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ABSTRACT

Generative models form the backbone of modern machine learning, underpinning
state-of-the-art systems in text, vision, and multimodal applications. While Max-
imum Likelihood Estimation has traditionally served as the dominant training
paradigm, recent work have highlighted its limitations, particularly in general-
ization and susceptibility to catastrophic forgetting compared to Reinforcement
Learning techniques, such as Policy Gradient methods. However, these approaches
depend on explicit reward signals, which are often unavailable in practice, leaving
open the fundamental problem of how to align generative models when only high-
quality datasets are accessible. In this work, we address this challenge via a Bilevel
Optimization framework, where the reward function is treated as the optimization
variable of an outer-level problem, while a policy gradient objective defines the
inner-level. We then conduct a theoretical analysis of this optimization problem
in a tractable setting and extract insights that, as we demonstrate, generalize to
applications such as tabular classification and model-based reinforcement learning.

1 INTRODUCTION

Generative models have become central to modern machine learning research, driving advances in
text (Brown et al., 2020; DeepSeek-AI et al., 2025), image (Rombach et al., 2021; Ramesh et al.,
2021), and multimodality (Zhang et al., 2024; Bai et al., 2025; Fu et al., 2025; Łajszczak et al., 2024;
Yin et al., 2024) under the umbrella of “Generative AI” (GenAI). Their ability to synthesize realistic
content has made them foundational in applications ranging from decision making (Shi et al., 2025;
Kim et al., 2024; Intelligence et al., 2025) to scientific discovery (Manica et al., 2023; Lu et al., 2024).

Traditionally, such models are trained via Maximum Likelihood Estimation (MLE), where the pa-
rameters of the generative model are optimized to maximize the probability of observed data. This
approach provides a principled framework for fitting models to large datasets and remains the back-
bone of many generative learning pipelines. Notably, this approach is omnipresent in today’s Large
Language Models (LLMs) through the next token prediction paradigm (Vaswani et al., 2023; Brown
et al., 2020; DeepSeek-AI et al., 2025).

However, recent breakthroughs in LLMs research, demonstrate the limitations of MLE alone. Tech-
niques based on Policy Gradient (PG) methods (Bellman, 1958), such as Reinforcement Learning from
Human Feedback (Christiano et al., 2017a; Stiennon et al., 2020) and more recently Reinforcement
Learning from Verifiable Rewards (Shao et al., 2024; DeepSeek-AI et al., 2025), have proven more
effective than supervised fine-tuning at aligning models with human preferences and improving
generation quality (Shenfeld et al., 2025; Lai et al., 2025; Swamy et al., 2025). These methods
leverage explicit or implicit reward signals to guide training beyond likelihood objectives.

Yet, in many practical scenarios, explicit reward functions are unavailable. Instead, we often possess
high-quality datasets on which we would like to align our models. This raises a key question:

Can we learn an implicit reward function from unlabeled data, and exploit the well-developed
policy optimization literature to train models more effectively than with MLE?

1
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In this paper, we propose the following contributions toward addressing this question:

• Bilevel optimization perspective on MLE: We reinterpret the MLE training objective as
a Bilevel Optimization (Bi-O) problem, where the outer-level problem optimizes over the
reward function, while the inner-level problem is defined by a PG objective with respect to
the model parameters.

• Theoretical analysis: We study this formulation under a Gaussian data distribution with the
reward given by a negatively scaled distance in the output space, deriving insights into the
theoretically optimal parameters of the reward function.

• Practical algorithms: Guided by the theoretical analysis and leveraging implicit differenti-
ation solvers, we propose two practical algorithms for addressing the bilevel optimization
problem. We evaluate these algorithms on two MLE applications: tabular classification and
model-based reinforcement learning.

The remainder of the paper is organized as follows. Section 2 situates our work within the relevant
literature, and Section 3 introduces the problem setup and motivates our approach. In Section 4, we
address the bilevel optimization problem in the Gaussian case, while Section 5 considers the general
setting using implicit differentiation. We then present experimental results in Section 6 and conclude
with a discussion in Section 7.

2 RELATED WORK

PG vs MLE for Generative models. Generative models aim to capture the underlying distribution
of observed data, with the goal of synthesizing realistic samples afterwards, e.g. text genera-
tion (Brown et al., 2020) and image generation (Rombach et al., 2021; Ramesh et al., 2021). Many
of the existing generative modeling approaches as Autoregressive models (Radford & Narasimhan,
2018; Vaswani et al., 2023; Radford et al., 2019), Variational AutoEncoders (Kingma & Welling,
2013; Higgins et al., 2017), Generative Adversarial Networks (Goodfellow et al., 2014; Arjovsky
et al., 2017), Diffusion Models (Sohl-Dickstein et al., 2015; Rombach et al., 2021), can be framed
through the lens of MLE or its approximations. However, and especially in the context of sequence
generation, MLE in autoregressive models has been proven to suffer from compounding errors and
exposure bias, among other problems (Tan et al., 2019; Bahdanau et al., 2017; Ranzato et al., 2016;
Bengio et al., 2015; Venkatraman et al., 2015; Benechehab et al., 2024). As an alternative approach,
PG methods have emerged as a more effective way to sample the output space when a reward function
is available (Bahdanau et al., 2017). Beyond vanilla PG, more sophisticated methods have been devel-
oped, such as Reward-Augmented Maximum Likelihood (Norouzi et al., 2016; Volkovs et al., 2011),
where a reward-based stationary sampling distribution is defined, Softmax Policy Gradient (Ding &
Soricut, 2017), an intermediate approach between sampling the model and sampling a reward-based
distribution, and MIXER (Ranzato et al., 2016), a scheduling approach that gradually transitions
from MLE to PG using the REINFORCE algorithm (Williams, 1992). Besides autoregressive models,
policy gradient methods have also been used to train (or finetune) Diffusion models (Black et al.,
2024; Uehara et al., 2024; Zekri & Boullé, 2025), and GANs (Paria et al., 2017; Yu et al., 2017).

Reward models. Policy Gradient methods constitute one class of algorithms for solving Markov
Decision Processes (MDP) (Bellman, 1958), the central formalism underpinning the RL field. Train-
ing generative models with PG methods builds on the formulation of the task as an MDP. In this
setting, the reward function plays a pivotal role. The most direct way of learning a reward model is via
supervised learning from past interactions, as done in Model-based Reinforcement Learning (Chua
et al., 2018; Janner et al., 2019; Yu et al., 2020; Hafner et al., 2021; Kégl et al., 2021; Benechehab
et al., 2025). Beyond the supervised approach, several other paradigms for reward learning have been
developed. Learning from Demonstrations includes Inverse RL methods (Abbeel & Ng, 2004; Ziebart
et al., 2008; Finn et al., 2016a;b) that learn a reward model Rθ under which demonstrations of the
form (s, a, snext) are optimal. Another paradigm, Learning from Goals, defines the reward function
with respect to reaching a goal g in the state space S (Liu et al., 2022). In this setting, goal attainment
has been modeled in terms of spatial distances (Nachum et al., 2018; Mazzaglia et al., 2024), tempo-
ral distances (Hartikainen et al., 2020; Wang et al., 2025), and semantic similarity (Sontakke et al.,
2023; Fan et al., 2022). The Learning from Preferences approach relies on transforming preference
data of the form (τ0 ≻ τ1), where τi is a trajectory (s1, a1, . . . , s|τi|, a|τi|) and ≻ is a preference
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relationship, into a reward model using the Bradley-Terry model (Bradley & Terry, 1952). Reward
models learned from preference data have enabled significant progress in post-training generative
models (Kim et al., 2023; Touvron et al., 2023; Rafailov et al., 2023; Song et al., 2024). Starting
with InstructGPT (Ouyang et al., 2022), this approach has become a standard for improving targeted
aspects of LLMs, e.g. safety (Dai et al., 2024), as well as for applications such as mathematical
reasoning (Xin et al., 2025; Shao et al., 2024; Luong et al., 2024) and code generation (DeepSeek-AI
et al., 2025).

Bilevel optimization. Bilevel Optimization (Bi-O) was originally introduced in economics and
game theory by von Stackelberg (1934) to model hierarchical decision-making problems between
a leader and a follower. More broadly, Bi-O offers a framework for addressing problems with
hierarchical structures, where the task is to optimize two interdependent objective functions: an
inner-level objective and an outer-level objective. In machine learning, Bi-O was first applied to
feature selection (Bennett et al., 2006) and was later extended to a wide spectrum of applications,
including hyperparameter optimization (Mackay et al., 2019; Franceschi et al., 2017; Pedregosa,
2016), reinforcement learning (Hong et al., 2022; Nikishin et al., 2021), and meta-learning (Franceschi
et al., 2018). Various Bi-O solvers have been proposed to address different regularity conditions on the
inner- and outer-level objectives. Among these, automatic differentiation-based approaches compute
gradients of the outer-level objective by differentiating through the iterative steps of the inner-level
optimization algorithm (Wengert, 1964; Linnainmaa, 1976; Domke, 2012; Franceschi et al., 2017). In
parallel, implicit differentiation methods (Bengio, 2000) leverage the implicit differentiation theorem
to approximately estimate the gradient of the outer loss by solving a linear system (Pedregosa, 2016;
Chen et al., 2021; Ji et al., 2021; Arbel & Mairal, 2022). Beyond alternating methods, Dagréou et al.
(2024) introduce a framework where inner- and outer-level variables evolve jointly within a single
training loop. Bi-O has also been generalized to functional settings (Petrulionyte et al., 2024), where
the inner-level optimization is carried out over functions in infinite-dimensional spaces. In the context
of generative models, some approaches enhance the training efficiency of energy-based latent variable
models through bilevel formulations (Bao et al., 2020; Kan et al., 2022), while Xiao et al. (2025)
propose a bilevel framework for tuning hyperparameters and noise schedules in diffusion models.

Bilevel Reinforcement Learning. Bilevel RL optimizes an outer-level objective, often a reward
function or alignment signal, while an inner loop learns a policy under that objective. This framework
has been applied in areas such as reward shaping (Zou et al., 2019) or RLHF (Christiano et al., 2017b;
Xu et al., 2020). The closest work to ours is (Zeng et al., 2022), which combines MLE with inverse
RL methods, however they focus on control tasks while we aim at providing a general framework for
any data modality.

3 PRELIMINARIES

In Section 3.1, we motivate learning reward functions from data and outline when PG methods may
outperform MLE. We then formally define the problem setup in Section 3.2.

3.1 MOTIVATION

In Reinforcement Learning, PG methods are traditionally viewed as producing unbiased yet high-
variance gradient estimates, especially in long-horizon or high-dimensional tasks (Greensmith et al.,
2001). In contrast, MLE has historically served as the dominant paradigm in supervised learning and
probabilistic modeling (Akaike, 1998). However, in the current era of large pretrained models and
advanced RL algorithms, these limitations have become less restrictive, giving rise to many cases
where PG methods are more advantageous than MLE.

A first phenomenon is the mismatch between training objectives and evaluation metrics. In sequence
prediction, for instance, evaluation scores such as BLEU or ROUGE do not decompose into token-
level likelihoods. While for the widely used autoregressive models MLE is restricted to maximizing
token-level likelihoods, PG methods directly optimize sequence-level rewards and naturally account
for this discrepancy (Norouzi et al., 2016; Ding & Soricut, 2017; Ranzato et al., 2016).

Another key phenomenon is catastrophic forgetting. When adapting large language models to
downstream tasks through post-training, it is often desirable to preserve prior knowledge while
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specializing to new distributions. Recent studies (Shenfeld et al., 2025; Lai et al., 2025; Swamy et al.,
2025) suggest that on-policy RL fine-tuning achieves this balance more effectively than supervised
fine-tuning, since its updates converge to solutions closest in KL divergence to the original policy.

Taken together, these observations motivate our approach: rather than maximizing the likelihood
directly, we propose a general framework that interprets data signals as reward functions, thereby
also enabling PG optimization.

3.2 PROBLEM SETUP

Let (Ω,F ,P) be a probability space, and let X : Ω→ X and Y : Ω→ Y be two random variables,
with X ⊆ Rm and Y ⊆ Rn, where (n,m) ∈ N2

⋆. Consider a maximum likelihood estimation
problem where we observe N i.i.d realizations D = {(xi,yi)}Ni=0 from a fixed unknown distribution
over X × Y . The goal is to model the conditional distribution Y |X ∼ q using a parametric
model Ŷ |X ∼ p̂θ where θ ∈ Θ := Rdθ are parameters spanning a finite dimensional space with
dimension dθ. In the MLE formalism, we optimize the parameters θ by maximizing the log-likelihood,
equivalently seen as a Kullback-Leibler divergence minimization (Akaike, 1998) (denoted as dKL):

θ⋆ = argmin
θ∈Θ

EX [dKL(q(·|X)||p̂θ(·|X))] = argmax
θ∈Θ

EXEY |X∼q[log p̂θ(Y |X)] (MLE)

A parallel approach, based on reinforcement learning, consists in maximizing a reward function
r : Y × Y → R that evaluates the quality of generated ŷ against the true observations y, resulting in
the Policy Gradient (PG) objective. Here we state the entropy-regularized PG objective, a variant that
is commonly considered in RL algorithms (Haarnoja et al., 2017; 2018; Wen et al., 2024):

θ⋆ = argmax
θ∈Θ

EXEY |X∼q

[
EŶ |X∼p̂θ

[
r(Ŷ , Y )

]
+ λH(p̂θ)

]
, (PG)

where λ > 0 is a parameter controlling the strength of the regularization, and H denotes the entropy.

In this work, we ask whether the reward function itself can be seen as an optimization variable r
over a Hilbert spaceH. The optimal reward function is then determined based on the MLE objective,
which now represents the outer-level of the following bilevel optimization problem:

max
r∈H

EXEY |X∼q

[
log p̂θ⋆

r
(Y |X)

]
s.t. θ⋆r = argmax

θ∈Θ
EXEY |X∼q

[
EŶ |X∼p̂θ

[r(Y ′, Y )] + λH(p̂θ)
]

(Bi-O)

4 SOLVING BI-O IN A TRACTABLE CASE

The objective of this section is to analyze the bilevel optimization problem Bi-O under specific
assumptions on the data-generating distribution and the reward parametrization, in which both the
inner- and outer-level problems admit closed-form solutions.

4.1 THEORETICAL ANALYSIS

We start our analysis by stating the following assumptions, which will prove useful in the establish-
ment of our main results:

Assumption 4.1 (Gaussian density model). We assume that both the true conditional density q and
the model density p̂θ are Gaussian distributions with linear mean functions and fixed covariance
matrices:

Y | X ∼ q := N (ΛX,Σ), Ŷ | X ∼ p̂θ := N (AX,B),

where Λ ∈ Rn×n, Σ ∈ S++
n (R)1, and θ := (A,B) ∈ Θ := Rn×n × S++

n (R).
1We denote by S++

n (R) and S+
n (R) the sets of real symmetric positive definite and positive semidefinite

n× n matrices, respectively.

4
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Assumption 4.2 (Reward model). Let U ∈ S++
n (R), we define the reward model as the following

quadratic form: ∀(Ŷ , Y ) ∈ Rn × Rn, rU(Ŷ , Y ) = −(Ŷ − Y )TU(Ŷ − Y ).

We first notice that this choice of parametrization is valid as the resulting reward function is maximized
in Y . Furthermore, this parametrization enables that for any U ∈ Rn×n, rU is an element of the
Hilbert spaceH of square-integrable real-valued functions with a weighted measure. We refer the
interested reader to Appendix A.2 for a technical definition ofH and a proof of this statement. We
now state the main results, showcasing closed-form solutions of the Bi-O problem under the previous
assumptions.

Proposition 4.3. Under assumptions 4.1 and 4.2, the Bi-O problem has exactly one solution that
writes:

U⋆ = λ
2Σ

−1.

The proof of proposition 4.3 is deferred to Appendix A.1.

Corollary 4.4. If we assume that, B = σ2In, the set of solutions to the Bi-O problem is characterized
by:

U⋆ ∈ Fλ,Σ :=

{
U ∈ S++

n (R)
∣∣∣∣Tr(U) =

λn2

2Tr(Σ)

}
.

Note that, for any given λ > 0,Σ ∈ S++
n (R), Fλ,Σ ̸= ∅ since λn

2Tr(Σ) In ∈ Fλ,Σ which corresponds
to reward functions we consider for the empirical experiments in Section 4.2.

Interpretation as Mahalanobis distance. The optimal reward function obtained by the Proposition
4.3 is linked to the inverse covariance matrix, leading to an interpretation as the negative squared
Mahalanobis distance (Mahalanobis, 1936) between Ŷ and a Gaussian centered at Y . Since Y is an
unbiased estimator of ΛX , this reflects distance to the underlying distribution. Thus, noisier data
reduce penalization for deviations, while the scaling factor λ balances reward maximization and
entropy regularization.

Interpretation as reverse KL minimization. An interesting observation arises when substituting
the optimal reward parametrization U⋆ into the inner-level objective: the PG formulation becomes
equivalent to minimizing the reverse KL divergence between the model distribution p̂θ and the
data-generating distribution q. This connection provides an explanation for the empirical results
presented in the next section. We therefore state it formally as a corollary, with the proof deferred to
Appendix A.1.5:

Corollary 4.5. Under the assumptions of Proposition 4.3, the optimal parameters θ⋆U⋆ obtained from
the lower-level problem with U⋆ = λ

2Σ
−1 minimize the reverse KL divergence between p̂θ and q, (i.e)

θ⋆U⋆ = argminθ∈Θ EX [dKL (p̂θ(·|X) ∥ q(·|X))] .

0 25 50 75 100
epoch

0

10

q[logp (y|x)]

0 25 50 75 100
epoch

0

2

4

x (x)

PG(U = In) PG(U = n
2Tr( ) In) NLL MSE

0 25 50 75 100
epoch

0

5

10
2(x)In

Figure 1: Synthetic data experiment. The PG loss when paired with the optimal reward function
matches the NLL-trained baseline in terms of NLL (left panel), all while having faster convergence
in terms of moment matching (center and right panels for the mean and variance, respectively).
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4.2 EMPIRICAL VALIDATION

In this section, we evaluate the theoretical results from Section 4.1. To this end, we generate synthetic
observed data that satisfy Assumption 4.1: D = {(xi,yi)}Ni=0, where xi ∼ U([−5, 5]n) (U denotes
the uniform distribution), and yi ∼ q(.|xi) := N (Λxi,Σ) with diagonal covariance matrix Σ = β2In
and β > 0. For the model p̂θ, we relax the linearity and homoscedasticity assumptions by considering
a neural network that parametrizes a Gaussian distribution, in which both the mean function and the
diagonal covariance matrix depend on the input: p̂θ(.|xi) := N (µθ(xi), σ

2
θ(xi)In). We compare

baselines trained with negative log-likelihood (NLL) and mean squared error (MSE) losses against
PG variants, using either a negative squared distance reward U = In or the optimal reward function
derived in Corollary 4.4 with U⋆ = λn

2Tr(Σ) In.

Fig. 1 shows validation NLL and moment-matching errors (mean and covariance) over training.
Consistent with theory, we observe that adjusting the reward function with the optimal matrix U⋆

yields a learning curve nearly identical to the NLL baseline (yellow and red curves in the left panel of
Fig. 1). Moreover, the PG variant with the optimal matrix converges faster than the NLL baseline in
matching the moments of the data-generating distribution (center and right panel). Finally, we note
that the vanilla PG method (with U = In) suffers from a diverging NLL due to the variance shrinking
to zero for some values of λ which leads to numerical instabilities.

epoch 0 epoch 5 epoch 10 epoch 25 epoch 40 epoch 50

Initial Target NLL PG(U = n
2Tr( ) In) PG(U = In)

Figure 2: Learned distributions comparison on a single data point. The PG loss paired with the
optimal reward function in Corollary 4.4 shows optimal convergence, even when compared with the
baseline directly optimizing the NLL.

To gain further insight, Fig. 2 shows the evolution of the learned distributions for a single training
data point. In this illustrative example, the PG variant with the optimal reward displays the most
natural behavior in fitting the target distribution, unlike the NLL baseline, which initially causes
the variance to increase sharply before reducing it to match the target variance. This behavior can
be explained by Corollary 4.5 since minimizing dKL (p̂θ(·|X) ∥ q(·|X)) is known to induce mode
seeking behavior.

5 SOLVING BI-O IN GENERAL

In contrast to the previous section, where we assumed access to the data-generating distribution and
provided a closed-form solution to problem Bi-O, real-world applications typically do not satisfy such
assumptions. Consequently, solving the bilevel optimization problem Bi-O by directly optimizing the
outer objective offers a more general approach applicable to a broader class of problems.

Bilevel optimization solvers can generally be divided into three categories. Explicit gradient methods
treat the gradient update as a differentiable mapping and backpropagate through the unrolled opti-
mization path of the inner-level problem (Franceschi et al., 2017). Gradient-free methods instead rely
on evolutionary strategies, optimizing the outer objective while considering the inner problem as a
black-box function (Song et al., 2020; Feng et al., 2021). Finally, implicit differentiation methods
leverage the implicit function theorem to reformulate gradient estimation as the solution to a linear
system (Dagréou et al., 2024; Petrulionyte et al., 2024).

In this work, we focus on implicit differentiation, as explicit gradient methods often encounter
memory issues from storing long computational graphs, while gradient-free approaches are generally
limited by the curse of dimensionality.
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Figure 3: Implicit differentiation solver on synthetic data experiment. From left to right: outer
loss (NLL), inner reward optimization loop, trajectory of the reward parameter u, gradient of the
outer loss with respect to u, outer loss landscape.

5.1 IMPLICIT DIFFERENTIATION

Consider a reward parametrization rϕ with ϕ ∈ Φ := Rdϕ , where dϕ denotes the dimension of
the reward parameter space. The optimization of the outer-level problem can thus be restricted
to the Hilbert space of reward functions spanned by parameters ϕ ∈ Φ (see the appendix for an
explicit construction in the case of the Mahalanobis parametrization). Within this setup, implicit
differentiation treats the solution of the inner problem, θ⋆, as an implicit function of ϕ and allows one
to compute the best-response derivatives∇ϕθ

⋆(ϕ) analytically via the implicit function theorem.

To proceed, we define an operator f : Φ×Θ→ Θ := Rdθ whose roots characterize the inner-level
optimal solution θ⋆(ϕ). That is, for all ϕ ∈ Φ, we have f(ϕ, θ⋆(ϕ)) = 0. Leveraging this property,
the derivative of interest∇ϕθ

⋆(ϕ) can be determined by solving for∇ϕf(ϕ, θ
⋆(ϕ)) = 0:

∀ϕ ∈ Φ, ∇θf(ϕ, θ
⋆(ϕ))∇ϕθ

⋆(ϕ) +∇ϕf(ϕ, θ
⋆(ϕ)) = 0, (1)

where ∇ϕθ
⋆(ϕ) is obtained by solving the linear system in Eq. (1), enabling gradient descent on the

outer problem via the chain rule.

In our bilevel optimization formulation, the operator f arises naturally from the fixed-point charac-
terization of the gradient update: f(ϕ, θ) = θ + α∇θLin(ϕ, θ)− θ = α∇θLin(ϕ, θ) where Lin is the
inner-level objective and α is a learning rate. Under this definition, the first-order optimality condition
holds whenever the inner-level optimization converges to a local minimum θ⋆(ϕ), where the gradient
vanishes, which we assume is a plausible hypothesis given any modern stochastic optimizer (e.g.
Adam (Kingma & Ba, 2017)).

5.2 EMPIRICAL VALIDATION

In practice, we use TorchOpt (Ren et al., 2023), a python package that enables differentiable opti-
mization solvers that can be integrated with pytorch based neural network implementations. Precisely,
we run the implicit differentiation-based solvers using the Conjugate Gradient algorithm for the linear
system resolution, as in (Rajeswaran et al., 2019). We now compare the obtained results, in the same
setup as Section 4.2, to get insights into the effectiveness of this kind of bilevel optimization solvers
against MLP-based policies.

Fig. 3 presents the results of running an implicit differentiation solver for 100 outer iterations,
each with 50 inner iterations, and a learning rate of 10−2 for both optimization loops. The outer
optimization variable is a single parameter (central panel) initialized at 1, which defines the diagonal
Mahalanobis matrix for the reward: u > 0 s.t. U = u · In. The leftmost panel illustrates the
evolution of the outer loss (NLL evaluated on the optimal policy from the inner PG loop), showing
clear improvement relative to the initialization at 1 (which corresponds to the Euclidean distance).
Additionally, the optimization parameter u converges to a value close to the theoretical optimum
u⋆ = λn

2Tr(Σ) , as derived in Corollary 4.4. This convergence is further supported by the far-right panel,
which plots the outer loss landscape as a function of the reward parameter u, revealing a roughly
convex landscape with a global minimum near the theoretical optimum. These results validate our
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intuition from the tractable case discussed in Section 4, even in the more general setting of MLP-based
policies and stochastic optimization solvers within the implicit differentiation framework.

6 APPLICATIONS

The goal of this section is to use intuition gained from the previous analysis to derive practical
algorithms that we can validate on common NLL tasks from the literature.

Algorithm 1 PG(U⋆
he) - heuristic

Input: Data D = {(xi,yi)}Ni=0, model p̂θ, λ
1. Estimate cov matrix Σ̂ = cov({(yi)}Ni=0)

2. loss← PG(U⋆
he(λ, Σ̂))

3. train policy(p̂θ,D, loss)
Return: learned model p̂θ⋆

Algorithm 2 PG(U⋆
im) - implicit differentiation

Input: Data D = {(xi,yi)}Ni=0, model p̂θ, λ
1. U⋆

im ← imp diff solver(D, λ)
2. loss← PG(U⋆

im)
3. train policy(p̂θ,D, loss)
Return: learned model p̂θ⋆

First, we build on the theoretical analysis in Section 4.1 to suggest a realistic way to estimate the
optimal reward parametrization U⋆ derived in. The main challenge with this approach lies in estimat-
ing the covariance matrix-dependent term. As stated in Algorithm 1, we propose an approximate
approach that estimates an empirical covariance matrix Σ̂ from the training data. Secondly, we use
the implicit differentiation-based bilevel solver to provide a gradient-based approach (Algorithm 2).
Such an approach, is more general as it’s not sensitive to the estimation error on the covariance matrix,
nor requires the validity of the assumptions under which we derive our theoretical results.

In the following, we use both Algorithms 1 and 2 to benchmark our method against vanilla PG and
NLL losses in two real-world applications: tabular classification, and model-based reinforcement
learning. Note that, in the experiments, we are effectively solving the inner-level problem of the Bi-O
formulation, while substituting the reward function either with the optimal matrices U⋆

he and U⋆
im, or

with the identity In for the squared-distance baseline.

6.1 TABULAR CLASSIFICATION

We evaluate our framework on several tabular classification datasets from the UCI repository (Wang,
2023). Specifically, we train a multiclass logistic regression model with the PG loss, where the
reward is defined as in Theorem 4.2. We consider both multiclass (Poker) and imbalanced binary
classification (Credit default). In the case of unbalanced datasets, accuracy alone can be misleading,
in which case we additionally report the Area Under the Curve (AUC).

Table 1: credit default: mean ± variance of
AUC over 3 runs.

Method AUC/10−2 ↑

NLL 70.5 ± 5.04× 10−5

PG(In) 57.7 ± 6.32× 10−3

PG(U⋆
he) 71.3 ± 1.00× 10−8

Table 2: Accuracy (mean ± variance)

Dataset Method Accuracy/10−2 ↑

Credit default
NLL 79.8 ± 1.21× 10−4

PG(In) 75.5 ± 2.34× 10−4

PG(U⋆
he) 82.0 ± 2.50× 10−7

Poker
NLL 48.6 ± 1.23× 10−5

PG(In) 38.2 ± 3.92× 10−4

PG(U⋆
he) 52.4 ± 1.00× 10−6

Table 2 shows the accuracy results across 3 datasets, while Table 1 extends this to AUC for the binary
classification task. On the imbalanced Credit default dataset, accuracy is high across methods but
AUC reveals that PG(U⋆

im) better separates classes. The Poker dataset remains challenging for all
methods, yet PG(U⋆

im) still provides the best performance.
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6.2 MODEL-BASED REINFORCEMENT LEARNING

Model-Based Reinforcement Learning (MBRL) addresses the supervised learning problem of esti-
mating the (possibly stochastic) transition function of a MDP. Typically, we assume access to data of
the form D = {(sit, ait, sit+1)}Ni=0, consisting of trajectories of states s and actions a collected by an
unknown policy. The goal is to approximate the next-state distribution St+1 | St, At ∼ q. In practice,
the dynamics model is often a Gaussian probabilistic model trained via log-likelihood (Chua et al.,
2018; Janner et al., 2019), which makes it directly applicable to our experimental setup. We consider
three D4RL (Fu et al., 2021) HalfCheetah tasks, each from a different data-collecting policy: simple,
medium, and expert, accessible through the Minari project (Younis et al., 2024). All models train for
400 epochs with Adam optimizer (learning rate = 10−3) and λ = 1.

Task Metrics
MSE/10−2 ↓ NLL/10−2 ↓

NLL
simple 425 ± 3 47 ± 1
medium 459 ± 3 73 ± 1
expert 539 ± 3 49 ± 1
PG(In)
simple 199 ± 1 528 ± 18
medium 241 ± 4 796 ± 70
expert 174 ± 3 420 ± 24
PG(U⋆

he)
simple 230 ± 1 267 ± 1
medium 274 ± 1 286 ± 1
expert 198 ± 1 290 ± 1
PG(U⋆

im)
simple 190 ± 1 208 ± 1
medium 231 ± 1 232 ± 2
expert 176 ± 1 208 ± 2

Table 3: MBRL experiment. The PG loss with
optimal reward comes second to the NLL baseline
in terms of NLL, and ranks first in terms of MSE.

Table 3 presents MSE and NLL results across
the different losses under evaluation. As ex-
pected, NLL-optimized models achieve the
strongest performance on NLL. However, con-
sistent with the synthetic data experiments in
Section 4.2, we observe PG with the optimal re-
ward heuristic PG(U⋆

he) delivers significant NLL
improvements compared to PG with the neg-
ative squared-distance reward PG(In). More-
over, the optimal reward obtained from the im-
plicit differentiation solver PG(U⋆

im) achieves
the second-best NLL performance while achiev-
ing best MSE, an important property in the con-
text of MBRL, particularly when using deter-
ministic planners.

These findings support our intuition that PG
methods with an optimal reward can enhance
NLL (and also MSE), as guaranteed by our
bilevel optimization framework. It is worth em-
phasizing that, in the context of MBRL, the met-
ric of ultimate interest is the policy performance
derived from these models, typically quantified
by the return (i.e., the discounted cumulative
reward up to the task horizon). We defer ex-
ploration of this direction to future work, as the
present paper concentrates on the MLE task.

7 CONCLUSION

In this paper, we investigated how to learn reward functions that, when used within a policy gradient
algorithm, produce models that are optimal in the sense of maximum likelihood with respect to
observed data. To address this question, we introduced a bilevel optimization framework and derived
closed-form solutions under specific assumptions on the reward model and the data-generating
distribution. Finally, we validated our approach against practical applications, showing that our
framework facilitates a more effective use of the advantages of PG methods through an optimal
choice of the reward function.

Limitations. The reward parametrization considered in our work is relatively restrictive, which
may affect its flexibility across different tasks. In addition, although we validated the framework on
both synthetic and practical settings, further large-scale experiments are required to better understand
its generalizability to more complex applications.

Future directions. While our experiments have so far focused on tabular data, we aim to broaden
the scope to settings where MLE is known to face challenges such as compounding errors, exposure
bias, and limited exploration. These include LLM fine-tuning, structured prediction tasks like machine
translation, and time series forecasting. We plan to actively pursue this direction in future work.
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REPRODUCIBILITY STATEMENT

In order to ensure reproducibility we will release the code at <URL hidden for review>, once
the paper has been accepted. Implementation details and relevant hyperparameters are provided in
each experiment section of the main text.
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Appendix

LLM USAGE DISCLOSURE

We used Large Language Models to help in the writing this paper, as well as in parts of the coding
process. All outputs were reviewed and edited by the authors, who take full responsibility for the
final content.
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A THEORETICAL ANALYSIS

A.1 PROOFS OF PROPOSITION A.2 AND COROLLARY 4.4

A.1.1 A USEFUL LEMMA

This lemma will be useful to show to concavity of the objective function in the following proposition.
Lemma A.1. Let (A,B,C) ∈ S+n × S+n × Rn×n, then one has that:

Tr(ACBC⊤) ≥ 0.

Proof. Since A is symmetric positive semidefinite, there exists a symmetric matrix A1/2 such that

A = (A1/2)2.

Then,
Tr(ACBC⊤) = Tr(A1/2A1/2CBC⊤).

Then, it follows that :

Tr(A1/2A1/2CBC⊤) = Tr(A1/2CBC⊤A1/2).

Let
M = A1/2CBC⊤A1/2.

Then,
Tr(ACBC⊤) = Tr(M).

So now it suffices to show that M is definite semipositive.

The matrix M is symmetric. For any vector x ∈ Rn,

x⊤Mx = x⊤A1/2CBC⊤A1/2x = (C⊤A1/2x)⊤B(C⊤A1/2x).

Since B is positive semidefinite,

(C⊤A1/2x)⊤B(C⊤A1/2x) ≥ 0.

Hence, M is positive semidefinite.

A.1.2 AN INTERMEDIATE PROPOSITION: SOLUTION OF THE INNER-LEVEL PROBLEM

We start by proving the following proposition on the closed-form solution of the inner level problem
in Bi-O:
Proposition A.2. Under Assumptions 4.1 and 4.2, the inner-level optimization problem

θ⋆U = argmax
θ∈Θ

EX,Y∼q

[
EŶ |X∼p̂θ

[
−(Ŷ − Y )TU(Ŷ − Y )

]
+ λH(p̂θ)

]
.

admits exactly one solution that writes as

θ⋆(U) =

(
Λ,

λU−1

2

)
.

Proof of Proposition A.2. We prove the proposition by deriving a closed-form expression for the
objective θ 7→ J(θ) and it’s gradient, then we show that J is strictly concave in θ = (A,B) over
Rn×n × S++

n (R) which guarantee that there is exactly one solution.

The objective function is:

J(θ) = EXEY |X

[
EŶ∼Pθ

[
−(Ŷ − Y )TU(Ŷ − Y ) + λH(Ŷ | X)

]]
.

First, we compute the inner expectation over Ŷ for fixed X and Y . Since Ŷ | X ∼ N (AX,B), the
entropy of Ŷ | X is:

H(Ŷ | X) =
1

2
log(2πedet(B)).
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Now, define:
IŶ := EŶ∼Pθ

[
−(Ŷ − Y )TU(Ŷ − Y ) + λH(Ŷ | X)

]
.

IŶ = EŶ∼Pθ

[
−(Ŷ − Y )TU(Ŷ − Y )

]
︸ ︷︷ ︸

A

+
λ

2
log(2πedet(B)).

For fixed X and Y , let Z = Ŷ − Y . We show that :

A = −
[
XTATUAX +Tr(UB)− 2Y TU(AX) + Y TUY

]
.

Expanding the quadratic form:

ZTUZ = Ŷ TUŶ − 2Y TUŶ + Y TUY.

Taking expectations:

EŶ |X

[
Ŷ TUŶ − 2Y TUŶ + Y TUY

]
= E[Ŷ TUŶ ]− 2Y TUE[Ŷ ] + Y TUY.

Since Ŷ | X ∼ N (AX,B), we have E[Ŷ | X] = AX . Using the formula for the expectation of a
quadratic form, for a random vector W with mean µ and covariance K:

E[WTUW ] = µTUµ+Tr(UK).

Here, W = Ŷ , µ = AX , K = B, so:

E[Ŷ TUŶ | X] = (AX)TU(AX) + Tr(UB).

Thus, we get the desired expression for A. It follows that,

IŶ = −XTATUAX − Tr(UB) + 2Y TUAX − Y TUY +
λ

2
log(2πedet(B)).

Now, for fixed X , we compute:
JX(A,B) = EY |X

[
IŶ

]
.

Since Y | X ∼ N (ΛX,Σ), we have E[Y | X] = ΛX . Using quadratic form expectation again:

EY |X [Y TUY ] = XTΛTUΛX +Tr(UΣ).

Thus,

JX(A,B) = EY |X
[
−XTATUAX − Tr(UB) + 2Y TUAX − Y TUY

]
+

λ

2
log(2πedet(B))

= −XTATUAX − Tr(UB) + 2EY |X [Y ]TUAX − EY |X [Y TUY ] +
λ

2
log(2πedet(B))

= −XTATUAX − Tr(UB) + 2(ΛX)TUAX −
(
XTΛTUΛX +Tr(UΣ)

)
+

λ

2
log(2πedet(B))

= −XT
(
ATUA− 2ΛTUA+ ΛTUΛ

)
X − Tr(U(B +Σ)) +

λ

2
log(2πedet(B)).

Since U is symmetric:

ATUA− 2ΛTUA+ ΛTUΛ = (A− Λ)TU(A− Λ),

One has that:

J(θ) = EX

[
−XT (A− Λ)TU(A− Λ)X

]
− Tr(U(B +Σ)) +

λ

2
log(2πedet(B))

Let MA = (A − Λ)TU(A − Λ). it follows that (since Tr(x) = x for any x ∈ R and here
XTMAX ∈ R):

EX

[
XTMAX

]
= EX

[
Tr(XTMAX)

]
= EX

[
Tr(MAXXT )

]
= Tr(MAEX [XXT ]).
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Let ΣX = EX [XXT ]. Thus,

EX

[
XTMAX

]
= Tr

(
(A− Λ)TU(A− Λ)ΣX

)
.

J(A,B) = −Tr
(
(A− Λ)TU(A− Λ)ΣX

)
− Tr(U(B +Σ)) +

λ

2
log(2πedet(B)) (2)

Let t ∈ R and u1 = (A1, B1) and u2 = (A2, B2) such that u1 + tu2 ∈ Rn×n × S++
n . It suffices to

show that g : t 7→ J(u1 + tu2) is a concave function on N = {t ∈ R, u1 + tu2 ∈ Rn×n × S++
n }.

Let t ∈ N , one has
u1 + tu2 = (A1 + tA2, B1 + tB2),

g(t) = −Tr(U (B1 + tB2 + UΣ)− Tr
(
(A1 + tA2 − Λ)⊤ U (A1 + tA2 − Λ)ΣX

)︸ ︷︷ ︸
:=H1(t)

+
λ

2
log (2πedet(B1 + tB2))︸ ︷︷ ︸

:=H2(t)

.

First, g ∈ C2 (N,R).

Regarding H1, a straightforward calculation shows that

t 7→ H1(t) = αt2 + βt+ γ,

where:

α = −Tr(UA2ΣXA⊤
2 ),

β = −2Tr(U(A1 − Λ)ΣXA⊤
2 )− Tr(UB2),

γ = −Tr(U(A1 − Λ)ΣX(A1 − Λ)⊤)− Tr(UB1 + U2Σ).

The second derivative is:
t 7→ H ′′

1 (t) = −2Tr(UA2ΣXA⊤
2 ).

Since U,ΣX ∈ S+
n (R), and A2 ∈ Rn×n we apply the lemma A.1 which gives us immediately that

Tr(UA2ΣXA⊤
2 ) ≥ 0. Thus: H1 is concave.

For H2 one can show, using Jacobi’s formulas that

∀t ∈ N H ′
2(t) =

d

dt
log(det(B1 + (·)B2)) = Tr

(
(B1 + tB2)

−1B2

)
Since B1, B2 ∈ S++

n on can find two basis B1 and B2 such that they are diagonal in these bases,

∃λ = (λ1, . . . , λn) ∈ Rn \ {0n}, ∃µ = (µ1, . . . , µn) ∈ Rn \ {0n}
such that (B1)B1

= Diag(λ) and (B2)B2
= Diag(µ)

So
∀t ∈ N H ′

2(t) =
∑

1≤i≤n

µi

λi + tµi
,

so

∀t ∈ N H ′′
2 (t) = −

∑
1≤i≤n

µ2
i

(λi + tµi)2
< 0.

So g is a sum of a concave and a strictly concave function so it’s a strictly concave function and thus
J is strictly concave, thus the problem A.2 admits exactly one solution on Rn×n × S++

n (R); which
is solution of

∇J(A,B) = 0. (3)
Let’s find in closed form the solutions of the previous equation.
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It follows that:
∇AJ(A,B) = −2U(A− Λ)ΣX

Then,

∇BJ(A,B) = −UT +
λ

2

∂ ln(det)(B)

∂B
= (B−1)T = −U +

λ

2
B−1

Finally:

θ⋆(U) =

(
Λ,

λU−1

2

)
.

A.1.3 PROOF OF PROPOSITION 4.3

We restate the proposition before proceeding with the proof:
Proposition A.3. Given the above assumptions and the solution in Proposition A.2, the outer-level
problem

U⋆ = argmin
U∈S++

n (R)
EX,Y∼q

[
log p̂θ⋆

U
(Y |X)

]
,

has at least one solution:

U⋆ =
λΣ−1

2
.

Proof. Let U ∈ S++
n (R) and (λ, n) ∈ R⋆

+ × N⋆ by the previous proposition one has θ⋆(U) =(
Λ, λU−1

2

)
.

Let’s check that
φ : U 7→ EXDKL

(
q(· | X) ∥ pθ⋆

U
(· | X)

)
is a convex function of U .

To show the convexity of φ, we show the convexity of g, which is defined as follow. Let U, V ∈
S++
n (R) and t ∈ IU,V := {u ∈ R U + uV ∈ S++

n (R)}. Define

∀t ∈ IU,V g(t) = φ(tU + V ).

One has that g ∈ C2 (IU,V ,R).

Since both q(· | X) and pθ⋆
U
(· | X) are Gaussian with the same mean ΛX , the Kullback–Leibler

divergence has a closed-form expression:

DKL
(
q ∥ pθ⋆

U

)
=

1

2

[
Tr

(
Σ−1

p Σ
)
− n+ ln

(
det(Σp)

det(Σ)

)]
,

where Σpθ⋆
U
= λ

2U
−1. It follows that,

Σ−1
pθ⋆

U

=
2

λ
U, and det(Σ−1

pθ⋆
U

) =

(
λ

2

)n

det(U)−1.

Substituting these in, we find:

DKL
(
q ∥ pθ⋆

U

)
=

1

2

[
Tr

(
2

λ
UΣ

)
− n+ ln

(
(λ/2)n

det(U) det(Σ)

)]
=

1

λ
Tr(UΣ)− n

2
+

n

2
ln

(
λ

2

)
− 1

2
ln(det(Σ))− 1

2
ln(det(U)).

This expression is independent of X , so its expectation is itself:

φ(U) =
1

λ
Tr(UΣ)− 1

2
ln(det(U)) + C,
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where C is a constant independent of U .

Now, we express g(t) explicitly and set ∀t ∈ IU,V A(t) = U + tV :

∀t ∈ IU,V g(t) = φ(A(t)) =
1

λ
Tr(A(t)Σ)− 1

2
ln(det(A(t))) + C.

Clearly, g ∈ C2(IU,V ,R), let’s show that its second derivative is positive.

The first derivative is:

∀t ∈ IU,V , g′(t) =
1

λ
Tr(UΣ)− 1

2

d

dt
ln(det(A(t))).

Using the identity that follows from Jacobi’s formula:

∀t ∈ IU,V ,
d

dt
ln(det(A(t))) = Tr

(
A(t)−1A′(t)

)
,

we get:

∀t ∈ IU,V , g′(t) =
1

λ
Tr(UΣ)− 1

2
Tr(A(t)−1U).

Differentiating again, one has that:

∀t ∈ IU,V , g′′(t) = −1

2

d

dt
Tr(A(t)−1U).

Therefore,

∀t ∈ IU,V , g′′(t) =
1

2
Tr(A(t)−1UA(t)−1U).

Let t ∈ IU,V and B = A(t)−1/2UA(t)−1/2, where A(t)1/2 is the symmetric positive definite square
root of A(t). Since U is positive definite, B is also positive definite. We have:

Tr(A(t)−1UA(t)−1U) = Tr(A(t)−1/2A(t)−1/2UA(t)−1/2A(t)−1/2U)

= Tr(A(t)−1/2UA(t)−1/2A(t)−1/2UA(t)−1/2)

= Tr(BB) = Tr(B2).

Thus,

g′′(t) =
1

2
Tr(B2).

Since B is symmetric and positive definite, its eigenvalues λ1, . . . , λn are positive. Therefore,

Tr(B2) =

n∑
i=1

λ2
i > 0,

which implies g′′(t) > 0 for all t ∈ IU,V .

Since the second derivative of g is strictly positive on its domain, g is strictly convex. Thus φ is
strictly convex on S++

n (R).

The existence and the uniqueness is shown.

By the moment matching principle for Kullback–Leibler divergence one find that

U⋆ =
λΣ−1

2
.
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A.1.4 PROOF OF COROLLARY 4.4

Corollary A.4 (Isotropic case). If we assume that, B = σ2In
2, the set of solutions to the outer-level

problem is characterized by:

U⋆ ∈ Fλ,Σ :=

{
U ∈ S++

n (R)
∣∣∣∣Tr(U) =

λn2

2Tr(Σ)

}
.

Proof. The proof follows the same calculations and arguments as those used in the proof of Proposi-
tion A.2 and Proposition 4.3. Specifically, we show that the objective function (A, σ2) 7→ J(A, σ2)
is concave in (A, σ2) and solve the first-order optimality conditions. This leads to the solution

θ⋆(U) =

(
Λ,

λn

2Tr(U)

)
.

Substituting this solution into the DKL expression and following the same arguments leads to
Fλ,Σ.

A.1.5 PROOF OF COROLLARY 4.5

Proof. Substituting U⋆ = λ
2Σ

−1 gives:

J(θ) = EXEY |X∼q

[[
EŶ∼p̂θ(·|X)

[
−λ

2
(Ŷ − Y )⊤Σ−1(Ŷ − Y )

]]]
+ λH(p̂θ).

Since q(Y |X) is Gaussian with mean AX and covariance Σ, write Y = AX + ε with ε ∼ N (0,Σ).
Remark that:

Ŷ − Y = (Ŷ −AX)− ε.

Thus,

(Ŷ − Y )⊤Σ−1(Ŷ − Y ) = (Ŷ −AX)⊤Σ−1(Ŷ −AX)− 2(Ŷ −AX)⊤Σ−1ε+ ε⊤Σ−1ε.

Taking the conditional expectation EY |X :

EY |X

[
(Ŷ − Y )⊤Σ−1(Ŷ − Y )

]
= (Ŷ −AX)⊤Σ−1(Ŷ −AX)− 0 + E[ε⊤Σ−1ε]

= (Ŷ −AX)⊤Σ−1(Ŷ −AX) + tr(Σ−1Σ)

= (Ŷ −AX)⊤Σ−1(Ŷ −AX) + n,

where n ∈ N⋆ is the dimension of Y .

Therefore,

EY |X

[
−λ

2
(Ŷ − Y )⊤Σ−1(Ŷ − Y )

]
= −λ

2

[
(Ŷ −AX)⊤Σ−1(Ŷ −AX) + n

]
.

Now, the log-likelihood of Ŷ under q(·|X) is:

log q(Ŷ |X) = −1

2
(Ŷ −AX)⊤Σ−1(Ŷ −AX)− 1

2
log ((2π)n|Σ|) .

Thus,
(Ŷ −AX)⊤Σ−1(Ŷ −AX) = −2 log q(Ŷ |X)− log ((2π)n|Σ|) .

one has:

EY |X

[
−λ

2
(Ŷ − Y )⊤Σ−1(Ŷ − Y )

]
= −λ

2

[
−2 log q(Ŷ |X)− log ((2π)n|Σ|) + n

]
2we denote by In the identity matrix of size n.
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= λ log q(Ŷ |X) +
λ

2
[log ((2π)n|Σ|)− n]︸ ︷︷ ︸

:=cn

.

The term cn is constant with respect to Ŷ and θ. Therefore,

EX∼q

[
EŶ∼p̂θ(·|X)

[
EY |X

[
−λ

2
(Ŷ − Y )⊤Σ−1(Ŷ − Y )

]]]
= λEX∼q

[
EŶ∼p̂θ(·|X)

[
log q(Ŷ |X)

]]
+cn

The entropy term is:

λH(p̂θ) = λEX∼q

[
EŶ∼p̂θ(·|X)

[
− log p̂θ(Ŷ |X)

]]
.

Thus, the objective function becomes:

J(θ) = λEX∼q

[
EŶ∼p̂θ(·|X)

[
log q(Ŷ |X)− log p̂θ(Ŷ |X)

]]
+ cn

= −λEX∼q [dKL (p̂θ(·|X) ∥ q(·|X))] + cn.

So, maximizing J(θ) is equivalent to minimizing the reverse KL divergence, which completes the
proof.

A.2 ON THE DEFINITION OF H IN Assumption 4.2

Let
H :=

(
L2

(
Rn × Rn, R, e−∥X−X′∥2

dλ(X,X ′)
)
; ⟨·, ·⟩H

)
,

where

∀f, g ∈ H ⟨f, g⟩H =

∫
Rn×Rn

f(X,X ′) g(X,X ′) e−∥X−X′∥2

dλ(X) dλ(X ′)

and dλ denotes the Lebesgue measure.
Lemma A.5. Let U ∈ Rn×n, then rU as defined in 4.2 is an element of

H := L2
(
Rn × Rn, R, e−∥X−X′∥2

dλ(X,X ′)
)
.

Proof. We denote by ⟨·, ·⟩Rn the usual Euclidean scalar product on Rn. In particular, for any
X,X ′ ∈ Rn and any matrix U ∈ Rn×n, we have by the Cauchy-Schwarz inequality

|(X −X ′)⊤U(X −X ′)| = |
〈
X −X ′, U(X −X ′)

〉
Rn | ≤ ∥X −X ′∥2 · ∥U(X −X ′)∥2 (4)

and notice that for any U ∈ Rn×n and X ∈ Rn,

∥UX∥2 =
∑

1≤k≤n

 n∑
j=1

Uk,jXj

2

≤ n2

(
max

(k,j)∈[1,n]2
|Uk,j |2

)
︸ ︷︷ ︸

:=C(n,U)>0

∥X∥2. (5)

It leads to:

∫
Rn×Rn

(
− (X −X ′)⊤U(X −X ′)

)2
e−∥X−X′∥2

dλ(X,X ′)

≤︸︷︷︸
(4)

∫
Rn×Rn

∥X −X ′∥2 · ∥U(X −X ′)∥2e−∥X−X′∥2

dλ(X,X ′)
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≤︸︷︷︸
(5)

C(n,U)

∫
Rn×Rn

∥X −X ′∥4e−∥X−X′∥2

dλ(X,X ′)

<∞.

Since; ∫
Rn×Rn

∥X −X ′∥4e−∥X−X′∥2

dλ(X,X ′) =

∫
Rn

∥Z∥4e−∥Z∥2

dZ

= Vol(Sn−1)

∫ ∞

0

rn−1 · r4e−r2dr <∞.

rU ∈ H.

The following two lemmas justifies the reparametrization search space by S++
n (R).

Lemma A.6. The set {rU ∈ H : U ∈ S++
n (R)} is in bijection with S++

n (R).

Proof. Denote I := {rU ∈ H : U ∈ S++
n (R)} and

φ : S++
n → I

defined by
∀U ∈ S++

n φ(U) = rU .

The surjectivity of φ is straitghforward since the image of φ is I . Let U1, U2 ∈ S++
n and assume

ϕ(U1) = ϕ(U2), which is

∀X,Y ∈ Rn, (X − Y )T (U1 − U2)(X − Y ) = 0. (6)

But one can find P ∈ GLn(R) such that

U1 − U2 = PDPT , D = diag(λ1, . . . , λn).

Then (6) reads:

∀W = (w1, ..., wn) ∈ Rn
n∑

i=1

λiw
2
i︸ ︷︷ ︸

≥0

= 0.

Thus ∀i ∈ [1, n] λi = 0, so U1 = U2.

Lemma A.7. Let X and Y be two non-empty sets and let ϕ : X → Y be a bijection. Let f : X → R
and g : Y → R, such that

∀x ∈ X g(ϕ(x)) = f(x) (7)

Then the optimization problems:

(P1) max
x∈X

f(x) and (P2) max
y∈Y

g(y),

are equivalent in the sense that:

• If x∗ is a solution of (P1), then y∗ = ϕ(x∗) is a solution of (P2).

• Conversely, if y∗ is a solution of (P2), then x∗ = ϕ−1(y∗) is a solution of (P1).

Proof. First; let’s show that (7) implies that

∀y ∈ Y f(ϕ−1(y)) = g(y). (8)

Let y ∈ Y , since ϕ is a bijection one can find x ∈ X such that y = ϕ(x) and x = ϕ−1(y) so using
(7):

f ◦ ϕ−1(y) = f(x) =︸︷︷︸
(7)

g ◦ ϕ(x) =︸︷︷︸
bijectivity of ϕ

g ◦ ϕ ◦ ϕ−1(y) = g(y). (9)
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Let’s now proove that the sup of the two problems are equals.

Since ϕ is a bijection, every element y ∈ Y can be uniquely written as y = ϕ(x) for some x ∈ X .
By assumption, we then have g(y) = g(ϕ(x)) = f(x) ≤ supx∈X f(x) := Mf .

So
sup
y∈Y

g(y) := Mg ≤Mf (10)

Let x ∈ X , by the bijection, one can find y ∈ Y such that x = ϕ−1(y) so f(x) = f(ϕ−1(y)) =
g(y) ≤Mg .

It follows that
Mf ≤Mg (11)

Combining (10) and (11):
sup
y∈Y

g(y) = sup
x∈X

f(x).

Furthermore, if x∗ is a point where f attains its maximum, then for y∗ = ϕ(x∗), we have:

g(y∗) = f(x∗) = max
x∈X

f(x) = max
y∈Y

g(y),

so y∗ is a solution of (P2). Conversely, if y∗ is a point where g attains its maximum, then let
x∗ = ϕ−1(y∗). We have:

f(x∗) = g(ϕ(x∗)) = g(y∗) = max
y∈Y

g(y) = max
x∈X

f(x),

so x∗ is a solution of (P1).

Proposition A.8. For each U ∈ S++
n (R), define

f(U) = EXEY |X∼q[log p̂θU (Y | X)].

For each function r ∈ I , where

I =
{
rU : U ∈ S++

n (R)
}
, with rU (Ŷ , Y ) = −(Ŷ − Y )⊤U(Ŷ − Y ),

define
g(r) = EXEY |X∼q log p̂θr (Y | X).

Then the optimization problems

max
U∈S++

n (R)
f(U) and max

r∈I
g(r)

are equivalent.

Proof. It’s a straightforward consequence of the lemma A.7 with X := S++
n (R) and Y := I and the

map ϕ : X → Y defined by ϕ(U) = rU , for which we now that, by Lemma A.6, is a bijection.

B ADDITIONAL EXPERIMENTS

B.1 DISTRIBUTION COMPARISON
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Figure 4: Distribution comparison, different value of λ
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