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ABSTRACT

Transformers have significantly advanced the field of natural language process-
ing, but comprehending their internal mechanisms remains a challenge. In this
paper, we introduce a novel geometric perspective that elucidates the inner mech-
anisms of transformer operations. Our primary contribution is illustrating how
layer normalization confines the latent features of the transformer to a hyper-
sphere, subsequently enabling attention to mold the semantic representation of
words on this surface. This geometric viewpoint seamlessly connects established
properties such as iterative refinement and contextual embeddings. We validate
our insights by probing a pre-trained 124M parameter GPT-2 model. Our find-
ings reveal clear query-key attention patterns in early layers and build upon prior
observations regarding the subject-specific nature of attention heads at deeper lay-
ers. Harnessing these geometric insights, we present an intuitive understanding of
transformers, depicting iterative refinement as a process that models the trajectory
of word particles along the surface of a hyper-sphere.

1 INTRODUCTION

Figure 1: Overview of the proposed geometric
interpretation of Transformers. The input token
“Traveling ” is embedded as a word particle onto a
hyper-sphere, and residual updates determine the
path that the particle will follow along the surface,
culminating on the region closest to the next to-
ken: “Words”.

The transformer architecture (Vaswani et al.,
2017) has sparked a significant shift in Artifi-
cial Intelligence (AI). It is the central compo-
nent behind some of the most advanced conver-
sational AI systems (Brown et al., 2020; Thop-
pilan et al., 2022; Bai et al., 2022), and has
been established as state-of-the-art for Natu-
ral Language Processing (NLP), Computer Vi-
sion (CV) and Robotics applications, and many
other tasks (OpenAI, 2023; Google, 2023; Chen
et al., 2023; Zong et al., 2022; Driess et al.,
2023).

Recent work on the interpretability of the trans-
former architecture has focused on analyz-
ing weights in relation to the word embed-
ding space used in its input and output lay-
ers Dar et al. (2022); Elhage et al. (2021);
Geva et al. (2022); Brody et al. (2023); Wind-
sor (2022); Millidge & Black (2022). Elhage
et al. (2021) introduces “Transformer Circuits”,
a theoretical framework that decomposes the
transformer computation into two main compo-
nents: a residual stream that carries information
from input to output layers and attention/feed-
forward updates that modify the information
flowing in the residual stream. A key development from their work is grouping attention matrices
into the virtual interaction matrices WQK and WOV , exploring their role in updating the informa-
tion carried throughout the transformer’s residual stream. Geva et al. (2022) demonstrate that the
updates from the feed-forward module can be decomposed into a linear combination of sub-updates
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given by the weight matrix of the feed-forward module’s second layer. This matrix directly interacts
with the residual stream and allows the authors to measure the impact of each sub-update on the
model’s final prediction using the matrix WE as a probe. Dar et al. (2022) incorporate these ideas to
show that it is not only possible to interpret the outcomes of each transformer operation in relation
to its latent space but also the weights themselves, enabling them to do zero-shot model stitching by
“translating” between latent spaces of different language models. Finally, Millidge & Black (2022)
note that analysis on the singular vectors of the WOV matrix provides better practical results when
compared to analysis of its row and column weights.

A complimentary perspective to the line of work on Transformer Circuits comes from the geometric
interpretation of layer normalization (Ba et al., 2016) by Brody et al. (2023). The authors prove that
layer normalization is equivalent to projecting features onto the hyperplane defined by the

−→
1 vector

and then scaling the projection by
√
d. They show that these properties are crucial for the attention

mechanism to either attend to all keys equally or to avoid the problem of having “unselectable”
keys (relevant keys within the convex hull of a set of non-relevant keys). The study by Windsor
(2022) offers additional evidence for the representational power of layer normalization, visualizing
the highly non-linear behavior resulting from this operation and demonstrating that, when employed
as an activation function in a neural network, layer normalization can solve complex classification
tasks.

In this work, we build upon these two perspectives to propose a novel geometric interpretation of
transformers. In subsection 2.1, we introduce an alternative equation for layer normalization based
on its geometric properties. In subsection 2.2 and subsection 2.3, we discuss the implications of
this equation on the attention module, its impact on the transformer’s output probabilities and how it
relates to the concept of iterative refinement. Finally, we provide results on our probing experiments
in section 3, demonstrating the benefits of our approach on interpretability. An illustrated summary
of the proposed geometric interpretation is given in Figure 1.

2 TRANSFORMERS AS A COMPOSITION OF GEOMETRIC PRIMITIVES

In this section, we analyze each of the transformer’s components from a geometric perspective,
leveraging the interpretation of one component to analyze the next. We begin with the layer nor-
malization function, for which we demonstrate that it constrains d-dimensional input features to lie
within the surface of a (d − 1) dimensional hyper-sphere. Then we consider the role of the WQK

matrix in terms of geometric transformations on said hyper-sphere, and the WV O matrix as a key-
value mapping from the hyper-sphere back to Rd, highlighting its similarities with the key-value
interpretation of the feed-forward module proposed by Geva et al. (2021). Finally, we discuss the
role of the embedding matrix WE on the transformer’s output probabilities.

2.1 LAYER NORMALIZATION

In its original formulation (Ba et al., 2016), layer normalization is introduced using the mean µ and
standard deviation σ computed along the dimensions of an input vector x ∈ Rd:

LayerNorm(x) =
x− µ

σ
(1)

However, recent work by Brody et al. (2023) presents an alternate perspective on layer normaliza-
tion, interpreting it as the composition of two distinct geometric transformations. The difference
x− µ is shown to be orthogonal to the

−→
1 vector, suggesting that the features of the input vector are

projected onto a hyperplane H defined by the normal vector
−→
1 , and the denominator σ is formulated

in terms of the norm of the projected vector as follows:

σ =
1√
d
||x− µ|| (2)

Building on this insight, we demonstrate (Appendix A) that the mean µ is the projection of x onto
the vector 1√

d

−→
1 , as opposed to directly onto

−→
1 . This finding simplifies the computation of the

projection of x onto the hyperplane H:
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projH(x) = x− proj(x,
1√
d

−→
1 )

= x− µ

(3)

Incorporating Equation 2 and 3 into Equation 1, we obtain a geometric formula for layer normaliza-
tion:

LayerNorm(x) =
√
d

projH(x)

||projH(x)||2
(4)

Intuitively, layer normalization projects a vector x ∈ Rd to the hyperplane H perpendicular to
1√
d

−→
1 ∈ Rd, and normalizes the projection such that it lies on the surface of a d − 1 dimensional

hyper-sphere of radius
√
d (for a visual understanding of this transformation with d = 3, refer to

Figure 2). Furthermore, layer normalization typically incorporates a scaling factor γ and a bias term
β. The scaling factor γ acts along each coordinate axis, transforming the hyper-sphere into a hyper-
ellipsoid, while the bias term β translates the ellipsoid’s center away from the origin (Figure 3).

Figure 2: Layer normalization visualized on 3D data. Left: Original feature space (from randomly
sampled data), with each data point color-coded according to its position in space. Right: Feature
space after layer normalization, note that all data points lie within the plane perpendicular to the

−→
1

vector.

In modern implementations of the transformer, layer normalization is applied before both the atten-
tion and feed-forward module updates within each block, and once more before the final prediction
step Xiong et al. (2020). We note that such an arrangement ensures that data within each trans-
former layer is constrained to the surface of a potentially distinct hyper-sphere. Yet, due to the
residual nature of transformers, all intermediate layer representations inhabit the same vector space.
As a result, features from different layers project onto a shared hyper-sphere, which we denote as
HS . Interestingly, layer normalization’s placement prior to the classification softmax has another
consequence. It drives the model to optimize dot-product similarity between certain points within
HS and word vectors in the embedding matrix WE ∈ R|V |×d, where |V | is the vocabulary size.
This optimization indirectly defines the meaning of points in HS as a function of their similarity
with words represented in WE .

2.2 MULTI-HEAD SELF-ATTENTION

To understand how the geometric intuition behind HS allows for the interpretability of latent repre-
sentations within a transformer, we analyze the parameter matrices in the multi-head self-attention
module (Vaswani et al., 2017). For a given input sequence X ∈ Rs×d of length s, the multi-head
self-attention mechanism is defined as follows:
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MultiHead(X) =

h∑
i

softmax

(
XW i

QKXT

√
d

)
XW i

V O (5)

Where h is the number of self-attention heads while W i
QK ∈ Rd×d and W i

V O ∈ Rd×d are low-
rank virtual matrices obtained by grouping the query, key, value and output projection matrices at
each head (Elhage et al., 2021; Dar et al., 2022). A full derivation of Equation 5 from the original
formulation by Vaswani et al. (2017) is provided in Appendix B.

2.2.1 THE QUERY-KEY MATRIX

For any given head i, the query-key matrix W i
QK is commonly interpreted as a bi-linear form

gi : Rd × Rd → R that represents the relevance between keys and queries. However, it is also
possible to consider W i

QK as a linear transformation that maps inputs to a query representation
Xi

Q = XW i
QK , similar to that considered in Brody et al. (2023)1. With the head’s attention score

matrix Ai ∈ [0, 1]s×s, for a given sequence length s, obtained as:

Ai = softmax
(Xi

QX
T

√
d

)
(6)

This process is illustrated for normalized inputs in the right-most section of Figure 3. Essentially, the
role of the WQK matrix and the layer normalization parameters is to find an affine transformation
over HS such that, when superimposed on itself, brings related terms closer together and keeps
unrelated terms apart.

It is important to mention that for k < d, the matrix W i
QK cannot be inverted, as it won’t have a full

rank. This implies, by the rank-nullity theorem, that for each head, there must be a set of d−k query
vectors Qi

null ⊂ Rd that map to the zero vector and, as a consequence, attend to all keys equally.
Conversely, there must also exist a set of d− k keys Ki

null ⊂ Rd that are attended to by all queries
equally, with a pre-softmax attention score of zero.

Figure 3: Visualization of the self-attention process for a single head. Left: Layer normalization
projects the input features on the surface of the hyper-sphere HS . Center Left: A scaling parameter
γ is commonly applied after normalization; it transforms the hyper-sphere into a hyper-ellipsoid.
Center Right: A bias term β is also applied after normalization; it displaces the hyper-ellipsoid
away from the origin. Right: The input features are mapped to a query representation (in red) by
the matrix WQK and superimposed over their previous representation to obtain the self-attention
scores.

2.2.2 THE VALUE-OUTPUT MATRIX AND THE RESIDUAL STREAM

To understand the role of the WV O matrix within the transformer, we now consider the update step
after multi-head attention at a given layer l:

Xl+1 = Xl + MultiHead(LayerNorm(X)) (7)

1An alternative key representation Xi
K = XW i

QK
T can also be considered
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Note that by plugging in Equation 5 and Equation 6, the layer update can be re-written as:

Xl+1 = Xl +

h∑
i

AiXi
V (8)

where
Xi

V = LayerNorm(Xl)W
i
V O (9)

It can be seen that the multi-head attention mechanism consists of the sum of h individual updates,
each one given by one of the attention heads. Within each head, all words in the sequence propose
an update Xi

V , and these are aggregated according to their attention scores Ai. In Equation 9, the
matrix W i

OV transforms the normalized inputs in HS into a set of updates in the same latent space as
the residual stream. Furthermore, we propose that the W i

V O matrix is better understood as a second
key-value store (Sukhbaatar et al., 2015; Geva et al., 2021) within the attention layer. To see why,
consider its Singular Value Decomposition (SVD) (Millidge & Black, 2022): W i

V O = UΣV T . By
substituting in Equation 9, we obtain:

Xi
V = (QV OK

i
OV

T
)V i

OV (10)

where
QV O = LayerNorm(X)

Ki
OV = (UΣ)T

V i
OV = V T

(11)

The left singular vectors, associated with the columns of UΣ ∈ Rd×d, act as a library of “keys”
Ki

OV against which the normalized features Xl ∈ HS are compared. While the corresponding
right singular vectors, associated with rows in V T ∈ Rd×d, act as the output values V i

OV that
define the direction in which to update the information in the residual stream for a given key. This
interpretation is motivated by the results of Millidge & Black (2022), where it is shown that the right
singular vectors V T of the WV O matrix tend to have interpretable meanings when decoded using
WE , with some of the transformer heads consistently representing a single topic in most of their
singular vectors. We would also like to mention that, similar to the WQK matrix, the WOV matrix
has at least d− k singular values equal to zero. This means that multiple queries QV O will map to
the zero vector and thus won’t update the information in the residual stream, allowing the model to
skip the update process if necessary.

To conclude, we highlight that the proposed interpretation of attention behaves very similarly to
that of the feed-forward module given by Geva et al. (2021), as both calculate relevance scores
and aggregate sub-updates for the residual stream. However, the way the scores and updates are
calculated is very different. The attention module relies primarily on dynamic context for its scores
and values, while the feed-forward module relies on static representations.

2.3 THE WORD EMBEDDING MATRIX AND OUTPUT PROBABILITIES

Once all the attention and feed-forward updates have been applied, the output probabilities of the
network can be obtained as follows (Xiong et al., 2020):

PY = softmax
(
LayerNorm(XL)W

T
E

)
(12)

Equation 12 can be interpreted as measuring the similarity between the final layer representation
XL when projected to HS , and each of the embedding vectors in WE . Given that all vectors in the
projection have the same norm

√
d, the only relevant factor in deciding the output probability dis-

tribution PY [t,:] ∈ [0, 1]|V |, at a given timestep t, is the location of its corresponding vector XL[t,:]

within HS . This behavior is very similar to that described by the von Mises-Fisher distribution
(Fisher, 1953), as both represent distributions parameterized by a reference vector within a hyper-
sphere. Nonetheless, in the case of transformers, the support of the distribution is defined over a
discrete set of points in Rd instead of the entire surface of HS , as it is for the von Mises-Fisher.
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Table 1: Distance between the normalized embeddings LayerNorm(WE) and different transforma-
tions of the embedding matrix WE .

Setting Mean ℓ2 Distance Mean Cosine Distance
Original 23.747 (0.432) <0.001 (<0.001)
Centered 24.872 (0.432) 0.150 (0.035)
Scaled by

√
d 2.413 (1.862) <0.001 (<0.001)

Centered + Scaled by
√
d 14.591 (1.469) 0.150 (0.035)

In the case where layer normalization includes scaling and bias parameters γ and β, the output
probabilities are calculated as follows:

PY = softmax
(
X̂LΓW

T
E + βW T

E

)
(13)

where X̂L is the projection of XL to HS and Γ is a diagonal matrix such that Γii = γi. The effect
of Γ on the representation is that of transforming HS into an ellipsoid (see the center-left section of
Figure 3) while βW T

E acts as a bias that assigns higher probability to certain tokens independent of
the input.

In both cases (with and without bias and scale parameters), the proposed interpretation aligns with
that of iterative refinement within transformers (Jastrzebski et al., 2017; nostalgebraist, 2020; Elhage
et al., 2021; Geva et al., 2022; Belrose et al., 2023), given that intermediate representations Xl can
always be converted into output probabilities using Equation 12.

3 EXPERIMENTS

This section presents our experimental results. All experiments were done on a RTX 4090 GPU us-
ing pre-trained weights from the 124M parameter version of GPT-2 (Radford et al., 2019; Karpathy,
2023) 2.

3.1 IMPACT OF LAYER NORMALIZATION ON THE WORD EMBEDDINGS

To measure the impact of layer normalization on the position of the embedding vectors we ∈ WE ,
we calculated both the ℓ2 and cosine distances between the layer-normalized weights and the fol-
lowing settings:

• Original: The original word embeddings without any modification
• Centered: Original + centering around the mean E[we]

• Scaled: Original divided by the average vector norm E[||we||] and multiplied by
√
d

• Centered + Scaled: Original + centering + scaling

The results in Table 1 show that the mean cosine distance between the original word embeddings
and the embeddings after normalization is close to zero, meaning that projection onto HS does not
modify the orientation of the embedding vectors. The results also confirm this when centering is
applied, as the cosine distance increases significantly when the original vectors are displaced from
the origin and towards the mean. On the other hand, it can be seen that the ℓ2 distance is high
for all settings except for when scaling is applied without centering. Given an average norm of
E[||we||] = 3.959 and for

√
d = 27.713 we can conclude that the original word embeddings lie

between the origin and HS rather than on its surface, with different embeddings having different
norms.

We hypothesize that variance in the norm of embedding vectors (SD(||we||) = 0.434) is likely to
be a result of the use of the word embedding matrix as a classification layer (see Equation 13). To
verify whether this is the case, we select the top and bottom 5 embedding vectors based on the three
following criteria:

2Code to replicate all experiments will be made available upon acceptance
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Table 2: Top 5 and Bottom 5 tokens from the word embedding matrix.

Position Norm Scaled Norm Norm + Bias Scaled Norm + Bias
Top 1 SPONSORED \xa9\xb6\xe6 , the
Top 2 \x96\x9a tremend the ,
Top 3 soDeliveryDate \x96\x9a . and
Top 4 enegger senal and a
Top 5 Reviewer millenn - in

Bottom 5 for - \xc0 \x07
Bottom 4 an ( \x07 \x0f
Bottom 3 on “\n” \x10 oreAndOnline
Bottom 2 in , \x11 \x06
Bottom 1 at . \xfe \xc1

• Norm: The norm of the original embedding vector wE

• Scaled Norm: The norm of the embedding vector when scaled by the Layer Norm param-
eter Γ

• Norm + Bias: The norm of the original embedding vector plus the bias scores obtained
from βW T

E

• Scaled Norm + Bias: The sum between the Scaled Norm and the bias scores.

The sorted tokens in Table 2 show that considering only the norm of the embeddings is not enough,
as tokens that are not commonly used (like ‘SPONSORED’ and ‘soDeliveryDate’) have the highest
norms, while common words like ‘for’, ‘an’, ‘on’ and ‘in’ have the lowest norm. After considering
the scaling parameter Γ, we observe that punctuation signs like the newline character or the comma
‘,’ have the lowest norm, and that there is no clear pattern on the top tokens. After considering
bias, we see that the distribution of top tokens clearly shifts, with punctuation symbols and common
words now at the top and uncommon bytes at the bottom. Finally, note that when both scale and bias
are considered, the top tokens are consistent with some of the most common words in the English
language: ‘the’, ‘and’, ‘a’ and ‘in’ with the only exception being the comma character, which is also
very common in natural language, while the bottom tokens are related to uncommon bytes and an
anomalous token.

3.2 PROBING ATTENTION HEADS WITH NORMALIZED REPRESENTATIONS OF COMMON
NOUNS

Next, we probe the attention heads at layers 0, 5 and 11 of the GPT-2 model using as inputs the 100
most common nouns taken from the Corpus of Contemporary American English (COCA) (Davies,
2010). First, we transform the embedding matrix WE according to the normalization parameters
specific to each layer (see Figure 3) and then multiply the normalized embeddings ŴE by either
WQK or WV O. To decode the output from WQK , we retrieve the top-k closest embedding vectors
from ŴE based on dot product similarity. For WV O, we add the head-specific and layer-specific
output biases (see Equation S.8) to obtain the “update vectors”. These update vectors are then added
to the original embeddings from WE and transformed according to the normalization parameters
from the last layer; then, we retrieve the top-k closest embeddings from the original WE embedding
matrix based on dot product similarity.

3.2.1 QUERY-KEY TRANSFORMATIONS

In Table D. 1, we present partial results for the query-key transformations at layer 0, given the
query inputs ‘time’, ‘life’ and ‘world’. We note that some of the heads preserve the meaning of the
query, as is the case for heads 1, 5 and 10, possibly looking for repetition, while others look for
keys that precede it. Such precedence heads might help to disambiguate the meaning of the words,
with examples like: ‘Showtime’ vs. ‘spacetime’, ‘battery life’ vs. ‘wildlife’ and ‘underworld’ vs.
‘Westworld’. Other heads appear to be looking for contextual associations, as is the case for head
2, which seems to relate ‘world’ with dates and concepts from the First and Second World wars.
When looking at deeper layers (as shown in Table D. 2 & D. 3), we were not able to identify any
meaningful patterns on the query transformations, suggesting that these layers might look for more
complex patterns that cannot be measured by probing.
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3.2.2 KEY-VALUE TRANSFORMATIONS

In Table D. 4, we present partial results for the key-value transformations using the same three
sample inputs. For most heads at layer 0, the meaning of the input key is kept as is. However,
when the sum of all the heads is considered, we see a slight shift in the meaning of the words. For
heads at layer 5 (shown in Table D. 5), we see that although most of the heads preserve the meaning
of the input keys ‘life’ and ‘world’ (and around half of the heads for the input ‘time’), the sum of
all heads does change the word meaning dramatically, and without a clear output pattern. As our
experiment is limited to testing a single input key at a time, it might be possible that updates in
this layer rely more heavily on the contextual composition between multiple keys, which we did not
capture. Finally, in the last layer (Table D. 6), we see that most individual heads map to seemingly
arbitrary values, with only a few preserving the meaning of the input key. However, when the sum of
the heads is considered, the layer preserves the meaning of the input keys. To test the hypothesis that
meaning-preserving heads dominated the layer update, we measured the norm of the output values
for each head (before adding the layer-specific bias βO). We found that, in most cases, these heads
do not have higher norms. Instead, heads promoting common tokens like ‘the’, ‘,’ and ‘and’ had the
highest norms. These results suggest that some heads at the last layer work together to preserve the
meaning of the input keys and mitigate the network’s bias towards common tokens.

3.3 PROBING THE SINGULAR VECTORS OF THE VIRTUAL ATTENTION MATRICES

3.3.1 SINGULAR VECTORS OF THE KEY-VALUE MATRIX

To verify whether the key-value interpretation of WV O matrix proposed in subsubsection 2.2.2 is
correct, we probe each of its singular vectors (as proposed in Millidge & Black (2022)). For the left
singular vectors U (scaled by Σ), we use the normalized embeddings ŴE as a probe, while for the
right singular vectors V T , we use the original embeddings WE . Given that all singular values are
constrained to be positive, we get two possible singular vector pairs corresponding to each singular
value: (u,v) and (−u,−v). For ease of analysis, we choose the signed pair with its v component
closest to any of the embeddings we ∈ WE , using the dot product similarity.

We did not observe any interpretable pattern for the attention heads at layer 0 and found only one
interpretable head at layer 5 (head 10), which referred to terms in politics and chemistry. However,
we found that most heads in layer 11 were interpretable (except for heads 5, 7 and 9) and present the
results for all heads in Appendix E. An illustrative case of these patterns is head 3, where most of
its singular vector mappings are related to jobs or industries. For example, ‘Dairy’ maps to ‘USDA’
(the United States Department of Agriculture), ‘engine’ to ‘drivers’, ‘trading’ to ‘Sales’ and so on.
Similar patterns were present in other heads, listed as follows:

• Head 0: Formatting and punctuation
symbols (end of text, new line, brack-
ets and parenthesis)

• Head 1: Gender words
• Head 2: Proper Nouns (Places)
• Head 3: Jobs / Industries
• Head 4: Letters and Numbers

• Head 6: Suffixes and Prefixes related
to the ending and beginning of words

• Head 8: Punctuation symbols
• Head 10: Proper Nouns (First and Last

names)
• Head 11: The identity function (input

similar to the output)

We found that these patterns were consistent with those obtained in the key → value results from
Table D. 6, implying that the subject-specific behavior of the singular vectors is reflected in the
input-output transformations of the attention heads. These results complement previous work from
Millidge & Black (2022), in which only the right singular vectors V T were considered.

3.3.2 SINGULAR VECTORS OF THE QUERY-KEY MATRIX

In additional experiments on the SVD of the WQK matrix, we found that some singular vector
pairs had clear associations. For example, in head 0 of layer 0, we found some associations related
to programming languages (‘self, class, =, import’ → ‘Python’) and digital cameras (‘Video, 264,
minutes’ → ‘Nikon, lineup, shot, camera’) but we could not identify any specialization for the heads
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in this layer. Surprisingly, we did find that heads at the last layer had identifiable patterns on their
left singular vectors (associated with the queries) consistent with those listed for the WV O matrix
(punctuation for head 0, gender for head 1, and so on), but no clear patterns were identified for the
right singular vectors.

3.4 VISUALIZING ITERATIVE REFINEMENT

Figure 4: UMAP 3D projection of the phrase ‘To
kill two birds with one stone’.

Finally, we visualize how the information in the
residual stream is updated (i.e. the iterative re-
finement process) leveraging dimensionality re-
duction techniques, as shown in Figure 4. For
this, we chose the test sentence ‘To kill two
birds with one stone’, as the predictability of
its last token, ‘stone’, given the previous con-
text was high (correctly predicted by the model)
and none of the words in the sentence repeated.
To project the high dimensional embeddings
into 3D space, we used UMAP (McInnes et al.,
2018), with Laplacian Eigenmap initialization
(Belkin & Niyogi, 2001; Kobak & Linderman,
2021), and we fit the transform using the first
10,000 embedding vectors from WE to accu-
rately reflect proximity in the original embed-
ding space. We show the original embedding
tokens as reference (in blue) and plot the tra-
jectory of the second-to-last token, ‘one’, as
we process the entire sequence (with added po-
sitional embeddings) throughout the network.
For each layer, we transform the latent rep-
resentations in the residual stream using the
normalization parameters from the final output
layer before projecting with UMAP. It can be
seen that the representation of the second-to-last token shifts from its original meaning (‘one’) to-
wards the meaning of the next token (‘stone’). Although the figure also shows the magnitude and
direction of each update in the trajectory, it is important to mention that these quantities might have
been modified due to the dimensionality reduction process.

4 CONCLUSION

We have presented a new interpretation of transformer models based on the geometric intuition be-
hind each of its components. First, we showed how layer normalization can be better understood as
a projection of latent features in Rd to a (d− 1)-dimensional hyper-sphere and provide experimen-
tal evidence that the word embeddings learned by GPT-2 are distributed toward different directions
of the hyper-sphere, we also demonstrate that the parameters of the final normalization layer are
crucial in obtaining high-scoring tokens consistent with high-frequency tokens in the English lan-
guage. Second, we discussed the role of the WQK and WV O matrices as transformations related to
the hyper-sphere, with WQK as an affine transformation that overlaps queries and keys, and WV O

as a key-value map between the hyper-sphere and the original embedding space. These intuitions
were experimentally tested with probing experiments, showing promising results in understanding
the role of query-key attention in earlier layers and extending the results from Millidge & Black
(2022) on the subject-specific nature of the WV O matrix in attention heads at deeper layers. Finally,
we integrated these ideas and the impact of each component on the residual stream to provide visual
evidence of how the iterative refinement process works within transformers, illustrating the journey
that occurs from a previous token to the next.
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A GEOMETRIC TRANSFORMATIONS WITHIN LAYER NORMALIZATION

A.1 MEAN ALONG DIMENSIONS AS VECTOR PROJECTION

If we consider the unit-norm vector 1√
d

−→
1 , it can be shown that the mean along dimensions µ is the

projection of x onto 1√
d

−→
1 :

proj(x,
1√
d

−→
1 ) =

1

|| 1√
d

−→
1 ||2

(
x · 1√

d

−→
1

)
1√
d

−→
1

=

(
x · 1√

d

−→
1

)
1√
d

−→
1

=

(
x · −→1√

d

)
1√
d

−→
1

=

(
x · −→1
d

)
−→
1

=

(
1

d

d∑
i

xi

)
−→
1

= µ
−→
1

= µ

(S.1)

For µ = [µ, µ, . . . , µ] ∈ Rd.

A.2 STANDARD DEVIATIONS AS NORM SCALING

Brody et al. (2023) show that the division by σ acts as a scaling factor that modifies the norm of
x− µ to be

√
d:

σ =

√√√√1

d

d∑
i

(xi − µ)2

=
1√
d

√√√√ d∑
i

(xi − µ)2

=
1√
d
||x− µ||2

(S.2)

12



Under review as a conference paper at ICLR 2024

B ADDITIVE FORMULATION OF MULTI-HEAD SELF-ATTENTION

Vaswani et al. (2017) define the self-attention mechanism as follows:

SelfAttention(X,WQ,WK ,WV ) = softmax
(QKT

√
d

)
V (S.3)

where

Q = XWQ

K = XWK

V = XWV

(S.4)

Such that WQ ∈ Rd×k, WK ∈ Rd×k and WV ∈ Rd×v are projection matrices from the original
model dimension d to intermediate dimension k and value dimension v, respectively. For multi-
head attention, multiple projection matrices W i

Q, W i
K , W i

V are considered, one for each head
i ∈ [1, . . . , h] (with h being the number of heads). In this case, the value dimension v is commonly
set equal to k and an extra projection matrix WO ∈ Rhk×d is introduced to combine information
from all heads as follows (Vaswani et al., 2017):

MultiHead(X) = Concat([head1, . . . , headh])WO

where headi = SelfAttention(X,W i
Q,W

i
K ,W i

V )
(S.5)

Given that the concatenation happens along the row dimension of each head, it is possible to re-write
multi-head self-attention as follows:

MultiHead(X) =

h∑
i

SelfAttention(X,W i
Q,W

i
K ,W i

V )W
i
O

where WO = Concat[W 1
O, . . . ,W

h
O]

(S.6)

Such that each W i
O ∈ Rk×d denotes an element of the partition of matrix WO alongside the row

dimension. Combining Equation S.4 and Equation S.6 we obtain a single formula for multi-head
self-attention:

MultiHead(X) =

h∑
i

softmax

(
XW i

QW
i
K

T
XT

√
d

)
XW i

V W
i
O

=

h∑
i

softmax

(
XW i

QKXT

√
d

)
XW i

V O
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C IMPACT OF BIAS TERMS IN MULTI-HEAD SELF-ATTENTION

C.1 BIAS IN THE QUERY AND KEY PROJECTIONS

In case the projection given by Equation S.4 contains bias terms βQ, βK ∈ Rk, the attention score
matrix from Equation 6 is calculated as follows:

Ai = softmax
(Xi

QX
T +XW i

Qβ
T
K + βQW

i
k
T
XT + βQβ

T
K√

d

)
(S.7)

In the bias formulation, three new terms are introduced. First, W i
Qβ

T
K ∈ Rd, which can be thought

of as a reference vector for queries, such that queries similar to it get higher attention scores. Given
that the same “bias score” will be broadcasted along all the different keys of the same query, the
network will ignore this term due to the shift-invariance of the softmax function. More interesting
is the second term βQW

i
K

T ∈ Rd, which acts as a reference for keys. Given that its bias score is
broadcasted along queries, it will result in higher attention scores (in all queries) for keys similar to
the reference. Finally, the term βQβ

T
K ∈ R acts as a global bias and, similar to W i

Qβ
T
K , will be

ignored by the network.

C.2 BIAS IN THE VALUE AND OUTPUT PROJECTIONS

If the value projection in Equation S.4 contains a bias term βV ∈ Rk, and the output projection in
Equation S.5 contains a bias term βO ∈ Rd. The layer update in Equation 8 can be re-written as
follows:

Xl+1 = Xl + βO +

h∑
i

AiXi
value + βV W

i
O

T
(S.8)

Here, the term βV W
i
O
T ∈ Rd is a bias on the update direction of head i, while βO ∈ Rd acts as a

bias on the entire layer’s update.
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D ATTENTION HEAD TRANSFORMATIONS FOR LAYERS 5 AND 11

D.1 QUERY-KEY TRANSFORMATIONS

Table D. 1: Transformation of Queries Across Attention Heads at Layer 0

Query → Keys
Head time life world

0 Level, [?], offenders battery, Battery, Battery legraph, Vers, Malf
1 time, time, Time Life, life, life World, world, world
2 cinematic, Priest, priest Notre, fetal, abortion 1914, Churchill, 1916
3 space, lunch, mid augh, ertain, ough under, Nether, Fort
4 soft, heavy, tool Middle, Hans, Middle ether, Unt, Know
5 time, time, Time life, Life, Life world, World, world
6 Rated, chirop, u Fukushima, chirop, ulic ipt, u, Meta
7 Show, bed, Movie pro, wild, Wild Disc, West, West
8 java, framework, watch shark, sharks, Wild edit, ”$:/, movie
9 stones, pal, cards Trojan, malware, Wi Rogers, COUNTY, Rd
10 time, time, Time life, life, Life world, world, World
11 Wine, a, food PHI, everal, Span agus, true, ‘,’

Table D. 2: Transformation of Queries Across Attention Heads at Layer 5

Query → Keys
Head time life world

0 depend, annot, reason so, inf, char Lab, dev, Dev
1 they, themselves, Vers they, Im, depend come, once, haven
2 Nepal, ”:[”, —” ‘. . . .’, ‘. . . ’, Home posted, Logged, ideologically
3 appeared, actually, had posted, axle, .avascript aryl, Ala, GA
4 attract, CP, contained misconception, (?, trophy separatists, activists, extremists
5 Plum, rice, Vers Sniper, too, hides Prim, Bright, am
6 en, annually, – following, Generator, Library §§, tournaments, StarCraft
7 Wis, def, individual y, ier, od Af, Gh, agle
8 condition, intensive, inf prol, operation, splend Ard, marketplace, dev
9 post, market, destinations She, steal, etc strategy, pd, budget
10 jugg, continuously, Center essim, enter, tast exploration, jugg, PLAY
11 straight, interview, fucking –, Eva, related spotlight, television, TV

Table D. 3: Transformation of Queries Across Attention Heads at Layer 11

Query → Keys
Head time life world

0 UNCLASSIFIED, opausal, ster opausal, backstage, piece routine, cat, ocular
1 assion, upp, pir pir, Virgin, appa Frontier, theater, onies
2 heid, GI, rict heid, apy, brance region, urgy, encyclopedia
3 opic, href, Hitchcock susceptibility, space, opic league, space, opic
4 gy, lots, whatever his, whichever, gy whichever, whatever, underworld
5 olesterol, tx, erc olesterol, avy, iana wealth, Digest, Market
6 ones, volatile, RIS volatile, olesterol, idency wealth, useum, theatre
7 whichever, ivalent, lower mortal, whichever, living -$, complex, world
8 ove, HTTP, metaphysical spiritual, metaphysical, bio Endless, metaphysical, Marvel
9 Productions, actic, fare stuff, ience, Productions entertainment, stuff, World
10 -, code, ing -, core, ola core, Labs, ourse
11 emb, ivan, Union Tour, etc, iona pires, si, Tour
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D.2 KEY-VALUE TRANSFORMATIONS

Table D. 4: Transformation of Keys Across Attention Heads at Layer 0

Key → Values
Head time life world

0 time, Time, time life, choice, senal world, World, worlds
1 time, TIME, time life, lihood, life world, Goes, ship
2 time, [?], Minutes life, Life, life world, world, World
3 time, Time, theless life, Life, life world, World, worlds
4 time, time, Time life, Life, Life world, World, world
5 time, Time, Time life, Life, Life world, World, worlds
6 time, time, Time life, life, Life world, world, Feather
7 time, eless, times life, Experience, Life world, World, Abyss
8 time, iversary, melodies life, challeng, conservancy world, worlds, droid
9 time, time, recall [?], local, Main [?], world, local
10 equivalents, igation, planes life, ento, planner world, ento, Tanzania
11 time, Time, Time life, Life, +++ world, World, Trials

Sum time, etime, watch Indigo, life, crew world, Unleashed, World

Table D. 5: Transformation of Keys Across Attention Heads at Layer 5

Key → Values
Head time life world

0 BuyableInstoreAndOnline, [?], time life, advertising, Life world, opathy, qus
1 MON, Sophia, time mallow, cause, unn world, Cav, fect
2 time, qualified, understatement life, life, Life world, World, auri
3 )?, ¿), ?’ \] =>, life, \\” > world, \] =>, %”
4 time, TIME, Sabha Izan, eworld, ieu world, izons, orld
5 destro, time, rall life, Life, agre world, toget, enthusi
6 time, time, TIME life, Life, life world, World, WORLD
7 time, corrid, patch life, Life, life world, mathemat, redes
8 NetMessage, [?], ibu venge, idth, aten ULTS, Magikarp, [?]
9 [?], [?], amina raviolet, los, SPONSORED Kraft, quickShipAvailable, Berks
10 time, contrace, Symphony life, Life, life world, World, worlds
11 otle, ide, Ide framing, plot, plots ittee, rf, pawn

Sum externalActionCode, ]), issance ahon, awa, ]” Magikarp, Hig, ETHOD
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Table D. 6: Transformation of Keys Across Attention Heads at Block 11

Key → Values
Head time life world

0 \n, ”, “ {, ¿, ”# [, [* ,[
1 player, party, Party youth, House, Youth party, Trump, party
2 Lisp, Ö, ¨ [?], Quincy, Yemen Scotland, Osborne, Scotland
3 Weather, cinem, weather life, euth, Life world, Worlds, geop
4 b, k, 2 inav, d, 4 i, V, Rivals
5 Part, Show, part Well, Well, saw sees, works, View
6 Sub, AM, BR West, West, East Sub, Under, ob
7 Journal, Air, Online home, Home, house home, Home, internet
8 ‘,’, the, and ‘,’, the, and the, ‘,’, and
9 interaction, impression, experience encounter, belief, encounters reservations, Illusion, illusions
10 time, TIME, Time life, life, LIFE world, world, worlds
11 time, time, Time life, LIFE, life world, oy, door

Sum time, Time, time life, Life, Life world, Worlds, worlds
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E WV O SVD PER HEAD FOR LAYER 11

Table E. 7: Left and Right Singular Vectors at Layer 11 - Head 0

Rank Top-3 Left Words Top-3 Right Words

0 shenan, cryst, encount DragonMagazine, ertodd, soDelivery-
Date

1 another, Iv, sil trave, BuyableInstoreAndOnline, con-
vol

2 Sebastian, Luke, humankind quickShipAvailable, EStream,
MpServer

3 rans, thereby, hem BuyableInstoreAndOnline, acknow,
Buyable

4 sectional, [+], Winged ThumbnailImage, \ufffd\ufffd\u58eb,
Orderable

5 abl, isc, Ah etheless, olson, llah
6 <|endoftext|>, Advertisements, cest <|endoftext|>, Advertisements, kin-

dred
7 ococ, ilan, guest pard, MBA, uid
8 ]., ],, ]; [, [*, [
9 \n\n, ),, cakes \n\n, Quote, Quote

10 snaps, Bills, Texans lineback, Chargers, Packers
11 )..., ...), ).” (\u00a3, (, (?,
12 pen, cle, Orioles .””, [, .”)
13 ](, drm, Updated \n\n, [/, [/
14 RBI, Field, Triple RHP, RBI, Negro
15 pod, illus, Maple ipeg, aboriginal, ”\u2026
16 am, ’m, hearted SPONSORED, Newsletter, ....
17 Document, whit, Scott SPONSORED, tsky, Ras
18 gen, idd, anned Ukrain, prin, rul
19 Ryder, icz, abet istries, plet, Gad
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Table E. 8: Left and Right Singular Vectors at Layer 11 - Head 1

Rank Top-3 Left Words Top-3 Right Words

0 Customers, However, Customer \u899a\u9192, natureconservancy,
racuse

1 mint, Anne, Marie hers, actress, Denise
2 ook, Child, ooks parents, Parents, Children
3 gow, abad, BEL boy, student, Guy
4 eries, girl, girls Girl, girl, Queen
5 Marie, Sue, Patricia Woman, woman, woman
6 Him, les, LCS Person, Persons, Person
7 ndra, Joint, rity Her, Her, femin
8 Coach, recapt, Players Players, Coach, coaches
9 istries, WAYS, INAL god, Allaah, God

10 Ens, offspring, statute male, males, Woman
11 Junction, hole, Abdullah girl, daddy, Neighbor
12 HR, ig, akings Major, Major, minors
13 reunion, Madison, mes boys, males, Girls
14 asting, uba, ynt mom, moms, Jim
15 ately, ynam, OUS doctoral, apprentice, Child
16 ifier, Come, Weekly class, owners, Class
17 Confederation, ATE, ingredient Students, Students, Ms
18 athon, jen, candidates Candidate, candidate, traveler
19 Pres, ently, Secure character, Characters, Character
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Table E. 9: Left and Right Singular Vectors at Layer 11 - Head 2

Rank Top-3 Left Words Top-3 Right Words

0 orpor, rul, Bolivia Adelaide, Edmonton, Calgary
1 ball, ERY, hem Filipino, Ultron, ANC
2 \u30f3\u30b8, else, Lib Ruby, Scarborough, Erit
3 verb, Lamar, Ankara Detroit, Detroit, Wenger
4 iana, amacare, edia Zoro, Shelby, Tehran
5 Gw, otle, Rangers \u00ed, Jinn, Texans
6 ration, Rim, ially Yang, McCain, Yang
7 detector, OTOS, Petersen Chilean, Pharaoh, ffen
8 ald, benefit, ahon Petersburg, Henderson, Kessler
9 scope, whe, verse acio, Mits, Jacobs

10 Gators, Laden, SEAL Malfoy, Swanson, Romney
11 Lilly, \u00e9t, lla Greenwood, Collins, Byrne
12 ister, ority, isters Niagara, Maharashtra, soDeliveryDate
13 Paulo, nesota, Clayton Loki, \u011f, Finnish
14 creen, Cron, Base Pike, Krishna, Satoshi
15 lake, SP, seeing Alberta, Arlington, McKin
16 Bowie, ystem, rey Bowie, Murray, Utah
17 head, ding, ressed Bulgar, Warcraft, Crimean
18 Venom, elman, lyn SJ, Brit, Gordon
19 wright, ansas, arta NXT, Metroid, Aether
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Table E. 10: Left and Right Singular Vectors at Layer 11 - Head 3

Rank Left Words Right Words

0 suburbs, restaur, \ufffd DragonMagazine, BuyableInstoreAn-
dOnline, \ufffd\u9192

1 Dairy, farm, Veget USDA, Dairy, cows
2 engine, drivers, Motor Drivers, drivers, driver
3 trading, trade, shoppers Sales, retailers, shoppers
4 instrument, musical, guitar Billboard, halftime, Grammy
5 sail, boat, sailing sail, sailing, autical
6 teachers, teacher, school teachers, uberty, curric
7 baker, kindergarten, bakery baker, SERV, kindergarten
8 apparel, prison, recruiting Sail, Prison, jail
9 shelter, indoors, shelters shelters, shelter, Radiant

10 tribe, fish, fish dred, whales, fisheries
11 workers, jobs, job workers, worker, subcontract
12 Derrick, tribe, Tribal Seg, forest, Derrick
13 chess, Chess, seating Chess, chess, Sheldon
14 Soy, Satellite, astronauts Soy, Satellite, transmissions
15 Anim, visa, Imm exhib, Anim, Imm
16 medicine, diagnose, doctors Doctors, hospital, doctor
17 boxing, trainer, spar boxing, spar, UFC
18 gun, firearm, Sheriff ITV, Decoder, Geral
19 gambling, tournaments, tournament gambling, Gaming, tournaments
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Table E. 11: Left and Right Singular Vectors at Layer 11 - Head 4

Rank Top-3 Left Words Top-3 Right Words

0 them, their, him cloneembedreportprint, \u899a\u9192,
\u30b5\u30fc\u30c6\u30a3

1 iator, ive, ibur natureconservancy, Canaver, \u25fc
2 if, born, forces the, ., ,
3 ually, ,., therein Buyable, misunder, lehem
4 irk, struct, actly 1, 2, 9
5 uku, handle, eenth nineteen, seventeen, seventy
6 ensional, insk, ploy M, M, m
7 allowance, \u2605, ther ii, Bs, B
8 ylon, works, plays EDITION, o\u011f, nt
9 ysc, oreal, Friend B, K, B

10 redits, rossover, ameron F, K, k
11 Tiger, urses, aught N, W, C
12 aughter, gling, eland L, l, L
13 othe, cano, ensity S, s, S
14 ISTORY, hum, pots H, H, h
15 gers, iegel, ki S, s, S
16 ya, seq, est selves, T, i
17 tl, ictionary, latch R, R, D
18 Fres, pine, delay R, u, llah
19 Shades, went, culosis G, G, S
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Table E. 12: Left and Right Singular Vectors at Layer 11 - Head 5

Rank Top-3 Left Words Top-3 Right Words

0 assail, challeng, achie ertodd, \u25fc, \ufffd\u9192
1 WARE, padding, req \u9f8d\u5951\u58eb, StreamerBot,

soDeliveryDate
2 uing, anche, Inquis heit, MpServer, partName
3 ward, ops, actory builds, projects, Building
4 ary, bell, vis ouf, unt, article
5 ments, Poo, emo Will, Will, terday
6 abdom, book, Til reads, read, writing
7 admission, Fighters, agy model, Models, ilib
8 line, lines, se line, lines, Hold
9 iness, less, ood udic, ridden, usky

10 absence, inar, Miko place, Must, must
11 hawk, nect, aff esson, sees, scene
12 ie, een, ennett Say, ighting, features
13 Peaks, construed, anguages finding, find, Find
14 ming, mers, pling ufact, Put, say
15 Authority, urated, disregard record, records, Record
16 cript, Seen, Crash Written, course, arium
17 ually, gladly, ously tions, show, find
18 im, ading, Expand image, Image, Image
19 NX, W, ees swer, \u30c7\u30a3, report
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Table E. 13: Left and Right Singular Vectors at Layer 11 - Head 6

Rank Top-3 Left Words Top-3 Right Words

0 issue, txt, Princ isSpecialOrderable, DragonMagazine,
\ufffd\ufffd

1 mes, same, resa guiActiveUn, Yanuk, Beir
2 eatured, avier, AMES quickShipAvailable, BuyableInstore-

AndOnline, RH
3 Levine, estone, Bronx skirts, Els, Bris
4 lder, xit, Sav Sov, grap, Al
5 xual, ss, soup Orient, owship, toile
6 rices, glers, lishing Uni, Tik, en
7 imation, hammer, nels BAD, Ze, sa
8 saturated, lying, Past Ry, AG, Val
9 activity, ozy, oko Ay, AW, Ay

10 ows, aghan, ergy Gul, cl, Nex
11 yrs, ish, hood Wh, Har, Mart
12 omp, grandmother, MS sidx, Alb, CTR
13 ses, ski, doctor AD, ython, Ty
14 heed, Monthly, angan OPS, Tur, Tam
15 Agency, VP, lex Red, Grey, Redd
16 FORE, sil, hing wcsstore, uci, Winged
17 idences, ining, ahl Ste, Pend, hal
18 iance, taxpayers, anches Fuj, appl, Zamb
19 ischer, apo, hiatus Zamb, Zer, Nek
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Table E. 14: Left and Right Singular Vectors at Layer 11 - Head 7

Rank Top-3 Left Words Top-3 Right Words

0 shortest, ses, mentally iHUD, DragonMagazine, Downloadha
1 our, ourselves, we ourselves, ours, our
2 himself, lements, them \u899a\u9192, natureconservancy, er-

todd
3 etitive, EStream, workshop FTWARE, SourceFile, \ufffd\u9192
4 \u0627\u0644, holders, mileage your, Free, Your
5 am, ’m, myself my, myself, me
6 themselves, auder, ighthouse Companies, theirs, THEIR
7 stract, hop, \u00a2 soDeliveryDate, Civil, civilian
8 bage, ros, hyster bage, aukee, Free
9 shop, acter, Shop Humans, ourning, electronically

10 ¡+, myself, pse my, myself, markets
11 Hold, SE, istant ilage, roups, usra
12 uffs, VG, GG verty, Leilan, Soft
13 sters, ual, ted machine, machine, business
14 making, weights, mare centrif, istani, culture
15 uador, oust, ertain us, ours, our
16 vable, cam, ophy system, System, systems
17 exch, velength, un Games, abeth, gaming
18 latex, Edwards, Conway Commercial, Community, community
19 ificial, rating, nces ificial, System, technology
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Table E. 15: Left and Right Singular Vectors at Layer 11 - Head 8

Rank Top-3 Left Words Top-3 Right Words

0 the, in, a \ufffd\ufffd\ufffd, guiActiveUn,
cloneembedreportprint

1 *., ., determin ,, the, -
2 and, ,, Un arnaev, DragonMagazine, BuyableIn-

storeAndOnline
3 ?”, ?), ?), ?’”, TPPStreamerBot, ’,”
4 ,’”, GIF, ,” Orderable, \ufffd, \ufffd
5 .’”, They, .’ .’”, ’.”, ).”
6 ,’, \u2010, ,’” ,’”, ’,, ,’
7 ,’, ,’”, ’,’ ,’”, ,’, ’,”
8 .’, ,’, ’. .’, ,’, ’.
9 her, she, She she, hers, her

10 \ufffd, \ufffd, “ \ufffd, \ufffd, “
11 ”..., ”,”, ”, )”,, ),”, ”),
12 ).”, ”)., ...” ).”, .”[, ”).
13 us, ),”, our ),”, ).”, .”)
14 ));, );, ), ”,, ’,, ));
15 ]., ];, ], };, ];, ’;
16 ..., ...”, ... ...], :], ...”
17 ?], !], .] \u2026], !], ?]
18 ();, her, He hers, ();, His
19 \u00ad, \u300f, You \u300f, ¿., \u00ad
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Table E. 16: Left and Right Singular Vectors at Layer 11 - Head 9

Rank Top-3 Left Words Top-3 Right Words

0 esthes, Eat, pts DragonMagazine, Canaver, naturecon-
servancy

1 ups, motors, hinted confir, \ufffd, unlaw
2 pursue, pursuit, Frie ticket, Desire, iferation
3 posted, dates, rece achievement, unlocking, Hilbert
4 differential, prise, ushing acceptance, handled, accepting
5 Hide, etsu, LET optimizations, prioritize, emphasized
6 ously, uffer, ca opsis, \u30df, stall
7 ann, Horn, Specifications restraint, notice, surprises
8 supremacy, argon, ifier ACTIONS, Contin, rue
9 ling, ceived, inf errors, misunderstanding, accuracy

10 ittal, ampton, feld denotes, denote, hazard
11 inf, andy, ery plagiar, mentors, recommending
12 Soon, \ufffd, \ufffd lax, Talks, Fell
13 cia, war, Fighters dissatisf, consum, dissatisfaction
14 NAS, Schwar, Streamer delet, sidx, inem
15 Glory, uan, ment Reviewed, Congratulations, congratula-

tions
16 frey, clay, essional quirks, Integration, distinguishing
17 uck, marked, Request appreciation, Guidelines, guidelines
18 prints, forcefully, Cel conviction, convictions, impressions
19 utic, endez, inging disag, bruising, spo
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Table E. 17: Left and Right Singular Vectors at Layer 11 - Head 10

Rank Top-3 Left Words Top-3 Right Words

0 above, former, dm \u25fc, Downloadha, Canaver
1 Cohen, oku, Corporation be, ache, the
2 liar, Ross, Irving Rossi, Mind, Zen
3 Treatment, MT, tubing etts, Taylor, Tan
4 Torch, dt, Honour Divinity, marqu, vine
5 ==, Sinn, imitation Stafford, Bradford, Halo
6 asks, fitted, caution BW, BW, Berger
7 encer, hero, success Gon, Johnny, PATH
8 Chung, anke, IRE Chennai, Carey, Carmen
9 Commodore, iom, attract curry, Cunningham, clam

10 earth, CS, oyal Sov, Trin, paralle
11 ramid, el, DIT Hilton, diarr, \ufffd\u9192
12 ulla, alde, uality McInt, alde, Idle
13 cam, write, ports Cave, Chal, Connie
14 buf, anne, Emin Dwar, Dwarf, Das
15 job, play, job buquerque, Liber, reb
16 ASC, ector, Order Sorceress, Alic, Astro
17 ting, enced, te Forest, Kan, tree
18 ater, Turner, UAL \u9f8d\ufffd, Omn, Gamma
19 Matrix, RIP, oping Fed, STEP, Rand
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Table E. 18: Left and Right Singular Vectors at Layer 11 - Head 11

Rank Top-3 Left Words Top-3 Right Words

0 8, 9, 6 \u899a\u9192, cloneembedreportprint,
StreamerBot

1 ”, [?], , DragonMagazine, cloneembedreport-
print, ertodd

2 puff, rem, Ey \ufffd\ufffd\u58eb, catentry, Flavoring
3 air, compressor, exchange air, blow, nose
4 burn, burning, burns burns, burning, burn
5 smoke, blowing, sky smoke, clouds, airflow
6 light, shade, lighting light, illumination, Light
7 break, breaks, Bre breaks, breaker, broken
8 finger, air, registrations finger, finger, Feet
9 rolls, roll, rolled Rolls, rolls, Ludwig

10 opening, opened, closing opened, closes, opening
11 ause, blank, generating rawdownloadcloneembedreportprint,

ause, sburg
12 anne, \u0639, sprayed \u30fc\ufffd, \ufffd\ufffd, iltration
13 ear, audio, Ear ear, ears, Ear
14 goggles, watched, devotion ideos, TPS, goggles
15 leaf, slashed, hunger gou, ouri, margins
16 voices, voic, Hand voic, leash, voiced
17 short, Short, short shorten, shortened, short
18 tones, tones, tone bells, tone, marrow
19 drawn, connected, ieties wu, River, Awakening
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