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ABSTRACT

Human vision combines low-resolution “gist” information from the visual periph-
ery with sparse but high-resolution information from fixated locations to construct
a coherent understanding of a visual scene. In this paper, we introduce Metamer-
Gen, a tool for generating scenes that are aligned with latent human scene rep-
resentations. MetamerGen is a latent diffusion model that combines peripherally
obtained scene gist information with information obtained from scene-viewing
fixations to generate image metamers for what humans understand after viewing
a scene. Generating images from both high and low resolution (i.e. “foveated”)
inputs constitutes a novel image-to-image synthesis problem, which we tackle
by introducing a dual-stream representation of the foveated scenes consisting of
DINOv2 tokens that fuse detailed features from fixated areas with peripherally
degraded features capturing scene context. To evaluate the perceptual alignment
of MetamerGen generated images to latent human scene representations, we con-
ducted a same-different behavioral experiment where participants were asked for
a “same” or “different” response between the generated and the original image.
With that, we identify scene generations that are indeed metamers for the latent
scene representations formed by the viewers. MetamerGen is a powerful tool
for understanding scene understanding. Our proof-of-concept analyses uncovered
specific features at multiple levels of visual processing that contributed to human
judgments. While it can generate metamers even conditioned on random fixations,
we find that high-level semantic alignment most strongly predicts metamerism
when the generated scenes are conditioned on viewers’ own fixated regions.

1 INTRODUCTION

Understanding the latent representation of a scene formed by humans after viewing remains a fun-
damental unanswered challenge in cognitive science (Epstein & Baker, 2019; Bonner & Epstein,
2021; Malcolm et al., 2016; Võ, 2021). What is clear is that humans represent coherent scenes
by a mixture of “gist” information encoded from peripheral vision (Potter, 1975; Greene & Oliva,
2009) with high-resolution but sparse information that humans extract during their scene viewing
fixations (Larson & Loschky, 2009; Larson et al., 2014; Eberhardt et al., 2016). Related recent work
on scene perception has focused on the concept of object and scene metamers—generated stimuli
that, although physically different from originals, cannot be discriminated as different by humans
when viewed under constrained experimental conditions. (Freeman & Simoncelli, 2011; Balas et al.,
2009; Rosenholtz et al., 2012). Understanding scene metamerism is important because metamers tell
us the level of misalignment between an actual and generated image that is tolerated by humans and
judged to be the same. Generated scenes that fail to become metamers also reveal the details that are
important to a scene’s representation and that, if changed, result in the generation being detected.
However, although several paradigms have been used to identify metamers (e.g., same-different
tasks, A/B/X tasks, oddity judgment tasks) (Rosenholtz, 2020), this work on scene perception used
simple generative models to synthesize textures and shapes that were shown in behavioral experi-
ments to be metameric with what humans perceive in their visual periphery when the eye position
is fixed. These paradigms, however, were not designed to study how post-gist changes in fixation
affect scene metamerism or what objects a person believes to exist in their blurred peripheral view
of a scene, which are the problems we engage.
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Inspired by these previous studies showing that generated textures and shapes can become metamers
for human scene perception, we introduce MetamerGen, a state-of-the-art generative model that
extends the metamer generation approach to human scene understanding. Rather than seeking to
generate simple patterns that share low-level statistics with peripheral vision, MetamerGen better
captures a post-gist level of representation reflecting multiple free-viewing fixations. We see this
topic as closer to scene understanding because we are seeking to generate a hypothesis for what a
person believes to be in their peripheral vision, and henceforth we will use the term scene metamer to
refer to two scenes that have an equivalent understanding. Our approach combines a gist-level scene
representation extracted from peripherally blurred pixels with higher-resolution and fixation-specific
“foveal” representations corresponding to scene-viewing fixations. Scene gist and the objects fixated
during viewing are therefore used to generate in the non-fixated blurred pixels a scene context that
is aligned with what a human understands to be in their peripheral vision.

We not only show that many of the scenes generated by MetamerGen are metamers for human
scene understanding, we also model the dynamic evolution of this understanding by leveraging the
capability of a latent diffusion model (Rombach et al., 2022) to generate photorealistic images from
diverse conditioning signals (Sohl-Dickstein et al., 2015; Zhang et al., 2023; Ramesh et al., 2022).
Because MetamerGen is a latent diffusion model (Stable Diffusion; Rombach et al., 2022), we
can use each viewing fixation as a conditioning signal to obtain an incremental fixation-by-fixation
understanding of a scene (Figure 1).

To adapt the Stable Diffusion model to our task of generating a scene in blurred peripheral pixels, we
introduce a dual-stream representation of foveated scenes (i.e., ones with a high-resolution center
and blurred periphery) using a self-supervised image encoder (DINOv2) (Caron et al., 2021; Oquab
et al., 2024; Darcet et al., 2024). We utilize an adapter-based framework (Mou et al., 2023), where
we condition a pre-trained text-to-image diffusion model on fixation-grounded features extracted
by DINOv2 feature representations obtained at each of the fixation locations. We complement the
fixation representations with peripheral information, adding a second source of conditioning that
uses DINOv2 tokens extracted from a blurred-out version of the same image, capturing the context.

Our conditioning mechanism allows us to generate plausible scene hypotheses from a variable in-
formation input, where more foveal glimpses of a scene will lead to a richer DINOv2 representation
that enables MetamerGen to generate increasingly plausible and contextually appropriate content at
the non-fixated scene locations, analogous to how human scene understanding becomes more elab-
orate with more viewing fixations. We see MetamerGen as a tool for generating fixation-specific
scene understanding hypotheses that cognitive scientists can test in behavioral studies.

We integrated MetamerGen into a same-different behavioral paradigm and conducted experiments
to identify the generated scenes that are metamers for human scene understanding. In our paradigm,
participants viewed a scene for a variable number of fixations (i.e., gaze contingent), followed by a
5-second delay (during which MetamerGen generated a scene from the viewing behavior) and then
briefly viewed a second scene (200 msec). Their task was to judge whether this second scene was the
same or different from the first. We define a scene metamer as a generation that a participant judges
to be the same as the real scene that was first viewed. Our post-hoc analysis showed that while
all features throughout the visual hierarchy contributed to the understanding of a scene, high-level
semantic features emerged as the strongest predictors of scene understanding metamers.

2 PRELIMINARIES

2.1 IMAGE GENERATION USING LATENT GENERATIVE MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) comprise two opposing processes—a
diffusion process that gradually corrupts data and a denoising process that restores information. The
diffusion process relies on Gaussian noise of increasing intensity at every step, while the denoising
process uses a learned denoiser model to reverse the degradation. By iterating this process, starting
from random Gaussian noise, diffusion models generate new samples.

Latent diffusion models (LDMs) (Rombach et al., 2022) reduce the overall cost by applying the dif-
fusion processes in the latent space of a variational autoencoder (VAE) (Kingma & Welling, 2013).
Stable Diffusion (Rombach et al., 2022) uses a pre-trained VAE that spatially compresses images
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8× with its encoder and decompresses latent diffusion samples with the corresponding decoder.
The denoiser ϵθ(·) is a UNet (Ronneberger et al., 2015) consisting of pairs of down and up-sampling
blocks at four resolution levels, as well as a middle bottleneck block. Each network block consists of
ResNet (He et al., 2015), spatial self-attention, and cross-attention layers, with the latter introducing
the conditioning information.

The cross-attention layers condition the denoising process by computing relationships between in-
termediate image features during denoising and a set of given conditioning embeddings, usually
text. When F ∈ Rh×w×c represents the intermediate image features during denoising (reshaped
to hw × c for attention computation) and e ∈ Rn×d are the n conditioning embeddings, the cross-
attention mechanism first projects features into queries and embeddings into keys and values as

Q = FWQ, K = eWK , V = eWV

Q ∈ Rhw×dk , K ∈ Rn×dk , V ∈ Rn×dv (1)

where WQ ∈ Rc×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv are learned projection matrices. The
cross-attention output is then computed as:

CrossAttention(F, e) = softmax
(
QKT

√
dk

)
V (2)

This mechanism allows each spatial location in the image (rows in Q) to attend to relevant parts of
the conditioning (rows in K), with the attention weights determining how much the information in
each conditioning embedding contributes to the denoising process at each spatial location.

2.2 SELF-SUPERVISED IMAGE ENCODERS

DINOv2 (Caron et al., 2021; Oquab et al., 2024) is a self-supervised vision transformer trained
for hierarchical visual representation learning without manual annotations. Using multiple self-
supervised objectives, including a contrastive loss that causes image features that appear together
to have similar embeddings and a reconstruction loss that induces patches to redundantly encode
information about their surrounding context, DINOv2 represents both local visual details and higher-
level semantics. These properties make it an excellent tool to study fixation-by-fixation human scene
understanding. Adeli et al. (2023; 2025) have shown how self-supervised encoders were capable of
capturing object-centric representations without labels as well as providing a backbone capable of
predicting high-level neural activity in the brain.

2.3 ADAPTING LATENT DIFFUSION MODELS TO NEW CONDITIONS

In text-to-image LDMs (e.g., Stable Diffusion), cross-attention layers condition image features on
text embeddings. An efficient approach for incorporating additional conditioning types, without
retraining the model from scratch, can be achieved through adapter-based frameworks (Mou et al.,
2023). These adapters re-use the learned text conditioning pathways in the LDM to introduce other
modalities of conditioning. This is done by introducing trainable components that transform and
project new condition signals into a format compatible with the UNet’s existing cross-attention
mechanisms. This approach has proven particularly effective for incorporating visual conditioning
into text-to-image models (Ye et al., 2023; Wang & Shi, 2023; Ye et al., 2025).

3 PERCEPTUALLY-INFORMED CONDITIONING

3.1 REPRESENTING FOVEAL & PERIPHERAL VISUAL FEATURES

Given an image and a set of fixation locations, potentially made by a human during free-viewing, we
first aim to extract the foveal information from the fixation locations and the peripheral information
regarding the overall image context. We employ a DINOv2-Base model (with registers) as the
feature extractor to obtain these two sources of information. In Appendix Section A.10 we validate
the choice of DINOv2 as the feature extractor for MetamerGen by showing its superiority to CLIP.

DINOv2 processes 448 × 448 images with a patch size of 14 × 14, yielding 1024 tokens (32 × 32
grid), each embedded in 768 dimensions (along with a CLS token representing the entire image, and
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Figure 1: MetamerGen model architecture. High-resolution and blurred low-resolution images
are processed through DINOv2-Base to extract patch tokens each. Foveal features are obtained
by applying binary masks to high-resolution patch tokens, retaining only fixated regions. Both
foveal and peripheral patch tokens are processed through separate Perceiver-based query networks
that compress features into conditioning tokens compatible with Stable Diffusion’s cross-attention
mechanism. The resulting dual conditioning streams are integrated into the pretrained UNet for
guided image denoising and generation.

four register tokens encoding general information about the image). The patch token at a specific
location encodes detailed visual and semantic information about that location, analogous to the high-
resolution information sampled by the fovea during a fixation. It also encodes limited information
about the location’s visual context, analogous to low-resolution parafoveal information (Adeli et al.,
2023; 2025). To model the information gathered during a series of fixations, we apply a binary mask
Mfixation to the patch tokens extracted from a scene image I , corresponding to the image locations
fixated by humans, zeroing out all non-fixated image patches.

For peripheral visual features, we simulate the inherent uncertainty in peripheral vision by down-
sampling the input image, and then upsampling it back to 448× 448. The blurry image, Iperipheral, is
also processed with DINOv2, but now retaining all output patch tokens without masking. These pe-
ripheral tokens encode uncertain visual representations across the entire scene, capturing the noisy
information available in peripheral vision that requires validation through targeted foveal fixations
(Srikantharajah & Ellard, 2022; Michel & Geisler, 2011).

3.2 FOVEAL & PERIPHERAL CONDITIONING ADAPTERS

We develop foveal and peripheral conditioning adapters to integrate visual information as additional
conditioning signals in Stable Diffusion. Similar to IP-adapters (Ye et al., 2023), which integrate
CLIP image embeddings into Stable Diffusion, we learn how to incorporate DINOv2 patch embed-
dings into the cross-attention mechanism of the text-to-image Stable Diffusion model.

Both foveal and peripheral DINOv2 embeddings are first processed through separate Perceiver-
based resampler networks R(·) (Alayrac et al., 2022; Jaegle et al., 2021) that compress the 1024
DINOv2 embeddings into 32 conditioning tokens compatible with the pre-trained UNet’s cross-
attention. (For more information, please refer to Appendix A.3).

efoveal = Rfoveal(DINOv2(Ioriginal)⊙Mfixation), eperipheral = Rperipheral(DINOv2(Idownsample)) (3)

The conditions are then integrated through separate cross-attention mechanisms. For each condi-
tioning source (text, foveal, peripheral) we project separately into keys and values

Kc = ecW
c
K , Vc = ecW

c
V ,

Kc ∈ Rnc×dk , Vc ∈ Rnc×dk , c = {text, foveal, peripheral} (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which we then combine additively into the denoising through cross-attention.

Attention(Q,K, V ) = softmax
(
QKT

text√
dk

)
Vtext + λfoveal · softmax

(
QKT

foveal√
dk

)
Vfoveal

+ λperipheral · softmax

(
QKT

peripheral√
dk

)
Vperipheral (5)

λfoveal and λperipheral are scaling factors that control the contribution of of either foveal or peripheral
visual features to the generation process. In practice we “freeze” the text conditioning, by setting
the text caption for all images to an empty string “ ”.

3.3 TRAINING AND INFERENCE

We start from a pre-trained Stable Diffusion 1.5 network (Rombach et al., 2022). The trainable
components of MetamerGen are the foveal and peripheral resampler networks and their associated
key-value projection matrices. Training is conducted on the complete MS-COCO training set (Lin
et al., 2015) of approximately 118, 000 images. For foveal conditioning, we apply binary masks
that randomly retain {1, 2, 3, 5, 10} DINOv2 patch tokens while zeroing all others. This sampling
strategy ensures compatibility with our free-viewing behavioral experiments, which constrain scene
viewing to a maximum of 10 fixations. For peripheral conditioning, we blur the images by down-
sampling to {0.0625×, 0.125×, 0.25×, 0.5×, 1×} of the original resolution.

To enable robust conditioning during inference, we randomly drop conditions with probabilities
pfoveal = 0.05 and pperipheral = 0.10. The higher peripheral dropout rate prevents over-reliance
on peripheral features, which despite blurred image features retain substantial visual information
compared to the sparse foveal features. We employ the DDIM sampler (Song et al., 2022) for 50
timesteps, with CFG++ (Chung et al., 2025). We set λfoveal = 1.2 and λperipheral = 0.7 to balance
detail generation with scene plausibility.

We point out that although MetamerGen is conditioned on dense DINOv2 representations of an
image (periphery and fixation DINOv2 patch embeddings), the model does not simply reconstruct
input images verbatim. We attribute this to the lossiness introduced by the DINOv2 embeddings, as
well as stochasticity in the sampling process. We demonstrate this further in Appendix A.7 and A.8.

4 MetamerGen FOR IMAGE GENERATION
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Figure 2: FID values for different in-
put parameters of MetamerGen. Lower
FID values indicate closer alignment
with real images and better quality.

We first evaluate the image quality of samples from our
model using Fréchet Inception Distance (FID; Heusel
et al., 2017) between images generated from Metamer-
Gen and COCO-10k-test. Figure 2 shows the results
using a single central fixation. Green: we fix the blur
level to 0.25×, matching our behavioral paradigm, and
evaluate how peripheral context affects generation qual-
ity by varying the peripheral scale. As peripheral scale
increases, FID scores improve showing that the model is
able to better integrate the context coming from the pe-
ripheral DINOv2 representations. Red: we evaluated the
effect of the blur level, showing that our model can con-
sistently generate plausible scenes for all levels of blur.
We include a text-to-image baseline (Blue) using SD-1.5
with 10k random captions from the COCO training set.
MetamerGen, fine-tuned on the COCO images, consis-
tently outperforms the text-to-image model, proving that
we have successfully integrated images of variable reso-
lution into the conditioning mechanism of Stable Diffu-
sion.
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5 BEHAVIORALLY-CONDITIONED SCENE METAMERS

5.1 PROBING LATENT SCENE REPRESENTATIONS THROUGH METAMER JUDGMENTS

Initially established in color science to reveal trichromatic vision, metamers have since been applied
to texture perception and visual crowding to infer the underlying structure of human perceptual
systems. In the context of scene understanding, metamers offer a unique opportunity to probe what
the visual system extracts and retains from complex natural scenes.

Scene perception requires the extraction of meaningful structures from complex inputs. This in-
cludes identifying spatial layout, object relations, and global context (Oliva & Torralba, 2006), and is
shaped by what the visual system extracts rather than the stimulus itself. When a person views scene
A and forms internal representationA, then later sees a different scene B and forms representationB,
we can test whether these representations are perceptually aligned. If scene B serves as a metamer
to scene A, aligning these internal representations reveals what information the brain has perceived
and retained from the original scene. By using metamerism as a proxy for the content of scene
representations, we can systematically investigate the structure of human scene understanding.

5.2 REAL-TIME BEHAVIORAL PARADIGM

“SAME” metameric judgements “DIFFERENT” metameric judgements

Figure 3: Metameric vs. non-metameric judgments. (Left) Original images with human fixa-
tions overlaid in red and corresponding generated images judged as ”same” by participants. (Right)
Original images with fixations and generated images judged as ”different” by participants. More
examples based off of both human-fixation and random-fixation guided generations can be seen in
Appendix A.6

We developed a real-time same-different behavioral paradigm to evaluate whether MetamerGen
generates perceptually convincing scene metamers. This paradigm directly tests whether images
reconstructed from sparse fixational sampling can achieve perceptual equivalence with the original,
thereby revealing the sufficiency of fixated information for scene representation.

Experimental Design We employed 45 participants in a naturalistic free-viewing same-different
paradigm. Each trial followed a structured sequence (Appendix A.1.2): participants first completed
a drift check, fixated on a central cross, then freely viewed a natural scene image until reaching
a predetermined fixation count {1, 2, 3, 5, 10}, after which the image automatically disappeared.
Critically, participants chose their own fixation locations (see Appendix A.1.1). We systematically
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varied information availability by manipulating fixation count, testing how additional visual infor-
mation influenced the generation quality.

During a subsequent 5-second interval, participants maintained central fixation while our system
processed their actual fixation coordinates and the original image in real-time. MetamerGen’s gen-
erated image then appeared briefly for 200 milliseconds—too brief to allow eye movements but
sufficient for perceptual comparison (Broderick et al., 2023; Wallis et al., 2019). Participants used a
gamepad to indicate whether this second image matched their initial percept.

Participants encountered two primary experimental conditions: metamers generated from their own
fixations, and identical original images reshown as controls. As a third comparison condition, 12
participants additionally saw metamers generated from randomly-sampled coordinates instead of
their actual fixations. While random metamers often fooled participants, they varied so much that
they could not be used to explain human behavior. Generating metamers based on human-fixated lo-
cations resulted in better-controlled variability, centered around our best estimate of the participant’s
scene understanding.

Stimulus Selection Our stimulus set comprised 300 images from the Visual Genome dataset (Kr-
ishna et al., 2017), specifically sourced from the YFCC100M subset (Thomee et al., 2016) to avoid
overlap with COCO training data used in MetamerGen training. We employed DreamSim (Fu et al.,
2023) to cluster images in semantic representational space and selected one representative image per
cluster to maximize visual diversity. Images were filtered to exclude challenging elements for cur-
rent diffusion models: human hands, faces, and bodies, as well as clocks, text, and numbers.

6 MULTIPLE LEVELS OF VISUAL FEATURES DRIVE METAMER JUDGMENTS

MetamerGen is conditioned on actual human fixation sequences, providing a richer and more dy-
namic model of scene understanding. Because it can generate plausible hypotheses for naturalistic
images from both peripheral and foveal information (Figure 3), it also enables analysis of which
visual features—ranging from low to high levels—shape metameric judgments. In our first analysis,
we compared visual similarity from neurally grounded CNN features with human same–different re-
sponses. Although images generated from human fixation and random fixation sequences fooled par-
ticipants about equally often (29.4% and 27.7% of the time, respectively, p = 0.24), we found a stark
contrast in interpretability between these conditions. For human-fixation-based metamers, higher
similarity to the original predicted more “same” judgments. For random-fixation-based metamers,
however, high similarity often increased “different” judgments, suggesting that realistic details in
non-fixated regions may expose inconsistencies with the viewer’s internal scene representation. We
confirmed the same pattern across explicitly defined, interpretable feature hierarchies: features at all
levels contributed to explaining human metameric judgments, with the fixation-based effect becom-
ing especially pronounced for high-level semantic features (e.g., DreamSim, CLIP).

6.1 NEURALLY-GROUNDED FEATURE MAPS

We compared human judgments to a model whose internal representations systematically corre-
spond to human visual processing. We employed a blur-trained AlexNet architecture (Jang & Tong,
2024), which has been specifically trained to be robust to image blur and whose internal repre-
sentations exhibit strong correlations with human neural responses across visual areas from V1 to
inferotemporal cortex (IT). This neurally-grounded model allowed us to isolate contributions from
different stages of the visual hierarchy to metameric perception. As illustrated in Figure 4, our anal-
ysis pipeline treats early, mid, and late layers as proxies for different stages of visual processing.
For each layer, we extracted feature maps from both original and generated images and computed
cosine similarity to quantify alignment across the visual hierarchy. We found that as feature simi-
larity increased at any processing level, the proportion of participants judging images as metameric
also increased. This relationship held consistently across all layers of the network, from early vi-
sual features through high-level representations. The results demonstrate that metamerism spans
the entire visual hierarchy rather than being confined to a single processing stage, suggesting that
successful scene metamers must maintain representational alignment across multiple levels of visual
processing.

7
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generations from 
random fixations

generations from 
human fixations

Figure 4: Multi-level feature analysis pipeline using neurally-grounded model: (Top) Early,
mid, and late network layers serve as proxies for different stages of visual processing from V1 to
IT. (Bottom) Results show that as feature similarity increased at different processing stages, the
proportion of participants judging generated images as metameric also increased. These effects
were clearer when metamers were generated based on fixated locations (salmon) than on randomly-
sampled locations (turquoise).

Importantly, we observed distinct patterns when comparing images generated based on the random-
sampling human-fixation sampling conditions. While early-layer feature similarities showed little
difference between the two conditions, mid- and late-layer similarities revealed divergent trends:
that human-fixation sampling maintained a consistent linear relationship between high-level feature
alignment and “same” metameric judgments, while random-sampling produced an inverted-U trend
for late-layer feature similarities.

6.2 INTERPRETABLE VISUAL FEATURE ANALYSIS

Having demonstrated that neurally grounded feature similarity aligns with human metameric judg-
ments, we turned next to explicitly defined, interpretable visual features. To capture contributions
across different levels of the visual hierarchy, we analyzed a diverse set of features: low-level (e.g.,
edges, Gabor filters, color), mid-level (e.g., depth cues, proto-object structure), and high-level (e.g.,
object, semantics, overall perceptual similarity). Because many of these features are correlated, we
applied a forward stepwise regression model to identify the most predictive subset (R2 = 0.039),
which we focus on in the main text. Detailed contributions of each feature to the regression are
provided in Appendix A.5.

6.2.1 LOW-LEVEL VISUAL FEATURES

We compared human “same” judgments as a function of (i) Gabor filter intensities and (ii) Sobel
edge density response differences between the generated and original images. By comparing nor-
malized Gabor filter responses, of four orientations (0°, 45°, 90°, 135°), between the original and
generated images, we assessed how low-level texture detection affects scene similarity judgments.
Surprisingly, we found that positive differences in Gabor filter responses—where generated images
showed stronger texture responses than originals—correlated with more “same” judgments. This
suggests that enhanced texture definition, which makes boundaries more distinctive, increases the
perceived realism of generated images, even when they differ substantially from the originals (Ho
et al., 2012). We also found that greater Sobel edge density responses (Kanopoulos et al., 1988) led
to greater “same” judgments, though this effect was redundant with the Gabor filter effect (see A.4).
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high-level visuo-linguistic alignmentmid-level depth & proto-object segmentation

Figure 5: (Left) Mid-level visual features driving metameric judgments: For metamers generated
based on human-fixated locations (salmon), the preservation of monocular depth estimates in scene
structure was an indicator of how more depth discrepancies yielded a decrease in metameric judg-
ments. Additionally, when it came towards the mid-level organizational structure as seen from proto-
object candidates, greater mIoU scores correlated with greater proportions of “same” metameric
judgments. (Right) High-level visual features driving metameric judgments: Semantic similar-
ity strongly predicts metameric perception, with larger DreamSim distances corresponding to re-
duced perceptual alignment. This result is shared with the CLIP similarity trends as well. However,
these trends are less apparent when metamers were generated based on randomly-sampled locations
(turquoise).

6.2.2 MID-LEVEL VISUAL FEATURES

We tested two different mid-level visual features, representing local scene layout information avail-
able prior to full scene segmentation: (i) relative depth and (ii) proto-object segmentation. Depth
information proved crucial for metameric perception.

We utilized the Depth Anything model (Yang et al., 2024a) to obtain depth maps from both origi-
nal and generated images, then compared them using the Scale-Invariant Logarithmic (SiLog) error
metric (Lee et al., 2021; Eigen et al., 2014). As discrepancies between depth maps increased, the
proportion of “same” metameric judgments systematically decreased (Figure 5). This finding high-
lights how fundamental depth perception is to mid-level scene understanding and spatial layout
representation (Verhoef et al., 2016).

We also extracted proto-object segmentations to analyze mid-level grouping structures using the
conv3 layer of the blur-trained AlexNet model (Jang & Tong, 2024). These mid-layer representa-
tions are crucial for forming robust “proto-object” identities (Finkel & Sajda, 1992; Yu et al., 2014),
which are initial, structured percepts that represent candidate objects by integrating visual parts
and features before final semantic recognition. Greater proto-object segmentation similarity (mIoU)
predicted more “same” judgments (Figure 5). This demonstrates that proto-object structures—the
intermediate groupings that bridge low-level features and high-level object recognition—play a role
in scene representation.

6.2.3 HIGH-LEVEL VISUAL FEATURES

For high-level semantic comparison, we employed both (i) CLIP (Radford et al., 2021) and (ii)
DreamSim (Fu et al., 2023) as learned semantic similarity models.

For metamers generated using human-guided fixations, DreamSim served as the strongest predictor
of metameric perception among all features tested. DreamSim was specifically trained on human
judgments using a two-alternative forced-choice paradigm to capture human-like notions of visual
similarity, with smaller DreamSim discrepancies predicting more ‘same’ responses (Figure 5, right).
DreamSim’s superior explanatory power likely stems from its ability to capture mid-to-high visual
features that cannot be described in language, making it a more comprehensive measure of percep-
tual similarity than models focused solely on semantic content.

Similarly, as semantic alignment increased between generated and original scenes, measured by
CLIP representation similarity, participants were more likely to judge them as metameric (Figure 5
Right). This effect was specific to human-generated fixations and absent for randomly generated fix-
ations, where higher CLIP similarity did not translate into more “same” metameric judgments. We
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suggest that this discrepancy reflects the fact that random fixations often fall on contextually irrele-
vant regions, exposing semantic details misaligned with participants’ internal scene representations.
Together, these results indicate that metamers generated from human fixation sequences produced
scenes that are better aligned with participants’ internal representations, particularly at the level of
high-level semantics. Additional object-level visual feature analyses can be seen in Appendix A.4.

6.3 FOVEAL AND PERIPHERAL FEATURES BOTH CONTRIBUTE TO METAMERIC JUDGMENTS

We ran an ablation experiment to isolate the contributions of foveal and peripheral conditioning
in MetamerGen. We recruited 10 additional participants for a same-different task similar to the
primary experiment reported above, with four second-image conditions that systematically assessed
the impact of conditioning: identical original images (actual “same” images), generated images
using both foveal and peripheral conditioning (as in the primary experiment), generated images using
peripheral-only conditioning, and generated images using foveal-only conditioning. We found that,
whereas both foveal and peripheral conditioning played a role in whether a generation becomes a
metamer, the role played by peripheral conditioning was greater. As expected, the full model had the
highest fool rate of 54.5%, compared to the second highest fool rate of 45.8% in the peripheral-only
generation condition. Because the model learned to rely on peripheral conditioning for generating
scene structure and foveal conditioning for generating the fine-grained visual information at fixated
locations, images generated using only foveal conditioning tended to be easily distinguishable from
original images (8.4% “same” judgments). Nevertheless, this shows that conditioning from foveal
inputs contribute visual and semantic information that produces generations that are better aligned
with human scene understanding, beyond what peripheral-only conditioning alone can achieve.

We replicated the preceding multi-level visual feature analysis under each condition of this ablation
experiment, and found that (1) under equivalent levels of feature similarity, the full model is the most
likely to fool participants; and (2) in general, feature similarity predicted participant judgments the
best amongst full model generations, more poorly amongst peripheral-only generations, and very
little amongst foveal-only generations. For more detailed results and figures, see Appendix A.9.

7 LIMITATIONS

While MetamerGen is effective at reconstructing semantically coherent scenes from sparse visual
inputs, it inherits limitations from the pre-trained Stable Diffusion model on which it is built. In our
work, we identified two main limitations in the generated images: (1) difficulties producing fine-
grained facial details and accurate limb articulations (Narasimhaswamy et al., 2024; Wang et al.,
2025), and (2) generations of text were often unreadable (Yang et al., 2024b) even when directly fix-
ated. To mitigate the effects of these model weaknesses on our behavioral experiment, we excluded
images containing such problematic elements as inputs to MetamerGen. Including these elements
would have caused participants to respond “different” due to Stable Diffusion artifacts rather than
differences in their own scene representations.

8 DISCUSSION

In this paper, we introduced MetamerGen, a latent diffusion model that generates image metamers
aligned with human scene representations by combining peripheral gist with fixation-based infor-
mation. While MetamerGen was trained to predict images from randomly sampled locations, we
found that the scientific value of the model is maximized when conditioned on human fixations. For
some applications, such as large-scale or crowdsourced experiments, random conditioning offers
practical flexibility by removing the need for eye-tracking, and we found that it is indeed capable of
fooling viewers. However, fixation-based conditioning better reflects human perceptual processes,
reducing noise in behavioral judgments and yielding stronger correlations across all feature hierar-
chies (Figs. 4, 5). MetamerGen advances generative modeling by producing semantically coherent
and diverse scenes from sparsely sampled inputs. We also believe it offers a powerful tool for cogni-
tive scientists studying scene perception, enabling testing fixation-specific hypotheses on how scene
representations unfold dynamically.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This behavioral experiment presented in this work was conducted in accordance with ethical guide-
lines for a human subjects research. The study protocol was reviewed and approved by the Institu-
tional Review Board.

All participants provided informed consent before participating in the behavioral experiment. Partic-
ipants were fully informed about study procedures during trials. Participation was entirely voluntary,
with participants retaining the right to withdraw at any time without penalty. The data we collected
involved non-invasive eye-tracking using the EyeLink 1000 eye-tracker. All data were de-identified
(codified) and cannot be linked back to individual participants.

REFERENCES

Hossein Adeli, Seoyoung Ahn, Nikolaus Kriegeskorte, and Gregory Zelinsky. Affinity-based at-
tention in self-supervised transformers predicts dynamics of object grouping in humans. arXiv
preprint arXiv:2306.00294, 2023.

Hossein Adeli, Minni Sun, and Nikolaus Kriegeskorte. Transformer brain encoders explain human
high-level visual responses. arXiv preprint arXiv:2505.17329, 2025.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning, 2022. URL https://arxiv.org/abs/2204.14198.

Benjamin Balas, Lisa Nakano, and Ruth Rosenholtz. A summary-statistic representation in periph-
eral vision explains visual crowding. Journal of Vision, 9(12):13.1–13.18, 2009.

Luca Barsellotti, Lorenzo Bianchi, Nicola Messina, Fabio Carrara, Marcella Cornia, Lorenzo
Baraldi, Fabrizio Falchi, and Rita Cucchiara. Talking to dino: Bridging self-supervised vision
backbones with language for open-vocabulary segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 22025–22035, 2025.

Michael F. Bonner and Russell A. Epstein. Object representations in the human brain reflect the
co-occurrence statistics of vision and language. Nature Communications, 12:4081, 2021. doi:
10.1038/s41467-021-24368-2.

William F. Broderick, Gizem Rufo, Jonathan Winawer, and Eero P. Simoncelli. Foveated metamers
of the early visual system. eLife, 12:RP90554, 2023. doi: 10.7554/eLife.90554.1. URL https:
//doi.org/10.7554/eLife.90554.1.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A APPENDIX

A.1 EYE-TRACKING BEHAVIORAL PARADIGM

A.1.1 EYE-TRACKING METHODOLOGY AND FIXATION COORDINATE EXTRACTION

Eye movements were recorded using an EyeLink 1000 eye-tracker (SR Research Ltd., 2006) con-
figured with the Tower Mount setup. This configuration positions the infrared camera above the
participant via a mirror, providing an unobstructed view while enabling monocular tracking across
55◦ horizontally and 45◦ vertically. Participants viewed stimuli on a 27 inch 2560×1440 resolution
240Hz OLED monitor positioned 24 inches from their eyes (subtending approximately 55◦ × 30◦

visual angle). Prior to each experimental session, a standard 13-point calibration procedure was per-
formed to ensure accurate gaze tracking. During free-viewing trials, fixations were detected online
using the EyeLink’s built-in saccade detection algorithm.

A.1.2 EXPERIMENTAL DESIGN OVERVIEW

[10 s]

trial execution

[5 s][1 - 10 fixs.]

Figure 6: Real-time metameric judgment paradigm. Each trial begins with drift correction and
central fixation, followed by free viewing of an original scene for a predetermined number of fix-
ations. After image offset, participants maintain central fixation for 5 seconds while fixation coor-
dinates are transmitted via API to MetamerGen for a real-time image generation. The generated
image (or original as control) is then presented for 200ms, followed by a same-different judgment
using a gamepad within a 10-second response window.

During a given trial, given fixation coordinates (x, y) from eye-tracking data, we map each fixation
to the corresponding patch token in DINOv2’s 32×32 grid. For 448×448 input images, each patch
token represents a 14× 14 pixel region (roughly 1.2◦ × 1.2◦ visual angle). Fixation coordinates are
normalized to this grid space, with the nearest patch token selected and all others zeroed out, forcing
the model to reconstruct the entire scene from sparse fixation inputs.

A.2 MetamerGen TRAINING AND INFERENCE DETAILS

We train following the configuration of Stable Diffusion 1.5 (linear scheduler, fixed variance) for
200K steps with a batch size of 32, distributed across 4 NVIDIA H100 GPUs, using the AdamW
optimizer with a learning rate of 10−4 and weight decay of 0.01. Images from the dataset are padded
with 0s to preserve aspect ratios. The model generates output RGB images of size 512× 512.

A.3 PERCEIVER-BASED RESAMPLER ARCHITECTURE

The Perceiver-based resampler networks R(·) compress variable-length visual embeddings into a
fixed number of conditioning tokens suitable for cross-attention in the pre-trained UNet of Stable
Diffusion. This architecture is adapted from Alayrac et al. (2022) and Jaegle et al. (2021) Alternative
approaches than resamplers like mean pooling or convolutional downsampling would lose spatial
relationships and semantic structure in the conditioning tokens (e.g. in our case DINOv2) that are
crucial for high-quality image generation.
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Perceiver Attention The core component is a cross-attention mechanism that allows a fixed set
of learned latent queries to attend to variable-length input sequences (DINOv2 tokens). Given input
features x ∈ Rn×d and latent queries ℓ ∈ Rm×d, the Perceiver attention computes:

Q = ℓWQ, K, V = concat(x, ℓ)WKV (6)

PerceiverAttn(x, ℓ) = softmax
(
QKT

√
dk

)
V (7)

The key insight is that queries come solely from the learned latents ℓ, while keys and values are
computed from both input features x and latents ℓ concatenated together. This allows the latents to
attend to relevant information in the input sequence while maintaining their learned structure.

Resampler Architecture The full resampler consists of:

• Learned latents: m = 32 learned query vectors initialized from N (0, d−0.5)

• Input projection: Linear layer mapping from DINOv2 embedding dimension (1024) to
internal dimension d

• Attention layers: L = 8 layers of Perceiver attention followed by feedforward networks
with residual connections

• Output projection: Final linear projection to match UNet’s cross-attention dimension

The resampler processes the 1024 DINOv2 patch embeddings (whether it is via high-resolution
fixations or low-resolution peripheral images) and outputs exactly 32 conditioning tokens regardless
of input length.

A.4 ADDITIONAL VISUAL FEATURE DRIVERS OF METAMERIC JUDGMENT

multi-object recognition + localization

Figure 7: Object detection errors predict metameric perception: (Top) mAP scores demon-
strate that higher precision accuracies (from mAP 60% to mAP 80%) with better alignment at strict
localization boundaries correlate with increased ”same” metameric judgments. (Bottom) Object de-
tection metrics show a positive relationship where improvements in model precision, recall, and F1
scores correspond to increased ”same” metameric judgments.
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Multi-object recognition & localization To analyze object-level scene understanding, we em-
ployed YOLOv8 (Jocher et al., 2023) to extract object detection bounding boxes and class predic-
tions from both original and generated images. Our pipeline compared object inventories between
image pairs, quantifying detection errors across multiple metrics: precision (avoiding extra objects),
recall (retaining original objects), and localization accuracy measured by mean Average Precision
(mAP) at different IoU thresholds.

Analysis revealed that object-level localization inconsistencies systematically impacted metameric
perception (Figure 7 (Left)). Localization accuracy showed consistent relationships with metameric
perception. As we required increasingly precise object positioning (shown by increasing mAP
thresholds), then the gap between human-guided and random fixation conditions systematically
widened. This suggests that extremely precise spatial localization becomes increasingly critical
for metameric judgments, and that it can best be exemplified using human fixations.

Gabor filter response differences

Figure 8: Stronger Gabor texture responses than originals coincided with greater proportions
of metameric judgments. This suggests that enhanced texture definition, like enhanced edge infor-
mation, contributes to the perceived realism of generated metamers across multiple spatial frequen-
cies and orientations.

A.5 STEPWISE REGRESSION MODEL DETAILS

We performed a forward stepwise linear regression analysis to measure the extent to which human
judgments could be explained by feature differences in our primary behavioral experiment. The
resulting linear model had an R2 value of 0.039, representing a small but meaningful effect size
(in psychological terms). This model incorporated 8 variables, and we evaluated their importance
to the model by comparing the full linear model to a model omitting each of them and reporting
the change in R2 for each. In descending importance, these variables were: DreamSim distance
(∆R2 = 0.10), vertical Gabor intensity (∆R2 = 0.006), predicted depth map RMSE (∆R2 =
0.003), D3 (Percentage of pixels with depth error < 1.253 threshold) (∆R2 = 0.003), mid-
level blur-trained CNN feature similarity (∆R2 = 0.002), CLIP feature similarity (last hidden
layer) (∆R2 = 0.001), CLIP image similarity (CLS) (∆R2 = 0.001), and D0.25 (Percentage of
pixels with depth error < 1.250.25 threshold) (∆R2 = 0.001). These results highlight that human
scene similarity judgments depend on independent features distributed across the levels of visual
processing, and indeed the three most important features in this regression included low-level, mid-
level, and high-level measures.

For comparison, we also ran a stepwise regression on the generations conditioned on random fixa-
tions. The resulting linear model had an R2 value of 0.031, meaning that in spite of the generations’
variability, we were able to begin explaining scene judgments in this case. However, consistent with
our earlier findings that these generations differed from the original image in such unpredictable
ways that interpretable predictors were no longer significant, this regression only found 2 significant
regressors: DreamSim distance (∆R2 = 0.016) and 135° Gabor intensity (∆R2 = 0.014).
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A.6 ADDITIONAL GENERATION VISUALIZATIONS BASED ON FIXATED INPUTS

“SAME” metameric judgements “DIFFERENT” metameric judgements

Figure 9: Additional metameric vs. non-metameric judgment example images based on human
fixations. (Left) Original images with human fixations overlaid in red and corresponding generated
images judged as ”same” by participants. (Right) Original images with fixations and generated
images judged as ”different” by participants.
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“SAME” metameric judgements “DIFFERENT” metameric judgements

Figure 10: Additional metameric vs. non-metameric judgment example images based on
randomly-sampled fixations. (Left) Original images with randomly-sampled fixations overlaid
in red and corresponding generated images judged as ”same” by participants. (Right) Original im-
ages with fixations and generated images judged as ”different” by participants.

A.7 EFFECT OF PERIPHERAL BLUR AND FOVEAL TOKENS ON IMAGE GENERATION QUALITY

We ran two computational ablation studies to measure how image generation quality on the COCO-
10k-test set is affected by (1) peripheral blur level and (2) foveal token count.

For the study of blur levels (Figure 11, Top), we provided peripheral features as the sole input (at
varying levels of downsampling) and masked the foveal tokens. We found that greater downsampling
blur yields lower CLIP similarities and higher DreamSim distances, as well as higher (worse) FID,
though downsampling 0.25x to 112×112 seems to have little effect on quality compared to keeping
the original 448 × 448 image, perhaps due to the limited capacity of the DINOv2 embedding and
the stochasticity in sampling. Empirically, we find that this introduced just enough uncertainty in
the reconstruction that it still resembles the original (CLIP similarity ∼0.88) without maintaining
fine details. This is the blur level we choose in our human experiments.

For the study of foveal token count (Figure 11, Bottom), we instead varied the number of randomly-
positioned foveal tokens, and provided them as the sole input to MetamerGen, masking the periph-
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eral tokens entirely. We found that increasing number of foveal tokens improves CLIP, DreamSim,
and FID scores, which nevertheless remain worse than the scores of reconstructions attained by
peripheral features only. This highlights the importance of the peripheral conditioning, which we
behaviorally confirmed in Section 6.2.3 and Appendix A.9.
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Figure 11: Influence of blur-level and foveal token count on image generation quality. (Top
Row) Image generation quality decreases as greater blur degrades the base image. (Bottom Row)
Image generation quality increases as a function of increasing foveal tokens.

A.8 SEMANTIC SIMILARITY IS MORE IMPORTANT THAN PHYSICAL DISTANCE

While MetamerGen was trained to denoise the original image from sparse visual inputs, we found
that it never precisely recreated the original images, even when presented with all patch tokens. More
importantly, we found that pixel-level similarities between the generated and original images had no
effect on whether an image was judged as a metamer. Instead, this judgment was predominantly
driven by high-level semantic similarities between the generated and original images.

This result indicates that observers rely primarily on a conceptual and semantic understanding of
the scene rather than on low-level pixel features when making metameric judgments. In Figure 12
A, we found that the pixel-level similarities measured by PSNR did not predict whether an image
would be a metamer; in Figure 12B, we establish that in a PSNR–DreamSim plot, low DreamSim
distances predict “same” judgments, but high PSNR values do not, with examples of each included.
We conclude that if a researcher wishes to titrate the rate of similarity judgments, they should do so
by selecting images based on DreamSim scores, not physical stimulus distance.
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Figure 12: Comparison of pixel-level (PSNR) and semantic (DreamSim) similarities in
metameric judgments. (A, Left) portrays the histograms of PSNR values for generated images
judged as “same” or “different” in the behavioral task, with nearly identical distributions between the
two groups. (B, Right) shows the relationship between PSNR and DreamSim distances for all image
pairs. There is a clear vertical separation by DreamSim distance that corresponds with metameric
judgments, while PSNR values do not discriminate between what is considered metameric.

A.9 FOVEAL AND PERIPHERAL TOKEN CONTRIBUTIONS TO METAMERIC JUDGMENTS

We present further statistics and analyses of the behavioral ablation experiment presented in Sec-
tion 6.2.3.

Figure 13 provides qualitative examples of generations from each treatment that were judged “same”
and “different”, together with a plot of the fool rate in each condition. The generations in the full-
model condition are both qualitatively the highest-quality and quantitatively the most likely to fool
participants.

One subtlety that emerged during this experiment was that, despite the same participant population
and an identical model, participants were substantially more likely to judge images generated by
MetamerGen as “same” (54.5%) than in the primary experiment (29.4%). Our interpretation of
this unexpected pattern of results is that the foveal-only condition, which was generally easy for
participants to distinguish from the original image, acted as a low anchor on image similarity, thus
lowering participants’ threshold for making a same judgment. Because this increases the amount of
variability in judgments that can be explained (see below), we see this as a ‘feature’ rather than a
‘bug’.

Figure 14 presents our exhaustive replication of the multi-scale feature correlation analysis from the
primary experiment under each condition of the ablation experiment. The main text describes the
two conclusions following from this analysis.
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Figure 13: Higher metameric (same) judgments for images incorporating both peripheral
and foveal information. Using both foveal and peripheral features produced the highest fooling
rates. Peripheral-only conditioning yielded the second best results, while foveal-only generations
lagged significantly behind. Although the difference between peripheral-only and combined foveal-
peripheral conditioning is small, it is meaningful: the additional high-resolution details from fixa-
tions lead participants to be more easily fooled.
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Figure 14: Impact of input visual streams on hierarchical feature analyses. (Top Row) Multi-
level feature analysis using neurally-grounded model (Jang & Tong, 2024) on driving metameric
judgments. (Middle Row) Mid-level visual features driving metameric judgments (mid-level sege-
mention mIoU and SiLog depth estimation). (Bottom Row) High-level visual features driving
metameric judgments (CLIP cosine similarity and DreamSim distance).
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First, under nearly all metrics, full-model (foveal + peripheral) generations fool participants at a
greater rate than peripheral-only generation, even at the same metric scores. This is evidenced by the
clear separation between the green and orange lines in most Fig 14 panels. The only features where
this gap was not apparent were late-layer cosine similarity and DreamSim distance, suggesting that
these metrics may capture a large proportion of the factors that caused humans to judge full-model
generations as “same” more than peripheral-only generations.

Second, participant judgments on full-model generations are more explainable than judgments on
peripheral-only generations. Along nearly all feature axes (apart from early-layer cosine similar-
ity and mid-level proto-object segmentation mIoU), judgments were more strongly correlated with
features under the foveal + peripheral condition. Foveal-only generations were even more poorly
explained by these metrics. In fact, the only metric which could explain judgments of foveal-only
generations to statistical significance was DreamSim, indicating that these generations, which lacked
the gross scene structure and layout provided from the periphery, were so far from the original image
that ordinarily important feature axes did not influence judgments.

A.10 DINOV2 VERSUS CLIP AS THE VISION ENCODER OF MetamerGen

Previous adapter-based approaches, like IP-Adapter Ye et al. (2023), have utilized CLIP embed-
dings as image conditioning inputs for Stable Diffusion. We choose DINOv2 as the visual encoder
for foveal and peripheral feature extraction because DINOv2 patch tokens have been shown to better
encode both local and contextual information. This contextual encoding emerges from DINOv2’s
self-supervised training objectives: its reconstruction loss encourages patches to redundantly en-
code information about their surroundings, while its contrastive loss causes semantically related
patches to have similar embeddings (via object and scene structure) (Barsellotti et al., 2025; Adeli
et al., 2023). This means a single DINOv2 patch token naturally captures both foveal detail (local
information) and parafoveal context (relationships to nearby regions) – precisely the type of repre-
sentation needed for modeling human fixations.

On the other hand, vision-language models like CLIP optimize for global image-text alignment,
which limits their patch-level spatial selectivity and the spatial relationships modeled in their deep
layers (Wang et al., 2024; Li et al., 2025). (CNN-based encoders lack emergent representations of
patch context – ie, parafoveal information – entirely.)

To empirically validate our choice of DINOv2, we retrained MetamerGen, using a CLIP vision
encoder, for 100K steps. Using the CLIP-conditioned model, we conducted two image generation
ablations using COCO-10K-test images: (1) varying the blur levels for a peripheral-only image
generation, and (2) varying the number of foveal tokens for a foveal-only image generation. This
ablation is directly comparable to the DINOv2 ablation presented in Appendix A.7.

We observed that CLIP features perform significantly worse at encoding peripheral information,
reflected by the higher FID values obtained in Figure 15 (left), 16. In contrast to DINOv2 tokens,
the FID value does not show a significant decrease when we reduce the blur level, meaning that
CLIP encodes similar (impoverished) information in its patch tokens for the blurred and non-blurred
images, focusing on global scene category, at the expense of more fine-grained scene structure. This
is consistent with previous observations made regarding CLIP’s relatively low ability to encode
contextual information with its patch tokens (Li et al., 2025). For foveal information, increasing
the number of tokens has a similar effect for both encoders, though a single DINOv2 token seems
to encode more information than a single CLIP token. Overall, our choice of DINOv2 is mainly
motivated by its ability to accurately encode both the peripheral and foveal information present in
the image.
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Figure 15: FID and DreamSim evaluations based on DINOv2 and CLIP as vision encoders for
foveal and peripheral feature extraction. (Left) The image generation quality (FID) for DINOv2-
based peripheral generations is consistently better than CLIP patch embeddings. For DINOv2, we
observe a sharp drop when decreasing the blur level, showing how decreasing blur results in the
model encoding different, more accurate image features. This is not true for CLIP patch tokens,
which seem to encode the same limited information across all blur levels. (Right) With increasing
numbers of foveal token inputs, the DreamSim distance for both DINOv2 and CLIP-based embed-
dings decreases. However, DINOv2-based generations yield greater semantic similarities with the
original images, especially at low token counts.
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Figure 16: Image generation examples across blur levels using DINOv2 and CLIP as vision
encoders. DINOv2-based peripheral generations resemble the original images more than CLIP-
based generations, even at low blur levels. As the rate of downsampling decreases (28 × 28 →
448 × 448), DINOv2-based generations continue to show substantial improvements while CLIP-
based generations exhibit minimal improvements. For the bottom two row pairs, DINOv2-based
generations are able to keep the size of the plane (as well as its spatial position) intact irregardless
of blur level input. However, that is not the case for the CLIP-based generations.
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