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ABSTRACT

Foundation models, such as Large language Models (LLMs), have attracted signif-
icant amount of interest due to their large number of applications. However, when
handling tasks involving repetitive sub-tasks and/or deceptive contents, such as
arithmetic calculation and article-level fake news detection, simple instructional
prompts suffer from inaccurate responses. Existing works show that more com-
plicated prompting strategies, such as Chain-of-Thoughts and Least-to-Most, can
unlock LLM’s powerful capacity in diverse areas. Recent researches reveal that
simple divide-and-conquer prompting strategy, i.e. simply dividing the input se-
quence to multiple sub-inputs, can also substantially improve LLM’s performance
in some specific tasks such as misinformation detection. In this paper, we aim
at examining the utility of divide-and-conquer prompting strategy and answer on
which kind of tasks this strategy gets advantages. Specifically, we provide a the-
oretic analysis to divide-and-conquer prompting strategy and help us identify the
specific tasks where DaC prompting can bring performance boost with theoretic
guarantee. We then present two cases (large integer arithmetic and fact verifi-
cation) where experimental results aligns with our theoretic analysis.

1 INTRODUCTION

Large language models (LLM) based on the Transformer architecture have led to major break-
throughs in natural language processing and other related fields in artificial intelligence(Brown et al.,
2020; Radford et al.; Touvron et al., 2023). State-of-the-art general-purpose language models have
demonstrated remarkable advancements in various domains, including question answering, graph
learning, reading comprehension, text generation, and machine translation (Chen et al., 2023b; Tan
et al., 2023; Hendy et al., 2023; Mao et al., 2023; Zong & Krishnamachari, 2023). These develop-
ments paves the way towards general-purpose problem solvers (Bubeck et al., 2023).

However, as pointed out in (Wei et al., 2022), significant challenges arise when scale-up models are
applied to tasks involved with long solution paths, such as those requiring mathematical or knowl-
edge reasoning. A series theoretic works attribute this challenge to Parallelism Tradeoff (Merrill &
Sabharwal, 2023a), a fundamental limitation of Transformers. Specifically, unlike Recurrent Neu-
ral Network whose computational depth is linear to the input sequence length (i.e., the depth is
O(n), where n is the input sequence length), Transformer does not contain any recurrent structure.
Such design, while achieving superior parallelizability than RNN, makes Transformers suffer from
limited expressive power. Merrill & Sabharwal proved that the expressive power of fixed-depth log-
precision Transformer, which is very close to the most commonly applied Transformer architecture
for LLMs, is bounded by constant-depth logspace-uniform threshold circuits. Thus, they fail to
accurately tackle the tasks requiring long solution paths.

To address this challenge, carefully designed prompting strategies have been developed to tackle
tasks that requires stronger expressive power (Feng et al., 2023). A series of works focus on prompt-
ing the LLM with instructions or context samples to output the intermediate steps that derive the final
answer in an autoregressive manner, such as Chain-of-Thoughts (CoT) (Wei et al., 2022; Wang et al.,
2022; Zhou et al., 2022; Chen et al., 2023a). Some works further apply programs to guide LLM to
strictly follow designated reasoning steps (Yao et al., 2023). Theoretically, these prompting strate-
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#Material#: Marseille, France (CNN)The French prosecutor leading an investigation into the 

crash of Germanwings Flight 9525 insisted … not aware of any video …so far no videos 

were used… He added, "A person who has such a video needs to … give it to the 

investigators.” … Jean-Marc Menichini… that the reports were "completely wrong" and …

Task: Verify the truthfulness of a summary.

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-

pilot accused of deliberately crashing the plane, had a history of severe depression and 

suicidal tendencies.

Q: You are given the above material and a summary. Please answer me: Does the 

summary contain any claim that is contradicted with the material? 

A: Based on the given material, the summary does not contain any claim that is contradicted 

with the material. The material confirms the existence of a video showing the final moments 

of Germanwings Flight 9525, as well as the history of severe depression and suicidal 

tendencies of the co-pilot, Andreas Lubitz.

Example of Entangled Problem Solving

Sub-task 1:

Q: Does the claim 1 contradict with the material? #Claim 1#: A video showing 

the final moments of Germanwings Flight 9525 has been recovered by 

investigators from the wreckage site.

A: Yes, the claim is contradicted by the material. The material states that Marseille 

prosecutor Brice Robin insisted that he was not aware of any video footage from 

onboard the plane and that no videos were used in the crash investigation. 

However, the claim states that a video showing the final moments of Germanwings 

Flight 9525 has been recovered by investigators from the wreckage site.

Sub-task 2:

Q: Does the claim 2 contradict with the material? #Claim 2#: …

A: Based on the provided document, the summary does not contain any claim. …

Sub-task 3:

Q: Does the claim 3 contradict with the material? #Claim 3#: …

A: Based on the provided document, the summary does not contain any claim. …

Example of Divide-and-Conquer Problem Solving

Figure 1: An illustrative example of hallucination detection with entangled problem solving (i.e.,
directly forward all inputs into the LLM) and divide-and-conquer problem solving (i.e., divide the
problem inputs to parallel sub-tasks and tackle them parallelly). The sentence marked with red back
font in the material is the evidence that contradict with the first claim in summary, which is marked
with red font.

gies convert the role of Transformer from the complete problem solver to a sub-problem solver in
a dynamic programming or tree searching algorithm (Merrill & Sabharwal, 2023b). In this way,
these prompting strategies expand the expressive power of the LLMs and successfully improve the
reasoning and searching of LLMs (Feng et al., 2023).

In contrast to such methods that apply instruction, context sample or program to decompose the
whole reasoning process to multiple intermediate steps, in some tasks, researchers report that LLM’s
performance can also be boosted by simply dividing the input sequences to multiple sub-inputs
and then merge the responses from LLMs on all sub-inputs, as shown in Fig. 1. For example, Cui
et al. propose that in automated evaluation, LLM’s performance can be further boosted by first di-
viding the input text to sentences and then evaluating them one by one. Intuitively, this paradigm
benefits the tasks in a way similar to human brains, especially when the tasks are too hard or too
complex. For example, when reviewing a long academic paper, some reviewers produce low-quality
reviews (Garcia et al., 2021; Tennant & Ross-Hellauer, 2020; Cortes & Lawrence, 2021) contain-
ing hallucination-like intermediate errors, such as pointing out some ‘missing baselines’ that have
already been sufficiently discussed by authors. To avoid such mistakes, experienced reviewers usu-
ally think slowly (Kahneman, 2011) to follow a Divide-and-Conquer paradigm to handle this task.
Specifically, they decompose the paper review as examinations of multiple central opinions and then
retrieve corpus to verify them respectively.

However, unlike Chain-of-Thoughts whose advance in expressive power is supported by theoretic
analysis (Feng et al., 2023), the performance boost from Divide-and-Conquer paradigm is lack of
rigorous theoretic support. As a result, we are not aware of the conditions under which the Divide-
and-Conquer paradigm can acquire more accurate answers. To tackle this challenge, in this paper,
we aim at understanding the utility of DaC prompting. More specifically, we attempt to answer the
following two research questions:

1. RQ1: Compared to straightforward instructional prompting, does DaC have theoret-
ically guaranteed advantages similar as CoT and its variants?

2. RQ2: Compared CoT and its variants, what utility and limitations does DaC have?

To answer these questions, we first provide a theoretic paradigm that can help us analyze how
divide-and-conquer strategy expand the expressive power of fixed-depth log-precision Transformer
on a given task. In this way, we provide a framework that can provide theoretic guarantee to DaC
paradigm in various tasks. In this way, we present some conditions under which DaC have advan-
tages compared to other prompting strategies. We then empirically evaluate DaC prompting and
representative baselines on tasks that satisfy the proposed conditions and are challenging to existing
prompting strategies even on state-of-the-art LLMs: Large Integer Multiplication, Hallucination De-
tection, Article-level Fact Verification (Cheng & Zhang, 2023; Li et al., 2023a; Wadden et al., 2020;
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Hu et al., 2023; Wu et al., 2023). These tasks either require very long reasoning paths (e.g. large
integer multiplication) or contain deceptive contents (e.g. hallucination detection and fact verifica-
tion), making existing methods like Chain-of-Thought prompting prone to intermediate errors. Our
experimental results show that the proposed method outperforms the baselines on all three tasks,
which supports our theoretic analysis.

Figure 2: The comparison between DaC and the existing methods for prompting. The ellipse marks
represent sub-tasks, the right-angled rectangles represent sub-task solutions, and the rounded rect-
angles represent intermediate steps that entangle sub-task and sub-solutions. The different shades
in Tree of Thoughts (subfigure D) indicate the rates of different search directions. In CoT (Chain-
of-Thoughts), CoT-SC and ToT, the Large Language Models must simultaneously generating and
resolving sub-tasks. Least-to-Most (also Decomposed Prompting) disentangle sub-task generation
and resolution. However, its sub-task resolution and resolution assembly process are intertwined as
it sequentially attach new sub-tasks onto the previous resolution. Different from them, DaC totally
disentangle the sub-task generation, sub-task resolution, and resolution assembly process.

2 RELATED WORK

2.1 EXPRESSIVE POWER OF TRANSFORMER

As discussed in previous works (Merrill & Sabharwal, 2023a; Feng et al., 2023), the expressive
power of fixed-length log-precision transformers, which are widely applied in modern Pre-trained
Large Language Models, is actually much more limited than people’s expects. Merrill & Sabharwal
give a theoretic proof that the expressive power of fixed-length log-precision transformers is upper-
bounded with TC0. Feng et al. further extend their analysis to explain that a lot of common problems
exceed the expressive power of fixed-length log-precision transformers. Such results explains why
the powerful LLM may make some ridiculous mistakes and how CoT improve the performance.

2.2 PROMPTING STRATEGIES OF LLM

In this sub-section, we introduce the existing prompting and discuss their limitations and drawbacks.
Following the notations in (Yao et al., 2023), we denote the Large Language Models with parameter
θ as pθ and use lower case letters x, y, z to denote input sequence, result, and intermediate steps,
respectively.

Input-Output (IO) Prompting is the standard prompting strategy that attach input x with instruc-
tions and/or few-shot in-context-learning examples to aqcuaire a prompt, denoted as prompt(x) (Yao
et al., 2023). The LLM takes prompt(x) as input and predict result, i.e. y ∼ pθ(y|prompt(x)).

Chain-of-Thought (CoT) Prompting (Wei et al., 2022) aims at simulating human’s thinking
process that handles complicated task (e.g. combinational reasoning and mathematical cal-
culation) in a step-by-step manner. More specifically, the LLM is guided to output a se-
ries of intermediate steps z1, z2, ..., zn (also known as thoughts) autoregressively, i.e. zi ∼
pθ(zi|prompt(x), z1, ..., zi−1). Then the LLM output the prediction of result y based on the
thoughts, i.e. y ∼ pθ(zi|prompt(x), z1, ..., zn).
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Exploration-of-Thought (EoT) Prompting and Program-guided Prompting are two variants of
CoT. EoT includes a series of CoT’s variants, such as Self-consistency with CoT (CoT-SC) prompt-
ing (Wang et al., 2022) and Tree-of-Thoughts (ToT) prompting (Yao et al., 2023), which aim at
addressing the limitation of CoT in exploration. Their common central idea is to generate multiple
chains of thought through sampling or proposing prompting and then ensemble them to acquire a
final prediction. Program-guided Prompting aims at controlling the LLM’s generation process with
symbolic programs or pre-defined procedure (Zhu et al., 2022; Jung et al., 2022; Zhou et al., 2022;
Khot et al., 2022; Creswell & Shanahan, 2022; Gao et al., 2023). Among them, the Least-to-Most
(LtM) Prompting (Zhou et al., 2022) and Decomposed Prompting (Khot et al., 2022) are close to
this work. They are the earliest attempts that explicitly prompt the LLM to decompose the task as
a series of sub-tasks and sequentially tackle them. LtM prompt a LLM to iteratively raise sub-tasks
and sequentially solve them to acquire the final resolution. Decomposed Prompting can regarded
as a upgraded version of LtM. It introduces special notations into the prompt to represent program
states and thus can call itself (i.e., recursion) or other modules (i.e., hierarchical decomposition), en-
dowing it stronger expressive power. Such design increased the compositional generalization ability
of LLMs in different areas, such as symbolic manipulation and multi-hop QA (Khot et al., 2022).

The aforementioned CoT and EoT families incorporate LLM with stronger expressive power than
IO prompting. However, a critical issue of them is that, they could miss or ignore some important
intermediate steps or contents (Liu et al., 2023). This problem is even worse when we are han-
dling tasks involved with long input (e.g. long documents and large numbers). Typical examples
include large number arithmetic calculation and fact verification in long documents. Compared to
them, Least-to-Most prompting and Decomposed Prompting introduce explicit task decomposition
to enumerate sub-tasks. However, their task decomposers are based on multi-round conversation or
question-answering, which navigate the LLM through the deceptive content’s flow sequentially, and
propagate the hallucination/deception in the contexts (Dziri et al., 2024; Yang & Ettinger, 2023),
leading to decreased performance.

3 PRELIMINARY OF DIVIDE-AND-CONQUER PROMPTING

In this section, we summarize and formalize Divide-and-Conquer prompting strategy. Divide-
and-Conquer prompting strategy consists of three distinct stages: task decomposition stage, sub-task
resolution stage, solution merge stage. In task decomposition stage, the LLM is prompted to explic-
itly decompose the task as a series of parallel homogeneous sub-tasks with smaller problem sizes
(e.g. divide a long paragraph to sentences). Such design avoids the multi-round conversation or
question-answering in LtM and Decomposed Prompting, making the model less prone to decep-
tion. After that, in sub-task resolution stage, the LLM is prompted to provide the solutions for every
sub-task. Finally, in the solution merge stage, the LLM is prompted to assembly the solutions of sub-
tasks and acquire the final answer.To tackle tasks of different sizes, Divide-and-Conquer prompting
strategy can be divided to two variants: Single-Level DaC Solver and Multi-Level DaC Solver.

Algorithm 1 Single-Level Divide-and-Conquer Solver T (S, a, t, L, f)
Require: Input Sequence S, Prompt m (for solution merge), Prompt t (for sub-task tackling),

Prompt d (for task decomposition), LLM L
Ensure: Results of the task on input sequence S

1: {S1, S2, ..., Sk} ← L(d, S)
2: Result← ∅
3: for i = 1, 2, ..., k do
4: Result← Result +[SEP ] + L(t, Si)
5: end for
6: Return L(m,Result)

Single-level Divide-and-Conquer Solver decomposes the task in one call to the LLM, which expands
the original task as a tree of one level. The algorithm is presented in the Alg. 1. The advantage of
this variant is its simplicity and efficiency. However, when the original input is too long, single-level
Divide-and-Conquer Solver may acquire sub-tasks with large problem sizes that will still trigger
intermediate errors. In such a case, following (Khot et al., 2022), we can recursively expand the
task as a multi-level tree. More specifically, we repeat the aforementioned steps to further divide
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the sub-tasks hierarchically until they are easy enough to be handled by the LLM. This can be done
through a recursion program as presented in Alg. 2. More discussions on the proposed method’s
appliance scope, including its comparison with other prompting strategies and limitations, can be
found in A.1

Algorithm 2 Multi-Level Divide-and-Conquer Solver Recursion T (S,m, t, d, f, n, L)

Require: Input Sequence S, Problem Size Metric Function f(·) (a function that measure the prob-
lem size), hyper-parameter w, Prompt m (for merge), Prompt t (for sub-task tackling), Prompt
d (for task decomposition), Large Language Model L

Ensure: Results of the task on input sequence S
1: S1, S2, ..., Sk ← L(d, S)
2: Result← ∅
3: for i = 1, 2, ..., k do
4: if f(Si) > w then
5: Result← Result +[SEP ] + T (Si,m, t, d, f, w, L)
6: else
7: Result← Result +[SEP ] + L(t, Si)
8: end if
9: end for

10: Return L(m,Result)

4 THEORETIC ANALYSIS

In this section, we provide theoretic analysis to the utility and limitations of the Divide-and-Conquer
prompting. In the first subsection, we provide a comparison of IO prompting (common fixed-length
instructional prompting) and DaC prompting in expressive power perspective. This part answers
the first research question: the expressive power of IO prompting is a subset of DaC prompting. In
the second subsection, we provide a comparison between Chain-of-Thoughts and DaC prompting in
expressive power. Our comparison suggests that, although the expressive power of DaC prompting
is a subset of Chain-of-Thoughts, for tasks satisfying specific conditions, DaC prompting can solve
the problem with lower average context window length when decoding the tokens. Such property is
empirically proved to be helpful for reducing the intermediate error and thus boost the performance.

4.1 DIVIDE-AND-CONQUER VS. IO PROMPTING

We show that the expressive power of Divide-and-Conquer is stronger than IO Prompting:

Theorem 4.1 We denote the set of problems that a fixed-precision transformer with fixed-length
IO prompting can tackle as S(IO). Similarly, we denote the set of problems that a fixed-precision
transformer with DaC prompting can tackle as S(DaC). Then we have the following results:

S(IO) ⊂ TC0 ⊆ NC1 ⊆ S(DaC) (1)

Proof Sketch: The conclusion that S(IO) ⊂ TC0 is a corollary of the main results in (Chiang et al.,
2023). In this paper, we mainly focus on proving NC1 ⊆ S(DaC). Specifically, we exploit 2-color
Binary Subtree Isomorphism (2-BSI) problem for the proof. In (Jenner et al., 2003), 2-BSI problem
is proved to be an NC1-complete problem. Its definition is:

Definition 1 2-color Binary Subtree Isomorphism problem is that, given a pattern 2-colorbinary
tree tp and a base 2-color binary tree tb, a solver is required to judge whether the pattern tree is
isomorphic to a sub-tree of tb

In (Jenner et al., 2003), the authors pointed out that the encoding of the problem will influence
the hardness of the problem. In this paper, we focus on pointer list encoding of 2-BSI. Detailed
information about the pointer list encoding of 2-BSI can be found in Appendix. For pointer list
encoding of 2-BSI, we have the following theorem:

5
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Theorem 4.2 There exists a log-precision transformer with fixed depth L and hidden dimension d
that can solve the 2-BSI of any size with fixed-length prompt m (for merge), t (for sub-task tackling)
and d (for task decomposition).

Proof Sketch: The detailed proof is provided in the Appendix A.2. Here we give a brief flow of the
proof. To prove this theorem, we first show an algorithm that can solve the problem with divide-and-
conquer strategy. Then we prove that there exists a log-precision transformer with fixed depth L and
hidden dimension d that can express the modules in the algorithms with different but fixed-length
prompts. In this way, we can prove the theorem.

With the above theorem, we can prove that NC1 ⊆ S(DaC), which finishes the proof. With this
theoretic results, we can answer the RQ 1:

Compared to IO prompting, DaC have theoretically guaranteed advantages in expressive power.

4.2 DAC VS. COT

In this section, we compare Divide-and-Conquer with Chain-of-Thoughts in order to understand
the utility and limitation of DaC prompting. The limitation of DaC prompting is that its expressive
power is a subset of CoT prompting:

Proposition 4.3 We denote the set of problems that a fixed-precision transformer with DaC prompt-
ing can tackle as S(DaC). Similarly, we denote the set of problems that a fixed-precision trans-
former with CoT prompting can tackle as S(CoT ) Then we have the following results:

S(DaC) ⊆ S(CoT ) (2)

The proof of this proposition is very straightforward. For any problem that DaC can solve, we
can concatenate all outputs of LLM in dividing, tackling and merging as a sequence. Then we can
prompt LLM with CoT to output this sequence. Thus, the problem set that DaC can resolve is a
subset of CoT.

The limitation revealed by the above theorem shows that compared to CoT, the appliance scope of
Divide-and-Conquer is limited. However, by analyzing the average decoding context window size,
we show that on specific tasks, divide and conquer can reduce the problem complexity:

Definition 2 Decoding Context Window Size: In auto-regressive decoding, each token is decoded
from a window that covers all previous tokens. We denote the length of the window as the Decoding
Context Window Size of the token.

Proposition 4.4 Suppose that a task contains k sub-tasks, each of which does not rely on the an-
swers of other sub-tasks. We define such sub-tasks as parallel sub-tasks. If an LLM tackle these
sub-tasks sequentially with CoT, then the average decoding context window size of the sub-tasks’
resolution will be C+

∑k
i=1 ri−1

2 , where ri is the length of the response to the i-th sub-task and C is
the length of input context. If we tackle them parallely with DaC, then the average decoding context
window size of the sub-tasks’ resolution will be C +

∑k
i=1

(ri−1)2

2
∑k

j=1 rj
< C +

∑k
i=1 ri−1

2 .

The above proposition shows that when task contains a large amount of parallel sub-tasks, DaC is
more helpful for reducing the average decoding context window size than CoT. Existing works have
empirically showed that long decoding context window will propagate intermediate errors and thus
increase the probability of generating hallucination (Yang & Ettinger, 2023). Thus, we can acquire
a conclusion that DaC is competetive on tasks that contain a large amount of parallel sub-tasks and
are bothered by intermediate errors and hallucination. With these theoretic results, we can answer
the RQ 2:

Compared to CoT and its variants, DaC prompting’s expressive power is weaker. However, on tasks
containing a large amount of parallel sub-tasks, DaC is more helpful.

6
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4.3 ADVANTAGES OF DAC

The above analysis answer the two research questions that we proposed. By summarizing these
two answers, we can acquire the two conditions such that when a task simultaneously satisfied both
conditions, DaC bring performance boost:

• Condition 1: the task is harder than S(IO), such as TC0-complete problems and NC1-
complete problems.

• Condition 2: the task contains a large amount of parallel sub-tasks and is bothered by
hallucinations or intermediate errors.

In Tab. 1, we present some sample tasks that satisfied the conditions. Also, we list some tasks that
typically do not satisfy the conditions. This is helpful for guiding prompt engineering. Details are
provided in Appendix A.6.

Applicable Tasks Non-Applicable Tasks
Integer Multiplication Integer Addition

Fact Verification Multi-round QA
Consistency Evaluation Planning

Table 1: We list some exaple tasks that satisfy the conditions and some tasks that do not satisfy the
conditions.

5 EXPERIMENTS

5.1 CASE 1: LONG INTEGER ARITHMETIC

In this case, we consider two tasks in long integer arithmetic: Multiplication, which satisfy the
conditions we proposed, and Addition, which does not satisfy the first condition 1. Our experiment
results will show that DaC prompting bring performance boost on multiplication and does not bring
boost on integer addition.
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(a) Edit distance of DaC and baseline prompting
strategies on GPT-3.5 and GPT-4 for Multiplica-
tion.
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(b) Edit distance of DaC and baseline prompting
strategies on GPT-3.5 and GPT-4 for Addition.

Figure 3: Performance of different prompting strategies on long integer multiplication.

Task Setup: For this task, we randomly generated 200 pairs of 5-digit integers. We choose 5
for the digit length because according to previous works, ChatGPT-3.5 gets 0% accuracy on 4-
digit multiplications (Cheng & Zhang, 2023), and ChatGPT-4 gets close to 0% accuracy on 5-digit
multiplications (Yang et al., 2023). We evaluate the performance with Edit Distance (Marzal &
Vidal, 1993; Schaeffer et al., 2023).

Setup of baselines and DaC: In this task, our baselines include IO prompting, Chain of Thought
(CoT), CoT-SC, Least-to-Most (LtM), and Decomposed Prompting (DeP). Tree-of-Thoughts is not

1Multiplication is a TC0-complete problem and can be divided to multiple parallel sub-tasks, while Addition
is in S(IO)Barcelo et al. (2023)
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24emStrategies GPT-3.5-Turbo GPT-4
F1 Acc Prec Recall F1 Acc Prec Recall

IO-prompting 61.69 61.27 62.11 61.28 64.07 72.66 93.41 48.76
Chain-of-Thoughts 46.85 64.26 91.36 31.50 71.05 76.10 90.08 58.66

CoT-SC 47.70 64.25 88.83 32.60 71.39 76.36 90.41 58.98
Tree-of-Thoughts 70.40 59.91 55.83 95.34 69.41 71.73 75.53 64.28

Least-to-Most 56.43 64.91 74.42 45.44 72.51 77.11 90.74 60.38
Divide-and-Conquer 74.84 75.55 77.41 72.03 76.92 78.99 85.36 70.01

Table 2: Performance of different prompting methods on HaluEval dataset.

applicable. This is because that multiplication is deterministic calculation without requiring search
in a tree. For DaC, we apply Multi-Level Divide-and-Conquer program-guided solver.

Results: Experimental results are shown in Fig. 3(a) and 3(b). As we can see, for integer addition
which does not satisfy our proposed conditions, the performance of DaC, CoT and its variants does
not significantly outperform IO prompting for both ChatGPT-3.5 and 4. However, for integer multi-
plication which satisfy our proposed conditions, under all settings, our proposed prompting strategy
outperform all the baselines. This phenomenon indicate that our proposed conditions are useful for
recognizing the tasks where DaC is more powerful.

5.2 CASE 2: FACT VERIFICATION OF LONG TEXT

In the previous section, we show that for arithmetic tasks, our proposed conditions are discerning to
the tasks where divide-and-conquer has advantages. In this section, we further present our conditions
can be applied to natural language tasks. Specifically, we present the performance of baselines and
Divide-and-Conquer on fact verification of long text. In this task, the LLM is required to whether a
long corpus is aligned with base knowledge. This task satisfied the proposed two conditions. For
the first condition, we can reduce a 2-BTI problem to fact verification by describing the two trees
with natural language. In this way, we can convert the trees to two paragraphs and what we need
to do is to ask the LLM to judge whether the two paragraphs are aligned or not. For the second
condition, since we are tackling long text, then each sentence can be regarded as parallel sub-tasks.
We select two benchmarks of fact verification: Fact-Verification for Hallucination Detection and
Fact-Verification for Misinformation Detection

5.2.1 HALLUCINATION DETECTION

Although Large Language Models have achieved impressive performance on various NLP tasks,
they are bothered by hallucination problem (Manakul et al., 2023), especially when the generated
content or the input context is too long for the user to have a thoroughly review (Zhang et al., 2023).
In this paper, we focus on evaluating the performance of different strategies in guiding LLM to
recognize inconsistency between given context and model response with hallucination.

24emStrategies GPT-3.5-Turbo GPT-4
F1 G-M Prec Recall F1 G-M Prec Recall

Io-Prompting 72.12 72.77 83.22 63.64 69.15 71.77 94.44 54.55
Chain-of-Thoughts 56.09 60.64 90.48 40.64 74.03 75.79 94.21 60.96

CoT-SC 56.83 61.44 91.67 41.18 70.09 73.45 100.0 53.95
Tree-of-Thoughts 69.91 73.30 53.74 100.0 77.34 78.00 88.89 68.45

Least-to-Most 54.08 54.15 51.46 56.99 73.56 74.25 85.21 64.71
Divide-and-Conquer 76.88 77.13 83.65 71.12 81.11 81.24 76.67 86.10

Table 3: Performance of different prompting methods on SciFact dataset.

Task Setup: We use the HaluEval-Summary dataset. It is one of the three datasets in HaluEval
benchmark for hallucination detection, which contains the hallucination generated by ChatGPT-3.5.
HaluEval-Summary have the longest context and generated contents among all three tasks in this
benchmark (Li et al., 2023a). Thus, detecting hallucination on this dataset requires repeatedly verify
each sentence in the response, making standard prompting strategies acquire the worst accuracy
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across all three tasks. We report the Accuracy, F1 score (the hallucination pairs are positive samples),
Precision and Recall.

Setup of baselines, ablation variants and DaC: In this task, our baselines include IO prompting,
Chain of Thought, CoT-SC, Tree-of-Thoughts Least-to-Most, and Decomposed Prompting. In this
task, the sub-tasks are verifying fragments of the summary, which are homogeneous and do not
require recurssion. In such a setting, Decomposed Prompting is equivalent to LtM. For this task,
we apply single level Divide-and-Conquer solver to decompose the summary to multiple sentences,
handle them separately and then merge the conclusions of all sentences. The details are in Appendix.

Results: Experimental results are shown in Tab. 2. For both GPT-3.5 and GPT-4, our proposed
prompting strategy outperform the baselines, presenting the advantage of DaC. More specifically,
compared to IO-prompting, DaC achieved better performance in general, indicating the advantage
brought by stronger expressive power. Meanwhile, compared to CoT and CoT-SC results, DaC
clearly achieved much better recall. Tree-of-Thoughts, benefited by its searching ability, acquired
significantly better recall score compared to other baselines. However, its significantly lower preci-
sion substantially harm its overall performance and leads to accuracy that is even worse than standard
IO-prompting. In contrary, DaC carefully checked all sentences, locate the one containing factual
error and merge the answers.

5.2.2 MISINFORMATION DETECTION

The increasing abuse of misinformation toward manipulating public opinions on social media has
been observed in different areas, such as healthcare (e.g. the recent COVID-19 pandemic) (Sharma
et al., 2020; 2022). This threat is increasingly serious due to LLM’s capacity in content generation
(Li et al., 2023b; Weidinger et al., 2021; Zhang et al., 2022). This challenge raise the importance
of fact-verification, which aims at judging the authenticity of an article based on a collection of
evidence from verified source (Whitehouse et al., 2022; Zhang & Gao, 2023). In this experiment,
we present that DaC can outperform other baselines in fact-verification involved with news article .

Task Setup: In this experiment, we mainly adopt SciFact dataset (Wadden et al., 2020). In SciFact
dataset, each sample is a pair of news and evidence, where the evidence is the abstract of a peer-
reviewed paper and the news is a sentence of claim. To better simulate the real-world scenario where
news on social media usually appears as an paragraph of post, following Chen & Shu, we generate a
dataset of paragraph-level misinformation based on SciFact dataset. Specifically, for a given claim,
we apply ChatGPT-4 to extend the claim as an article based on the evidence. For this task, similar
as hallucination detection, we apply single level Divide-and-Conquer solver to decompose the news
article to multiple sentences, handle them separately and then merge the conclusions of all sentences.
Also, the baselines in this experiments are the same as Hallucination Detection. The evaluation
metrics includes F1 score, G-Mean score (geometric mean of precision and recall), Precision and
Recall. We do not apply accuracy as the positive and negative classes are not balanced.

Results: Experimental results are shown in Tab. 3. Notably, GPT-3.5 incorporated with our
proposed prompting strategy even outperform the performance of GPT-4 incorporated with IO-
prompting, Least-to-Most, CoT and CoT-SC, which have significantly lower recall scores, indi-
cating their proneness to deception. Only Tree-of-Thoughts, which is benefited by its advantage in
exploring various options, acquired the best results among all baselines, but is still defeated by DaC.
Moreover, as we can see, for GPT-4 the performance of CoT-SC is even worse than CoT, which is
supposed to be a specific case of CoT-SC without exploration. These results suggests that, when
facing deceptive contents generated on purpose, existing works’ improvement may not be robust.

6 CONCLUSIONS

In this paper, we analyze the utility and limitations of divide-and-conquer prompting strategy. We
first provide theoretic analysis to Divide-and-Conquer prompting and compare it with representative
prompting strategies. Based on these theoretic results, we summarize two conditions under which
a task is suitable for Divide-and-Conquer prompting. After that we conducted experiments on all
several tasks. The empirical results validated our theoretic analysis and shows that the two conditions
we proposed are helpful for recognizing the appliance scope of Divide-and-Conquer prompting.
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A APPENDIX

A.1 DISCUSSIONS AND LIMITATIONS

In summary, the proposed method has following advantages:

Comparison with IO-Prompting: Superiority in Expressive Power As we proved in Sec. 4,
Compared to IO-prompting, DaC has stronger expressive power and thus can solve harder problems.

Comparison with CoT and EoT: Disentangling the task decomposition and task resolution
Compared to the prompting family of CoT and EoT, DaC explicitly separate the task decomposition
stage and task resolution stage. Therefore, we can acquire explicit decomposed sub-task rather than
intermediate thoughts proposed during decoding. Consequently, we can explicitly enumerate all
sub-tasks output by the decomposition module and avoid the model from missing important sub-
tasks.

Comparison with LtM and Decomposed Prompting: Parallel Sub-task Handler and Sequen-
tial Sub-task Handler Similar as DaC, some program-guided prompting like LtM and Decomposed
Prompting also explicitly separate the task decomposition stage and task resolution stage. However,
they are mainly designed for multi-step reasoning for complex tasks. Thus, they sequentially tackle
the sub-tasks and assembly the resolutions. As a result, they tend to follow the flow of the deceptive
contents, leading to proneness to deceptive content.

Although DaC DaC surpasses the baselines on the proposed tasks, it still has some limitations.
The first issue is that the appliance scope of DaC is still limited. More specifically, CoT, EoT, LtM
and DaC are based on different algorithmic paradigms, learning to different Appliance Scopes. As
pointed out by Feng et al., CoT and LtM can be considered as a neural dynamic programming
algorithm. Thus, CoT is more suitable for tasks that can be bridged to dynamic programming, such
as multi-step question answering. Differently, EoT is based on exploration and search, which is
more suitable for planning and search, such as Game of 24 (Yao et al., 2023). DaC is based on
Divide-and-Conquer algorithm. Thus, it is more suitable for tasks that can be decomposed to a
series sub-tasks that are disjoint or only slightly overlapped. Our future work will focus on further
expand the appliance scope of DaC to more areas like question answering.

A.2 PROOF TO THEOREM 4.2

Before providing the proof, we first formally define how to organize the inputs (i.e., two 2-color
trees) as a sequence. We assume that we acquire two trees tp of size n and tb of size m. They are
organized as two sequences of nodes with a random order. Each node has three variables: color, left
child index, and right child index. If any child is null, then the index is filled with 0. Then we can
organize them as as two sequences Xp ∈ Rn×3 and Xb ∈ Rn′×3, where each item in the sequence
is a vector of 3 dimensions. The first dimension is the index of the left child, the second dimension
is the index of the right child, the third dimension is the color indicator (0 or 1). In addition, we
have a root vector r with three dimensions. The first dimension is the index of the root node of tp
(i.e., pointing to the root node of tp) and the second is the index of the root node of tb (i.e., pointing
to the root node of tb). The third dimension of r is filled with 0 to make it have same dimension as
the items in Xp and Xb. This expression of trees is also called as pointer list encoding according to
(Jenner et al., 2003). Note that in the following proof, we assume that all indices start from 1. Thus
0 is regarded as a NULL pointer.

Following the proof flow we provided in Sec. 4.2, we first provide the following divide-and-conquer
algorithm that can solve the above problem:

The algorithm described above is a typical divide-and-conquer algorithm for solving rooted tree
isomorphism. Its justification can be found in many textbooks introducing algorithms, such as In-
troduction to Algorithms (Cormen et al., 2022). Here we provide the detailed definition and imple-
mentation of problem size metric f(·), hyper-parameter w, merge function m(), sub-task tackling
function t(·), task decomposition function d(·):

• w = 1, and f(r,Xp,Xb) is defined as the depth of the pattern tree tp indicated with
root vector r. Although precisely calculating f(r,Xp,Xb) is of O(n), judging whether
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Algorithm 3 Recursion Divide-and-Conquer Algorithm for 2-BSI BSI(r,Xp,Xb,m, t, d, f, w)

Require: Inputs r,Xp,Xb, problem size metric function f(·), hyper-parameter w, merge function
m, sub-task tackling function t, task decomposition function d

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: rl, rr ← d(r,Xp,Xb)
2: for i ∈ {l, r} do
3: if f(ri,Xp,Xb) > w then
4: vi ← BSI(ri,Xp,Xb,m, t, d, f, w)
5: else
6: vi ← t(ri,Xp,Xb)
7: end if
8: end for
9: Return m(r,Xp,Xb,vl,vr)

Algorithm 4 Implementation of d(r,Xp,Xb) when the depth of the tree indicated by r is not longer
than 2
Require: Inputs r ∈ R3,Xp ∈ Rn×3,Xb ∈ Rn′×3

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: rl ←< Xp[r[1], 2], r[2], r[3] >
2: rr ←< Xp[r[1], 3], r[2], r[3] >
3: Return rl, rr

Algorithm 5 Implementation of t(r,Xp,Xb) when the depth of the tree indicated by r is not longer
than 2
Require: Inputs r ∈ R3,Xp ∈ Rn×3,Xb ∈ Rn′×3

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: Initialize v as all q vector with a length of n′

2: if r[1] == 0 then
3: Return v
4: end if
5: for i ∈ {1, 2, ...,m} do
6: if Xb[i, 3]! = Xp[r[1], 3] then
7: v[i]← 0
8: end if
9: end for

10: Return v

f(r,Xp,Xb) > 1 only require us to check whether the root node has child. If not, then
return False.

• d(r,Xp,Xb) = rl, rr returns two new root vectors rl, rr. Both rl, rr have the same second
and third dimension as r. The rl’s first dimension is updated to be the index of the left child
of the root node that r points to. The rr’s first dimension is updated to be the index of the
right child of the root node that r points to. The updating function can be written as:

• t(r,Xp,Xb) = v returns a 0-1 indicator vector v ∈ Rm with the same length of the base
tree size. If there exists a subtree with node i as root that is isomorphic with pattern tree
tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0. When the pattern
tree’s depth is not higher than 1 (i.e., 1-node tree), t(r,Xp,Xb) is equivalent to output a
0-1 vector indicating the nodes in the base tree that have the same color of the root node of
pattern tree. The implementation is provided in Alg. 5.

• m(r,Xp,Xb,vl,vl) = v merge the results vl,vl to acquire a 0-1 indicator vector v ∈ Rm

with the same length of the base tree size. If there exists a subtree with node i as root that is
isomorphic with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise,
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Algorithm 6 Implementation of m(r,Xp,Xb,vl,vr)

Require: Inputs r ∈ R3,Xp ∈ Rn×3,Xb ∈ Rn′×3,vl ∈ Rn,vr ∈ Rn

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic
with pattern tree tp defined with inputs r,Xp,Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: Initialize v as all 0 vector with a length of n′

2: if r[1] == 0 then
3: Return v
4: end if
5: for i ∈ {1, 2, ...,m} do
6: if Xb[i, 3] == Xp[r[1], 3] then
7: if vl[Xb[i, 1]]] == 1 and vr[Xb[i, 2]]] == 1 then
8: v[i]← 1
9: else if vl[Xb[i, 2]]] == 1 and vr[Xb[i, 1]]] == 1 then

10: v[i]← 1
11: end if
12: end if
13: end for
14: Return v

v[i] is 0. This function can be implemented by checking whether the pattern root’s children
have a perfect match with each node’s children. Since each node has at most two children,
checking the perfect match can be done in constant time. The implementation is provided
in Alg. 6.

After providing the detailed implementation of the functions d(·), t(·),m(·), we are going to prove
that there exists one unified transformer that can handle all these tasks with different prompts d, t,m.
First, we will provide the following Lemma:

Lemma A.1 Any fixed-size logic circuit that only contains multi-fan-in AND gates, multi-fan-in
OR gates, NOT gates and has no recurrent structure can be precisely simulated by a multi-layer
perceptron (MLP) with ReLU activation function and a width of O(|Input| + |Circuit|) and a
depth of O(|Circuit|), where |Input| denotes the size of input and |Circuit| denotes the number of
gates in the circuit.

Assume that we are given a series of input pins with logic variable of 0 or 1, organized as a 0-1
vector x ∈ Rh. We first prove that all gates can be simulated by a two-layer perceptron. Then we
can serialize all gates in the circuits and stack their corresponding 2-layer simulators accordingly to
acquire a MLP simulator. An AND gate that take x as input can be simulated as:

AND(x) = σ(wAx− h+ 1) (3)

where σ is the ReLU activation function, and wA is a weight vector with all dimensions equal to 1.
If some dimensions of x are not the input of the gate, we can set the corresponding dimensions in
the weight vector as 0 and adjust the h as the input pin number. Similarly, an OR gate that take x as
input can be simulated as:

OR(x) = 1− σ(wOx+ h+ 1) (4)
where σ is the ReLU activation function, and wO is a weight vector with all dimensions equal to -1.
A NOT gate is different, since it only takes one input pin. In such a case, we denote the index of the
input pin as i, then we can simulate a NOT gate as:

NOT(x) = σ(wNx+ 1) (5)

where wN is a weight is a weight vector whose i-th dimension equals to -1 and all other dimensions
equal to 0. Also, since the x is a 0-1 vector, the activation function is equivalent to a identical
function to x:

x = σ(x) (6)

To construct a MLP that can simulate a fixed-size logic circuit without recurrent structure, we
apply the circuit serialization in (Merrill & Sabharwal, 2023b) which order the gates based on
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topological order. In this way, we can represent the circuit as a sequence GATE[1], GATE[2],
GATE[3],...,GATE[L], where each GATE[i]’s input only contains the output of the previous gates
and the original input x. Therefore, we can construct a 2L-layer MLP base on the above serializa-
tion. Specifically, the 2i-th and 2i + 1-th layers of the MLP will simulate the GATE[i] as well as
copy all previous inputs with activation function and concatenate them together. This can be done
by concatenate an identical matrix on the GATE’s weight vector (wA, wO or wN ). In this way, we
can construct a MLP that precisely simulate the circuit. Since every time we concatenate the out-
put of a gate with the input of it, the input dimension number of the final layer can be bounded by
O(|x| + L). In the worst case, for a circuit of size L, we needs 2L layers to precisely simulate it.
However, in many cases, a lot of gates in the circuits can be run parallelly. In such cases, the MLP
could be much more shallow.

Now, we can start to prove our main theorem:

Theorem A.2 There exists a log-precision transformer with fixed depth and hidden dimension that
can solve the 2-BSI of any size with fixed-length prompt m (for merge), t (for sub-task tackling) and
d (for task decomposition).

We prove this theorem by constructing a Transformer that can tackle this problem. First we define
how to organize the input given r,Xp,Xb and the prompt. Specifically, we construct a feature
sequence X ∈ R(3+n+n′)×7. Each item in this sequence is a feature of 7 dimensions, indicating a
token. The first two dimensions indicate whether the token is a prompt (’00’), a root vector (’01’),
a pattern tree node (’10’), or a base tree node (’11’). The third to fifth dimensions carries the
information about the token. For a prompt token, ’100’ indicates merge prompt m, ’010’ indicates
sub-task tackling prompt t, and ’001’ indicates task decomposition prompt d. For other cases,
these three dimensions are with the same formula as the three dimensions in r,Xp,Xb. The rest
two dimensions are allocated specifically for the merge function m(·) to store vl and vr. More
specifically, for the feature of token indicating the i-th base tree node, its sixth dimension is vl[i]
and its seventh dimension is vr[i]. For other tokens, these two dimensions are filled with 0. In X[1]
we store the prompt token. In X[2] and X[3] we store the input root vector r duplicately. We store
the same token twice so that we can tackle rl and rr separately. To separate this two token, we use
the last dimension, which was padded as 0 in r, to distinguish them. X[2, 5] is set as 0 and X[3, 5] is
set as 1. From X[4] to X[3+n], we store Xp. From X[4+n] to X[3+n+n′], we store Xb. For all
node indices of pattern tree, we add them by 3. For all node indices of base tree, we add them by 3+n,
so that the indices can be applied to directly retrieve the positional embeddings. After preparing the
inputs, we start to construct our Transformer. The transformer first attach the position index for each
token (positional embedding). After that, the inputs are forwarded into a transformer with depth of
2. Each transformer layer contains a multi-head attention layer followed by a MLP. As proved by
(Merrill & Sabharwal, 2023b; Feng et al., 2023), the attention layer of Transformer can retrieve the
feature of tokens whose positional embeddings satisfy specific conditions. For multi-head attention,
different heads can retrieve tokens with different conditions. In the following construction, we will
use this conclusion to construct attention heads with different functions.

In the first Transformer layer, the function of each attention head is defined as:

• Head 1 only attends to the token itself to store X[i] for token i.
• Head 2 attends to the token with a positional embedding matches the X[i, 3] and copy this

token’s 5-dimension feature. For tree node tokens, this head’s job is to retrieve the feature
of X[i]’s left child. For root vector tokens, this head’s job is to retrieve the feature of pattern
tree root node. For the first token (prompt token), this head’s retrieved feature will not be
applied in the afterwards layers and thus does not influence the correctness of the model.

• Similar as Head 2, Head 3 attends to the token with a positional embedding matches the
X[i, 4] and copy this token’s 5-dimension feature. This head’s job is to retrieve the feature
of X[i]’s right child. For root vector tokens, this head’s job is to retrieve the feature of base
tree root node.

• Head 4 attends to the first token (prompt token) and copy this token’s 7-dimension feature.
This head’s job is to retrieve the prompt indicator.

• Head 5 attends to the second token (root token) and copy this token’s 7-dimension feature.
This head’s job is to retrieve the root information.
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Algorithm 7 Logic circuit for MLP of the second Transformer layer
Require: Input feature x′′ ∈ R42

Ensure: Output feature y ∈ R7

1: y← x′′[1 : 7] {Initialize y}
2: if x′′[1 : 2] == 00 or x′′[1 : 2] == 10{Prompt Token or Pattern Tree Node} then
3: Return y
4: else if x′′[1 : 2] == 01 {Root Vector Token} then
5: if x′′[24 : 26] == 001{Prompt is d} then
6: if x′′[5] == 0 then
7: y[3]← x′′[10] {get rl, similar as line 1 in Alg. 4}
8: else if x′′[5] == 1 then
9: y[3]← x′′[11] {get rr, similar as line 2 in Alg. 4}

10: end if
11: end if
12: else if x′′[1 : 2] == 11 {Base Tree Node Token} then
13: if x′′[24 : 26] == 010{Prompt is t} then
14: if x′′[40] == x′′[5]{Line 6 in Alg. 5} then
15: y[5]← 1
16: else
17: y[5]← 0
18: end if
19: else if x′′[24 : 26] == 100{Prompt is m} then
20: if x′′[13] == 1 and x′′[21] == 1 {Line 7 in Alg. 6} then
21: y[5]← 1
22: else if x′′[14] == 1 and x′′[20] == 1{Line 9 in Alg. 6} then
23: y[5]← 1
24: else
25: y[5]← 0
26: end if
27: end if
28: end if

With the above 5 heads, the attention layer will output a 35-dimension feature for each token. We
denote these features as X′ ∈ R(3+n+n′)×35. After that, these features are forwarded into a MLP
fitting identical mapping to acquire the input features for the second Transformer layer.

In the second Transformer layer, the function of each attention head is defined as:

• Head 1 only attends to the token itself to store X ′[i] for token i.

• Head 2 attends to the token with a positional embedding matches the X′[i, 31] and copy
this token’s 1-7 dimension features (X′[X′[i, 31], 1 : 7]). This head’s job is to broadcast
the feature of the pattern tree root node to every token.

With the above 2 heads, the attention layer will output a 42-dimension feature for each token. We
denote these features as X′′ ∈ R(3+n+n′)×42. For root vector token, only the features from head 1
and head 4 are useful. For base tree node tokens, all 42 dimensions are useful. Then each token’s
feature are parallely forwarded into a MLP. We will use this MLP to fit the logical circuit described
in Alg. 7. The function of Alg. 7 is to aggregate the functions of m(·), t(·), d(·) together and
assign the correct value based on the prompt indicator. In Alg. 7, all operations are AND, OR,
NOT, SELECTOR, and ASSIGN and there is not loop. Thus, it is a static logical circuit and can be
implemented with multi-fan-in AND, OR, NOT gates. Thus, it can be precisely simulated by a MLP
according to our Lemma A.1.

After acquiring the y ∈ R7 for each token, we can organize them as a feature sequence Y ∈
R(3+n+n′)×7. When the prompt is d, we return Y[2, 3 : 5] as rl and Y[3, 3 : 5] as rr. If the prompt
is t or m, then we can output Y[3 + n+ 1 : 3 + n+ n′, 5] as the expected v.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 JUSTIFICATION TO PROPOSITION 4.4

Suppose that the LLM is auto-regressively decoding n tokens from an input context window with
length of C. Then the decoding window of the i-th token is C + i − 1. Thus, the average window
size will be: ∑n

i=1(C + i− 1)

n
=

C + n− 1

2
(7)

Thus, when we sequentially decode all the sub-task resolutions, the total length of the decoded
sequence will be

∑k
i=1 ri. Thus the average window size will be:

C +

∑k
i=1 ri − 1

2
(8)

Meanwhile, when we apply Divide-and-Conquer, we parallely decode each sub-task’s resolution.
Thus, for each sub-task, total window size will be C

∑k
j=1 rj +

∑k
i=1

(ri−1)ri
2 . Thus the average

window size will be C +
∑k

i=1
(ri−1)ri
2
∑k

j=1 rj
. Meanwhile, with Jensen inequility, we have:

k∑
i=1

(ri − 1)ri <

k∑
i=1

(ri − 0.5)2 ≤ (

k∑
i=1

(ri − 0.5))2 ≤ (

k∑
i=1

ri − 0.5k)2 (9)

Thus, when k ≥ 2, we have:
k∑

i=1

(ri − 1)ri < (

k∑
i=1

ri − 1)2 (10)

Thus, we have:

C +

k∑
i=1

(ri − 1)2

2
∑k

j=1 rj
< C +

∑k
i=1 ri − 1

2
(11)

A.4 PROMPTING DETAILS OF DAC

Multiplication of Long Integers: Suppose we have two 2n-digit numbers AB and CD, where
A,B,C,D are all n-digit numbers. Then we can break AB ×CD as (A×C × 102n) + (A×D×
10n)+ (B×C × 10n)+ (B×D), where the calculation in each bracket pair is disjoint with others
bracket pairs. We only need to compute the results of multiplication in each bracket pair parallelly
and then merge all of them with addition:

Decomposer Prompt d: Please split the string a from the middle as two separated strings. The
lengths of the two separated strings should be as close as possible. Please only return the two strings
separated by a comma and do not return anything else.

Sub-task Tackling Prompt t: (1)Please compute a ∗ b. (2) Please only return the final results and do
not return anything else (ensure disentangled-sub-process principle).

Merge Prompt m: Please compute x = a ∗ 102n + b ∗ 10n and y = c ∗ 10n + d. Based on the above
calculation, please compute x+ y carefully step by step.

Hallucination Detection in Long Context: We divide the summary to sentences. After that, we
paralelly verify the sentences. Finally, we merge the verification to each sentence:

Decomposer Prompt d: Please help me segment the following paragraph as sentences. The separated
sentence should be output as: #Statement 1#: ...#Statement 2#: ...Do not say anything else. Just
return the statements in the given format.
Paragraph

Sub-task Tackling Prompt t: I want you to act as a factual contradiction checker. You are given a
set of statements and a document. Among the statements, there might be one or more statement
that contains contradictions with the document. Please find the problematic statement if it exist by
analyzing the statements one by one. For each statement, please make a choice:

• A: The statement is totally aligned with the document for sure.
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• B: The statement contradicts with the document.

Merge Prompt m: Based on the above analysis, please tell me, does any statement above contain
contradiction with the document?.

Fact-Verification for Misinformation Detection: Similar as hallucination detection, we divide
the summary to sentences. After that, we paralelly verify the sentences. Finally, we merge the
verification to each sentence. Thus, our decomposer prompt and sub-task tackling prompt are the
same as hallucination detection. The only difference is the merge prompt.

Merge Prompt m: If we connect the above statements to be a news article, based on the above
analyzation, please answer me: Is there any contradiction between the document and the article?

Sub-task Sub-Solution

Input

Output

…

(A). Least to Most

Input

Output

A

C

…

(B). Decomposed   
Prompting (DeP)

B

CoT

LtM

DeP

Figure 4: Comparison of Least-to-Most (LtM)
Prompting and Decomposed Prompting (DeP).

A.5 DECOMPOSED
PROMPTING AND LEAST TO MOST

Least-to-Most (LtM) Prompting (Zhou et al.,
2022) and Decomposed Prompting (Khot
et al., 2022) are two similar works to our
work. They both propose to explicitly
prompt the LLM to decompose the task as
a series of sub-tasks and sequentially tackle
them. In Fig .2, we merge these two meth-
ods. Here, we will provide more detailed
comparison of them, which is shown in Fig.
4. Decomposed Prompting can regarded as a
upgraded version of LtM. It introduces spe-
cial notations into the prompt to represent
program states so that when sequentially
tackling the sub-tasks, it can call heteroge-
neous modules to tackle them. Such design
enable the LLM to call external programs
(e.g., retrieval documents on WikiPedia and
program based calculator) and/or itself (i.e.,
recursion). Such design endows it stronger expressive power and increases the compositional gener-
alization ability of LLMs in different areas, such as symbolic manipulation and multi-hop QA (Khot
et al., 2022). Also, it endows LLM the ability to do open-domain QA by retrieving from external
knowledge base.

A.6 TYPICAL TASKS THAT SATISFY AND DISSATISFY THE PROPOSED CONDITIONS

To better assist the prompt engineering on different tasks, we list the typical tasks that satisfy and
dissatisfy the proposed conditions. In common tasks, the following tasks satisfy the proposed con-
ditions. For such tasks, searching good decomposition prompt for DaC is likely to be helpful for the
performance:

1. Multiplication
2. Fact Verification on Long Text
3. Auto Evaluation on Long Text
4. Article-level Summary

The following tasks typically do not satisfy the proposed conditions. For such tasks, searching good
decomposition prompt for DaC is not very likely to be helpful for the performance:

1. Addition: It is too simple and violate the condition 1

2. Division: It does not contain parallel sub-tasks, thus violate condition 2
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3. Multi-Round Question-Answering: It is a typical sequential task, thus violate condition
2

4. Planning: It is a typical sequential task, thus violate condition 2

A.7 MORE DISCUSSIONS ON SEQUENTIAL SUB-TASK TACKLING AND PARALLEL SUB-TASK
TACKLING

Complete Task: Compute 12345*67890:

Sub-task 1: Compute x=45*90:

A: ......

Sub-task 2: Compute y=123*90*10^2:

A: ......

Sub-task 3: Compute z=45*678*10^2:

A: ......

Sub-task 4: Compute w=123*678*10^4:

A: ......

Resolution Assembly: Based on the above computation, compute x+y+z+w

A: ......

Example of Parallel Sub-task Tackling
Complete Task: Compute 12345*67890:

Sub-task 1: Compute x=45*90:

A: ......

Sub-task 2: Based on the above result, compute y=123*90*10^2+45*90:

A: ......

Sub-task 3: Based on the above result, compute 

z=45*678*10^2+123*90*10^2+45*90:

A: ......

Sub-task 4: Based on the above result, compute 

w=123*678*10^4+45*678*10^2+123*90*10^2+45*90:

A: ......

Example of Sequential Sub-task Tackling

Figure 5: Toy example of Sequential Sub-task Tackling and Parallel Sub-task Tackling in long inte-
ger multiplication

Complete Task: Verify the following summary:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot 

accused of deliberately crashing the plane, had a history of severe depression and suicidal 

tendencies.

Sub-task 1: Verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site.

A: ......

Sub-task 2: Verify the following statement :

#Summary#: Marseille prosecutor Brice Robin urged anyone who might have more footage to 

turn it over immediately.

A: ......

Sub-task 3: Verify the following statement :

#Summary#: Andreas Lubitz, the co-pilot accused of deliberately crashing the plane, had a 

history of severe depression and suicidal tendencies.

A: ......

Resolution Assembly: Given the above analysis, verify the summary that consist of the 

above three statements.

A: ......

Example of Parallel Sub-task Tackling
Complete Task: Verify the following summary:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot 

accused of deliberately crashing the plane, had a history of severe depression and suicidal 

tendencies.

Sub-task 1: Verify the following statement:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site.

A: ......

Sub-task 2: Based on the above analysis, verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately.

A: ......

Sub-task 3: Based on the above analysis, verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot 

accused of deliberately crashing the plane, had a history of severe depression and suicidal 

tendencies.

A: ......

Example of Sequential Sub-task Tackling

Figure 6: Toy example of Sequential Sub-task Tackling and Parallel Sub-task Tackling in hallucina-
tion detection

Sequential Sub-task Tackling and Parallel Sub-task Tackling are two different paradigm in decom-
posing complex tasks as sub-task to tackle. The first one decompose a complex tasks as a series of
sub-tasks. In this series, each sub-task relies on the previous one’s output as input or context. The
second one decompose a complex tasks as a set of sub-tasks, each of which does not rely on others.
Two examples for multiplication and hallucination detection are provided in Fig 5 and 6
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