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Abstract

We adapt Lee at el.’s (2018) span-based en-001
tity coreference model to the task of discourse002
deixis resolution. The resulting model achieves003
state-of-the-art results on the four datasets in004
the CODI-CRAC 2021 shared task.005

1 Introduction006

Discourse deixis (DD) resolution, also known as ab-007

stract anaphora resolution, is an under-investigated008

task that involves resolving a DD to its antecedent.009

A deixis is a term coined by Webber (1991) to de-010

note a reference to a discourse entity such as a011

proposition, description, event, or speech act. As012

an example, consider the partial dialogue in Fig-013

ure 1. In this example, the deixis “it” refers to the014

utterance by B in which s/he said s/he would do-015

nate $10. Unlike entity coreference, where lexical016

overlap is a strong indicator of coreference, com-017

monly used deictic expressions (e.g., “that”, “this”,018

“it”) are semantically empty and therefore cannot019

be resolved by simple string-matching facilities.020

A natural question, then, is: how success-021

ful would a state-of-the-art entity coreference022

model be when applied to DD resolution? Re-023

cently, Kobayashi et al. (2021) applied Xu and024

Choi’s (2020) re-implementation of Lee et al.’s025

span-based entity coreference model after augment-026

ing it with a type prediction model (see Section 4.2)027

to resolve deictic expressions in the discourse028

deixis track of the CODI-CRAC 2021 shared task.029

Not only did they achieve the highest score on each030

dataset, they beat the second-best system (Anikina031

et al., 2021), which is a non-span-based neural032

approach combined with hand-crafted rules, by a033

large margin. These results suggest that a span-034

based approach to DD resolution holds promise.035

Our goal in this paper is to investigate whether036

task-specific observations can be exploited to ex-037

tend a span-based model to further improve its per-038

formance for DD resolution. Empirical results on039

A: Would you donate to Save the Children?
B: {Yes, I will do $10 to both.}antecedent
B: I am of a tight budget, but I do make room for good causes.
A: Thank you very much.
A: The children will appreciate {it}anaphor.

Figure 1: Example

the CODI-CRAC 2021 shared task datasets show 040

that our extensions, though simple, are surprisingly 041

effective in improving model performance. 042

2 Related Work 043

Broadly, existing approaches to DD resolution can 044

be divided into two categories, rule-based sys- 045

tems (e.g., Eckert and Strube (2000), Byron (2002) 046

Navarretta (2000)) and machine learning-based 047

systems (e.g., Strube and Müller (2003), Müller 048

(2008)). Recently, deep learning is applied to the 049

task, using Siamese neural networks (Marasović 050

et al., 2017; Anikina et al., 2021) or span-based 051

models (Kobayashi et al., 2021) to rank the candi- 052

date antecedents of a DD. See Appendix A for a 053

detailed discussion of related work. 054

3 Corpora 055

We used the DD-annotated corpora provided as part 056

of the CODI-CRAC 2021 shared task. For training, 057

we use the official training corpus from the shared 058

task (Khosla et al., 2021), ARRAU (Poesio and Art- 059

stein, 2008), which consists of three conversational 060

sub-corpora (TRAINS-93, TRAINS-91, RST) and 061

two non-dialogue sub-corpora (GNOME, PEAR). 062

For validation and evaluation, we use the official 063

development sets and test sets from the shared task. 064

The corpus is composed of four well-known conver- 065

sational datasets: the AMI corpus (McCowan et al., 066

2005), the LIGHT corpus (Urbanek et al., 2019), 067

the Persuasion corpus (Wang et al., 2019), and 068

Switchboard (Godfrey et al., 1992). Basic statis- 069

tics about these corpora are provided in Table 1. 070

Additional statistics can be found in Appendix B. 071
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Total Total Total Total Total
#docs #sents #tokens #ana #ante

ARRAU train 552 22406 348072 1624 2677

LIGHT dev 20 908 11495 62 83
test 21 923 11824 80 96

AMI dev 7 4139 33741 230 294
test 3 1967 18260 118 142

Pers. dev 21 812 9185 94 94
test 28 1139 12629 123 134

Swbd. dev 11 1342 14992 127 175
test 22 3652 35027 263 323

Table 1: Statistics on the datasets.

4 Two Baseline Systems072

The first baseline, coref-hoi, is Xu and073

Choi’s (2020) re-implementation of Lee et074

al.’s (2018) widely-used end-to-end entity coref-075

erence model. The model ranks all text spans up076

to a predefined length based on how likely they077

correspond to entity mentions. For each top-ranked078

span x, the model learns a distribution P (y) over079

its antecedents y ∈ Y(x), where Y(x) includes a080

dummy antecedent ϵ and every preceding span:081

P (y) =
es(x,y)∑

y′∈Y(x) e
s(x,y′)

082

where s(x, y) is a pair-wise score that incorporates083

two types of scores: (1) sm(·), which indicates how084

likely a span is a mention, and (2) sc(·) and sa(·),085

which indicate how likely two spans refer to the086

same entity (sa(x, ϵ) = 0 for dummy antecedents):087

s(x, y) = sm(x) + sm(y) + sc(x, y) + sa(x, y)088

sm(x) = FFNNm(gx)089

sc(x, y) = g⊤x Wcgy090

sa(x, y) = FFNNc(gx, gy, gx ◦ gy, ϕ(x, y))091

where gx and gy are the vector representations of092

x and y, Wc is a learned weight matrix for bilinear093

scoring, FFNN(·) is a feedforward neural network,094

and ϕ(·) encodes features. Two features are used,095

one encoding speaker information and the other the096

segment distance between two spans.097

The second baseline, UTD_NLP, is the top-098

performing system in the DD track of the CODI-099

CRAC 2021 shared task (Kobayashi et al., 2021),100

which extends coref-hoi with a set of modifica-101

tions. Two of the most important modifications are:102

(1) the addition of a sentence distance feature into103

ϕ(·), and (2) the incorporation into coref-hoi104

a type prediction model, which predicts the type 105

of a span. The possible types of a span i are: 106

ANTECEDENT (if i corresponds to an antecedent), 107

ANAPHOR (if i corresponds to an anaphor), and 108

NULL (if it is neither an antecedent nor an anaphor). 109

The types predicted by the model are then used by 110

coref-hoi as follows: only spans predicted as 111

ANAPHORs can be resolved, and they can only be 112

resolved to spans predicted as ANTECEDENTs. De- 113

tails of how the type prediction model is trained 114

can be found in Kobayashi et al. (2021). 115

5 Approach 116

In this section, we describe the extensions we make 117

to the UTD_NLP model. 118

5.1 Candidate Anaphor Extraction 119

Our first extension, candidate anaphor extraction, 120

is motivated by the observation that most deictic ex- 121

pressions are demonstrative pronouns (e.g., “that”, 122

“this”) and “it”. In our development sets, these 123

three pronouns alone account for 84–88% of the 124

anaphors. Consequently, we modify UTD_NLP as 125

follows: instead of allowing each span of length n 126

or less to be a candidate anaphor, we only allow 127

a span in which the underlying word/phrase has 128

appeared at least once in the training set to be a 129

candidate anaphor. While this seems like a very 130

simple extension, doing so substantially reduces 131

the memory requirements of the model and enables 132

the model to fit into memory even after it is aug- 133

mented with all of the extensions that we will see 134

in the rest of this section. 135

5.2 Anaphor Prediction 136

Now that we have the candidate anaphors, our sec- 137

ond extension involves predicting which of these 138

candidate anaphors are indeed deictic expressions. 139

To do so, we retrain the type prediction model in 140

UTD_NLP to predict the type of each candidate 141

anaphor span. The type for a span i is ANAPHOR 142

if i corresponds to a deictic expression, or NULL 143

if it does not. Only spans that are predicted to be 144

ANAPHOR will be resolved by the model. 145

5.3 Candidate Antecedent Extraction 146

A closer examination of our development sets re- 147

veals that only utterances can serve as the an- 148

tecedents of deictic expressions. Thus, rather than 149

enumerating all spans of up to a certain length to 150

obtain the candidate antecedents, we only allow ut- 151
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terances to be candidate antecedents. More specifi-152

cally, we extract candidate antecedents as follows.153

For each span i that is predicted to be ANAPHOR154

by the type prediction model, we select the 10 utter-155

ances closest to i (including the utterance in which156

i appears) to be its candidate antecedents. The rea-157

sons are that (1) deictic expressions are anaphoric158

expressions, and hence recency plays an important159

role in antecedent selection, and (2) in our develop-160

ment sets, the 10 closest utterances already cover161

96–99% of the antecedent-anaphor pairs.162

5.4 Dummy Antecedent Elimination163

Our next extension involves eliminating dummy164

candidate antecedents. Recall that in coref-hoi,165

the set of candidate antecedents for every span in-166

cludes the dummy antecedent, which will be se-167

lected as the antecedent of a span i if (1) i is not an168

entity mention or (2) i is an entity mention but it is169

not anaphoric.170

For our model, the situation is different. Since171

only those spans predicted as ANAPHOR by the172

anaphor prediction model described in Section 5.2173

will be passed to the antecedent selection model,174

the antecedent selection model only sees spans175

that have been classified as anaphoric. Since these176

spans are anaphoric, they should presumably not be177

resolved to the dummy antecedent. For this reason,178

we eliminate the dummy antecedent from the set of179

candidate antecedents of every span when training180

and testing the antecedent selection model.181

5.5 Features182

Our next extension involves a large-scale expansion183

of features, hypothesizing that hand-engineered184

features could be profitably used by a span-based185

model. Specifically, we incorporate three types of186

features: (1) anaphor-based features, which encode187

the context of an anaphor, (2) antecedent-based188

features, which encode some statistics computed189

based on a candidate antecedent, and (3) pairwise190

features, which encode the relationship between191

an anaphor and a candidate antecedent. The list of192

features is shown in Table 2.193

We add these features to both the bilinear score194

sc(x, y) and the concatenation-based sa(x, y):195

sc(x, y) = g⊤x Wcgy + g⊤s Wsgy196

sa(x, y) = FFNNc(gx, gy, gx ◦ gy, gs, ϕ(x, y))197

where Wc and Ws are learned weight matrix, gs is198

the embeddings of the sentence s that anaphor x is199

Type Features
Anaphor Embedding of the sentence the anaphor is in
Antecedent # of words; # of nouns; # of verbs; # of ad-

jectives; # of content word overlaps between
antecedent and the preceding words of the
anaphor; whether an antecedent is the longest
among all candidate antecedents; whether an
antecedent has the most content word overlap
among all candidate antecedents

Pairwise Sentence distance between a candidate an-
tecedent and an anaphor, ignoring sentences
that contain only interjections, filling words,
reporting verbs, and punctuation1

Table 2: Additional features used in our model.

in, ϕ(x, y) encodes the speaker information as well 200

as different types of distance between two spans. 201

5.6 Inference-Time-Only Distance-Based 202

Candidate Antecedent Filtering 203

Given that we have fewer training instances for 204

those antecedent-anaphor pairs that have larger sen- 205

tence distances and it is generally harder to learn 206

long-distance dependencies, correctly resolving an 207

anaphor whose antecedent is far away from it is 208

by no means easy. Although we used only the 10 209

closest utterances during training, we propose to 210

further lower this number during inference. Specifi- 211

cally, for each candidate anaphor, the model selects 212

an antecedent from one of the n closest utterances 213

where 1 ≤ n < 10, where n is a tunable parameter. 214

6 Evaluation 215

6.1 Experimental Setup 216

Evaluation metrics. In the shared task, DD res- 217

olution is a generalized case of event coreference. 218

Thus, resolution performance is evaluated using the 219

well-known CoNLL score, which is the unweighted 220

average of the F-scores from three metrics, MUC 221

(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), 222

and CEAFe (Luo, 2005). 223

Model training and parameter tuning. For 224

coref-hoi, we use SpanBERTLarge as the en- 225

coder and reuse the hyperparameters from Xu and 226

Choi (2020) with only one exception: we increase 227

the maximum span width from 30 to 45, which 228

covers more than 98% of the antecedent spans. 229

1Note that the sentence distance feature introduced by
Kobayashi et al. (2021) is the raw sentence distance, whereas
the one we introduce here is a refined sentence distance feature
that aims to more accurately capture proximity by ignoring
meaningless sentences (e.g., those that contain interjections).
The complete list of filling words and reporting verbs that we
filter can be found in Appendix C
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LIGHT AMI Pers. Swbd. Avg.

UTD_NLPP 42.70 35.35 39.64 35.43 38.28
coref-hoiP 39.40 24.95 33.00 32.03 32.34
OursP 49.45 42.33 56.13 47.63 48.89

UTD_NLPG 43.44 36.91 52.09 40.44 43.22
coref-hoiG 44.92 29.62 46.70 28.85 37.52
OursG 45.97 39.62 53.76 51.11 47.62

Table 3: Results on each of the four test sets. We report
the CoNLL F score on each test set, as well as an average
CoNLL F score over all test sets. Detailed MUC, B3,
CEAFe scores can be found in Appendix E

For UTD_NLP, we will simply report their offi-230

cial results on the shared task test sets.231

For our model, we use SpanBERTLarge as the232

encoder. We tune the type loss coefficient λ233

and distance-based candidate antecedent filtering234

parameter n using grid search to maximize the235

CoNLL score on dev data. Since we do not rely236

on span enumerate to generate candidate spans, the237

maximum span width can be set to any arbitrary238

numbers that are large enough to cover all our can-239

didate antecedents and anaphors. In our case, we240

use 300 as our maximum span width. We reuse241

other hyperparameters from Xu and Choi (2020).242

The search range of each hyperparameter and the243

final hyperparameters are listed in Appendix D.244

Both coref-hoi and our model are trained245

for 30 epochs with a dropout rate of 0.3 and early246

stopping.247

Train-dev partition. Since we have four test248

sets, we use ARRAU and all dev sets other than249

the one to be evaluated on for model training250

and the remaining dev set for development. For251

example, when evaluating on AMItest, we train252

models on ARRAU, LIGHTdev, Persuasiondev and253

Switchboarddev and use AMIdev for development.254

6.2 Results255

We follow the shared task to obtain results in two256

different settings: (1) the Predicted setting, where257

models need to extract anaphor mentions from the258

documents, and (2) the Gold setting, where models259

need to extract anaphor mentions from a given list260

of gold mentions. Results of the two baselines and261

our model on the four test sets are shown in Table262

3, where the P and G models are respectively the263

models evaluated in the Predicted and Gold set-264

tings. As noted before, the results of UTD_NLP265

(the top-performing system in the shared task) are266

their official results in the shared task. Since the267

LIGHT AMI Pers. Swbd. Avg.

OursP−Features 44.58 44.12 50.98 49.70 47.34
OursP+Dummy 47.07 40.56 54.02 44.96 46.65
OursP ,Dist10 49.45 42.30 55.08 47.21 48.51

Table 4: Ablation results for the Predicted setting.

shared task participants were allowed to submit 268

their system outputs multiple times to the server 269

to obtain results on the test sets, UTD_NLP’s re- 270

sults could be viewed as results obtained by tuning 271

parameters on the test sets. 272

Our models OursP and OursG outperform all 273

other models on every test set in both settings and 274

the gold setting, despite the unfair advantage that 275

UTD_NLP has in terms of parameter tuning. Over- 276

all, OursP improves the previous state-of-the-art 277

results in the predicted setting by 10.6 CoNLL 278

score, and OursG outperforms its previous state- 279

of-the-art counterpart by 4.4 CoNLL score. 280

6.3 Ablation Results 281

To gain insights into OursP , we conduct three 282

ablation experiments2: 283

(1) Ablating features (OursP−Feats): We 284

remove all but the three features used in the 285

UTD_NLP baseline, so that we can evaluate the 286

benefits of having the features in Table 2. 287

(2) Including dummy antecedents 288

(OursP+Dummy): We add back the dummy 289

antecedent as a candidate antecedent for each 290

candidate anaphor and re-train the model, so that 291

we can evaluate how much we gained by removing 292

dummy antecedents. 293

(3) Removing distance-based filtering 294

(OursP,Dist10): We set the sentence distance 295

filtering parameter n to 10, which is equivalent to 296

not performing sentence distance-based filtering. 297

Results are shown in Table 4. Ablating the fea- 298

tures causes a 1.55 drop in CoNLL score adding 299

back the dummy antecedent causes a 2.34 drop, 300

and not doing sentence distance filtering causes a 301

0.38 drop. Note that even these ablated models out- 302

perform their current state-of-the-art counterpart 303

UTD_NLPP by 8.37–10.23 in CoNLL score. 304

7 Conclusion 305

We presented an end-to-end discourse deixis reso- 306

lution model that achieves state-of-the-art results 307

on the CODI-CRAC 2021 datasets. 308

2Ablation results for the Gold setting are in Appendix F.
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Rule-based. Early works that tackle the resolu-438

tion of discourse deixis mentions are rule-based439

systems (Eckert and Strube, 2000; Byron, 2002;440

Navarretta, 2000). They use predefined rules to441

extract anaphor mentions, and select antecedent for442

each extracted anaphor based on the dialogue act443

types of each candidate antecedent.444

Machine learning-based. Early machine learn-445

ing works (Strube and Müller, 2003; Müller, 2008)446

use hand-crafted feature vectors to represent men-447

tions. A classifier is then trained to identify whether448

a pair of mentions is a valid antecedent-anaphor449

pair. Recent machine learning approaches (Maraso-450

vić et al., 2017; Anikina et al., 2021) use a Siamese451

neural network to rank candidate antecedents of452

an anaphor. They use as their model input the sen-453

tence embeddings obtained from a bi-LSTM model454

or a BERT model. A score is then generated for455

each pair of input sentences by the Siamese neural456

network, and is later used to rank the candidate457

antecedents.458

Transformers-based. Transformers-based entity459

coreference resolution approaches have emerged460

several years ago (Kantor and Globerson, 2019;461

Joshi et al., 2019, 2020). However, transformers-462

based discourse deixis resolution approach is only463

recently proposed by Kobayashi et al. (2021),464

which is an end-to-end coreference system based465

on SpanBERT. Their model jointly learns men-466

tion extraction and discourse deixis resolution, and467

achieves state-of-the-art results in the CODI-CRAC468

2021 shared task.469

B Detailed Statistics about the Corpus 470

Additional statistics about the corpus are shown 471

in Table 5. Some interesting facts are worth men- 472

tioning. Firstly, the AMI datasets have 4 speakers 473

per document on average. Secondly, the average 474

number of anaphors and antecedents per document 475

differ a lot between AMIdev and AMItest. These 476

two factors can partially explain why all models 477

perform the worst on AMI. Thirdly, the average 478

number of anaphors and antecedents are very close 479

on Persuasion, which means split-antecedents are 480

very rare on Persuasion. This can be one of the 481

reasons that all models perform the best on Persua- 482

sion. 483

C Complete List of Filtered Words 484

As stated in Table 2, we ignore some sentences that 485

contain only certain words. The complete lists of 486

words we ignore are as follows: 487

• Filling words: yeah, okay, ok, uh, right, so, 488

hmm, well, um, oh, mm, yep, hi, ah, whoops, al- 489

right, shhhh, yes, ay, hello, aww, alas, ye, aye, 490

uh-huh, huh, wow, www, no, and, but, again, won- 491

derful, exactly, absolutely, actually, sure thanks, 492

awesome, gosh, ooops. 493

• Reporting verbs: command, mention, demand, 494

request, reveal, believe, guarantee, guess, insist, 495

complain, doubt, estimate, warn, learn, realise, per- 496

suade, propose, announce, advise, imagine, boast, 497

suggest, remember, claim, describe, see, under- 498

stand, discover, answer, wonder, recommend, beg, 499

prefer, suppose, comment, think, argue, consider, 500

swear, ask, agree, explain, report, know, tell, de- 501

cide, discuss, repeat, invite, reply, expect, forget, 502

add, fear, hope, say, feel, observe, remark, confirm, 503

threaten, teach, forbid, admit, promise, deny, state, 504

mean, instruct. 505

D Hyperparameters and Experiment 506

Details 507

For coref-hoiP , coref-hoiG, OursP , and 508

OursG, we use 1 × 10−5 as our BERT learning 509

rate, and 3 × 10−4 as our task learning rate. For 510

OursP , and OursG, type loss coefficient of {0.2, 511

0.5, 1, 200, 500, 800} were tested, and sentence 512

filtering parameter n of {1, 2, 3, 4, 5, 6, 7} were 513

tested. Best hyperparameters were found using 514

grid search. The final type loss coefficients and 515

sentence filtering n’s are shown in Table 6. All 516

experiments were run using a random seed of 11. 517
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Total Total Total Avg. Avg. #toks Avg. Avg. Avg. Avg. #speakers
#docs #sents #turns #sents per sent #turns #ana #ante per doc

ARRAU train 552 22406 - 40.6 15.5 - 2.9 4.8 -

LIGHT dev 20 908 280 45.4 12.7 14.0 3.1 4.2 2.0
test 21 923 294 44.0 12.8 14.0 3.8 4.6 2.0

AMI dev 7 4139 2828 591.3 8.2 404.0 32.9 42.0 4.0
test 3 1967 1463 655.7 9.3 487.7 39.3 47.3 4.0

Pers. dev 21 812 431 38.7 11.3 20.5 4.5 4.5 2.0
test 28 1139 569 40.7 11.1 20.3 4.4 4.8 2.0

Swbd. dev 11 1342 715 122.0 11.2 65.0 11.5 15.9 2.0
test 22 3652 1996 166.0 9.6 90.7 12.0 14.7 2.0

Table 5: Additional statistics about the corpus. Turn information and speaker information are not annotated on the
ARRAU dataset.

LIGHT AMI Pers. Swbd.

OursP
Type loss coefficient λ 0.5 0.5 0.5 0.5

Sentence filtering n 10 6 3 5

OursG
Type loss coefficient λ 0.5 0.5 0.5 0.5

Sentence filtering n 10 6 3 5

Table 6: The final type loss coefficients and sentence
filtering n’s of our models.

E Detailed Experiment Results518

The detailed MUC, B3, and CEAFe scores of each519

model are shown in Table 7. We also report the520

mention extraction results of each model in Table521

8.522

F Additional Ablation Experiments523

We reported the ablation results of our models only524

in the predicted setting in Section 6.3. For com-525

pleteness, we report the ablation results of our mod-526

els in the gold setting in Table 9.527

G Distribution of Antecedents over528

Sentence Distance529

Table 10 shows the distribution of sentence dis-530

tances between antecedents and anaphors in the531

development sets. As we can see, few antecedents532

are separated from their anaphors by more than a533

sentence distance of 5.534

H Limitations of Our Work535

We believe that the performance of our models is536

limited by the small amount of training data avail-537

able. The corpora that are annotated for training a538

DD resolver is much small than the corpora anno-539

tated for training an entity coreference resolver.540
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MUC B3 CEAFe

P R F P R F P R F CoNLL

LIGHT
UTD_NLPP 44.6 31.2 36.8 56.2 37.0 44.6 55.3 40.5 46.7 42.7
coref-hoiP 40.0 30.0 34.3 53.5 34.3 41.8 63.9 31.4 42.1 39.4
OursP 54.7 43.8 48.6 63.2 42.8 51.0 69.1 37.6 48.7 49.5
UTD_NLPG 49.0 30.0 37.2 56.3 39.1 46.2 51.7 42.9 46.9 43.4
coref-hoiG 55.8 36.2 43.9 66.0 35.9 46.5 72.9 31.9 44.3 44.9
OursG 48.4 37.5 42.3 60.9 40.3 48.5 70.8 35.4 47.2 46.0

AMI
UTD_NLPP 45.5 21.2 28.9 52.4 29.5 37.8 44.9 35.1 39.4 35.4
coref-hoiP 27.1 16.1 20.2 39.1 21.3 27.5 48.1 18.8 27.1 24.9
OursP 34.7 42.4 38.2 42.6 46.2 44.3 50.0 40.1 44.5 42.3
UTD_NLPG 44.6 21.2 28.7 49.7 34.6 40.8 39.6 43.0 41.2 36.9
coref-hoiG 24.1 23.7 23.9 34.0 30.8 32.3 48.0 24.7 32.6 29.6
OursG 33.3 36.4 34.8 42.1 41.9 42.0 49.7 36.4 42.0 39.6

Persuasion
UTD_NLPP 45.5 20.3 28.1 64.9 30.2 41.2 61.0 41.8 49.6 39.6
coref-hoiP 57.4 22.0 31.8 65.4 22.2 33.1 73.6 22.2 34.1 33.0
OursP 52.8 52.8 52.8 59.3 55.3 57.2 65.9 52.3 58.3 56.1
UTD_NLPG 53.3 45.5 49.1 54.9 55.7 55.3 46.0 59.3 51.8 52.1
coref-hoiG 56.4 35.8 43.8 64.5 37.5 47.5 72.0 37.0 48.9 46.7
OursG 57.1 45.5 50.7 64.5 47.7 54.8 71.6 45.6 55.8 53.8

Switchboard
UTD_NLPP 35.2 21.3 26.5 52.3 30.4 38.5 50.5 34.9 41.3 35.4
coref-hoiP 39.0 24.3 30.0 48.9 26.5 34.4 62.9 21.2 31.7 32.0
OursP 43.2 46.0 44.6 51.7 47.5 49.5 60.5 40.9 48.8 47.6
UTD_NLPG 39.4 31.2 34.8 41.6 48.5 44.8 33.7 55.0 41.8 40.4
coref-hoiG 42.4 20.2 27.3 53.0 21.4 30.5 63.3 18.6 28.7 28.8
OursG 47.6 49.4 48.5 56.1 50.6 53.2 63.6 43.4 51.6 51.1

Table 7: Detailed results for each model.

Light AMI Persuasion Switchboard

P R F P R F P R F P R F

Anaphor

UTD_NLPP - 73.8 - - 64.4 - - 65.9 - - 71.1 -
coref-hoiP 81.7 61.3 70.0 58.6 34.7 43.6 83.0 31.7 45.9 75.6 47.1 58.1
OursP 78.1 62.5 69.4 53.5 65.3 58.8 71.5 71.5 71.5 64.3 68.4 66.3
UTD_NLPG 65.0 65.0 65.0 57.9 61.9 59.8 73.6 77.2 75.4 64.8 74.9 69.5
coref-hoiG 86.5 56.2 68.2 57.8 56.8 57.3 83.3 52.8 64.7 76.8 36.5 49.5
OursG 82.3 63.7 71.8 52.7 57.6 55.1 78.6 62.6 69.7 68.5 71.1 69.8

Antecedent

UTD_NLPP - 27.7 - - 20.5 - - 21.2 - - 21.5 -
coref-hoiP 56.4 27.7 37.1 47.6 18.6 26.8 63.6 19.2 29.5 62.9 21.2 31.7
OursP 68.9 37.5 48.6 51.2 41.0 45.5 63.8 50.7 56.5 62.2 42.1 50.2
UTD_NLPG 59.7 33.0 42.5 49.5 32.3 39.1 52.4 58.9 55.5 38.2 52.4 44.2
coref-hoiG 67.3 29.5 41.0 47.0 24.2 32.0 65.3 33.6 44.3 58.3 17.1 26.5
OursG 69.6 34.8 46.4 54.2 39.8 45.9 67.7 43.2 52.7 66.5 45.4 54.0

Table 8: Mention extraction results of each model. The precision and recall for the UTD_NLPP model were not
released by Kobayashi et al. (2021).
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LIGHT AMI Pers. Swbd. Avg.

OursG−Features 42.96 41.96 54.79 52.71 48.11
OursG+Dummy 45.13 42.22 52.34 50.68 47.59
OursG,Dist10 44.93 41.93 48.88 50.32 46.51

Table 9: Ablation results for gold setting.

0 1 2 3 4 5 6 7 8 9 >9

LIGHT dev 10 22 9 3 1 1 0 0 0 2 2
AMI dev 32 65 41 19 8 8 4 1 1 0 4
Pers. dev 13 64 14 0 1 0 0 0 0 0 1
Swbd. dev 2 31 33 10 6 3 0 2 0 0 1

Table 10: The distribution of sentence distances between
antecedent-anaphor pairs. Sentence distance of 0 means
the anaphor and the antecedent are in the same sentence.
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