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Abstract

We adapt Lee at el.’s (2018) span-based en-
tity coreference model to the task of discourse
deixis resolution. The resulting model achieves
state-of-the-art results on the four datasets in
the CODI-CRAC 2021 shared task.

1 Introduction

Discourse deixis (DD) resolution, also known as ab-
stract anaphora resolution, is an under-investigated
task that involves resolving a DD to its antecedent.
A deixis is a term coined by Webber (1991) to de-
note a reference to a discourse entity such as a
proposition, description, event, or speech act. As
an example, consider the partial dialogue in Fig-
ure 1. In this example, the deixis “it” refers to the
utterance by B in which s/he said s/he would do-
nate $10. Unlike entity coreference, where lexical
overlap is a strong indicator of coreference, com-
monly used deictic expressions (e.g., “that”, “this”,
“it”) are semantically empty and therefore cannot
be resolved by simple string-matching facilities.
A natural question, then, is: how success-
ful would a state-of-the-art entity coreference
model be when applied to DD resolution? Re-
cently, Kobayashi et al. (2021) applied Xu and
Choi’s (2020) re-implementation of Lee et al.’s
span-based entity coreference model after augment-
ing it with a type prediction model (see Section 4.2)
to resolve deictic expressions in the discourse
deixis track of the CODI-CRAC 2021 shared task.
Not only did they achieve the highest score on each
dataset, they beat the second-best system (Anikina
et al., 2021), which is a non-span-based neural
approach combined with hand-crafted rules, by a
large margin. These results suggest that a span-
based approach to DD resolution holds promise.
Our goal in this paper is to investigate whether
task-specific observations can be exploited to ex-
tend a span-based model to further improve its per-
formance for DD resolution. Empirical results on

A: Would you donate to Save the Children?

B: {Yes, I will do $10 to both. }antecedent

B: I am of a tight budget, but I do make room for good causes.
A: Thank you very much.

A: The children will appreciate {it}anaphor-

Figure 1: Example

the CODI-CRAC 2021 shared task datasets show
that our extensions, though simple, are surprisingly
effective in improving model performance.

2 Related Work

Broadly, existing approaches to DD resolution can
be divided into two categories, rule-based sys-
tems (e.g., Eckert and Strube (2000), Byron (2002)
Navarretta (2000)) and machine learning-based
systems (e.g., Strube and Miiller (2003), Miiller
(2008)). Recently, deep learning is applied to the
task, using Siamese neural networks (Marasovic¢
et al., 2017; Anikina et al., 2021) or span-based
models (Kobayashi et al., 2021) to rank the candi-
date antecedents of a DD. See Appendix A for a
detailed discussion of related work.

3 Corpora

We used the DD-annotated corpora provided as part
of the CODI-CRAC 2021 shared task. For training,
we use the official training corpus from the shared
task (Khosla et al., 2021), ARRAU (Poesio and Art-
stein, 2008), which consists of three conversational
sub-corpora (TRAINS-93, TRAINS-91, RST) and
two non-dialogue sub-corpora (GNOME, PEAR).
For validation and evaluation, we use the official
development sets and test sets from the shared task.
The corpus is composed of four well-known conver-
sational datasets: the AMI corpus (McCowan et al.,
2005), the LIGHT corpus (Urbanek et al., 2019),
the Persuasion corpus (Wang et al., 2019), and
Switchboard (Godfrey et al., 1992). Basic statis-
tics about these corpora are provided in Table 1.
Additional statistics can be found in Appendix B.



Total Total Total Total Total
#docs #sents #tokens #ana  #ante
ARRAU train 552 22406 348072 1624 2677

LIGHT dev 20 908 11495 62 83

test 21 923 11824 80 96
AMI dev 7 4139 33741 230 294
test 3 1967 18260 118 142
Pers. dev 21 812 9185 94 94
test 28 1139 12629 123 134
Swbd. dev 11 1342 14992 127 175
test 22 3652 35027 263 323

Table 1: Statistics on the datasets.

4 Two Baseline Systems

The first baseline, coref-hoi, is Xu and
Choi’s (2020) re-implementation of Lee et
al.’s (2018) widely-used end-to-end entity coref-
erence model. The model ranks all text spans up
to a predefined length based on how likely they
correspond to entity mentions. For each top-ranked
span z, the model learns a distribution P(y) over
its antecedents y € Y(z), where Y(x) includes a
dummy antecedent € and every preceding span:

es(@)
P(y) =

> yevia) es(@.y’)

where s(z,y) is a pair-wise score that incorporates
two types of scores: (1) s, (+), which indicates how
likely a span is a mention, and (2) s.(-) and s4/(+),
which indicate how likely two spans refer to the
same entity (sq(z, €) = 0 for dummy antecedents):

s(z,y) = sm(z) + sm(y) + sc(z,y) + sa(2,y)

) = Sm
Sm(x) = FENN, (92)
se(,y) = gy Wegy
54(2,y) = FENNc(Ga, 9y, 9o © Gy, O(,Y))

where g, and g, are the vector representations of
x and y, W, is a learned weight matrix for bilinear
scoring, FFNN (-) is a feedforward neural network,
and ¢(-) encodes features. Two features are used,
one encoding speaker information and the other the
segment distance between two spans.

The second baseline, UTD_NLP, is the top-
performing system in the DD track of the CODI-
CRAC 2021 shared task (Kobayashi et al., 2021),
which extends coref-hoi with a set of modifica-
tions. Two of the most important modifications are:
(1) the addition of a sentence distance feature into
#(+), and (2) the incorporation into coref-hoi

a type prediction model, which predicts the type
of a span. The possible types of a span ¢ are:
ANTECEDENT (if 7 corresponds to an antecedent),
ANAPHOR (if ¢ corresponds to an anaphor), and
NULL (if it is neither an antecedent nor an anaphor).
The types predicted by the model are then used by
coref-hoi as follows: only spans predicted as
ANAPHORS can be resolved, and they can only be
resolved to spans predicted as ANTECEDENTS. De-
tails of how the type prediction model is trained
can be found in Kobayashi et al. (2021).

5 Approach

In this section, we describe the extensions we make
to the UTD_NLP model.

5.1 Candidate Anaphor Extraction

Our first extension, candidate anaphor extraction,
is motivated by the observation that most deictic ex-
pressions are demonstrative pronouns (e.g., “that”,
“this”) and “it”. In our development sets, these
three pronouns alone account for 84—-88% of the
anaphors. Consequently, we modify UTD_NLP as
follows: instead of allowing each span of length n
or less to be a candidate anaphor, we only allow
a span in which the underlying word/phrase has
appeared at least once in the training set to be a
candidate anaphor. While this seems like a very
simple extension, doing so substantially reduces
the memory requirements of the model and enables
the model to fit into memory even after it is aug-
mented with all of the extensions that we will see
in the rest of this section.

5.2 Anaphor Prediction

Now that we have the candidate anaphors, our sec-
ond extension involves predicting which of these
candidate anaphors are indeed deictic expressions.
To do so, we retrain the type prediction model in
UTD_NLP to predict the type of each candidate
anaphor span. The type for a span ¢ is ANAPHOR
if ¢ corresponds to a deictic expression, or NULL
if it does not. Only spans that are predicted to be
ANAPHOR will be resolved by the model.

5.3 Candidate Antecedent Extraction

A closer examination of our development sets re-
veals that only utterances can serve as the an-
tecedents of deictic expressions. Thus, rather than
enumerating all spans of up to a certain length to
obtain the candidate antecedents, we only allow ut-



terances to be candidate antecedents. More specifi-
cally, we extract candidate antecedents as follows.
For each span ¢ that is predicted to be ANAPHOR
by the type prediction model, we select the 10 utter-
ances closest to ¢ (including the utterance in which
1 appears) to be its candidate antecedents. The rea-
sons are that (1) deictic expressions are anaphoric
expressions, and hence recency plays an important
role in antecedent selection, and (2) in our develop-
ment sets, the 10 closest utterances already cover
96-99% of the antecedent-anaphor pairs.

5.4 Dummy Antecedent Elimination

Our next extension involves eliminating dummy
candidate antecedents. Recall thatin coref-ho1i,
the set of candidate antecedents for every span in-
cludes the dummy antecedent, which will be se-
lected as the antecedent of a span 7 if (1) 7 is not an
entity mention or (2) ¢ is an entity mention but it is
not anaphoric.

For our model, the situation is different. Since
only those spans predicted as ANAPHOR by the
anaphor prediction model described in Section 5.2
will be passed to the antecedent selection model,
the antecedent selection model only sees spans
that have been classified as anaphoric. Since these
spans are anaphoric, they should presumably not be
resolved to the dummy antecedent. For this reason,
we eliminate the dummy antecedent from the set of
candidate antecedents of every span when training
and testing the antecedent selection model.

5.5 Features

Our next extension involves a large-scale expansion
of features, hypothesizing that hand-engineered
features could be profitably used by a span-based
model. Specifically, we incorporate three types of
features: (1) anaphor-based features, which encode
the context of an anaphor, (2) antecedent-based
features, which encode some statistics computed
based on a candidate antecedent, and (3) pairwise
features, which encode the relationship between
an anaphor and a candidate antecedent. The list of
features is shown in Table 2.

We add these features to both the bilinear score
s¢(x,y) and the concatenation-based s, (z, y):

se(2,Y) = gg Wegy + g4 Wsgy
Sa(I, y) = FFNNC(QI? Gy, 9z © Gy, s, qb(ﬂ?, y))

where W, and W are learned weight matrix, g5 is
the embeddings of the sentence s that anaphor z is

Features

Embedding of the sentence the anaphor is in
# of words; # of nouns; # of verbs; # of ad-
jectives; # of content word overlaps between
antecedent and the preceding words of the
anaphor; whether an antecedent is the longest
among all candidate antecedents; whether an
antecedent has the most content word overlap
among all candidate antecedents

Sentence distance between a candidate an-
tecedent and an anaphor, ignoring sentences
that contain only interjections, filling words,
reporting verbs, and punctuation’

Type
Anaphor
Antecedent

Pairwise

Table 2: Additional features used in our model.

in, ¢(x, y) encodes the speaker information as well
as different types of distance between two spans.

5.6 Inference-Time-Only Distance-Based
Candidate Antecedent Filtering

Given that we have fewer training instances for
those antecedent-anaphor pairs that have larger sen-
tence distances and it is generally harder to learn
long-distance dependencies, correctly resolving an
anaphor whose antecedent is far away from it is
by no means easy. Although we used only the 10
closest utterances during training, we propose to
further lower this number during inference. Specifi-
cally, for each candidate anaphor, the model selects
an antecedent from one of the n closest utterances
where 1 < n < 10, where n is a tunable parameter.

6 Evaluation

6.1 Experimental Setup

Evaluation metrics. In the shared task, DD res-
olution is a generalized case of event coreference.
Thus, resolution performance is evaluated using the
well-known CoNLL score, which is the unweighted
average of the F-scores from three metrics, MUC
(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),
and CEAF, (Luo, 2005).

Model training and parameter tuning. For
coref-hoi, we use SpanBERT 4 as the en-
coder and reuse the hyperparameters from Xu and
Choi (2020) with only one exception: we increase
the maximum span width from 30 to 45, which
covers more than 98% of the antecedent spans.

"Note that the sentence distance feature introduced by
Kobayashi et al. (2021) is the raw sentence distance, whereas
the one we introduce here is a refined sentence distance feature
that aims to more accurately capture proximity by ignoring
meaningless sentences (e.g., those that contain interjections).
The complete list of filling words and reporting verbs that we
filter can be found in Appendix C



LIGHT AMI  Pers. Swbd. Avg. LIGHT AMI  Pers. Swbd. Avg.
UTD_NLPY 4270 3535 39.64 3543 3828 Ours” —Features 44.58  44.12 5098 49.70 47.34
coref-hoi” 3940 2495 33.00 32.03 3234 Ours” +Dummy 47.07  40.56 54.02 44.96 46.65
Ours” 4945 4233 5613 47.63 48.89 Ours” Dist10 49.45 4230 55.08 4721 4851
UTD_NLP® 4344 3691 5209 4044 4322 ‘ ) ,
coref-hoi® 4492 2962 4670 2885 37.52 Table 4: Ablation results for the Predicted setting.
Ours® 4597 39.62 5376 51.11 47.62

Table 3: Results on each of the four test sets. We report
the CoNLL F score on each test set, as well as an average
CoNLL F score over all test sets. Detailed MUC, B3,
CEAF, scores can be found in Appendix E

For UTD_NLP, we will simply report their offi-
cial results on the shared task test sets.

For our model, we use SpanBERT ;g as the
encoder. We tune the type loss coefficient A
and distance-based candidate antecedent filtering
parameter n using grid search to maximize the
CoNLL score on dev data. Since we do not rely
on span enumerate to generate candidate spans, the
maximum span width can be set to any arbitrary
numbers that are large enough to cover all our can-
didate antecedents and anaphors. In our case, we
use 300 as our maximum span width. We reuse
other hyperparameters from Xu and Choi (2020).
The search range of each hyperparameter and the
final hyperparameters are listed in Appendix D.

Both coref-hoi and our model are trained
for 30 epochs with a dropout rate of 0.3 and early
stopping.

Train-dev partition. Since we have four test
sets, we use ARRAU and all dev sets other than
the one to be evaluated on for model training
and the remaining dev set for development. For
example, when evaluating on AMl., we train
models on ARRAU, LIGHT 4y, Persuasionge, and
Switchboardge, and use AMlIg., for development.

6.2 Results

We follow the shared task to obtain results in two
different settings: (1) the Predicted setting, where
models need to extract anaphor mentions from the
documents, and (2) the Gold setting, where models
need to extract anaphor mentions from a given list
of gold mentions. Results of the two baselines and
our model on the four test sets are shown in Table
3, where the © and & models are respectively the
models evaluated in the Predicted and Gold set-
tings. As noted before, the results of UTD_NLP
(the top-performing system in the shared task) are
their official results in the shared task. Since the

shared task participants were allowed to submit
their system outputs multiple times to the server
to obtain results on the test sets, UTD_NLP’s re-
sults could be viewed as results obtained by tuning
parameters on the test sets.

Our models Ours? and ours® outperform all
other models on every test set in both settings and
the gold setting, despite the unfair advantage that
UTD_NLP has in terms of parameter tuning. Over-
all, ours? improves the previous state-of-the-art
results in the predicted setting by 10.6 CoNLL
score, and Ours® outperforms its previous state-
of-the-art counterpart by 4.4 CoNLL score.

6.3 Ablation Results

P we conduct three

To gain insights into Ours
ablation experiments?:

(1) Ablating features (Ours”—Feats): We
remove all but the three features used in the
UTD_NLP baseline, so that we can evaluate the
benefits of having the features in Table 2.

2) Including dummy antecedents
(ours”+Dummy): We add back the dummy
antecedent as a candidate antecedent for each
candidate anaphor and re-train the model, so that
we can evaluate how much we gained by removing
dummy antecedents.

(3) Removing distance-based filtering
(Ours®,Dist10): We set the sentence distance
filtering parameter n to 10, which is equivalent to
not performing sentence distance-based filtering.

Results are shown in Table 4. Ablating the fea-
tures causes a 1.55 drop in CoNLL score adding
back the dummy antecedent causes a 2.34 drop,
and not doing sentence distance filtering causes a
0.38 drop. Note that even these ablated models out-
perform their current state-of-the-art counterpart
UTD_NLPY by 8.37-10.23 in CoNLL score.

7 Conclusion

We presented an end-to-end discourse deixis reso-
lution model that achieves state-of-the-art results
on the CODI-CRAC 2021 datasets.

% Ablation results for the Gold setting are in Appendix F.
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A Further Discussion of Related Work

Rule-based. Early works that tackle the resolu-
tion of discourse deixis mentions are rule-based
systems (Eckert and Strube, 2000; Byron, 2002;
Navarretta, 2000). They use predefined rules to
extract anaphor mentions, and select antecedent for
each extracted anaphor based on the dialogue act
types of each candidate antecedent.

Machine learning-based. Early machine learn-
ing works (Strube and Miiller, 2003; Miiller, 2008)
use hand-crafted feature vectors to represent men-
tions. A classifier is then trained to identify whether
a pair of mentions is a valid antecedent-anaphor
pair. Recent machine learning approaches (Maraso-
vi¢ et al., 2017; Anikina et al., 2021) use a Siamese
neural network to rank candidate antecedents of
an anaphor. They use as their model input the sen-
tence embeddings obtained from a bi-LSTM model
or a BERT model. A score is then generated for
each pair of input sentences by the Siamese neural
network, and is later used to rank the candidate
antecedents.

Transformers-based. Transformers-based entity
coreference resolution approaches have emerged
several years ago (Kantor and Globerson, 2019;
Joshi et al., 2019, 2020). However, transformers-
based discourse deixis resolution approach is only
recently proposed by Kobayashi et al. (2021),
which is an end-to-end coreference system based
on SpanBERT. Their model jointly learns men-
tion extraction and discourse deixis resolution, and
achieves state-of-the-art results in the CODI-CRAC
2021 shared task.

B Detailed Statistics about the Corpus

Additional statistics about the corpus are shown
in Table 5. Some interesting facts are worth men-
tioning. Firstly, the AMI datasets have 4 speakers
per document on average. Secondly, the average
number of anaphors and antecedents per document
differ a lot between AMlge, and AMlI.;. These
two factors can partially explain why all models
perform the worst on AMI. Thirdly, the average
number of anaphors and antecedents are very close
on Persuasion, which means split-antecedents are
very rare on Persuasion. This can be one of the
reasons that all models perform the best on Persua-
sion.

C Complete List of Filtered Words

As stated in Table 2, we ignore some sentences that
contain only certain words. The complete lists of
words we ignore are as follows:

e Filling words: yeah, okay, ok, uh, right, so,
hmm, well, um, oh, mm, yep, hi, ah, whoops, al-
right, shhhh, yes, ay, hello, aww, alas, ye, aye,
uh-huh, huh, wow, www, no, and, but, again, won-
derful, exactly, absolutely, actually, sure thanks,
awesome, gosh, ooops.

e Reporting verbs: command, mention, demand,
request, reveal, believe, guarantee, guess, insist,
complain, doubt, estimate, warn, learn, realise, per-
suade, propose, announce, advise, imagine, boast,
suggest, remember, claim, describe, see, under-
stand, discover, answer, wonder, recommend, beg,
prefer, suppose, comment, think, argue, consider,
swear, ask, agree, explain, report, know, tell, de-
cide, discuss, repeat, invite, reply, expect, forget,
add, fear, hope, say, feel, observe, remark, confirm,
threaten, teach, forbid, admit, promise, deny, state,
mean, instruct.

D Hyperparameters and Experiment
Details

P and

ours®, we use 1 x 1075 as our BERT learning
rate, and 3 x 10~ as our task learning rate. For
ours”, and ours?, type loss coefficient of {0.2,
0.5, 1, 200, 500, 800} were tested, and sentence
filtering parameter n of {1, 2, 3, 4, 5, 6, 7} were
tested. Best hyperparameters were found using
grid search. The final type loss coefficients and
sentence filtering n’s are shown in Table 6. All
experiments were run using a random seed of 11.

For coref—hoip, coref—hoiG, Ours
G
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Total  Total Total Avg. Avg. #toks  Avg. Avg. Avg.  Avg. #speakers

#docs #sents #turns #sents  per sent #turns #ana #ante per doc

ARRAU  train 552 22406 - 40.6 15.5 - 29 4.8 -
LIGHT dev 20 908 280 454 12.7 14.0 3.1 42 2.0

test 21 923 294 44.0 12.8 14.0 3.8 4.6 2.0
AMI dev 7 4139 2828 5913 82 4040 329 420 40

test 3 1967 1463 655.7 9.3 48777 393 473 40
Pers. dev 21 812 431 38.7 11.3 20.5 4.5 4.5 2.0

test 28 1139 569 40.7 11.1 20.3 4.4 4.8 2.0
Swbd. dev 11 1342 715 122.0 112 65.0 115 159 20

test 22 3652 1996 166.0 9.6 90.7 120 147 20

Table 5: Additional statistics about the corpus. Turn information and speaker information are not annotated on the
ARRAU dataset.

LIGHT AMI Pers. Swbd.

p Type loss coefficient A 0.5 05 05 05
Sentence filtering n 10 6 3 5

¢ Type loss coefficient A 0.5 05 05 05
Sentence filtering n 10 6 3 5

Ours

Ours

Table 6: The final type loss coefficients and sentence
filtering n’s of our models.

E Detailed Experiment Results

The detailed MUC, B3, and CEAF., scores of each
model are shown in Table 7. We also report the

mention extraction results of each model in Table
8.

F Additional Ablation Experiments

We reported the ablation results of our models only
in the predicted setting in Section 6.3. For com-
pleteness, we report the ablation results of our mod-
els in the gold setting in Table 9.

G Distribution of Antecedents over
Sentence Distance

Table 10 shows the distribution of sentence dis-
tances between antecedents and anaphors in the
development sets. As we can see, few antecedents
are separated from their anaphors by more than a
sentence distance of 5.

H Limitations of Our Work

We believe that the performance of our models is
limited by the small amount of training data avail-
able. The corpora that are annotated for training a
DD resolver is much small than the corpora anno-
tated for training an entity coreference resolver.



MUC B3 CEAF,
P R F P R F P R F  CoNLL

LIGHT
UTD_NLP” 446 312 368 562 370 446 553 405 46.7 42.7
coref-hoi” 40.0 30.0 343 535 343 418 639 314 421 394
Ours” 547 438 486 632 428 510 69.1 37.6 487 49.5
UTD_NLP® 49.0 300 372 563 39.1 462 517 429 469 43.4
coref-hoi® 55.8 362 439 660 359 465 729 319 443 44.9
Ours® 484 375 423 609 403 485 70.8 354 472 46.0

AMI
UTD_NLPY 455 212 289 524 295 378 449 351 394 354
coref-hoi”’ 27.1 161 202 391 213 275 481 188 27.1 249
Ours” 347 424 382 426 462 443 500 40.1 445 423
UTD_NLP® 446 212 287 497 346 408 396 430 412 36.9
coref-hoi® 241 237 239 340 308 323 480 247 326 29.6
Ours® 333 364 348 421 419 420 497 364 420 39.6

Persuasion
UTD_NLPY 455 203 281 649 302 412 610 418 496 39.6
coref-hoi” 574 220 31.8 654 222 331 73.6 222 341 33.0
Ours? 52.8 528 528 593 553 572 659 523 583 56.1
UTD_NLP® 533 455 49.1 549 557 553 460 593 518 52.1
coref-hoi® 564 358 438 645 375 475 720 37.0 489 46.7
Ours® 57.1 455 50.7 645 477 548 7T71.6 456 558 53.8

Switchboard
UTD_NLP? 352 213 265 523 304 385 50.5 349 413 354
coref-hoi” 39.0 243 30.0 489 265 344 629 212 317 32.0
Ours” 432 460 446 51.7 475 495 60.5 409 488 47.6
UTD_NLP® 394 312 348 416 485 448 337 550 418 40.4
coref-hoi® 424 202 273 530 214 305 633 18.6 287 28.8
Ours® 47.6 494 485 56.1 506 532 63.6 434 516 51.1

Table 7: Detailed results for each model.

Light AMI Persuasion Switchboard

P R F P R F P R F P R F

UTD_NLP” - 73.8 - - 64.4 - - 65.9 - - 71.1 -
coref-hoi” 81.7 613 700 58.6 347 436 830 31.7 459 756 47.1 58.1
Anaphor Ours” 78.1 625 694 535 653 588 715 715 715 643 684 663
UTD_NLP® 650 650 650 579 619 3598 73.6 772 754 648 749 695
coref-hoi® 86.5 562 682 578 568 573 833 528 647 768 365 495
Ours® 823 637 718 527 576 551 786 626 69.7 685 71.1 6938

UTD_NLP” - 277 - - 205 - - 212 - - 215 -
coref-hoi” 564 277 371 476 186 268 636 192 295 629 212 317
Antecedent Ours” 689 375 486 512 41.0 455 638 507 565 622 4211 502

UTD_NLPY 597 33.0 425 495 323 391 524 589 555 382 524 442
coref-hoi® 673 295 410 470 242 320 653 336 443 583 171 265
Ours® 69.6 348 464 542 398 459 677 432 527 665 454 540

Table 8: Mention extraction results of each model. The precision and recall for the UTD_NLP?* model were not
released by Kobayashi et al. (2021).



LIGHT AMI  Pers. Swbd. Avg.

Ours® —Features  42.96  41.96 5479 5271 48.11

Ours®+Dummy 45.13 4222 5234 50.68 47.59

Ours® Dist10 44.93 4193 4888 5032 46.51

Table 9: Ablation results for gold setting.

0O 1 2 3 4 5 6 7 89 >9
LIGHT dev 10 22 9 3 1 1 0 0 0 2 2
AMI dev 32 65 41 198 8 4 1 1 0 4
Pers. dev 13 64 14 0 1 0 0 O O0 O 1
Swbd. dev 2 31 33 106 3 0 2 0 O 1

Table 10: The distribution of sentence distances between
antecedent-anaphor pairs. Sentence distance of 0 means
the anaphor and the antecedent are in the same sentence.



