Under review as a conference paper at ICLR 2026

WAPITI: A WATERMARK FOR FINETUNED OPEN-
SOURCE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Watermarking of large language model (LLM) generations embeds impercepti-
ble statistical patterns within text, enabling algorithmic detection. It provides a
promising defense for ensuring traceability, accountability, and integrity of open-
source models. However, current watermarking approaches face two key limita-
tions: incompatibility with fine-tuned models and intense training cost. In this
work, we propose WAPITI, a watermark framework tailored for fine-tuned mod-
els. Our contributions are threefold: (1) We introduce a train-efficient watermark-
ing that eliminates the need for large domain-specific datasets and requires sub-
stantially less training. (2) We enable seamless integration of our framework with
existing watermarking techniques, making it broadly compatible with diverse wa-
termarking schemes. (3) We provide an in-depth empirical analysis of the mech-
anism underlying watermark transfer, offering insights into how parameter-level
operations influence both watermark strength and model capabilities. Extensive
experiments across architectures and watermarking strategies demonstrate that
WAPITI effectively injects watermarks into fine-tuned models while preserving
their adapted capabilities and robustness.

1 INTRODUCTION

Large language models (LLMs; [Touvron et al.|[2023;|OpenAl et al., 2024) have been integrated into
many workflows and now play an increasingly important role in daily life. This rapid adoption also
raises concerns: it is often difficult to distinguish LLM-generated text from human-written content,
which may lead to misinformation or misuse. To address this, watermarking has been proposed
as a promising solution. Watermarking embeds hidden signals in model outputs that can later be
detected, enabling reliable identification of Al-generated text. This not only allows users to separate
Al content from human content for verification but also makes it possible to trace text back to the
source model, providing a technical foundation for regulatory oversight of language models.

Most prior work on watermarking has focused on closed-source models (Kirchenbauer et al., 2023
Aaronson, 2023; [Kuditipudi et al., 2024), which are black boxes to users. In this setting, the threat
model assumes adversaries try to remove the watermark without access to the model’s internal struc-
ture; they can only modify generation hyperparameters or apply text post-processing. Methods de-
signed for closed-source models usually insert watermark signals by adding extra components into
the model (Liu et al.l [2024)).

With the rise of powerful open-source models (Grattafiori et al., [2024; |Qwen et al.,[2025) and their
many finetuned variants, oversight of open-source models is equally important. However, the key
challenge is that the threat model here is fundamentally different: adversaries can access the full
model parameters and structure. This makes watermarking methods developed for closed-source
models difficult to adapt to open-source settings.

For open-source watermarking, (Gu et al.| (2024) has proposed using model distillation to embed
watermarks into models. However, this approach faces a serious limitation: it is incompatible with
fine-tuning. As shown in |Gu et al.[(2024), when a distilled model is finetuned on non-watermarked
data, its watermark quickly disappears. We further extend this setting and provide comprehensive
evidence of the incompatibility between watermark distillation and the fine-tuning process. In ad-
dition, distillation itself is resource-intensive. For example, current watermark distillation requires

Under review as a conference paper at ICLR 2026

[Legends: D Base Model E Fine-tuned Model = =3 Watermark Distillation === WAPITI Editing Q Model Output - Watermark Detector j

Fine-tuning Fine-tuning
Unwatermarked
3 IS P-value = 0.7
e H Omatn Olnst

Compute
. ’ A
=7

Watermark Vector
Base 5 Detector

§ B i
W“f[ﬁﬁ [7*7 /"‘\—T Es[mc L
marked Math Inst Base Math Inst J < —
.................................... Watermarked
P-value = 107®
V Undermined 0 Effective Watermark Integration O
Model Capability w/o Scacrifying Model Capability JA

T
Watermark Distillation Watermark Parameter Integration (ours) Watermark Detection

Unwater-
marked

Distillation

Task Capability
Task Capability

Figure 1: Watermark distillation (left) impairs models’ finetuned capabilities. WAPITI (middle)
uses watermark parameters to transfer watermarking from the base model to finetuned models. This
method can preserve the finetuned model’s capabilities while enabling it to generate watermarked
texts, where the green tokens indicate the watermarked tokens (right).

nearly 20M tokens (batch size 16, 256 tokens per step). Considering the countless finetuned model
variants, this overhead becomes prohibitive.

To address these limitations and make watermarking more practical for open-source models, we
propose a training-efficient strategy called WAPITI (WAtermark Parameter InTegratlon). Instead
of repeatedly distilling each finetuned model, WAPITI transfers watermark information from a dis-
tilled base model to finetuned models using parameter integration (see Figure [E2). This approach
significantly reduces the cost: watermark distillation is performed only once on the base model, and
the resulting watermark parameters can then be reused. (See Table] for overall comparison)

Our theoretical analysis and empirical experiments show that integrated finetuned models retain
their task-specific performance while exhibiting clear watermark signals. Moreover, by adjusting
the coefficient of injected watermark parameters, we can further reduce the training cost of the
initial distillation, lowering the overall computational burden.

Our main contributions are as follows:

* Problem. We systematically identify the vulnerability of watermark distillation: its incom-
patibility with fine-tuning, a key obstacle for watermarking open-source models.

* Method. To the best of our knowledge, we propose the first transfer-based watermark-
ing method for finetuned models (WAPITT). Our design is based on the observation that
watermarking causes an aligned distribution shift before and after distillation.

* Analysis. We provide a theoretical analysis of WAPITIs utility and examine the relation-
ship between watermark parameters and finetuned vectors to explain the mechanism of
watermark transfer.

¢ Evaluation. We evaluate WAPITI on Llama-2-7B, Llama-3-8B, and Qwen-2.5-3B. We
select medical QA and legal summarization as fine-tuning tasks. WAPITI achieves high
detectability, with a true positive rate (TPR) of 0.98 at a false positive rate (FPR) of 0.05,
while successfully retaining finetuned performance.

2 PRELIMINARIES OF WATERMARKING

Large Language Models (LLMs) are typically neural networks based on the transformer architecture.
Formally, we denote an LLM as fg : V* — A(V), which maps a prefix string * € V* to a
probability distribution over the vocabulary A(V) for predicting the next token. The conditional
distribution of the next token is written as fg(- | «). The generation process involves two main
steps: logit generation followed by token sampling (Vaswani et al.,[2017)).

Watermarking modifies the generation process so that hidden, traceable information is embedded
into the output text. This is usually done during decoding, either at the logit stage or the sampling
stage, in a way that guides the output distribution toward patterns recognizable by a detector. For

Under review as a conference paper at ICLR 2026

Method Closed-source Open-sourced Open-sourced Application

LLMs Base LLMs Fine-tuned LLMs Efficiency Vulnerability
Decoding-based v X X N/A Architecture Modification
Distillation-based N/A v X Crr Finetune Incompatibility
WAPITI N/A N/A v Crr/N N/A

Table 1: A taxonomy of LLM watermarking. ”N/A” indicates that the method is not designed for
the corresponding setting. And Cpp indicates the computation cost of watermark distillation. N
denotes the number of models of the same type, highlighting that WAPITI requires only a single
watermark distillation to apply across all models of that type.

example, KGW (Kirchenbauer et al., [2023)) increases the probability of certain tokens during gener-
ation. A detector can then identify Al-generated text based on the frequency of token occurrence.

Formally, a watermarking algorithm }V uses a secret key ¢ to modify the original output distribution
fo(+ | x) into a watermarked version. A detector D, given the same key ¢, attempts to recover the
embedded signal. For a given text z and key ¢, the detector computes a p-value under the null
hypothesis that = is not watermarked. If the p-value is below a predefined threshold, the text is
classified as model-generated. Further details are provided in Appendix

The key evaluation metrics for watermarking are: (i) Detectability: The watermark should allow
reliable detection of all model-generated outputs. (ii) Utility: The watermark should not signifi-
cantly degrade the model’s original performance. (iii) Security: The watermark should be hard to
remove without heavily altering the output. For open-source models, removal should not be possible
without impairing their overall capability.

Logit-based watermarking (KGW). This method directly modifies output logits (Kirchenbauer
et al.| 2023). At each step, the vocabulary is split into green and red lists based on the previous
k tokens. For &k = 0 (Zhao et al 2023b), the split is fixed; for £ > 1, it depends on context. A
fraction «y of tokens are marked green, and their logits are increased by J, making them more likely
to be sampled. Detection tests whether the observed proportion of green tokens exceeds 7, yielding
a p-value.

Sampling-based (AAR). This method (Aaronson| |2023)) applies Gumbel-Max sampling. For token
;, the previous k tokens and key ¢ generate a pseudorandom score vector r; € [0,1]V!. Given
next-token distribution p; € A(V), AAR samples

T; = arg max (logpm- — log(—log rw-)),
JjEV
introducing controlled randomness. This yields higher cumulative score sums in watermarked text,
so detection uses the score sum to compute a p-value under the null hypothesis.

3 LIMITATIONS OF WATERMARK DISTILLATION

A key characteristic of open-source models is their flexibility: base models can be fine-tuned to gain
new capabilities. Therefore, for watermarking methods designed for open-source models, compati-
bility with fine-tuning is critical. In this section, we investigate whether watermark distillation (Gu
et al.; 2024) can embed watermarks into fine-tuned models. While (Gu et al.| (2024) briefly noted
that fine-tuning could be considered an attack against watermarks, we extend their setting and sys-
tematically evaluate whether watermark distillation remains compatible with fine-tuning. In simple
terms, the goal is to obtain a model that preserves watermark detectability while also retaining strong
fine-tuned performance.

Setup. We evaluate three strategies for integrating watermarking with fine-tuning: (i) fine-tuning a
watermark-distilled model on the domain dataset, (ii) applying watermark distillation to a model that
has already been fine-tuned, and (iii) paraphrasing the domain dataset with a watermarked model and
then fine-tuning on the resulting watermarked corpus. These settings cover the main possible orders
of applying watermarking and fine-tuning. The full experimental details are provided in Appendix[C]

Under review as a conference paper at ICLR 2026

(1) finetune a watermark-distilled model on the domain dataset. (ii) Apply watermark distillation to
an already fine-tuned model. (iii) Use a watermarked model to paraphrase the domain dataset and
finetune on the resulting watermarked corpus.

Our experiments use the Llama-3.1-8B-Instruct @ DistilFinctune ‘ Watermarked-Finetane
model as the backbone, ensuring alignment with
state-of-the-art instruction-tuned models. We adopt
the KGW watermarking scheme (Kirchenbauer
et al.l |2023) and select legal summarization (Shen
et al.l [2022) as the fine-tuning task, as it is a high-
entropy generative domain well-suited for testing
watermark detectability.

[0 Fivetune-Distil Y WAPITI

0.88
0.86 1 Stronger Detectability

0484_. /

0.80 1 Stronger
0.78 1 ‘

0.76 -
Approach 1 (watermark-then-finetune). As reported ; . '

in|Gu et al.|(2024), fine-tuning a watermarked model —log;o(Watermark p-value)
on non-watermarked content quickly degrades wa-
termark strength. We observe the same effect: the
model’s watermark detectability drops to a p-value
of 0.45, close to random (0.5), effectively erasing the
watermark.

e

)

¢}
L

BERTScore-F1

Analysis. Figure [2] shows the results for the three
strategies, along with WAPITI.

Figure 2: Watermark distillation cannot en-
sure both strong detectability and fine-tuning
performance.

Approach 2 (finetune-then-watermark). Applying watermark distillation after fine-tuning causes the
model to forget its domain-specific knowledge. Since watermark distillation itself is essentially a
form of fine-tuning, this leads to catastrophic forgetting (Luo et al., [2025). The resulting model
performs similarly to the base model, losing most of the gains from domain fine-tuning.

Approach 3 (joint watermark—finetune). Here we paraphrase the domain dataset with a watermarked
model and finetune on the watermarked data. However, this approach also fails: the resulting model
achieves neither strong watermark detectability nor strong fine-tuned performance. We attribute this
to two reasons: (1) the paraphrased dataset is of lower quality than the original dataset, and (2) the
domain dataset is relatively small, less than 10% of the size of our watermark distillation dataset,
making it insufficient to sustain both watermarking and fine-tuning.

Overall, our findings show that watermark distillation fails to embed watermarks into fine-tuned
models, as it can’t simultaneously preserve watermark detectability and domain-specific knowledge.

4 METHOD: WATEMRARK PARAMETER

In this section, we focus on deriving the watermarked parameters of fine-tuned models. As men-
tioned in watermarks only perturb the next-token generation x; according to previous k to-
kens zy_, - - - , x,—1 and watermark key ¢, so that watermark perturbation in next-token probability
fo(x)'| remains the same across different models, where x is the input prompt. We denote the
watermark perturbation as 0 - g(x), where § represents the intensity of the shift, analogous to the
watermark shift 6 in KGW and g() is analogous to the mask of green list in KGW watermarking

that indicates which part of vocabulary will be applied watermark shift. Let Opye, Héase represent

parameters of the base model and the watermark-distilled base model, respectively. So we have:
fop (%) = foruu(®) + Gpase - (). (1)

Similarly, we use @gr and BITT to represent the parameters of the fine-tuned (FT) models, as well as
their watermark-distilled counterparts, respectively. Our ultimate goal is, given an unwatermarked

0, to find the parameter HIT:T such that:
for (®) = for () + dFr - g(), (2)

where Jpr is a hyperparameter that controls the watermark detectability.

"For brevity, we identify the next-token probability predictor fo(- |) : V — Rasavector fo(x) € A(V).

Under review as a conference paper at ICLR 2026

Then by using the assumption from previous research (Ilharco et al.l [2023} Jiao et al. [2024; [Yang
et al., [2024), we find that the gradient difference between the fine-tuned and base models, when
multiplied by the watermarked parameter difference of bthe ase model, is approximately zero. The
detailed derivation of the assumption can be found in Append [B}

(Vo for () — Vo fog,. (T)) Abpase = 0. 3)

By rearranging Eq. (I8), we conclude that the gradients of the fine-tuned and base models are ap-
proximately equal when applied to the watermarked parameter difference:

vaGFT (w)AeBase ~ v@fOBN (w)AeBase~ (4)

In this way, we obtain the relationship between the gradient of the fine-tuned model and base models.
And we now proceed to derive our target fg,. (x). First, by substituting g(x) from Eq. (1)) into Eq.

and use Eq.

)
for (@) = for (@) + ((5B”<vefem<w>, Abpase) + 0<||A93ase||2>) : &)
ase
We define A\pr = %, where dpr is a hyperparameter, making Agrr a tunable factor. Next, we
substitute the gradient of base model in Eq. () with the gradient of fine-tuned model using Eq. (T9):
fg;r ("B) ~ fBFT (-’B) + <V0f0]:’r (:13),)\FT : A0Base> +0 (”AaBase”Q) ; (6)
~ feFTJl‘)\FT'ABBase (CE) (7

We treat Eq. (6) as a Taylor expansion of the next-token probability of the model with respect to its
parameters. Based on Eq. (7)), we can select:

Ot 1= Orr + Arr - Abpyge. ®)

According to derivation, we propose WAtermark Parameter InTegratlon (WAPITI), which inte-
grates watermark-related parameters of base model to fine-tuned models. The algorithm is shown
in Alg. |1} WAPITI is compatible with various watermarking strategies: after distilling a base model
with the desired watermark (Step 1), the watermark can be seamlessly transferred to fine-tuned mod-
els without additional costs (Step 3). This approach provides an efficient and effective solution for
regulating open-source models.

Algorithm 1 WAPITI
Input: base model parameter O, fine-tuned model parameter Ogr, watermark coefficient A\gr
Output: watermarked fine-tuned model parameter OET

1. 0L « WatermarkDistillation (6,)

Base

2: ABOpase +— GT — Opase

Base

3: HIET — 01:'1“ +)\FT ' A0Base

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

We design experiments to evaluate the performance of WAPITI from two perspectives: watermark
strength and fine-tuning ability, tested across multiple models and watermarking strategies.

Watermarks and hyperparameters. Since our framework is compatible with different water-
marking schemes, we select two representative watermarking method spanning logit-based water-
mark KGW, and sampling-based watermark AAR, each with standard hyperparameter settings. To
ensure fair comparison, we adopt the configurations used by Gu et al.|(2024). Specifically, for KGW
we set k = {0,1}, v = 0.25, and § = {1, 2} and select AAR’s hyperparameter k¥ = {2, 3,4} The
watermark coefficient, A, is varied in the range [0, 4].

Datasets and models. To evaluate the generality of WAPITI, we experiment on three widely
used open-source LLMs: Llama-2-7B, Llama-3.1-8B, and Qwen2.5-3B. These models differ in size

Under review as a conference paper at ICLR 2026

and architecture, and their popularity ensures the practical relevance of our results. For watermark
distillation, we use the RealNewsLike subset of the C4 dataset (Raffel et al., [2020). To avoid data
leakage and ensure valid detectability results, we apply deduplication to remove overlapping samples
before distillation.

Training parameters. We adopt standard fine-tuning settings with AdamW optimizer, linear
warmup, and cosine decay scheduling. Each model is trained for 5k steps with a moderate batch
size and bf16 mixed precision. Full hyperparameter details, including learning rates, prompt con-
struction, and hardware configurations, are provided in Appendix [E]

5.2 EVALUATION METRICS

We assess WAPITI using three criteria: watermark detectability, generation quality, and down-
stream fine-tuned performance. These capture both watermark strength and the preservation of
model abilities across instruction-following, question answering, and summarization tasks.

Watermark detectability. We measure detectability using the median p-value and the true pos-
itive rate (TPR) at fixed false positive rate (FPR) thresholds. The p-value is computed using the
z-score method; a lower p-value indicates stronger detectability. TPR is computed using equal-sized
sets of human-written and watermarked model outputs, truncated to the same length for consistency.
We report TPR at FPR values of 0.05 and 0.1 to reflect watermark applicability under realistic de-
tection settings.

Generation quality. We assess generation quality using two metrics: perplexity and seq-rep-3
(trigram repetition). Perplexity is computed with Llama-3.1-8B-Instruct (Grattafiori et al., 2024)
to ensure consistency across models. Seq-rep-3 quantifies repetition by measuring the proportion
of repeated trigrams in the generated outputs (Welleck et al.l 2019). For evaluation, we use the
OpenWebText dataset (Gokaslan & Cohen, [2019), which differs from the watermark distillation
dataset, ensuring that the results reflect the generalizability of WAPITI.

Fine-tuning abilities. To verify that WAPITI preserves task performance, we evaluate on:
1) Question Answering: MedicalQA (Divi, 2023), with 6.3k domain-specific medical questions.
ii) Summarization: Multi-LexSum (Shen et al.| [2022)), containing 9.2k legal case summaries. We
use Bertscore (Zhang et al.l|2019) as a metric since we are testing on open-ended generation tasks.

5.3 RESULTS

Watermark Detectibility Generation Quality Training Cost
p-value(]) \TPR@0.0S(T) Perplexity(i)\seq-rep-3(¢) GPU Hours

Scheme Model
| WD WAPITI | WD WAPITI | WD WAPITI| WD WAPITI| WD WAPITI

Llama-2 [3.60 x 107°¢ 3.80 x 10~'°
Kgw Llama-3.1{6.05 x 10798 2.36 x 10718
Qwen2.5 |7.19 x 107% 4.67 x 1073

1.00 1.00 |6.17 10.37
0.81 1.00 | 8.58 15.34
0.98 1.00 |10.20 14.15

0.05 0.05 |32.00 1.60
0.04 0.04 |32.00 1.60
0.03 0.04 | 6.00 0.30

0.04 0.05 [32.00 1.60
0.03 0.04 |32.00 1.60
0.04 0.03 | 6.00 0.30

Llama-2 [3.62 x 1072 4.13 x 10~

Llama-3.1[9.13 x 1072 6.89 x 10716
AAR —13 —14

Qwen2.5 [3.21 x 10 1.89 x 10

091 089 |[17.32 21.21
0.94 088 [12.43 15.31
0.90 0.90 |17.68 16.68

Table 2: Main results on watermark detectability, generation quality, and training cost (GPU hours)
for WAPITI compared with traditional Watermark Distillation (WD). WAPITI achieves stronger
detectability with significantly lower computation cost.

Performance Comparison We first compare the watermark performance of WAPITI with tra-
ditional watermark distillation (WD) on base models. Table E] presents the overall results. In this
experiment, WAPITI uses watermark parameters extracted from a model trained with only 1000
steps of watermark distillation, while WD models are trained for 5000 steps. The watermark coef-
ficient Apr is set to 1.5, which provides a balance between watermark detectability and generation
quality.

Under review as a conference paper at ICLR 2026

[Base EE WAPITI-KGW EE WAPITI-AAR E Finetuned

0.90
=@~ Ko0-deltal

KO-delta2

=

~~ Kl-deltal

—- K2-delta2

%
&
w

Median p-value

BertScore-F1
o
ES

=
-
=

0.2 0.4 0.6 0.8

Proportion of tokens edited

0.0

QA
Llama-2-7B

Summary Summary QA

Llama-3.1-8B

Summary QA
Qwen2.5-3B

Figure 3: WAPITI compared with base and fine-tuned mod-
els. WAPITI preserves the capabilities of the fine-tuned model,
achieving performance close to the original finetuned models.

Figure 4: Watermark p-values of
generations with various propor-
tions of random corruption.

The results show that WAPITI achieves watermark detectability comparable to, and in some cases
better than, full watermark distillation, while largely preserving model generation quality. For the
KGW watermark, WAPITI even surpasses WD in detectability, though with slightly higher perplex-
ity. However, the seq-rep-3 values remain nearly identical, indicating that the watermark parameters
avoid the common repetition issues seen in watermarked models. But for the AAR watermark,
WAPITI shows slightly inferior TPR @0.05, which is still significantly distinctive.

In terms of training cost, WAPITI is significantly more efficient. Because watermark strength can be
enhanced by adjusting the watermark coefficient A pp, fewer distillation steps are needed to extract
meaningful watermark parameters. Our experiments show that 1000 steps are sufficient, reduc-
ing training cost by about 80% compared with traditional WD. Moreover, the extracted watermark
parameters can be reused to transfer watermarks to other fine-tuned models, further reducing the
per-model cost. For example, when applied across four different models, the average cost of water-
marking per model is only 5% of that required by traditional distillation.

Model Task | p-value (]) | TPR@0.1 (1) | TPR@0.05 (1) | Perplexity / seq-rep-3 ()
| KGW AAR |KGW AAR |KGW AAR | KGW AAR
QA 232 x 1071 1.57 x 1072 1.00 0.91 | 1.00 0.89 | 8.13/0.03 22.41/0.09
Llama-2 Instruct |3.39 x 107% 3.92 x 107**| 1.00 0.90 | 1.00 0.85 | 4.96/0.06 15.70/0.05
Sum [4.67 x 107! 6.84 x 107*3| 1.00 0.90 | 1.00 0.86 | 8.11/0.09 19.54/0.06
QA 4.00 x 1072' 1.20 x 107**| 1.00 0.87 | 1.00 0.84 [14.89/0.03 18.51/0.04
Llama-3 Instruct|5.20 x 1077 3.27 x 10| 1.00 0.88 | 1.00 0.86 |17.94/0.03 18.53/0.04
Sum [1.18 x 107% 7.80 x 107'%| 1.00 0.88 | 1.00 0.86 |14.05/0.06 16.02/0.06
QA 9.36 x 107 8.52x107'*| 1.00 092 | 1.00 0.90 |18.09/0.01 19.28/0.03
Qwen-2.5 Instruct |8.50 x 107°7 2.41 x 107**| 1.00 0.90 | 1.00 0.87 |16.78/0.02 18.27/0.04
Sum [3.21 x107% 1.65x 107*3| 1.00 0.91 | 1.00 0.89 |21.14/0.02 20.50/0.03

Table 3: Results of WAPITI on fine-tuned models with KGW and AAR. Each task corresponds to
the fine-tuning type. TPR@0.1 denotes the true positive rate at a false positive rate of 0.1.

Watermark Detectability

Table [3] reports the results for watermark detectability and generation quality on three different
finetuned models to prove its compatibility with finetuned models. For the main comparison, we
focus on the KGW (k = 1,+ = 0.25) and AAR (k = 2) watermark settings; full experimental
results are provided in Appendix [E| For WAPITI, all watermark parameters are extracted from a
model trained with 1000 steps of watermark distillation, and we select the most suitable watermark
coefficient A pp to balance detectability and generation quality.

The results show that both watermark types achieve strong detectability after transfer. The near-
perfect TPR scores (close to 1.0) indicate that the watermarks are highly reliable. In addition, model

Under review as a conference paper at ICLR 2026

Watermarked P-Value ‘Watermarked Perplexity Watermarked Seq-Rep-3
— 107 800 1
< 054
S qp-16 .
7] £ 600 4 7 0.44
&0 1926 = o
2 5 é
S 0% 2400 = 031
= Leckpoint 1000 3 3 .,
= 0% t 2000 A o 0.2
= 200 A
- 0.1
04 0.0 4
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Coefficient Coefficient Coefficient

Figure 5: Effect of watermark coefficient A on detectability and generation quality.

generation quality is largely preserved: perplexity shows only minor increases, while seq-rep-3
remains almost unchanged.

When comparing across models, we observe that different architectures respond differently to wa-
termark parameters. Between the two watermark schemes, KGW consistently outperforms AAR in
both detectability and generation quality. We attribute this to the relative complexity of the water-
marking process: KGW modifies logits directly, which can be interpreted as learning a “vocabulary
preference” during distillation. In contrast, AAR involves more complex semantic encoding, making
it harder for the model to fully capture during distillation and subsequent parameter transfer.

Fine-tuned Capability. Figure [3] shows model performance before and after fine-tuning. The
WAPITI fine-tuned models achieve gains in both question answering and summarization tasks com-
pared with the base model, and their performance remains close to that of models fine-tuned without
watermarking. This demonstrates that WAPITT is compatible with the fine-tuning process.

To ensure fairness, we distilled watermarks using the RealNewsLike subset of the C4 dataset, ap-
plying careful deduplication with LLM assistance. For evaluation, we specifically selected Medical
QA and legal summarization tasks, which introduce domain-specific knowledge not contained in
the base models. This ensures that performance improvements in the WAPITI fine-tuned models are
derived from the fine-tuning process itself, rather than from watermark parameters.

6 ANALYSIS

In this section, we further analyze the mechanism behind WAPITI. We focus on three aspects: (i)
the role of the watermark coefficient Ar7 and its effect on watermark detectability and generation
quality, (ii) robustness of WAPITI against random-edit attacks, and (iii) why WAPITI remains com-
patible with fine-tuned models from a parameter-level perspective.

6.1 EFFECT OF THE WATERMARK COEFFICIENT

We first examine the role of the watermark integration coefficient A pp. By varying A\pr, we measure
how watermark detectability and generation quality change. For this experiment, we use the KGW
watermark (k = 1,6 = 2) and evaluate on three models: Llama-3.1-8B, Llama-2-7B, and Qwen2.5-
3B. Complete results are provided in Appendix [E]

Figure 5] shows the effect of increasing A pr. For watermark detectability, when A g7 is in the range
[0, 2], the p-value decreases along an exponential trend with respect to log probability, confirming
that App effectively controls watermark strength. For generation quality, when App is small (ap-
proximately < 0.2), both perplexity and seq-rep-3 remain stable, indicating that model quality is
preserved.

However, as \pp increases further, both detectability and generation quality collapse, showing that
watermark parameters begin to interfere strongly with the fine-tuned model. Therefore, A g7 pro-
vides a controllable trade-off between watermark detectability and generation quality in WAPITIL.

Under review as a conference paper at ICLR 2026

KO-deltal KO-delta2 Kl-deltal Kl-delta2 AAR-K2 AAR-K3 AAR-K4

QA 01% 0.1% 01% 01% 01% 01% 0.1%
Summary 0.3% 0.5% 0.2% 0.2% 0.3% 0.3% 0.3%
Instruct 0.2% 0.2% 0.1% 0.2% 0.6% 0.5% 0.5%

Table 4: Cosine similarity between task vectors and watermark parameters, showing that watermark
parameters are nearly orthogonal to task vectors.

6.2 ROBUSTNESS TO RANDOM EDITS

To test robustness, we apply random-edit attacks by replacing tokens in generated text with ran-
dom alternatives and then evaluating watermark detectability. Details of the setup are given in
Appendix D] As shown in Figure @] watermark p-values remain statistically significant until the edit
proportion reaches about 20%—-30%. This indicates that WAPITI maintains strong robustness even
under substantial perturbations.

6.3 PARAMETER-LEVEL ANALYSIS

To understand why WAPITI remains compatible with fine-tuned models, we analyze parameter di-
rections following (Ilharco et al., [2023). In short, we compare watermark parameters with task
vectors (parameter differences induced by fine-tuning) and find them to be nearly orthogonal (Ta-
ble[d). This orthogonality explains why, at small A 7, the model retains both generation quality and
fine-tuned capabilities.

7 RELATED WORK

Text watermarking. Earlier works in text watermarking typically embedded information through
post-processing of texts, closely resembling steganography (Venugopal et al., 2011 [Yang et al.,
2021). More recent studies have shifted towards decoding-based watermarking, hiding information
by perturbing the text during the decoding phase (Kirchenbauer et al., 2023} |Aaronson, 2023} |[Zhu
et al., [2024} |[Krishna et al., [2023} [Kuditipudi et al., 2024} Zhao et al.| 2023a; (Christ et al.| 2023} Wu
et al., 2024; Liu & Bu, 2024} Giboulot & Teddy} 2024; Lu et al.| 2024} Ren et al.,2024; 'Wang et al.}
2024).

Model interventions. Beyond fine-tuning, researchers have explored parameter-level interven-
tions to modify model behaviors. Key approaches include model patching (Goel et al., 2020; [lharco
et al.| 2023} [Murty et al.} 2022} |Sung et al.,|2021)), parameter editing (Mitchell et al., 2022ajjb; [San-
turkar et al.| |2021)), and model alignment (Askell et al., 2021; |Glaese et al., 2022} Kasirzadeh &
Gabriel, 2022). Compared to retraining or fine-tuning, model intervention offers a more efficient
way to introduce new capabilities into models.

8 CONCLUSION

In this paper, we tackle the challenge of watermarking fine-tuned open-source language models,
where existing distillation methods are costly and incompatible with fine-tuning. We propose
WAPITI, a training-efficient approach, thereby enabling reliable watermarking without the need
for repeated distillation.

Our theoretical analysis and empirical evaluations on Llama-2-7B, Llama-3-8B, and Qwen-2.5-3B
show that WAPITI preserves the fine-tuned performance of models on tasks such as medical QA and
legal summarization while achieving strong detectability. These results demonstrate that parameter
integration offers a practical and scalable path for watermarking open-source models.

Future work could further improve WAPITI by exploring watermarking strategies specifically de-
signed for transfer, refining the extraction and injection of watermark parameters to minimize inter-
ference, and optimizing the distillation of the base watermark model to reduce resource demands.
Together, these directions may enhance the robustness, efficiency, and applicability of watermarking
in open-source ecosystems.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.

The paper uses only publicly available datasets and evaluates in a transparent, responsible manner
in accordance with the code of ethics of ICLR.

REPRODUCIBILITY STATEMENT.

To ensure reproducibility, for datasets details, we include detailed statistics and descriptions of the
datasets in Sec.[5.2] For experimental setup, we include a detailed description of adopted evaluation
metrics, machines, dataset splits, and hyperparameter settings in Section[5.T]and Appendix

LLM USAGE DISCLOSURE

We use GPT-4 to assist with grammar polishing and drafting some background text. All scientific
claims, analyses, proofs, and experiments were verified and written by the authors. No experimental
design, result interpretation, or mathematical content was generated by an LLM without author
oversight.

REFERENCES

Scott Aaronson. Watermarking of large language models. Large Language Models and Trans-
formers Workshop at Simons Institute for the Theory of Computing, 2023. URL https:
//www.youtube.com/watch?v=2Kx9JbSMZgA. Accessed: September 16, 2024.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Her-
nandez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack
Clark, Sam McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a labora-
tory for alignment, 2021. URL https://arxiv.org/abs/2112.00861,

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models, 2023.
URLhttps://arxiv.org/abs/2306.09194.

Eswar Divi. Medical_qa dataset. https://huggingface.co/datasets/eswardivi/
medical_gal 2023. contains ~6.31k training examples in the “train” split.

Eva Giboulot and Furon Teddy. Watermax: breaking the 1lm watermark detectability-robustness-
quality trade-off, 2024. URL https://arxiv.org/abs/2403.04808.

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
beth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham,
Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth
Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona
Mokra, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William
Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey
Irving. Improving alignment of dialogue agents via targeted human judgements, 2022. URL
https://arxiv.org/abs/2209.14375.

Karan Goel, Albert Gu, Yixuan Li, and Christopher R€. Model patching: Closing the subgroup
performance gap with data augmentation, 2020. URL https://arxiv.org/abs/2008.
06775,

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and Abhishek Kadian. The
llama 3 herd of models, 2024. URL https://arxiv.orqg/abs/2407.21783.

10

https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2306.09194
https://huggingface.co/datasets/eswardivi/medical_qa
https://huggingface.co/datasets/eswardivi/medical_qa
https://arxiv.org/abs/2403.04808
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2008.06775
https://arxiv.org/abs/2008.06775
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of
watermarks for language models. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=9k0krNzvl1V.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=6t0Kwf8—-jr.

Cathy Jiao, Gary Gao, and Chenyan Xiong. In-context probing approximates influence function for
data valuation, 2024. URL https://arxiv.org/abs/2407.122509.

Atoosa Kasirzadeh and Iason Gabriel. In conversation with artificial intelligence: aligning language
models with human values, 2022. URL https://arxiv.org/abs/2209.00731.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 17061-17084. PMLR, 2023. URL
https://proceedings.mlr.press/v202/kirchenbauer23a.htmll

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
575c450013d0e99%e4blecf82bdlafaad—-Abstract-Conference.html.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. Trans. Mach. Learn. Res., 2024, 2024. URL https://
openreview.net/forum?id=FpaCL1MO2C.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip S. Yu. A survey of text watermarking in the era of large language models,
2024. URL https://arxiv.org/abs/2312.07913.

Yepeng Liu and Yuheng Bu. Adaptive text watermark for large language models, 2024. URL
https://arxiv.org/abs/2401.13927.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text watermarking
detection method, 2024. URL https://arxiv.org/abs/2403.13485.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning, 2025. URL
https://arxiv.org/abs/2308.08747.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale, 2022a. URL https://arxiv.org/abs/2110.113009.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
based model editing at scale, 2022b. URL https://arxiv.org/abs/2206.06520.

Shikhar Murty, Christopher D. Manning, Scott Lundberg, and Marco Tulio Ribeiro. Fixing model
bugs with natural language patches, 2022. URL https://arxiv.org/abs/2211.03318.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, and Diogo Almeida. Gpt-4 technical report, 2024. URL https://arxiv.
org/abs/2303.08774.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, and Bo Zheng. Qwen2.5 technical
report, 2025. URL https://arxiv.org/abs/2412.15115,

11

https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/2407.12259
https://arxiv.org/abs/2209.00731
https://proceedings.mlr.press/v202/kirchenbauer23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://arxiv.org/abs/2312.07913
https://arxiv.org/abs/2401.13927
https://arxiv.org/abs/2403.13485
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/2211.03318
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.15115

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1-140:67, 2020. URL https://jmlr.org/
papers/v21/20-074.html.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaigiang Wang, Dawei Yin, and Jiliang Tang. A
robust semantics-based watermark for large language model against paraphrasing, 2024. URL
https://arxiv.org/abs/2311.08721l

Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and Alek-
sander Madry. Editing a classifier by rewriting its prediction rules, 2021. URL https:
//arxiv.orqg/abs/2112.01008.

Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg, Margo Schlanger, and Doug Downey. Multi-
lexsum: Real-world summaries of civil rights lawsuits at multiple granularities. Advances in
Neural Information Processing Systems, 35:13158-13173, 2022.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks, 2021.
URLhttps://arxiv.org/abs/2111.098309.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, and Amjad Almahairi. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.
09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz Och, and Juri Ganitkevitch. Watermark-
ing the outputs of structured prediction with an application in statistical machine translation.
In Regina Barzilay and Mark Johnson (eds.), Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 1363—-1372, Edinburgh, Scotland, UK., July
2011. Association for Computational Linguistics. URL https://aclanthology.org/
D11-1126.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
Towards codable watermarking for injecting multi-bits information to llms, 2024. URL https:
//arxiv.org/abs/2307.15992.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and
accessible distribution-preserving watermark for large language models, 2024. URL https:
//arxiv.org/abs/2310.07710.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu.
Tracing text provenance via context-aware lexical substitution, 2021. URL https://arxiv.
org/abs/2112.07873.

Ziao Yang, Han Yue, Jian Chen, and Hongfu Liu. Revisit, extend, and enhance hessian-free influence
functions, 2024. URL https://arxiv.org/abs/2405.17490.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text, 2023a. URL https://arxiv.org/abs/2306.17439,

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text, 2023b. URL https://arxiv.org/abs/2306.17439.

Chaoyi Zhu, Jeroen Galjaard, Pin-Yu Chen, and Lydia Y. Chen. Duwak: Dual watermarks in large
language models, 2024. URL https://arxiv.org/abs/2403.13000,

12

https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2311.08721
https://arxiv.org/abs/2112.01008
https://arxiv.org/abs/2112.01008
https://arxiv.org/abs/2111.09839
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://aclanthology.org/D11-1126
https://aclanthology.org/D11-1126
https://arxiv.org/abs/2307.15992
https://arxiv.org/abs/2307.15992
https://arxiv.org/abs/2310.07710
https://arxiv.org/abs/2310.07710
https://arxiv.org/abs/2112.07873
https://arxiv.org/abs/2112.07873
https://arxiv.org/abs/2405.17490
https://arxiv.org/abs/2306.17439
https://arxiv.org/abs/2306.17439
https://arxiv.org/abs/2403.13000

Under review as a conference paper at ICLR 2026

A DETAILED DEFINITION OF WATERMARK

In this section, we provide formal definitions of the watermarking schemes used in this work:
KGW (Kirchenbauer et al.,|2023)) and AAR (Aaronson, [2023)).

KGW. For the KGW watermark, we adopt the same notation as in the main text. Let WEGW
denote the watermarking algorithm, fg(- |) the next-token distribution, and ¢ the watermark key.
The hyperparameters k, -y, control the watermarking process: - k: number of preceding tokens
used to construct the green list, - v: proportion of the vocabulary assigned to the green list, - §: logit
shift applied to green-list tokens.

The watermarked distribution is:
f6 " (@, ¢, k,7,6) = softmax(log fo(- | #) + 6 - WKW (@, p,.. ;637 VD), (9)

WKGW

where outputs a mask over the vocabulary indicating membership in the green list.

Detection is performed by counting green-list tokens and computing the corresponding binomial
p-value:

||

DKW (2, ¢,7) =1 - BinoCDF | > WX W(z, 4 .. 2 13¢5 V) | (10)

t=1
where BinoCDF is the cumulative distribution function of the binomial distribution.

AAR. For the AAR watermark, we again let WA4E denote the algorithm, fg(- | x) the next-
token distribution, and ¢ the watermark key. AAR has a single hyperparameter k, the number of
preceding tokens used to generate pseudorandom scores:

ri = WA (2, 1 i, @) ~ Unif(0, 1)V, (11)
Token generation follows the Gumbel-Max rule:

MR = arg max (log fo(j | z) — log(—log rf)) . (12)
JEV

Detection is based on the cumulative score statistics, evaluated under a gamma distribution:

||

DAAR(ac, 9)=1- GammaCDF(Z — log(l — WAAR(xt_k, e X1, ¢)-'L't); |x| — &, 1),
t=k+1

(13)

where GammaCDF is the cumulative distribution function of the Gamma distribution, and the un-
derbraced term corresponds to the score assigned to token x;.

B METHOD DETAILED DERIVATION

First we observe that the parameter difference between the fine-tuned model and the base model,

Orr— 03,4, is approximately orthogonal to the parameter difference caused by watermarking, Hgase —
0Base:

<0FT - eBasea OT - 0Base> ~ 0. (14)

Base
Let ® denote the tensor product between differentiation operators, and let X 1, X5 denote the mode-1
and mode-2 tensor—matrix product, respectively. Let Hpye () := Vg @V fo,... (x) be the Hessian.
As shown in prior studies, every channel of Hg, () is approximately the identity matrix I (Jiao
et al.| 2024} Yang et al.l |2024)). Combining it with our observation in Eq. @]) we hypothesize that:
HBase(x) X1 (BFT - BBase) X9 (9]];335 - BBase) ~ 0. (15)

The first-order Taylor expansion of Vg fg,, () around 6 = Op, is:

VGfOFT(w) = VGfBBase(w) + HBase(w) X1 (HFT - 0Base) + O(HHFT - 6Base||2)a (16)

13

Under review as a conference paper at ICLR 2026

HBase(w) X1 (0FT - aBase) ~ vaGFT(w) - v@f@gasc ((B))

Next, substituting Eq. into Eq. (I5), we find that the gradient difference between the fine-tuned
and base models, when multiplied by the watermarked parameter difference of the base model, is
approximately zero:

(Vefen(ﬁﬂ) - V@f@gase (m))AgBase ~ 0. (18)

By rearranging Eq. (I8), we conclude that the gradients of the fine-tuned and base models are ap-
proximately equal when applied to the watermarked parameter difference:

V@fGFT (w)ABBase ~ Vofegase (Sc)AaBase- (19)

C LIMITATION OF WATERMARK DISTILLATION

Dataset. We use the multi-lexsum dataset, which contains 9.2k legal case summaries. For
watermark distillation, we use the RealNewsLike split from the C4 (Raffel et al.,2020) dataset.

Fine-tuning. Fine-tuning is performed using the Trainer APl from Transformers. We train
for 500 steps with a batch size of 8, using bf 1 6 for mixed-precision training. Optimization is carried
out with DeepSpeed ZeRO-2. Each run takes about 1 hour on § NVIDIA A100 80GB GPUs.

Distillation. For watermark distillation, we train for 5,000 steps with a batch size of 16. The first
50 tokens of each sample are used as the prompt, and the maximum generation length is set to 200.

Watermarked Dataset Generation. To construct the watermarked dataset, we use Llama-3.1-
70B. Generation is performed with deterministic decoding (no sampling).

D ROBUSTNESS TO RANDOM TEXT EDIT

In this experiment, we use the WAPITI model to generate samples from OpenWebText prompts
under the KGW watermark with & € {0,1}, v = 0.25, and § € {1,2}. The generation length is
fixed at 200 tokens. We then apply random edits with proportions € € {0.1,0.2,...,0.8}, where
each token has probability € of being replaced by a random token. After editing, we compute the
median p-value for watermark detection. Results are shown in Fig[4]

E WAPITI EXPERIMENT

E.1 TRAINING PARAMETERS

We fine-tune models using AdamW with a peak learning rate of 2e ~°, linear warmup over the first
10% of steps, and cosine decay scheduling. Training runs for 5,000 steps with a global batch size of
16. Prompts are constructed by taking the first 50 tokens of each sample, and max_length is set
to 200.

Gradient clipping is applied at 1.0, weight decay is set to 0.1, and training is performed in bf16
mixed precision. For efficiency, we use FSDP optimization. Training Llama-2-7B and Llama-3.1-
8B each takes about 4 hours on 8 NVIDIA A100 80GB GPUs, while Qwen2.5-3B requires about 3
hours on 2 NVIDIA A800 80GB GPUs.

E.2 EXPERIMENT RESULTS

Following are the full experiment results.

14

Under review as a conference paper at ICLR 2026

Watermark Vector Analysis
Model: Qwen2.5_3B
Watermark: Qwen2.5_3B_logit_watermark_distill_kgw_k0_gamma0.25_deltal

Watermarked P-Value

Watermarked Perplexity

Watermarked Seq-Rep-3

—— Checkpoint 1000 —— Checkpoint 1000 —— Checkpoint 1000
1072 —e— Checkpoint 2000 —e— Checkpoint 2000 0.6 1 —— Checkpoint 2000
—e— Checkpoint 3000 161 —o— Checkpoint 3000 —e— Checkpoint 3000
. —e— Checkpoint 4000 —e— Checkpoint 4000 —e— Checkpoint 4000
107 —e— Checkpoint 5000 —e— Checkpaint 5000 0.5] == Checkpoint 5000
14
10-2
o) 04
g 107 12 "
g 3 g
< 10 ? T03
2 10 @
3
2
d g7
02
10-% &
01
1072 6
0.0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Qwen2.5 3B
Watermark: Qwen2.5_3B_logit_watermark_distill_kgw_k0_gamma0.25_delta2
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
—e— Checkpoint 1000 350 —e— Checkpoint 1000 == Checkpoint 1000
- —e— Checkpoint 2000 —e— Checkpoint 2000 —e= Checkpoint 2000
10 —e— Checkpoint 3000 —e— Checkpoint 3000 0.6 1 —e— Checkpoint 3000
=~ Checkpoint 4000 300 | =~ Checkpoint 4000 ~~e— Checkpoint 4000
102 —o— Checkpoint 5000 —o— Checkpoint 5000 —e— Checkpoint 5000
05
250
107
% 04
8 10-52 200 o
g Y
8 H g
3 100 Siso go3
g
i
10-%2
100 02
107
50 01
1012
0 00
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Qwen2.5_3B
Watermark: Qwen2.5_3B_logit_watermark_distill_kgw_k1_gamma0.25_deltal
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
30
100 —e— Checkpoint 1000 —— Checkpoint 1000 = Checkpoint 1000
=~ Checkpoint 2000 e~ Checkpoint 2000 0.079 o Checkpoint 2000
—e— Checkpoint 3000 —e— Checkpoint 3000 —e— Checkpoint 3000
102 —e— Checkpoint 4000 —e— Checkpaint 4000 —e— Checkpoint 4000
—e— Checkpoint 5000 —e= Checkpoint 5000 —e= Checkpoint 5000
25
0.06
10-¢
0}
g 10 220 m 0.05
g 3 &
3 102 = i
o §
3 0.04
d s 15
1010 003
10
102
0.02
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Qwen2.5_3B
Watermark: Qwen2.5_3B_logit_watermark_distill_kgw_k0_gamma0.25_delta2
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
—e— Checkpoint 1000 350 1 Checkpoint 1000 == Checkpoint 1000
- —e— Checkpoint 2000 —e— Checkpoint 2000 —e— Checkpoint 2000
10 —e— Checkpoint 3000 —e— Checkpoint 3000 0.6 o Checkpoint 3000
== Checkpoint 4000 300 { = Checkpoint 4000 ~e— Checkpoint 4000
102 —e— Checkpoint 5000 —e— Checkpoint 5000 —e— Checkpoint 5000
05
250
1027
3 04
8 10 200 o
o % g
S 3 &
2 2 3
3 100 Biso go3
2
i
10-%2
100 02
1027
50 01
10-112
0 00
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient

15

Under review as a conference paper at ICLR 2026

Watermark Vector Analysis
Model: Llama_2_7b_hf

Watermark: Llama_2_7b_hf_logit_watermark_distill_kgw_kO0_gamma0.25_deltal

Watermarked P-Value

Watermarked Perplexity

Watermarked Seq-Rep-3

—— Checkpoint 1000 —— Checkpoint 1000 0.6 { == checkpoint 1000
~e— Checkpoint 2000 ~e— Checkpoint 2000 ~=e— Checkpoint 2000
10-¢ —e— Checkpoint 3000 117 o= Checkpoint 3000 —e— Checkpoint 3000
~e— Checkpoint 4000 ~—e— Checkpoint 4000 ~=e— Checkpoint 4000
107 —o— Checkpoint 5000 —e— Checkpaint 5000 0.5 = Checkpaint 5000
10
10728
o) 9 04
& 10 z 2
E s 203
2 0-50 3 4
210 & &
F 7
1076 02
10-7 6
01
107% 5
0.0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Llama_2_7b_hf
Watermark: Llama_2_7b_hf_logit_watermark_distill_kgw_k0_gamma0.25_delta2
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
= Checkpoint 1000 0 = Checkpoint 1000 —— Checkpoint 1000
- —e— Checkpoint 2000 —e= Checkpoint 2000 —e= Checkpoint 2000
10 —e— Checkpoint 3000 —e— Checkpoint 3000 0.8 —e— Checkpoint 3000
—e— Checkpoint 4000 —e— Checkpoint 4000 —e— Checkpoint 4000
o —+— Checkpoint 5000 9 —+ Checkpoint 5000 —+ Checkpaint 5000
1077 8 06
@
s
3 1072 z7 "
g 3 g
S 2 .
T 10-97 5 &o0a
3 w0 g g
z
o -82
10 5
10-97 02
4
1012
3
00
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Llama_2_7b_hf
Watermark: Llama_2_7b_hf_logit_watermark_distill_kgw_k1_gamma0.25_deltal
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
o= Checkpoint 1000 40{ —— Creckpoint 1000 = Checkpoint 1000
s ~e= Checkpoint 2000 —e— Checkpaint 2000 0.14 |~ Checkpoint 2000
10 —e— Checkpoint 3000 —e— Checkpoint 3000 141 —e= checkpoint 3000
~e— Checkpoint 4000 —e— Checkpaint 4000 —e— Checkpoint 4000
—e— Checkpoint 5000 351 —e— Checkpoint 5000 —e— Checkpoint 5000
107 012
30
5 1071
s 010
3 25 2
: z 1
210 2 [
o g Z 0.
2 320 goos
z 107
15 0.06
107
10
0.04
102
5
0.02
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Llama_2_7b_hf
Watermark: Llama_2_7b_hf_logit_watermark_distill_kgw_k1l_gamma0.25_delta2
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
10t = Checkpoint 1000 —— Checkpoint 1000 0,225 | = Checkpoint 1000
== Checkpoint 2000 =~ Checkpoint 2000 N =e— Checkpoint 2000
—e— Checkpoint 3000 175 - =e= Checkpoint 3000 —e— Checkpoint 3000
107 —e— Checkpoint 4000 —e— Checkpoint 4000 0.200 4 == Checkpoint 4000
—e— Checkpoint 5000 —e— Checkpoint 5000 —e— Checkpoint 5000
150
1015 0175
® 125
2 0 0150
3 > o
o £ a
8 3 100 & 0125
S0 e g
2 L E
T w0 0100
50 0075
1047
0050
10 25
o 0025
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40

Coefficient

Coefficient

16

Coefficient

Under review as a conference paper at ICLR 2026

Watermark Vector Analysis
Model: Meta_Llama_3.1_8B
Watermark: Meta_Llama_3.1_8B_logit_watermark_distill_kgw_k0_gamma0.25_deltal

Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
—e— Checkpoint 1000 —e— Checkpoint 1000 0T Checkpoint 1000
. —e— Checkpoint 2000 —e— Checkpoint 2000 —e— Checkpoint 2000
10- “+ Checkpoint 3000 22.5 | = Checkpoint 3000 —— Checkpaint 3000
—e— Checkpoint 4000 —e— Checkpoint 4000 0.5 — Checkpoint a000
1018 —e— Checkpaint 5000 —e— Checkpaint 5000 —e— Checkpoint 5000
20.0
102 04
o) 17.5
& 10 > o
o 10 % g
= 2150 2o3
L 10-5 5 &
210 & &
4 125
10-% 02
101 100
01
10-% 75
0.0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Meta_Llama_3.1_8
Watermark: Meta_Llama_3.1_8B_logit_watermark_distill_kgw_k0_gamma0.25_delta2
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
—— Checkpaint 1000 = Checkpoint 1000 —— Checkpoint 1000
106 —e— Checkpaint 2000 —e= Checkpoint 2000 —e= Checkpoint 2000
—e— Checkpoint 3000 14 —e— Checkpoint 3000 —e— Checkpoint 3000
—e— Checkpoint 4000 —e— Checkpoint 4000 0.8 |~ checkpaint 2000
102 —e— Checkpoint 5000 —e— Checkpoint 5000 —e— Checkpoint 5000
12
10-%
s 06
© 10
3 10 > o
g 3 g
= 3 3
2 10756 S8 &
3 10 & K04
z
& -81
10 .
107%° 0.2
4
10-m
2 0.0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Meta_Llama_3.1_8B
Watermark: Meta_Llama_3.1_8B_logit_watermark_distill_kgw_k1_gamma0.25_deltal
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
100 —— Checkpoint 1000 160 { == Checkpoint 1000 —— Checkpoint 1000
—e— Checkpaint 2000 —e— Checkpaint 2000 ~e— Checkpoint 2000
—e— Checkpoint 3000 —e— Checkpoint 3000 0.050 { == Checkpoint 3000
10-6 —e— Checkpaint 4000 140 { == Checkpoint 4000 —e— Checkpoint 4000
—e— Checkpoint 5000 —e— Checkpoint 5000 —e— Checkpoint 5000
0.045
1012 120
5 0.040
s 1018 100
b 2z By
g H Foo3s
3 107 e 80 T
E] & &
s 0030
d 192 60
0.025
107 o
0.020
10 20
0.015
0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Coefficient Coefficient Coefficient
Watermark Vector Analysis
Model: Meta_Llama_3.1_8B
Watermark: Meta_Llama_3.1_8B_logit_watermark_t I_kgw_k1_gamma0.25_delta2
Watermarked P-Value Watermarked Perplexity Watermarked Seq-Rep-3
—e= Checkpoint 1000 —e Checkpoint 1000
1072 —e— Checkpoint 2000 0.6 1 s~ Checkpoint 2000
800 | == Checkpoint 3000 —e— Checkpoint 3000
—e— Checkpoint 4000 —e— Checkpoint 4000
10-10 —e— Checkpoint 5000 0.5] == checkpaint 5000
10-18
T 600 0.4
§ 207 2 o
g 3 5 03
2 107 £ 400 g
E & &
z
< 10 0.2
1050 200
—— Checkpoint 1000 01
~=e— Checkpoint 2000 a
10-58 J == Checkpoint 3000
~e— Checkpoint 4000
—o— Checkpoint 5000 0 0.0
00 05 10 15 20 25 30 35 40 00 05 10 30 35 40 00 05 10 15 20 25 30 35 40

Coefficient Coefficient

17

	Introduction
	Preliminaries of Watermarking
	Limitations of Watermark Distillation
	Method: Watemrark Parameter
	Experiments
	Experiment Setup
	Evaluation Metrics
	Results

	Analysis
	Effect of the Watermark Coefficient
	Robustness to Random Edits
	Parameter-Level Analysis

	Related Work
	Conclusion
	Detailed definition of watermark
	Method Detailed Derivation
	Limitation of Watermark Distillation
	Robustness to random text edit
	WAPITI Experiment
	Training Parameters
	Experiment Results

