URL https://arxiv.
org/abs/2112.07873.

Ziao Yang, Han Yue, Jian Chen, and Hongfu Liu. Revisit, extend, and enhance hessian-free influence
functions, 2024. URL https://arxiv.org/abs/2405.17490.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text, 2023a. URL https://arxiv.org/abs/2306.17439.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text, 2023b. URL https://arxiv.org/abs/2306.17439.

Chaoyi Zhu, Jeroen Galjaard, Pin-Yu Chen, and Lydia Y. Chen. Duwak: Dual watermarks in large
language models, 2024. URL https://arxiv.org/abs/2403.13000.

12

https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2311.08721
https://arxiv.org/abs/2112.01008
https://arxiv.org/abs/2112.01008
https://arxiv.org/abs/2111.09839
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://aclanthology.org/D11-1126
https://aclanthology.org/D11-1126
https://arxiv.org/abs/2307.15992
https://arxiv.org/abs/2307.15992
https://arxiv.org/abs/2310.07710
https://arxiv.org/abs/2310.07710
https://arxiv.org/abs/2112.07873
https://arxiv.org/abs/2112.07873
https://arxiv.org/abs/2405.17490
https://arxiv.org/abs/2306.17439
https://arxiv.org/abs/2306.17439
https://arxiv.org/abs/2403.13000

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILED DEFINITION OF WATERMARK

In this section, we provide formal definitions of the watermarking schemes used in this work:
KGW (Kirchenbauer et al., 2023) and AAR (Aaronson, 2023).

KGW. For the KGW watermark, we adopt the same notation as in the main text. Let WKGW

denote the watermarking algorithm, fθ(· | x) the next-token distribution, and ϕ the watermark key.
The hyperparameters k, γ, δ control the watermarking process: - k: number of preceding tokens
used to construct the green list, - γ: proportion of the vocabulary assigned to the green list, - δ: logit
shift applied to green-list tokens.

The watermarked distribution is:

fKGW
θ (x, ϕ, k, γ, δ) = softmax

(
log fθ(· | x) + δ · WKGW (xi−k, . . . , xi−1;ϕ; γ; |V|)

)
, (9)

whereWKGW outputs a mask over the vocabulary indicating membership in the green list.

Detection is performed by counting green-list tokens and computing the corresponding binomial
p-value:

DKGW (x, ϕ, γ) = 1− BinoCDF

 |x|∑
t=1

WKGW (xt−k, . . . , xt−1;ϕ; γ; |V|)

 , (10)

where BinoCDF is the cumulative distribution function of the binomial distribution.

AAR. For the AAR watermark, we again let WAAR denote the algorithm, fθ(· | x) the next-
token distribution, and ϕ the watermark key. AAR has a single hyperparameter k, the number of
preceding tokens used to generate pseudorandom scores:

ri =WAAR(xi−k, . . . , xi−1, ϕ) ∼ Unif(0, 1)|V|. (11)

Token generation follows the Gumbel–Max rule:

xAAR
i = argmax

j∈V

(
log fθ(j | x)− log(− log rji)

)
. (12)

Detection is based on the cumulative score statistics, evaluated under a gamma distribution:

DAAR(x, ϕ) = 1− GammaCDF

(|x|∑
t=k+1

− log
(
1−WAAR(xt−k, . . . , xt−1, ϕ)xt

)
; |x| − k, 1

)
,

(13)

where GammaCDF is the cumulative distribution function of the Gamma distribution, and the un-
derbraced term corresponds to the score assigned to token xt.

B METHOD DETAILED DERIVATION

First we observe that the parameter difference between the fine-tuned model and the base model,
θFT−θBase, is approximately orthogonal to the parameter difference caused by watermarking, θ†

Base−
θBase:

⟨θFT − θBase,θ
†
Base − θBase⟩ ≈ 0. (14)

Let⊗ denote the tensor product between differentiation operators, and let×1,×2 denote the mode-1
and mode-2 tensor–matrix product, respectively. Let HBase(x) := ∇θ⊗∇θfθBase(x) be the Hessian.
As shown in prior studies, every channel of HBase(x) is approximately the identity matrix I (Jiao
et al., 2024; Yang et al., 2024). Combining it with our observation in Eq. (14), we hypothesize that:

HBase(x)×1 (θFT − θBase)×2 (θ
†
Base − θBase) ≈ 0. (15)

The first-order Taylor expansion of ∇θfθFT(x) around θ = θBase is:

∇θfθFT(x) = ∇θfθBase(x) +HBase(x)×1 (θFT − θBase) +O(∥θFT − θBase∥2), (16)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

HBase(x)×1 (θFT − θBase) ≈ ∇θfθFT(x)−∇θfθBase(x). (17)

Next, substituting Eq. (17) into Eq. (15), we find that the gradient difference between the fine-tuned
and base models, when multiplied by the watermarked parameter difference of the base model, is
approximately zero:

(∇θfθFT(x)−∇θfθBase(x))∆θBase ≈ 0. (18)

By rearranging Eq. (18), we conclude that the gradients of the fine-tuned and base models are ap-
proximately equal when applied to the watermarked parameter difference:

∇θfθFT(x)∆θBase ≈ ∇θfθBase(x)∆θBase. (19)

C LIMITATION OF WATERMARK DISTILLATION

Dataset. We use the multi-lexsum dataset, which contains 9.2k legal case summaries. For
watermark distillation, we use the RealNewsLike split from the C4 (Raffel et al., 2020) dataset.

Fine-tuning. Fine-tuning is performed using the Trainer API from Transformers. We train
for 500 steps with a batch size of 8, using bf16 for mixed-precision training. Optimization is carried
out with DeepSpeed ZeRO-2. Each run takes about 1 hour on 8 NVIDIA A100 80GB GPUs.

Distillation. For watermark distillation, we train for 5,000 steps with a batch size of 16. The first
50 tokens of each sample are used as the prompt, and the maximum generation length is set to 200.

Watermarked Dataset Generation. To construct the watermarked dataset, we use Llama-3.1-
70B. Generation is performed with deterministic decoding (no sampling).

D ROBUSTNESS TO RANDOM TEXT EDIT

In this experiment, we use the WAPITI model to generate samples from OpenWebText prompts
under the KGW watermark with k ∈ {0, 1}, γ = 0.25, and δ ∈ {1, 2}. The generation length is
fixed at 200 tokens. We then apply random edits with proportions ϵ ∈ {0.1, 0.2, . . . , 0.8}, where
each token has probability ϵ of being replaced by a random token. After editing, we compute the
median p-value for watermark detection. Results are shown in Fig 4

E WAPITI EXPERIMENT

E.1 TRAINING PARAMETERS

We fine-tune models using AdamW with a peak learning rate of 2e−5, linear warmup over the first
10% of steps, and cosine decay scheduling. Training runs for 5,000 steps with a global batch size of
16. Prompts are constructed by taking the first 50 tokens of each sample, and max length is set
to 200.

Gradient clipping is applied at 1.0, weight decay is set to 0.1, and training is performed in bf16
mixed precision. For efficiency, we use FSDP optimization. Training Llama-2-7B and Llama-3.1-
8B each takes about 4 hours on 8 NVIDIA A100 80GB GPUs, while Qwen2.5-3B requires about 3
hours on 2 NVIDIA A800 80GB GPUs.

E.2 EXPERIMENT RESULTS

Following are the full experiment results.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

17

	Introduction
	Preliminaries of Watermarking
	Limitations of Watermark Distillation
	Method: Watemrark Parameter
	Experiments
	Experiment Setup
	Evaluation Metrics
	Results

	Analysis
	Effect of the Watermark Coefficient
	Robustness to Random Edits
	Parameter-Level Analysis

	Related Work
	Conclusion
	Detailed definition of watermark
	Method Detailed Derivation
	Limitation of Watermark Distillation
	Robustness to random text edit
	WAPITI Experiment
	Training Parameters
	Experiment Results

