
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AN EXAMINATION ON THE EFFECTIVENESS OF
DIVIDE-AND-CONQUER PROMPTING IN LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models, such as Large language Models (LLMs), have attracted signif-
icant amount of interest due to their large number of applications. However, when
handling tasks involving repetitive sub-tasks and/or deceptive contents, such as
arithmetic calculation and article-level fake news detection, simple instructional
prompts suffer from inaccurate responses. Existing works show that more com-
plicated prompting strategies, such as Chain-of-Thoughts and Least-to-Most, can
unlock LLM’s powerful capacity in diverse areas. Recent researches reveal that
simple divide-and-conquer prompting strategy, i.e. simply dividing the input se-
quence to multiple sub-inputs, can also substantially improve LLM’s performance
in some specific tasks such as misinformation detection. In this paper, we aim
at examining the utility of divide-and-conquer prompting strategy and answer on
which kind of tasks this strategy gets advantages. Specifically, we provide a the-
oretic analysis to divide-and-conquer prompting strategy and help us identify the
specific tasks where DaC prompting can bring performance boost with theoretic
guarantee. We then present two cases (large integer arithmetic and fact verifi-
cation) where experimental results aligns with our theoretic analysis.

1 INTRODUCTION

Large language models (LLM) based on the Transformer architecture have led to major break-
throughs in natural language processing and other related fields in artificial intelligence(Brown et al.,
2020; Radford et al.; Touvron et al., 2023). State-of-the-art general-purpose language models have
demonstrated remarkable advancements in various domains, including question answering, graph
learning, reading comprehension, text generation, and machine translation (Chen et al., 2023b; Tan
et al., 2023; Hendy et al., 2023; Mao et al., 2023; Zong & Krishnamachari, 2023). These develop-
ments paves the way towards general-purpose problem solvers (Bubeck et al., 2023).

However, as pointed out in (Wei et al., 2022), significant challenges arise when scale-up models are
applied to tasks involved with long solution paths, such as those requiring mathematical or knowl-
edge reasoning. A series theoretic works attribute this challenge to Parallelism Tradeoff (Merrill &
Sabharwal, 2023a), a fundamental limitation of Transformers. Specifically, unlike Recurrent Neu-
ral Network whose computational depth is linear to the input sequence length (i.e., the depth is
O(n), where n is the input sequence length), Transformer does not contain any recurrent structure.
Such design, while achieving superior parallelizability than RNN, makes Transformers suffer from
limited expressive power. Merrill & Sabharwal proved that the expressive power of fixed-depth log-
precision Transformer, which is very close to the most commonly applied Transformer architecture
for LLMs, is bounded by constant-depth logspace-uniform threshold circuits. Thus, they fail to
accurately tackle the tasks requiring long solution paths.

To address this challenge, carefully designed prompting strategies have been developed to tackle
tasks that requires stronger expressive power (Feng et al., 2023). A series of works focus on prompt-
ing the LLM with instructions or context samples to output the intermediate steps that derive the final
answer in an autoregressive manner, such as Chain-of-Thoughts (CoT) (Wei et al., 2022; Wang et al.,
2022; Zhou et al., 2022; Chen et al., 2023a). Some works further apply programs to guide LLM to
strictly follow designated reasoning steps (Yao et al., 2023). Theoretically, these prompting strate-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

#Material#: Marseille, France (CNN)The French prosecutor leading an investigation into the

crash of Germanwings Flight 9525 insisted … not aware of any video …so far no videos

were used… He added, "A person who has such a video needs to … give it to the

investigators.” … Jean-Marc Menichini… that the reports were "completely wrong" and …

Task: Verify the truthfulness of a summary.

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-

pilot accused of deliberately crashing the plane, had a history of severe depression and

suicidal tendencies.

Q: You are given the above material and a summary. Please answer me: Does the

summary contain any claim that is contradicted with the material?

A: Based on the given material, the summary does not contain any claim that is contradicted

with the material. The material confirms the existence of a video showing the final moments

of Germanwings Flight 9525, as well as the history of severe depression and suicidal

tendencies of the co-pilot, Andreas Lubitz.

Example of Entangled Problem Solving

Sub-task 1:

Q: Does the claim 1 contradict with the material? #Claim 1#: A video showing

the final moments of Germanwings Flight 9525 has been recovered by

investigators from the wreckage site.

A: Yes, the claim is contradicted by the material. The material states that Marseille

prosecutor Brice Robin insisted that he was not aware of any video footage from

onboard the plane and that no videos were used in the crash investigation.

However, the claim states that a video showing the final moments of Germanwings

Flight 9525 has been recovered by investigators from the wreckage site.

Sub-task 2:

Q: Does the claim 2 contradict with the material? #Claim 2#: …

A: Based on the provided document, the summary does not contain any claim. …

Sub-task 3:

Q: Does the claim 3 contradict with the material? #Claim 3#: …

A: Based on the provided document, the summary does not contain any claim. …

Example of Divide-and-Conquer Problem Solving

Figure 1: An illustrative example of hallucination detection with entangled problem solving (i.e.,
directly forward all inputs into the LLM) and divide-and-conquer problem solving (i.e., divide the
problem inputs to parallel sub-tasks and tackle them parallelly). The sentence marked with red back
font in the material is the evidence that contradict with the first claim in summary, which is marked
with red font.

gies convert the role of Transformer from the complete problem solver to a sub-problem solver in
a dynamic programming or tree searching algorithm (Merrill & Sabharwal, 2023b). In this way,
these prompting strategies expand the expressive power of the LLMs and successfully improve the
reasoning and searching of LLMs (Feng et al., 2023).

In contrast to such methods that apply instruction, context sample or program to decompose the
whole reasoning process to multiple intermediate steps, in some tasks, researchers report that LLM’s
performance can also be boosted by simply dividing the input sequences to multiple sub-inputs
and then merge the responses from LLMs on all sub-inputs, as shown in Fig. 1. For example, Cui
et al. propose that in automated evaluation, LLM’s performance can be further boosted by first di-
viding the input text to sentences and then evaluating them one by one. Intuitively, this paradigm
benefits the tasks in a way similar to human brains, especially when the tasks are too hard or too
complex. For example, when reviewing a long academic paper, some reviewers produce low-quality
reviews (Garcia et al., 2021; Tennant & Ross-Hellauer, 2020; Cortes & Lawrence, 2021) contain-
ing hallucination-like intermediate errors, such as pointing out some ‘missing baselines’ that have
already been sufficiently discussed by authors. To avoid such mistakes, experienced reviewers usu-
ally think slowly (Kahneman, 2011) to follow a Divide-and-Conquer paradigm to handle this task.
Specifically, they decompose the paper review as examinations of multiple central opinions and then
retrieve corpus to verify them respectively.

However, unlike Chain-of-Thoughts whose advance in expressive power is supported by theoretic
analysis (Feng et al., 2023), the performance boost from Divide-and-Conquer paradigm is lack of
rigorous theoretic support. As a result, we are not aware of the conditions under which the Divide-
and-Conquer paradigm can acquire more accurate answers. To tackle this challenge, in this paper,
we aim at understanding the utility of DaC prompting. More specifically, we attempt to answer the
following two research questions:

1. RQ1: Compared to straightforward instructional prompting, does DaC have theoret-
ically guaranteed advantages similar as CoT and its variants?

2. RQ2: Compared CoT and its variants, what utility and limitations does DaC have?

To answer these questions, we first provide a theoretic paradigm that can help us analyze how
divide-and-conquer strategy expand the expressive power of fixed-depth log-precision Transformer
on a given task. In this way, we provide a framework that can provide theoretic guarantee to DaC
paradigm in various tasks. In this way, we present some conditions under which DaC have advan-
tages compared to other prompting strategies. We then empirically evaluate DaC prompting and
representative baselines on tasks that satisfy the proposed conditions and are challenging to existing
prompting strategies even on state-of-the-art LLMs: Large Integer Multiplication, Hallucination De-
tection, Article-level Fact Verification (Cheng & Zhang, 2023; Li et al., 2023a; Wadden et al., 2020;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Hu et al., 2023; Wu et al., 2023). These tasks either require very long reasoning paths (e.g. large
integer multiplication) or contain deceptive contents (e.g. hallucination detection and fact verifica-
tion), making existing methods like Chain-of-Thought prompting prone to intermediate errors. Our
experimental results show that the proposed method outperforms the baselines on all three tasks,
which supports our theoretic analysis.

Figure 2: The comparison between DaC and the existing methods for prompting. The ellipse marks
represent sub-tasks, the right-angled rectangles represent sub-task solutions, and the rounded rect-
angles represent intermediate steps that entangle sub-task and sub-solutions. The different shades
in Tree of Thoughts (subfigure D) indicate the rates of different search directions. In CoT (Chain-
of-Thoughts), CoT-SC and ToT, the Large Language Models must simultaneously generating and
resolving sub-tasks. Least-to-Most (also Decomposed Prompting) disentangle sub-task generation
and resolution. However, its sub-task resolution and resolution assembly process are intertwined as
it sequentially attach new sub-tasks onto the previous resolution. Different from them, DaC totally
disentangle the sub-task generation, sub-task resolution, and resolution assembly process.

2 RELATED WORK

2.1 EXPRESSIVE POWER OF TRANSFORMER

As discussed in previous works (Merrill & Sabharwal, 2023a; Feng et al., 2023), the expressive
power of fixed-length log-precision transformers, which are widely applied in modern Pre-trained
Large Language Models, is actually much more limited than people’s expects. Merrill & Sabharwal
give a theoretic proof that the expressive power of fixed-length log-precision transformers is upper-
bounded with TC0. Feng et al. further extend their analysis to explain that a lot of common problems
exceed the expressive power of fixed-length log-precision transformers. Such results explains why
the powerful LLM may make some ridiculous mistakes and how CoT improve the performance.

2.2 PROMPTING STRATEGIES OF LLM

In this sub-section, we introduce the existing prompting and discuss their limitations and drawbacks.
Following the notations in (Yao et al., 2023), we denote the Large Language Models with parameter
θ as pθ and use lower case letters x, y, z to denote input sequence, result, and intermediate steps,
respectively.

Input-Output (IO) Prompting is the standard prompting strategy that attach input x with instruc-
tions and/or few-shot in-context-learning examples to aqcuaire a prompt, denoted as prompt(x) (Yao
et al., 2023). The LLM takes prompt(x) as input and predict result, i.e. y ∼ pθ(y|prompt(x)).

Chain-of-Thought (CoT) Prompting (Wei et al., 2022) aims at simulating human’s thinking
process that handles complicated task (e.g. combinational reasoning and mathematical cal-
culation) in a step-by-step manner. More specifically, the LLM is guided to output a se-
ries of intermediate steps z1, z2, ..., zn (also known as thoughts) autoregressively, i.e. zi ∼
pθ(zi|prompt(x), z1, ..., zi−1). Then the LLM output the prediction of result y based on the
thoughts, i.e. y ∼ pθ(zi|prompt(x), z1, ..., zn).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Exploration-of-Thought (EoT) Prompting and Program-guided Prompting are two variants of
CoT. EoT includes a series of CoT’s variants, such as Self-consistency with CoT (CoT-SC) prompt-
ing (Wang et al., 2022) and Tree-of-Thoughts (ToT) prompting (Yao et al., 2023), which aim at
addressing the limitation of CoT in exploration. Their common central idea is to generate multiple
chains of thought through sampling or proposing prompting and then ensemble them to acquire a
final prediction. Program-guided Prompting aims at controlling the LLM’s generation process with
symbolic programs or pre-defined procedure (Zhu et al., 2022; Jung et al., 2022; Zhou et al., 2022;
Khot et al., 2022; Creswell & Shanahan, 2022; Gao et al., 2023). Among them, the Least-to-Most
(LtM) Prompting (Zhou et al., 2022) and Decomposed Prompting (Khot et al., 2022) are close to
this work. They are the earliest attempts that explicitly prompt the LLM to decompose the task as
a series of sub-tasks and sequentially tackle them. LtM prompt a LLM to iteratively raise sub-tasks
and sequentially solve them to acquire the final resolution. Decomposed Prompting can regarded
as a upgraded version of LtM. It introduces special notations into the prompt to represent program
states and thus can call itself (i.e., recursion) or other modules (i.e., hierarchical decomposition), en-
dowing it stronger expressive power. Such design increased the compositional generalization ability
of LLMs in different areas, such as symbolic manipulation and multi-hop QA (Khot et al., 2022).

The aforementioned CoT and EoT families incorporate LLM with stronger expressive power than
IO prompting. However, a critical issue of them is that, they could miss or ignore some important
intermediate steps or contents (Liu et al., 2023). This problem is even worse when we are han-
dling tasks involved with long input (e.g. long documents and large numbers). Typical examples
include large number arithmetic calculation and fact verification in long documents. Compared to
them, Least-to-Most prompting and Decomposed Prompting introduce explicit task decomposition
to enumerate sub-tasks. However, their task decomposers are based on multi-round conversation or
question-answering, which navigate the LLM through the deceptive content’s flow sequentially, and
propagate the hallucination/deception in the contexts (Dziri et al., 2024; Yang & Ettinger, 2023),
leading to decreased performance.

3 PRELIMINARY OF DIVIDE-AND-CONQUER PROMPTING

In this section, we summarize and formalize Divide-and-Conquer prompting strategy. Divide-
and-Conquer prompting strategy consists of three distinct stages: task decomposition stage, sub-task
resolution stage, solution merge stage. In task decomposition stage, the LLM is prompted to explic-
itly decompose the task as a series of parallel homogeneous sub-tasks with smaller problem sizes
(e.g. divide a long paragraph to sentences). Such design avoids the multi-round conversation or
question-answering in LtM and Decomposed Prompting, making the model less prone to decep-
tion. After that, in sub-task resolution stage, the LLM is prompted to provide the solutions for every
sub-task. Finally, in the solution merge stage, the LLM is prompted to assembly the solutions of sub-
tasks and acquire the final answer.To tackle tasks of different sizes, Divide-and-Conquer prompting
strategy can be divided to two variants: Single-Level DaC Solver and Multi-Level DaC Solver.

Algorithm 1 Single-Level Divide-and-Conquer Solver T (S, a, t, L, f)
Require: Input Sequence S, Prompt m (for solution merge), Prompt t (for sub-task tackling),

Prompt d (for task decomposition), LLM L
Ensure: Results of the task on input sequence S

1: {S1, S2, ..., Sk} ← L(d, S)
2: Result← ∅
3: for i = 1, 2, ..., k do
4: Result← Result +[SEP] + L(t, Si)
5: end for
6: Return L(m,Result)

Single-level Divide-and-Conquer Solver decomposes the task in one call to the LLM, which expands
the original task as a tree of one level. The algorithm is presented in the Alg. 1. The advantage of
this variant is its simplicity and efficiency. However, when the original input is too long, single-level
Divide-and-Conquer Solver may acquire sub-tasks with large problem sizes that will still trigger
intermediate errors. In such a case, following (Khot et al., 2022), we can recursively expand the
task as a multi-level tree. More specifically, we repeat the aforementioned steps to further divide

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the sub-tasks hierarchically until they are easy enough to be handled by the LLM. This can be done
through a recursion program as presented in Alg. 2. More discussions on the proposed method’s
appliance scope, including its comparison with other prompting strategies and limitations, can be
found in A.1

Algorithm 2 Multi-Level Divide-and-Conquer Solver Recursion T (S,m, t, d, f, n, L)

Require: Input Sequence S, Problem Size Metric Function f(·) (a function that measure the prob-
lem size), hyper-parameter w, Prompt m (for merge), Prompt t (for sub-task tackling), Prompt
d (for task decomposition), Large Language Model L

Ensure: Results of the task on input sequence S
1: S1, S2, ..., Sk ← L(d, S)
2: Result← ∅
3: for i = 1, 2, ..., k do
4: if f(Si) > w then
5: Result← Result +[SEP] + T (Si,m, t, d, f, w, L)
6: else
7: Result← Result +[SEP] + L(t, Si)
8: end if
9: end for

10: Return L(m,Result)

4 THEORETIC ANALYSIS

In this section, we provide theoretic analysis to the utility and limitations of the Divide-and-Conquer
prompting. In the first subsection, we provide a comparison of IO prompting (common fixed-length
instructional prompting) and DaC prompting in expressive power perspective. This part answers
the first research question: the expressive power of IO prompting is a subset of DaC prompting. In
the second subsection, we provide a comparison between Chain-of-Thoughts and DaC prompting in
expressive power. Our comparison suggests that, although the expressive power of DaC prompting
is a subset of Chain-of-Thoughts, for tasks satisfying specific conditions, DaC prompting can solve
the problem with lower average context window length when decoding the tokens. Such property is
empirically proved to be helpful for reducing the intermediate error and thus boost the performance.

4.1 DIVIDE-AND-CONQUER VS. IO PROMPTING

We show that the expressive power of Divide-and-Conquer is stronger than IO Prompting:

Theorem 4.1 We denote the set of problems that a fixed-precision transformer with fixed-length
IO prompting can tackle as S(IO). Similarly, we denote the set of problems that a fixed-precision
transformer with DaC prompting can tackle as S(DaC). Then we have the following results:

S(IO) ⊂ TC0 ⊆ NC1 ⊆ S(DaC) (1)

Proof Sketch: The conclusion that S(IO) ⊂ TC0 is a corollary of the main results in (Chiang et al.,
2023). In this paper, we mainly focus on proving NC1 ⊆ S(DaC). Specifically, we exploit 2-color
Binary Subtree Isomorphism (2-BSI) problem for the proof. In (Jenner et al., 2003), 2-BSI problem
is proved to be an NC1-complete problem. Its definition is:

Definition 1 2-color Binary Subtree Isomorphism problem is that, given a pattern 2-colorbinary
tree tp and a base 2-color binary tree tb, a solver is required to judge whether the pattern tree is
isomorphic to a sub-tree of tb

In (Jenner et al., 2003), the authors pointed out that the encoding of the problem will influence
the hardness of the problem. In this paper, we focus on pointer list encoding of 2-BSI. Detailed
information about the pointer list encoding of 2-BSI can be found in Appendix. For pointer list
encoding of 2-BSI, we have the following theorem:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 4.2 There exists a log-precision transformer with fixed depth L and hidden dimension d
that can solve the 2-BSI of any size with fixed-length prompt m (for merge), t (for sub-task tackling)
and d (for task decomposition).

Proof Sketch: The detailed proof is provided in the Appendix A.2. Here we give a brief flow of the
proof. To prove this theorem, we first show an algorithm that can solve the problem with divide-and-
conquer strategy. Then we prove that there exists a log-precision transformer with fixed depth L and
hidden dimension d that can express the modules in the algorithms with different but fixed-length
prompts. In this way, we can prove the theorem.

With the above theorem, we can prove that NC1 ⊆ S(DaC), which finishes the proof. With this
theoretic results, we can answer the RQ 1:

Compared to IO prompting, DaC have theoretically guaranteed advantages in expressive power.

4.2 DAC VS. COT

In this section, we compare Divide-and-Conquer with Chain-of-Thoughts in order to understand
the utility and limitation of DaC prompting. The limitation of DaC prompting is that its expressive
power is a subset of CoT prompting:

Proposition 4.3 We denote the set of problems that a fixed-precision transformer with DaC prompt-
ing can tackle as S(DaC). Similarly, we denote the set of problems that a fixed-precision trans-
former with CoT prompting can tackle as S(CoT) Then we have the following results:

S(DaC) ⊆ S(CoT) (2)

The proof of this proposition is very straightforward. For any problem that DaC can solve, we
can concatenate all outputs of LLM in dividing, tackling and merging as a sequence. Then we can
prompt LLM with CoT to output this sequence. Thus, the problem set that DaC can resolve is a
subset of CoT.

The limitation revealed by the above theorem shows that compared to CoT, the appliance scope of
Divide-and-Conquer is limited. However, by analyzing the average decoding context window size,
we show that on specific tasks, divide and conquer can reduce the problem complexity:

Definition 2 Decoding Context Window Size: In auto-regressive decoding, each token is decoded
from a window that covers all previous tokens. We denote the length of the window as the Decoding
Context Window Size of the token.

Proposition 4.4 Suppose that a task contains k sub-tasks, each of which does not rely on the an-
swers of other sub-tasks. We define such sub-tasks as parallel sub-tasks. If an LLM tackle these
sub-tasks sequentially with CoT, then the average decoding context window size of the sub-tasks’
resolution will be C+

∑k
i=1 ri−1

2 , where ri is the length of the response to the i-th sub-task and C is
the length of input context. If we tackle them parallely with DaC, then the average decoding context
window size of the sub-tasks’ resolution will be C +

∑k
i=1

(ri−1)2

2
∑k

j=1 rj
< C +

∑k
i=1 ri−1

2 .

The above proposition shows that when task contains a large amount of parallel sub-tasks, DaC is
more helpful for reducing the average decoding context window size than CoT. Existing works have
empirically showed that long decoding context window will propagate intermediate errors and thus
increase the probability of generating hallucination (Yang & Ettinger, 2023). Thus, we can acquire
a conclusion that DaC is competetive on tasks that contain a large amount of parallel sub-tasks and
are bothered by intermediate errors and hallucination. With these theoretic results, we can answer
the RQ 2:

Compared to CoT and its variants, DaC prompting’s expressive power is weaker. However, on tasks
containing a large amount of parallel sub-tasks, DaC is more helpful.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 ADVANTAGES OF DAC

The above analysis answer the two research questions that we proposed. By summarizing these
two answers, we can acquire the two conditions such that when a task simultaneously satisfied both
conditions, DaC bring performance boost:

• Condition 1: the task is harder than S(IO), such as TC0-complete problems and NC1-
complete problems.

• Condition 2: the task contains a large amount of parallel sub-tasks and is bothered by
hallucinations or intermediate errors.

In Tab. 1, we present some sample tasks that satisfied the conditions. Also, we list some tasks that
typically do not satisfy the conditions. This is helpful for guiding prompt engineering. Details are
provided in Appendix A.6.

Applicable Tasks Non-Applicable Tasks
Integer Multiplication Integer Addition

Fact Verification Multi-round QA
Consistency Evaluation Planning

Table 1: We list some exaple tasks that satisfy the conditions and some tasks that do not satisfy the
conditions.

5 EXPERIMENTS

5.1 CASE 1: LONG INTEGER ARITHMETIC

In this case, we consider two tasks in long integer arithmetic: Multiplication, which satisfy the
conditions we proposed, and Addition, which does not satisfy the first condition 1. Our experiment
results will show that DaC prompting bring performance boost on multiplication and does not bring
boost on integer addition.

IO CoTCoT-SCLtM DeP DaC
0

1

2

3

4

5

6

7

Ed
it

Di
st

an
ce

GPT-3.5-Turbo
GPT-4

(a) Edit distance of DaC and baseline prompting
strategies on GPT-3.5 and GPT-4 for Multiplica-
tion.

IO CoTCoT-SCLtM DeP DaC
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ed
it

Di
st

an
ce

GPT-3.5-Turbo
GPT-4

(b) Edit distance of DaC and baseline prompting
strategies on GPT-3.5 and GPT-4 for Addition.

Figure 3: Performance of different prompting strategies on long integer multiplication.

Task Setup: For this task, we randomly generated 200 pairs of 5-digit integers. We choose 5
for the digit length because according to previous works, ChatGPT-3.5 gets 0% accuracy on 4-
digit multiplications (Cheng & Zhang, 2023), and ChatGPT-4 gets close to 0% accuracy on 5-digit
multiplications (Yang et al., 2023). We evaluate the performance with Edit Distance (Marzal &
Vidal, 1993; Schaeffer et al., 2023).

Setup of baselines and DaC: In this task, our baselines include IO prompting, Chain of Thought
(CoT), CoT-SC, Least-to-Most (LtM), and Decomposed Prompting (DeP). Tree-of-Thoughts is not

1Multiplication is a TC0-complete problem and can be divided to multiple parallel sub-tasks, while Addition
is in S(IO)Barcelo et al. (2023)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

24emStrategies GPT-3.5-Turbo GPT-4
F1 Acc Prec Recall F1 Acc Prec Recall

IO-prompting 61.69 61.27 62.11 61.28 64.07 72.66 93.41 48.76
Chain-of-Thoughts 46.85 64.26 91.36 31.50 71.05 76.10 90.08 58.66

CoT-SC 47.70 64.25 88.83 32.60 71.39 76.36 90.41 58.98
Tree-of-Thoughts 70.40 59.91 55.83 95.34 69.41 71.73 75.53 64.28

Least-to-Most 56.43 64.91 74.42 45.44 72.51 77.11 90.74 60.38
Divide-and-Conquer 74.84 75.55 77.41 72.03 76.92 78.99 85.36 70.01

Table 2: Performance of different prompting methods on HaluEval dataset.

applicable. This is because that multiplication is deterministic calculation without requiring search
in a tree. For DaC, we apply Multi-Level Divide-and-Conquer program-guided solver.

Results: Experimental results are shown in Fig. 3(a) and 3(b). As we can see, for integer addition
which does not satisfy our proposed conditions, the performance of DaC, CoT and its variants does
not significantly outperform IO prompting for both ChatGPT-3.5 and 4. However, for integer multi-
plication which satisfy our proposed conditions, under all settings, our proposed prompting strategy
outperform all the baselines. This phenomenon indicate that our proposed conditions are useful for
recognizing the tasks where DaC is more powerful.

5.2 CASE 2: FACT VERIFICATION OF LONG TEXT

In the previous section, we show that for arithmetic tasks, our proposed conditions are discerning to
the tasks where divide-and-conquer has advantages. In this section, we further present our conditions
can be applied to natural language tasks. Specifically, we present the performance of baselines and
Divide-and-Conquer on fact verification of long text. In this task, the LLM is required to whether a
long corpus is aligned with base knowledge. This task satisfied the proposed two conditions. For
the first condition, we can reduce a 2-BTI problem to fact verification by describing the two trees
with natural language. In this way, we can convert the trees to two paragraphs and what we need
to do is to ask the LLM to judge whether the two paragraphs are aligned or not. For the second
condition, since we are tackling long text, then each sentence can be regarded as parallel sub-tasks.
We select two benchmarks of fact verification: Fact-Verification for Hallucination Detection and
Fact-Verification for Misinformation Detection

5.2.1 HALLUCINATION DETECTION

Although Large Language Models have achieved impressive performance on various NLP tasks,
they are bothered by hallucination problem (Manakul et al., 2023), especially when the generated
content or the input context is too long for the user to have a thoroughly review (Zhang et al., 2023).
In this paper, we focus on evaluating the performance of different strategies in guiding LLM to
recognize inconsistency between given context and model response with hallucination.

24emStrategies GPT-3.5-Turbo GPT-4
F1 G-M Prec Recall F1 G-M Prec Recall

Io-Prompting 72.12 72.77 83.22 63.64 69.15 71.77 94.44 54.55
Chain-of-Thoughts 56.09 60.64 90.48 40.64 74.03 75.79 94.21 60.96

CoT-SC 56.83 61.44 91.67 41.18 70.09 73.45 100.0 53.95
Tree-of-Thoughts 69.91 73.30 53.74 100.0 77.34 78.00 88.89 68.45

Least-to-Most 54.08 54.15 51.46 56.99 73.56 74.25 85.21 64.71
Divide-and-Conquer 76.88 77.13 83.65 71.12 81.11 81.24 76.67 86.10

Table 3: Performance of different prompting methods on SciFact dataset.

Task Setup: We use the HaluEval-Summary dataset. It is one of the three datasets in HaluEval
benchmark for hallucination detection, which contains the hallucination generated by ChatGPT-3.5.
HaluEval-Summary have the longest context and generated contents among all three tasks in this
benchmark (Li et al., 2023a). Thus, detecting hallucination on this dataset requires repeatedly verify
each sentence in the response, making standard prompting strategies acquire the worst accuracy

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

across all three tasks. We report the Accuracy, F1 score (the hallucination pairs are positive samples),
Precision and Recall.

Setup of baselines, ablation variants and DaC: In this task, our baselines include IO prompting,
Chain of Thought, CoT-SC, Tree-of-Thoughts Least-to-Most, and Decomposed Prompting. In this
task, the sub-tasks are verifying fragments of the summary, which are homogeneous and do not
require recurssion. In such a setting, Decomposed Prompting is equivalent to LtM. For this task,
we apply single level Divide-and-Conquer solver to decompose the summary to multiple sentences,
handle them separately and then merge the conclusions of all sentences. The details are in Appendix.

Results: Experimental results are shown in Tab. 2. For both GPT-3.5 and GPT-4, our proposed
prompting strategy outperform the baselines, presenting the advantage of DaC. More specifically,
compared to IO-prompting, DaC achieved better performance in general, indicating the advantage
brought by stronger expressive power. Meanwhile, compared to CoT and CoT-SC results, DaC
clearly achieved much better recall. Tree-of-Thoughts, benefited by its searching ability, acquired
significantly better recall score compared to other baselines. However, its significantly lower preci-
sion substantially harm its overall performance and leads to accuracy that is even worse than standard
IO-prompting. In contrary, DaC carefully checked all sentences, locate the one containing factual
error and merge the answers.

5.2.2 MISINFORMATION DETECTION

The increasing abuse of misinformation toward manipulating public opinions on social media has
been observed in different areas, such as healthcare (e.g. the recent COVID-19 pandemic) (Sharma
et al., 2020; 2022). This threat is increasingly serious due to LLM’s capacity in content generation
(Li et al., 2023b; Weidinger et al., 2021; Zhang et al., 2022). This challenge raise the importance
of fact-verification, which aims at judging the authenticity of an article based on a collection of
evidence from verified source (Whitehouse et al., 2022; Zhang & Gao, 2023). In this experiment,
we present that DaC can outperform other baselines in fact-verification involved with news article .

Task Setup: In this experiment, we mainly adopt SciFact dataset (Wadden et al., 2020). In SciFact
dataset, each sample is a pair of news and evidence, where the evidence is the abstract of a peer-
reviewed paper and the news is a sentence of claim. To better simulate the real-world scenario where
news on social media usually appears as an paragraph of post, following Chen & Shu, we generate a
dataset of paragraph-level misinformation based on SciFact dataset. Specifically, for a given claim,
we apply ChatGPT-4 to extend the claim as an article based on the evidence. For this task, similar
as hallucination detection, we apply single level Divide-and-Conquer solver to decompose the news
article to multiple sentences, handle them separately and then merge the conclusions of all sentences.
Also, the baselines in this experiments are the same as Hallucination Detection. The evaluation
metrics includes F1 score, G-Mean score (geometric mean of precision and recall), Precision and
Recall. We do not apply accuracy as the positive and negative classes are not balanced.

Results: Experimental results are shown in Tab. 3. Notably, GPT-3.5 incorporated with our
proposed prompting strategy even outperform the performance of GPT-4 incorporated with IO-
prompting, Least-to-Most, CoT and CoT-SC, which have significantly lower recall scores, indi-
cating their proneness to deception. Only Tree-of-Thoughts, which is benefited by its advantage in
exploring various options, acquired the best results among all baselines, but is still defeated by DaC.
Moreover, as we can see, for GPT-4 the performance of CoT-SC is even worse than CoT, which is
supposed to be a specific case of CoT-SC without exploration. These results suggests that, when
facing deceptive contents generated on purpose, existing works’ improvement may not be robust.

6 CONCLUSIONS

In this paper, we analyze the utility and limitations of divide-and-conquer prompting strategy. We
first provide theoretic analysis to Divide-and-Conquer prompting and compare it with representative
prompting strategies. Based on these theoretic results, we summarize two conditions under which
a task is suitable for Divide-and-Conquer prompting. After that we conducted experiments on all
several tasks. The empirical results validated our theoretic analysis and shows that the two conditions
we proposed are helpful for recognizing the appliance scope of Divide-and-Conquer prompting.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical
languages accepted by transformer encoders with hard attention, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Canyu Chen and Kai Shu. Can llm-generated misinformation be detected? arXiv preprint
arXiv:2309.13788, 2023.

Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen, Ge Fan, Dayiheng Liu, Dongmei Zhang, Zhixu
Li, and Yanghua Xiao. Hallucination detection: Robustly discerning reliable answers in large
language models. In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, pp. 245–255, 2023a.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning
on graphs. arXiv preprint arXiv:2307.03393, 2023b.

Vincent Cheng and Yu Zhang. Analyzing ChatGPT’s mathematical deficiencies: Insights and con-
tributions. In Jheng-Long Wu and Ming-Hsiang Su (eds.), Proceedings of the 35th Conference on
Computational Linguistics and Speech Processing (ROCLING 2023), pp. 188–193, Taipei City,
Taiwan, October 2023. The Association for Computational Linguistics and Chinese Language
Processing (ACLCLP). URL https://aclanthology.org/2023.rocling-1.22.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders, 2023.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. 2022.

Corinna Cortes and Neil D Lawrence. Inconsistency in conference peer review: revisiting the 2014
neurips experiment. arXiv preprint arXiv:2109.09774, 2021.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. arXiv
preprint arXiv:2208.14271, 2022.

Wendi Cui, Jiaxin Zhang, Zhuohang Li, Damien Lopez, Kamalika Das, Bradley Malin, and Sricha-
ran Kumar. A divide-conquer-reasoning approach to consistency evaluation and improvement in
blackbox large language models. In Socially Responsible Language Modelling Research, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Jose A Garcia, Rosa Rodriguez-Sánchez, and J Fdez-Valdivia. Quality censoring in peer review.
Scientometrics, 126:825–830, 2021.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. How good are gpt models
at machine translation? a comprehensive evaluation. arXiv preprint arXiv:2302.09210, 2023.

10

https://aclanthology.org/2023.rocling-1.22

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Beizhe Hu, Qiang Sheng, Juan Cao, Yuhui Shi, Yang Li, Danding Wang, and Peng Qi. Bad actor,
good advisor: Exploring the role of large language models in fake news detection. arXiv preprint
arXiv:2309.12247, 2023.

Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Completeness results for graph
isomorphism. Journal of Computer and System Sciences, 66(3):549–566, 2003.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
arXiv preprint arXiv:2205.11822, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-
scale hallucination evaluation benchmark for large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 6449–6464, 2023a.

Siyu Li, Jin Yang, and Kui Zhao. Are you in a masquerade? exploring the behavior and im-
pact of large language model driven social bots in online social networks. arXiv preprint
arXiv:2307.10337, 2023b.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo Hao Cheng, Yegor
Klochkov, Muhammad Faaiz Taufiq, and Hang Li. Trustworthy llms: a survey and guideline for
evaluating large language models’ alignment. arXiv preprint arXiv:2308.05374, 2023.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallu-
cination detection for generative large language models. arXiv preprint arXiv:2303.08896, 2023.

Rui Mao, Guanyi Chen, Xulang Zhang, Frank Guerin, and Erik Cambria. Gpteval: A survey on
assessments of chatgpt and gpt-4. arXiv preprint arXiv:2308.12488, 2023.

Andres Marzal and Enrique Vidal. Computation of normalized edit distance and applications. IEEE
transactions on pattern analysis and machine intelligence, 15(9):926–932, 1993.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023a. doi:
10.1162/tacl a 00562. URL https://aclanthology.org/2023.tacl-1.31.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of
thought. arXiv preprint arXiv:2310.07923, 2023b.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? arXiv preprint arXiv:2304.15004, 2023.

Karishma Sharma, Sungyong Seo, Chuizheng Meng, Sirisha Rambhatla, and Yan Liu. Coro-
navirus on social media: Analyzing misinformation in twitter conversations. arXiv preprint
arXiv:2003.12309, 2020.

Karishma Sharma, Yizhou Zhang, and Yan Liu. Covid-19 vaccine misinformation campaigns and
social media narratives. In Proceedings of the International AAAI Conference on Web and Social
Media, volume 16, pp. 920–931, 2022.

Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, and Guilin Qi. Evaluation
of chatgpt as a question answering system for answering complex questions. arXiv preprint
arXiv:2303.07992, 2023.

Jonathan P Tennant and Tony Ross-Hellauer. The limitations to our understanding of peer review.
Research integrity and peer review, 5(1):6, 2020.

11

https://aclanthology.org/2023.tacl-1.31

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Co-
han, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. In Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 7534–7550, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.609. URL
https://aclanthology.org/2020.emnlp-main.609.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359, 2021.

Chenxi Whitehouse, Tillman Weyde, Pranava Madhyastha, and Nikos Komninos. Evaluation of fake
news detection with knowledge-enhanced language models. In Proceedings of the International
AAAI Conference on Web and Social Media, volume 16, pp. 1425–1429, 2022.

Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Cheng Niu, Randy Zhong, Juntong Song, and
Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-augmented
language models. arXiv preprint arXiv:2401.00396, 2023.

Chenghao Yang and Allyson Ettinger. Can you follow me? testing situational understanding for
chatgpt. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 6385–6398, 2023.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang.
Gpt can solve mathematical problems without a calculator. arXiv preprint arXiv:2309.03241,
2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Xuan Zhang and Wei Gao. Towards llm-based fact verification on news claims with a hierarchical
step-by-step prompting method. arXiv preprint arXiv:2310.00305, 2023.

Yizhou Zhang, Defu Cao, and Yan Liu. Counterfactual neural temporal point process for estimating
causal influence of misinformation on social media. Advances in Neural Information Processing
Systems, 35:10643–10655, 2022.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang, Ruyi Gan, Jiaxing Zhang, and Yujiu Yang.
Solving math word problem via cooperative reasoning induced language models. arXiv preprint
arXiv:2210.16257, 2022.

Mingyu Zong and Bhaskar Krishnamachari. Solving math word problems concerning systems of
equations with gpt-3. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, pp. 15972–15979, 2023.

12

https://aclanthology.org/2020.emnlp-main.609

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DISCUSSIONS AND LIMITATIONS

In summary, the proposed method has following advantages:

Comparison with IO-Prompting: Superiority in Expressive Power As we proved in Sec. 4,
Compared to IO-prompting, DaC has stronger expressive power and thus can solve harder problems.

Comparison with CoT and EoT: Disentangling the task decomposition and task resolution
Compared to the prompting family of CoT and EoT, DaC explicitly separate the task decomposition
stage and task resolution stage. Therefore, we can acquire explicit decomposed sub-task rather than
intermediate thoughts proposed during decoding. Consequently, we can explicitly enumerate all
sub-tasks output by the decomposition module and avoid the model from missing important sub-
tasks.

Comparison with LtM and Decomposed Prompting: Parallel Sub-task Handler and Sequen-
tial Sub-task Handler Similar as DaC, some program-guided prompting like LtM and Decomposed
Prompting also explicitly separate the task decomposition stage and task resolution stage. However,
they are mainly designed for multi-step reasoning for complex tasks. Thus, they sequentially tackle
the sub-tasks and assembly the resolutions. As a result, they tend to follow the flow of the deceptive
contents, leading to proneness to deceptive content.

Although DaC DaC surpasses the baselines on the proposed tasks, it still has some limitations.
The first issue is that the appliance scope of DaC is still limited. More specifically, CoT, EoT, LtM
and DaC are based on different algorithmic paradigms, learning to different Appliance Scopes. As
pointed out by Feng et al., CoT and LtM can be considered as a neural dynamic programming
algorithm. Thus, CoT is more suitable for tasks that can be bridged to dynamic programming, such
as multi-step question answering. Differently, EoT is based on exploration and search, which is
more suitable for planning and search, such as Game of 24 (Yao et al., 2023). DaC is based on
Divide-and-Conquer algorithm. Thus, it is more suitable for tasks that can be decomposed to a
series sub-tasks that are disjoint or only slightly overlapped. Our future work will focus on further
expand the appliance scope of DaC to more areas like question answering.

A.2 PROOF TO THEOREM 4.2

Before providing the proof, we first formally define how to organize the inputs (i.e., two 2-color
trees) as a sequence. We assume that we acquire two trees tp of size n and tb of size m. They are
organized as two sequences of nodes with a random order. Each node has three variables: color, left
child index, and right child index. If any child is null, then the index is filled with 0. Then we can
organize them as as two sequences Xp ∈ Rn×3 and Xb ∈ Rn′×3, where each item in the sequence
is a vector of 3 dimensions. The first dimension is the index of the left child, the second dimension
is the index of the right child, the third dimension is the color indicator (0 or 1). In addition, we
have a root vector r with three dimensions. The first dimension is the index of the root node of tp
(i.e., pointing to the root node of tp) and the second is the index of the root node of tb (i.e., pointing
to the root node of tb). The third dimension of r is filled with 0 to make it have same dimension as
the items in Xp and Xb. This expression of trees is also called as pointer list encoding according to
(Jenner et al., 2003). Note that in the following proof, we assume that all indices start from 1. Thus
0 is regarded as a NULL pointer.

Following the proof flow we provided in Sec. 4.2, we first provide the following divide-and-conquer
algorithm that can solve the above problem:

The algorithm described above is a typical divide-and-conquer algorithm for solving rooted tree
isomorphism. Its justification can be found in many textbooks introducing algorithms, such as In-
troduction to Algorithms (Cormen et al., 2022). Here we provide the detailed definition and imple-
mentation of problem size metric f(·), hyper-parameter w, merge function m(), sub-task tackling
function t(·), task decomposition function d(·):

• w = 1, and f(r,Xp,Xb) is defined as the depth of the pattern tree tp indicated with
root vector r. Although precisely calculating f(r,Xp,Xb) is of O(n), judging whether

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 3 Recursion Divide-and-Conquer Algorithm for 2-BSI BSI(r,Xp,Xb,m, t, d, f, w)

Require: Inputs r,Xp,Xb, problem size metric function f(·), hyper-parameter w, merge function
m, sub-task tackling function t, task decomposition function d

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: rl, rr ← d(r,Xp,Xb)
2: for i ∈ {l, r} do
3: if f(ri,Xp,Xb) > w then
4: vi ← BSI(ri,Xp,Xb,m, t, d, f, w)
5: else
6: vi ← t(ri,Xp,Xb)
7: end if
8: end for
9: Return m(r,Xp,Xb,vl,vr)

Algorithm 4 Implementation of d(r,Xp,Xb) when the depth of the tree indicated by r is not longer
than 2
Require: Inputs r ∈ R3,Xp ∈ Rn×3,Xb ∈ Rn′×3

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: rl ←< Xp[r[1], 2], r[2], r[3] >
2: rr ←< Xp[r[1], 3], r[2], r[3] >
3: Return rl, rr

Algorithm 5 Implementation of t(r,Xp,Xb) when the depth of the tree indicated by r is not longer
than 2
Require: Inputs r ∈ R3,Xp ∈ Rn×3,Xb ∈ Rn′×3

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: Initialize v as all q vector with a length of n′

2: if r[1] == 0 then
3: Return v
4: end if
5: for i ∈ {1, 2, ...,m} do
6: if Xb[i, 3]! = Xp[r[1], 3] then
7: v[i]← 0
8: end if
9: end for

10: Return v

f(r,Xp,Xb) > 1 only require us to check whether the root node has child. If not, then
return False.

• d(r,Xp,Xb) = rl, rr returns two new root vectors rl, rr. Both rl, rr have the same second
and third dimension as r. The rl’s first dimension is updated to be the index of the left child
of the root node that r points to. The rr’s first dimension is updated to be the index of the
right child of the root node that r points to. The updating function can be written as:

• t(r,Xp,Xb) = v returns a 0-1 indicator vector v ∈ Rm with the same length of the base
tree size. If there exists a subtree with node i as root that is isomorphic with pattern tree
tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0. When the pattern
tree’s depth is not higher than 1 (i.e., 1-node tree), t(r,Xp,Xb) is equivalent to output a
0-1 vector indicating the nodes in the base tree that have the same color of the root node of
pattern tree. The implementation is provided in Alg. 5.

• m(r,Xp,Xb,vl,vl) = v merge the results vl,vl to acquire a 0-1 indicator vector v ∈ Rm

with the same length of the base tree size. If there exists a subtree with node i as root that is
isomorphic with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 6 Implementation of m(r,Xp,Xb,vl,vr)

Require: Inputs r ∈ R3,Xp ∈ Rn×3,Xb ∈ Rn′×3,vl ∈ Rn,vr ∈ Rn

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: Initialize v as all 0 vector with a length of n′

2: if r[1] == 0 then
3: Return v
4: end if
5: for i ∈ {1, 2, ...,m} do
6: if Xb[i, 3] == Xp[r[1], 3] then
7: if vl[Xb[i, 1]]] == 1 and vr[Xb[i, 2]]] == 1 then
8: v[i]← 1
9: else if vl[Xb[i, 2]]] == 1 and vr[Xb[i, 1]]] == 1 then

10: v[i]← 1
11: end if
12: end if
13: end for
14: Return v

v[i] is 0. This function can be implemented by checking whether the pattern root’s children
have a perfect match with each node’s children. Since each node has at most two children,
checking the perfect match can be done in constant time. The implementation is provided
in Alg. 6.

After providing the detailed implementation of the functions d(·), t(·),m(·), we are going to prove
that there exists one unified transformer that can handle all these tasks with different prompts d, t,m.
First, we will provide the following Lemma:

Lemma A.1 Any fixed-size logic circuit that only contains multi-fan-in AND gates, multi-fan-in
OR gates, NOT gates and has no recurrent structure can be precisely simulated by a multi-layer
perceptron (MLP) with ReLU activation function and a width of O(|Input| + |Circuit|) and a
depth of O(|Circuit|), where |Input| denotes the size of input and |Circuit| denotes the number of
gates in the circuit.

Assume that we are given a series of input pins with logic variable of 0 or 1, organized as a 0-1
vector x ∈ Rh. We first prove that all gates can be simulated by a two-layer perceptron. Then we
can serialize all gates in the circuits and stack their corresponding 2-layer simulators accordingly to
acquire a MLP simulator. An AND gate that take x as input can be simulated as:

AND(x) = σ(wAx− h+ 1) (3)

where σ is the ReLU activation function, and wA is a weight vector with all dimensions equal to 1.
If some dimensions of x are not the input of the gate, we can set the corresponding dimensions in
the weight vector as 0 and adjust the h as the input pin number. Similarly, an OR gate that take x as
input can be simulated as:

OR(x) = 1− σ(wOx+ h+ 1) (4)
where σ is the ReLU activation function, and wO is a weight vector with all dimensions equal to -1.
A NOT gate is different, since it only takes one input pin. In such a case, we denote the index of the
input pin as i, then we can simulate a NOT gate as:

NOT(x) = σ(wNx+ 1) (5)

where wN is a weight is a weight vector whose i-th dimension equals to -1 and all other dimensions
equal to 0. Also, since the x is a 0-1 vector, the activation function is equivalent to a identical
function to x:

x = σ(x) (6)

To construct a MLP that can simulate a fixed-size logic circuit without recurrent structure, we
apply the circuit serialization in (Merrill & Sabharwal, 2023b) which order the gates based on

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

topological order. In this way, we can represent the circuit as a sequence GATE[1], GATE[2],
GATE[3],...,GATE[L], where each GATE[i]’s input only contains the output of the previous gates
and the original input x. Therefore, we can construct a 2L-layer MLP base on the above serializa-
tion. Specifically, the 2i-th and 2i + 1-th layers of the MLP will simulate the GATE[i] as well as
copy all previous inputs with activation function and concatenate them together. This can be done
by concatenate an identical matrix on the GATE’s weight vector (wA, wO or wN). In this way, we
can construct a MLP that precisely simulate the circuit. Since every time we concatenate the out-
put of a gate with the input of it, the input dimension number of the final layer can be bounded by
O(|x| + L). In the worst case, for a circuit of size L, we needs 2L layers to precisely simulate it.
However, in many cases, a lot of gates in the circuits can be run parallelly. In such cases, the MLP
could be much more shallow.

Now, we can start to prove our main theorem:

Theorem A.2 There exists a log-precision transformer with fixed depth and hidden dimension that
can solve the 2-BSI of any size with fixed-length prompt m (for merge), t (for sub-task tackling) and
d (for task decomposition).

We prove this theorem by constructing a Transformer that can tackle this problem. First we define
how to organize the input given r,Xp,Xb and the prompt. Specifically, we construct a feature
sequence X ∈ R(3+n+n′)×7. Each item in this sequence is a feature of 7 dimensions, indicating a
token. The first two dimensions indicate whether the token is a prompt (’00’), a root vector (’01’),
a pattern tree node (’10’), or a base tree node (’11’). The third to fifth dimensions carries the
information about the token. For a prompt token, ’100’ indicates merge prompt m, ’010’ indicates
sub-task tackling prompt t, and ’001’ indicates task decomposition prompt d. For other cases,
these three dimensions are with the same formula as the three dimensions in r,Xp,Xb. The rest
two dimensions are allocated specifically for the merge function m(·) to store vl and vr. More
specifically, for the feature of token indicating the i-th base tree node, its sixth dimension is vl[i]
and its seventh dimension is vr[i]. For other tokens, these two dimensions are filled with 0. In X[1]
we store the prompt token. In X[2] and X[3] we store the input root vector r duplicately. We store
the same token twice so that we can tackle rl and rr separately. To separate this two token, we use
the last dimension, which was padded as 0 in r, to distinguish them. X[2, 5] is set as 0 and X[3, 5] is
set as 1. From X[4] to X[3+n], we store Xp. From X[4+n] to X[3+n+n′], we store Xb. For all
node indices of pattern tree, we add them by 3. For all node indices of base tree, we add them by 3+n,
so that the indices can be applied to directly retrieve the positional embeddings. After preparing the
inputs, we start to construct our Transformer. The transformer first attach the position index for each
token (positional embedding). After that, the inputs are forwarded into a transformer with depth of
2. Each transformer layer contains a multi-head attention layer followed by a MLP. As proved by
(Merrill & Sabharwal, 2023b; Feng et al., 2023), the attention layer of Transformer can retrieve the
feature of tokens whose positional embeddings satisfy specific conditions. For multi-head attention,
different heads can retrieve tokens with different conditions. In the following construction, we will
use this conclusion to construct attention heads with different functions.

In the first Transformer layer, the function of each attention head is defined as:

• Head 1 only attends to the token itself to store X[i] for token i.
• Head 2 attends to the token with a positional embedding matches the X[i, 3] and copy this

token’s 5-dimension feature. For tree node tokens, this head’s job is to retrieve the feature
of X[i]’s left child. For root vector tokens, this head’s job is to retrieve the feature of pattern
tree root node. For the first token (prompt token), this head’s retrieved feature will not be
applied in the afterwards layers and thus does not influence the correctness of the model.

• Similar as Head 2, Head 3 attends to the token with a positional embedding matches the
X[i, 4] and copy this token’s 5-dimension feature. This head’s job is to retrieve the feature
of X[i]’s right child. For root vector tokens, this head’s job is to retrieve the feature of base
tree root node.

• Head 4 attends to the first token (prompt token) and copy this token’s 7-dimension feature.
This head’s job is to retrieve the prompt indicator.

• Head 5 attends to the second token (root token) and copy this token’s 7-dimension feature.
This head’s job is to retrieve the root information.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 7 Logic circuit for MLP of the second Transformer layer
Require: Input feature x′′ ∈ R42

Ensure: Output feature y ∈ R7

1: y← x′′[1 : 7] {Initialize y}
2: if x′′[1 : 2] == 00 or x′′[1 : 2] == 10{Prompt Token or Pattern Tree Node} then
3: Return y
4: else if x′′[1 : 2] == 01 {Root Vector Token} then
5: if x′′[24 : 26] == 001{Prompt is d} then
6: if x′′[5] == 0 then
7: y[3]← x′′[10] {get rl, similar as line 1 in Alg. 4}
8: else if x′′[5] == 1 then
9: y[3]← x′′[11] {get rr, similar as line 2 in Alg. 4}

10: end if
11: end if
12: else if x′′[1 : 2] == 11 {Base Tree Node Token} then
13: if x′′[24 : 26] == 010{Prompt is t} then
14: if x′′[40] == x′′[5]{Line 6 in Alg. 5} then
15: y[5]← 1
16: else
17: y[5]← 0
18: end if
19: else if x′′[24 : 26] == 100{Prompt is m} then
20: if x′′[13] == 1 and x′′[21] == 1 {Line 7 in Alg. 6} then
21: y[5]← 1
22: else if x′′[14] == 1 and x′′[20] == 1{Line 9 in Alg. 6} then
23: y[5]← 1
24: else
25: y[5]← 0
26: end if
27: end if
28: end if

With the above 5 heads, the attention layer will output a 35-dimension feature for each token. We
denote these features as X′ ∈ R(3+n+n′)×35. After that, these features are forwarded into a MLP
fitting identical mapping to acquire the input features for the second Transformer layer.

In the second Transformer layer, the function of each attention head is defined as:

• Head 1 only attends to the token itself to store X ′[i] for token i.

• Head 2 attends to the token with a positional embedding matches the X′[i, 31] and copy
this token’s 1-7 dimension features (X′[X′[i, 31], 1 : 7]). This head’s job is to broadcast
the feature of the pattern tree root node to every token.

With the above 2 heads, the attention layer will output a 42-dimension feature for each token. We
denote these features as X′′ ∈ R(3+n+n′)×42. For root vector token, only the features from head 1
and head 4 are useful. For base tree node tokens, all 42 dimensions are useful. Then each token’s
feature are parallely forwarded into a MLP. We will use this MLP to fit the logical circuit described
in Alg. 7. The function of Alg. 7 is to aggregate the functions of m(·), t(·), d(·) together and
assign the correct value based on the prompt indicator. In Alg. 7, all operations are AND, OR,
NOT, SELECTOR, and ASSIGN and there is not loop. Thus, it is a static logical circuit and can be
implemented with multi-fan-in AND, OR, NOT gates. Thus, it can be precisely simulated by a MLP
according to our Lemma A.1.

After acquiring the y ∈ R7 for each token, we can organize them as a feature sequence Y ∈
R(3+n+n′)×7. When the prompt is d, we return Y[2, 3 : 5] as rl and Y[3, 3 : 5] as rr. If the prompt
is t or m, then we can output Y[3 + n+ 1 : 3 + n+ n′, 5] as the expected v.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 JUSTIFICATION TO PROPOSITION 4.4

Suppose that the LLM is auto-regressively decoding n tokens from an input context window with
length of C. Then the decoding window of the i-th token is C + i − 1. Thus, the average window
size will be: ∑n

i=1(C + i− 1)

n
=

C + n− 1

2
(7)

Thus, when we sequentially decode all the sub-task resolutions, the total length of the decoded
sequence will be

∑k
i=1 ri. Thus the average window size will be:

C +

∑k
i=1 ri − 1

2
(8)

Meanwhile, when we apply Divide-and-Conquer, we parallely decode each sub-task’s resolution.
Thus, for each sub-task, total window size will be C

∑k
j=1 rj +

∑k
i=1

(ri−1)ri
2 . Thus the average

window size will be C +
∑k

i=1
(ri−1)ri
2
∑k

j=1 rj
. Meanwhile, with Jensen inequility, we have:

k∑
i=1

(ri − 1)ri <

k∑
i=1

(ri − 0.5)2 ≤ (

k∑
i=1

(ri − 0.5))2 ≤ (

k∑
i=1

ri − 0.5k)2 (9)

Thus, when k ≥ 2, we have:
k∑

i=1

(ri − 1)ri < (

k∑
i=1

ri − 1)2 (10)

Thus, we have:

C +

k∑
i=1

(ri − 1)2

2
∑k

j=1 rj
< C +

∑k
i=1 ri − 1

2
(11)

A.4 PROMPTING DETAILS OF DAC

Multiplication of Long Integers: Suppose we have two 2n-digit numbers AB and CD, where
A,B,C,D are all n-digit numbers. Then we can break AB ×CD as (A×C × 102n) + (A×D×
10n)+ (B×C × 10n)+ (B×D), where the calculation in each bracket pair is disjoint with others
bracket pairs. We only need to compute the results of multiplication in each bracket pair parallelly
and then merge all of them with addition:

Decomposer Prompt d: Please split the string a from the middle as two separated strings. The
lengths of the two separated strings should be as close as possible. Please only return the two strings
separated by a comma and do not return anything else.

Sub-task Tackling Prompt t: (1)Please compute a ∗ b. (2) Please only return the final results and do
not return anything else (ensure disentangled-sub-process principle).

Merge Prompt m: Please compute x = a ∗ 102n + b ∗ 10n and y = c ∗ 10n + d. Based on the above
calculation, please compute x+ y carefully step by step.

Hallucination Detection in Long Context: We divide the summary to sentences. After that, we
paralelly verify the sentences. Finally, we merge the verification to each sentence:

Decomposer Prompt d: Please help me segment the following paragraph as sentences. The separated
sentence should be output as: #Statement 1#: ...#Statement 2#: ...Do not say anything else. Just
return the statements in the given format.
Paragraph

Sub-task Tackling Prompt t: I want you to act as a factual contradiction checker. You are given a
set of statements and a document. Among the statements, there might be one or more statement
that contains contradictions with the document. Please find the problematic statement if it exist by
analyzing the statements one by one. For each statement, please make a choice:

• A: The statement is totally aligned with the document for sure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• B: The statement contradicts with the document.

Merge Prompt m: Based on the above analysis, please tell me, does any statement above contain
contradiction with the document?.

Fact-Verification for Misinformation Detection: Similar as hallucination detection, we divide
the summary to sentences. After that, we paralelly verify the sentences. Finally, we merge the
verification to each sentence. Thus, our decomposer prompt and sub-task tackling prompt are the
same as hallucination detection. The only difference is the merge prompt.

Merge Prompt m: If we connect the above statements to be a news article, based on the above
analyzation, please answer me: Is there any contradiction between the document and the article?

Sub-task Sub-Solution

Input

Output

…

(A). Least to Most

Input

Output

A

C

…

(B). Decomposed
Prompting (DeP)

B

CoT

LtM

DeP

Figure 4: Comparison of Least-to-Most (LtM)
Prompting and Decomposed Prompting (DeP).

A.5 DECOMPOSED
PROMPTING AND LEAST TO MOST

Least-to-Most (LtM) Prompting (Zhou et al.,
2022) and Decomposed Prompting (Khot
et al., 2022) are two similar works to our
work. They both propose to explicitly
prompt the LLM to decompose the task as
a series of sub-tasks and sequentially tackle
them. In Fig .2, we merge these two meth-
ods. Here, we will provide more detailed
comparison of them, which is shown in Fig.
4. Decomposed Prompting can regarded as a
upgraded version of LtM. It introduces spe-
cial notations into the prompt to represent
program states so that when sequentially
tackling the sub-tasks, it can call heteroge-
neous modules to tackle them. Such design
enable the LLM to call external programs
(e.g., retrieval documents on WikiPedia and
program based calculator) and/or itself (i.e.,
recursion). Such design endows it stronger expressive power and increases the compositional gener-
alization ability of LLMs in different areas, such as symbolic manipulation and multi-hop QA (Khot
et al., 2022). Also, it endows LLM the ability to do open-domain QA by retrieving from external
knowledge base.

A.6 TYPICAL TASKS THAT SATISFY AND DISSATISFY THE PROPOSED CONDITIONS

To better assist the prompt engineering on different tasks, we list the typical tasks that satisfy and
dissatisfy the proposed conditions. In common tasks, the following tasks satisfy the proposed con-
ditions. For such tasks, searching good decomposition prompt for DaC is likely to be helpful for the
performance:

1. Multiplication
2. Fact Verification on Long Text
3. Auto Evaluation on Long Text
4. Article-level Summary

The following tasks typically do not satisfy the proposed conditions. For such tasks, searching good
decomposition prompt for DaC is not very likely to be helpful for the performance:

1. Addition: It is too simple and violate the condition 1

2. Division: It does not contain parallel sub-tasks, thus violate condition 2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

3. Multi-Round Question-Answering: It is a typical sequential task, thus violate condition
2

4. Planning: It is a typical sequential task, thus violate condition 2

A.7 MORE DISCUSSIONS ON SEQUENTIAL SUB-TASK TACKLING AND PARALLEL SUB-TASK
TACKLING

Complete Task: Compute 12345*67890:

Sub-task 1: Compute x=45*90:

A:

Sub-task 2: Compute y=123*90*10^2:

A:

Sub-task 3: Compute z=45*678*10^2:

A:

Sub-task 4: Compute w=123*678*10^4:

A:

Resolution Assembly: Based on the above computation, compute x+y+z+w

A:

Example of Parallel Sub-task Tackling
Complete Task: Compute 12345*67890:

Sub-task 1: Compute x=45*90:

A:

Sub-task 2: Based on the above result, compute y=123*90*10^2+45*90:

A:

Sub-task 3: Based on the above result, compute

z=45*678*10^2+123*90*10^2+45*90:

A:

Sub-task 4: Based on the above result, compute

w=123*678*10^4+45*678*10^2+123*90*10^2+45*90:

A:

Example of Sequential Sub-task Tackling

Figure 5: Toy example of Sequential Sub-task Tackling and Parallel Sub-task Tackling in long inte-
ger multiplication

Complete Task: Verify the following summary:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot

accused of deliberately crashing the plane, had a history of severe depression and suicidal

tendencies.

Sub-task 1: Verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been

recovered by investigators from the wreckage site.

A:

Sub-task 2: Verify the following statement :

#Summary#: Marseille prosecutor Brice Robin urged anyone who might have more footage to

turn it over immediately.

A:

Sub-task 3: Verify the following statement :

#Summary#: Andreas Lubitz, the co-pilot accused of deliberately crashing the plane, had a

history of severe depression and suicidal tendencies.

A:

Resolution Assembly: Given the above analysis, verify the summary that consist of the

above three statements.

A:

Example of Parallel Sub-task Tackling
Complete Task: Verify the following summary:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot

accused of deliberately crashing the plane, had a history of severe depression and suicidal

tendencies.

Sub-task 1: Verify the following statement:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been

recovered by investigators from the wreckage site.

A:

Sub-task 2: Based on the above analysis, verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged

anyone who might have more footage to turn it over immediately.

A:

Sub-task 3: Based on the above analysis, verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot

accused of deliberately crashing the plane, had a history of severe depression and suicidal

tendencies.

A:

Example of Sequential Sub-task Tackling

Figure 6: Toy example of Sequential Sub-task Tackling and Parallel Sub-task Tackling in hallucina-
tion detection

Sequential Sub-task Tackling and Parallel Sub-task Tackling are two different paradigm in decom-
posing complex tasks as sub-task to tackle. The first one decompose a complex tasks as a series of
sub-tasks. In this series, each sub-task relies on the previous one’s output as input or context. The
second one decompose a complex tasks as a set of sub-tasks, each of which does not rely on others.
Two examples for multiplication and hallucination detection are provided in Fig 5 and 6

20

	Introduction
	Related Work
	Expressive Power of Transformer
	Prompting Strategies of LLM

	Preliminary of Divide-and-Conquer Prompting
	Theoretic Analysis
	Divide-and-Conquer vs. IO Prompting
	DaC vs. CoT
	Advantages of DaC

	Experiments
	Case 1: Long Integer Arithmetic
	Case 2: Fact Verification of Long Text
	Hallucination Detection
	Misinformation Detection

	Conclusions
	Appendix
	Discussions and Limitations
	Proof to Theorem 4.2
	Justification to Proposition 4.4
	Prompting Details of DaC
	Decomposed Prompting and Least to Most
	Typical Tasks that Satisfy and Dissatisfy the Proposed Conditions
	More Discussions on Sequential Sub-task Tackling and Parallel Sub-task Tackling

