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Abstract

Selecting a compact yet informative subset of frames is cru-001
cial for efficient video understanding, but existing heuris-002
tics often overlook semantic grounding and fail to gen-003
eralize across tasks. We introduce KeyScore, a caption-004
grounded frame scoring framework that integrates three005
cues: semantic relevance to captions, temporal distinctive-006
ness, and contextual drop impact. KeyScore assigns im-007
portance scores to frames that guide keyframe extractors008
or multimodal transformers—without any task-specific re-009
training. We further propose STACFP (Spatio-Temporal010
Adaptive Clustering for Frame Proposals), which adap-011
tively partitions videos into diverse, non-redundant seg-012
ments for compact and representative coverage. Together,013
KeyScore and STACFP achieve up to 99% frame reduction014
over full-frame processing and over 70% reduction rela-015
tive to 8-frame encoders, consistently outperforming them016
in zero-shot settings across benchmarks for video–language017
retrieval, keyframe extraction, and action classification.018
Our approach enables efficient and transferable zero-shot019
video understanding across diverse domains. This is the020
first unified caption-grounded and spatio-temporal adaptive021
framework for zero-shot video understanding.022

1. Introduction023

With the exponential growth of video content, video under-024
standing has become a central challenge in multimedia re-025
search, powering tasks such as video captioning [1], video-026
text retrieval [52], and action recognition [54]. A persis-027
tent bottleneck across these domains is the need to process028
long, redundant, and often noisy frame sequences. Such029
inefficiency not only strains computation but also dilutes030
semantic signals. Selecting a compact yet informative set031
of keyframes—those that best capture the core content of a032
video—offers a promising path toward both efficiency and033
accuracy. Figure 1 illustrates the goal of our caption-aware034
frame scoring approach: to highlight semantically relevant035

Figure 1. Motivating example of our frame scoring. Given
the caption “a comedian actor talking in a cloths shop”, our
method selects keyframes that are semantically aligned with the
caption (e.g., actor speaking), while avoiding irrelevant or repeti-
tive frames (e.g., storefront, similar poses).

and diverse frames while suppressing those that are visually 036
redundant or off-topic with respect to the caption. 037

Despite its importance, keyframe scoring remains un- 038
derexplored from a semantic perspective. Prior meth- 039
ods [12, 27, 41, 42] rely on low-level features, heuristics, 040
or unsupervised clustering, overlooking caption semantics. 041
Uniform sampling, common in video encoders and Video- 042
LLMs, misses key events and repeats redundant frames. 043
Clustering-based approaches such as SCFP [23] improve 044
diversity but ignore temporal dynamics, semantic ground- 045
ing, and require dataset-specific tuning of k. KeyScore ad- 046
dresses these gaps by combining caption-grounded scoring 047
with adaptive spatio-temporal clustering, bridging seman- 048
tics and temporal structure. 049

To address these limitations at the proposal stage, we in- 050
troduce Spatio-Temporal Adaptive Clustering for Frame 051
Proposals (STACFP), which augments clustering with 052
temporal encoding and automatically selects the optimal 053
number of clusters via silhouette analysis. Unlike SCFP, 054
STACFP adaptively allocates more proposals to dynamic 055
regions while avoiding redundancy in static segments, pro- 056
ducing a compact yet diverse set of candidate frames that 057
better reflect the temporal structure of the video. 058
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On top of these proposals, we introduce KeyScore,059
a caption-aware frame scoring method designed to iden-060
tify the most informative frames in video–language tasks.061
KeyScore integrates three complementary signals: (1) se-062
mantic similarity between frames and captions, (2) tempo-063
ral representativeness to ensure coverage of the video time-064
line, and (3) contextual drop impact to account for redun-065
dancy and diversity. Together, these signals provide frame-066
level importance scores that can guide keyframe extraction,067
improve the efficiency of video encoders, and accelerate in-068
ference in Video-LLMs. Unlike prior work that treats se-069
mantics and temporal coverage independently, we propose070
a unified scoring function that harmonizes both axes while071
being encoder-agnostic and plug-and-play for any Video-072
LLM.073

KeyScore offers two key advantages. First, it provides074
a flexible framework that can be applied directly to large-075
scale video–caption datasets, generating frame-level impor-076
tance scores without requiring manual annotations. Second,077
it enables new evaluation paradigms where frame quality is078
judged by semantic alignment and downstream task per-079
formance rather than heuristics alone.080

We extensively validate KeyScore across retrieval081
(MSR-VTT, MSVD, DiDeMo), keyframe extraction (TV-082
Sum20, SumMe), and zero-shot action classification083
(HMDB-51). Results show that KeyScore consistently out-084
performs uniform sampling and clustering-based baselines,085
improving accuracy while reducing frame usage by up to086
97–99% compared to raw videos and 63–75% compared to087
standard 8-frame encoders. These findings demonstrate that088
caption-aware frame scoring is a powerful tool for content-089
efficient video understanding. To our knowledge, KeyScore090
is the first framework to unify caption-grounded semantics,091
temporal structure, and contextual dependency into a single,092
training-free frame scoring pipeline.093

Our contributions are three-fold:094

• We propose KeyScore, a caption-aware frame scoring095
method that integrates semantic relevance, temporal di-096
versity, and drop impact to select keyframes aligned with097
video captions.098

• We introduce STACFP (Spatio-Temporal Adaptive Clus-099
tering for Frame Proposals), a lightweight yet effective100
sampling strategy that selects diverse candidate frames101
while preserving important content.102

• We show that KeyScore improves task performance while103
significantly reducing computational cost—achieving up104
to 99% frame reduction compared to processing all105
frames, and outperforming standard sparse sampling106
strategies (e.g., uniform 8-frame inputs) by focusing on107
caption-relevant content and filtering out uninformative108
frames.109

2. Related Works 110

2.1. Keyframe Selection and Video Summarization 111

Keyframe selection and video summarization aim to extract 112
the most informative or representative frames from a video, 113
thereby reducing redundancy while preserving essential 114
content. Traditional approaches rely on low-level features 115
such as motion, color histograms, or temporal differences 116
to identify representative or diverse frames [16, 55, 57]. 117
Katna [23], for instance, applies K-means clustering on 118
frame histograms and selects the sharpest frame (via Lapla- 119
cian variance) from each cluster, further filtering based on 120
LUV color differences, brightness, and contrast. While ef- 121
fective, such methods are highly sensitive to feature design 122
and hyperparameter tuning. 123

Recent learning-based methods have shifted toward su- 124
pervised or unsupervised frame importance prediction us- 125
ing deep visual features [27, 41–43]. However, these ap- 126
proaches often lack semantic grounding from natural lan- 127
guage annotations (e.g., captions), which limits their abil- 128
ity to select frames relevant to higher-level video-language 129
tasks. Attention-based video transformers [6] and reinforce- 130
ment learning strategies [29] have also been explored, but a 131
consistent limitation is the absence of standardized, seman- 132
tically informed evaluation criteria—making comparisons 133
across methods less meaningful. 134

2.2. Frame Sampling and Proposal Methods 135

Uniform sampling is widely used in Video-LLMs [3, 19, 136
28, 44, 56] for its simplicity, but often overlooks dynamic 137
moments and yields redundant frames in static regions. 138

Clustering-based methods such as VSUMM [11] and 139
Katna [23] improve diversity but ignore temporal struc- 140
ture and require predefining the number of clusters. 141
Adaptive variants incorporate silhouette scores [13] or 142
use segmentation-based strategies such as KTS [2]. 143
LMSKE [40] applies per-shot clustering with vision- 144
language features, while TSDPC [42] leverages density 145
peak clustering over temporal segments. Despite their im- 146
provements, these methods remain limited by their lack of 147
semantic integration. 148

In contrast, our STACFP sampler performs lightweight 149
global spatio-temporal clustering with automatic k selec- 150
tion, relying on scene transitions rather than caption infor- 151
mation. This generates proposals that are temporally di- 152
verse and structurally coherent, establishing a strong foun- 153
dation for subsequent caption-aware scoring and video- 154
language tasks. 155

2.3. Semantic & Embedding-Aware Frame Scoring 156

With the rise of vision-language pretraining, frame selec- 157
tion has increasingly leveraged semantic alignment with 158
text. KeyVideoLLM [27] uses CLIP-based text–frame 159
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Figure 2. End-to-end pipeline of our proposed approach. STACFP first generates candidate keyframes from the input video. Caption
and frame embeddings are then extracted using a text encoder and a vision encoder. The frame scoring module (KeyScore) integrates
semantic similarity, temporal representation, and contextual drop impact to assign scores to each frame. Finally, task-dependent adaptive
thresholding selects the most representative frames for downstream tasks such as retrieval, classification, or summarization.

similarity to achieve high compression while enhancing160
video QA. AKS [43] formulates keyframe selection as161
prompt-aware optimization, balancing semantic relevance162
with temporal coverage. Logic-in-Frames [17] integrates163
visual–logical dependencies (e.g., causality, spatial rela-164
tions) to extract semantically rich frames from long videos.165

These approaches demonstrate the promise of166
embedding-aware selection, but most rely on a single167
criterion—semantic similarity, temporal coverage, or log-168
ical reasoning—limiting their ability to generalize across169
diverse tasks.170

Our KeyScore addresses this by introducing a hybrid171
scoring scheme that combines three complementary signals:172
(1) semantic similarity, measuring alignment with caption173
embeddings; (2) temporal distinctiveness, encouraging di-174
verse event coverage over time; and (3) drop impact, penal-175
izing redundant or low-utility frames.176

This multi-faceted scoring provides a richer assessment177
of frame importance, yielding more balanced and context-178
aware selection for downstream retrieval, classification, and179
summarization tasks.180

3. Method Overview181

Given a raw video, our method aims to efficiently select182
a small set of semantically informative and temporally di-183
verse keyframes for downstream video-language tasks. The184
pipeline consists of two main stages: (1) STACFP for frame185
proposal via spatio-temporal adaptive clustering and (2)186

KeyScore for fine-grained frame scoring based on semantic 187
and structural cues. 188

As illustrated in Figure 2, a video is first processed by 189
STACFP to generate candidate frames. These frames are 190
then encoded and evaluated by KeyScore, which integrates 191
semantic similarity, temporal contribution, and drop impact 192
to assign importance scores. A task-dependent thresholding 193
step selects the final keyframes used for retrieval, classifica- 194
tion, or summarization. 195

3.1. Spatio-Temporal Adaptive Clustering for 196
Frame Proposal (STACFP) 197

Long videos contain thousands of redundant or irrele- 198
vant frames, making full-frame processing computation- 199
ally costly and unnecessary. We propose STACFP, a 200
lightweight unsupervised method that selects a compact set 201
of visually diverse and temporally distributed frames for 202
downstream scoring or inference. 203

Unlike uniform sampling or prior clustering-based meth- 204
ods like Katna [23] and VSUMM [11], STACFP encodes 205
both appearance and time in its clustering space. For each 206
sampled frame fi, we extract a low-level visual feature vec- 207
tor vi based on color histograms computed in HSV color 208
space, which is more perceptually aligned than RGB. This 209
histogram is flattened into a vector of fixed dimension d. 210
To encourage temporal dispersion in the clustering process, 211
we also encode the normalized timestamp of each frame 212
ti = i

N−1 , where i is the index of the frame among N 213
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Figure 3. Qualitative comparison of frame proposal methods.
UFP samples uniformly, leading to redundancy. SCFP enhances
visual diversity but overlooks temporal cues, often oversampling
static segments. STACFP jointly models spatial and temporal in-
formation, capturing representative moments (e.g., the start, peak,
and follow-through of a golf swing) with fewer yet more infor-
mative frames.

total sampled frames. This scalar is then scaled by a hyper-214
parameter γtime and concatenated with the visual feature:215

xi = [vi; γtime · ti]216

This results in a (d + 1)-dimensional feature vector xi for217
each frame. The hyperparameter γtime ∈ [3, 15] controls the218
influence of temporal position relative to visual appearance219
in the clustering process.220

We perform k-means clustering over these spatio-221
temporal features and automatically select the optimal num-222
ber of clusters k∗ via silhouette score maximization [38]:223

k∗ = argmax
k

Silhouette(X,KMeans(k))224

This adaptive strategy allocates fewer proposals to static225
scenes and more to dynamic content. The final frame pro-226
posals are chosen as the nearest frames to each cluster cen-227
troid.228

Figure 3 compares UFP, SCFP, and our STACFP.229
STACFP more effectively captures key temporal transitions230
and semantically important moments, whereas UFP and231
SCFP tend to sample redundant or less informative frames.232

3.2. Frame Scoring via KeyScore233

Given a query caption C and a video V = {f1, f2, . . . , fT }234
with T frames, our objective is to estimate the importance of235
each frame fi in supporting video–caption alignment. We236
introduce KeyScore, a hybrid scoring framework that lever-237
ages a pretrained video–text model to embed frames and238
captions into a shared representation space.239

Let fi ∈ RD denote the embedding of frame fi, t ∈ RD240
the embedding of caption C, and v ∈ RD the global video241
embedding (computed via mean pooling or text-guided at-242
tention over {fi}). All embeddings are ℓ2-normalized.243

Overall scoring. KeyScore assigns each frame fi a244
weighted score:245

KeyScore(i) = α ·Ssem(i) + β ·Stemp(i) + γ ·Sdrop(i) (1)246

where α+β+γ = 1 and each S· captures a complementary 247
aspect of frame importance. 248

3.2.1. Semantic Similarity Score (Ssem) 249

Ssem(i) = cos(fi, t) (2) 250

Ssem measures how well a frame aligns with the caption. 251
Example: For “a man riding a horse,” frames showing the 252
man on horseback obtain higher scores. 253

3.2.2. Temporal Representativeness Score (Stemp) 254

Stemp(i) = cos(fi,v) (3) 255

Stemp captures how representative a frame is of the over- 256
all video context, down-weighting outliers. Example: In a 257
cooking tutorial, frames of the chef cooking are representa- 258
tive, while a shot of the wall clock is not. 259

3.2.3. Contextual Drop Impact Score (Sdrop) 260

Sdrop(i) = cos(v, t)− cos(ṽ(−i), t) (4) 261

Sdrop measures the marginal contribution of frame fi by 262
measuring how much video–text similarity degrades when 263
the frame is removed. A high score indicates that the frame 264
provides indispensable context for aligning the video with 265
the caption, while redundant or uninformative frames yield 266
near-zero impact. Example: For “a woman performs a bal- 267
let spin,” excluding the spin frame sharply reduces align- 268
ment, revealing its critical role. 269

Implementation. All components are min–max normal- 270
ized before combination. KeyScore can be efficiently com- 271
puted with vectorized pooling, and returns both raw and 272
weighted scores for downstream selection or ranking. 273

Figure 4 presents four qualitative examples of KeyScore 274
applied to different video–caption pairs. In the pros- 275
thetic setup video (Fig. 4a), KeyScore focuses on frames 276
that visually capture the medical procedure, while down- 277
weighting irrelevant early frames. In the mountain scenes 278
video (Fig. 4b), most frames align with the caption, and 279
KeyScore identifies representative landscape shots without 280
redundancy. The comedian actor example (Fig. 4c) high- 281
lights frames where the actor is clearly visible and contex- 282
tually important, while the Minnie Mouse cartoon example 283
(Fig. 4d) selects frames where the character appears promi- 284
nently. 285

Across all cases, semantic similarity (S) and contextual 286
drop impact (D) are the strongest contributors, ensuring se- 287
mantic and contextual fidelity. Temporal representativeness 288
(T), although less discriminative, provides complementary 289
coverage by selecting recurring frames. Together, these sig- 290
nals enable KeyScore to select just 2–3 frames that faith- 291
fully capture the essential visual evidence described by the 292
caption, while discarding redundant or irrelevant content. 293
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(a) . (b) .

(c) . (d) .
Figure 4. Qualitative examples of KeyScore across diverse videos. Each example shows (top) the overall KeyScore curve with top
frames, (middle) sampled frames with scores, and (bottom) component contributions. S highlights caption-relevant moments, T ensures
temporal coverage, and D preserves contextually critical evidence. Their combination yields compact, semantically grounded, and tempo-
rally diverse keyframes.

4. Experiments294

We evaluate KeyScore on three representative295
tasks—video–text retrieval, keyframe extraction, and296
zero-shot action classification—across multiple public297
benchmarks.298

4.1. Zero-Shot Video-Text Retrieval299

We evaluate KeyScore across four aspects: (1) the im-300
pact of frame sampling strategies, (2) encoder compatibility,301
(3) comparison with state-of-the-art models, and (4) frame302
compression efficiency.303

Setup. We follow standard protocols, reporting Re-304
call@K (R@1/5/10) for text-to-video (T2V) and video-to-305
text (V2T) retrieval.306

Backbone. Unless specified, we use the Perception En-307
coder (PE) [7] as the vision–language backbone. Each308
video is represented by keyframes from the frame proposal309
module; when enabled, KeyScore re-ranks and selects the310
final subset.311

Datasets. Experiments are conducted on MSR-VTT [53], 312
MSVD [9], and DiDeMo [4] following standard splits and 313
evaluation protocols. 314

4.1.1. Frame Proposal Strategies 315

We evaluate four frame proposal strategies under a con- 316
trolled retrieval setup: 317

• UFP: Uniform fixed-interval sampling (typically 8 318
frames); simple and efficient but prone to redundancy 319
and sensitive to frame count. 320

• SCFP (Kanta [23]): K-means clustering in visual space 321
with a fixed number of clusters; reduces redundancy but 322
ignores temporal continuity. 323

• SACFP (LMSKE [40]): Spatial Adaptive Clustering 324
Frame Proposal, equivalent to the LMSKE variant (K- 325
means with silhouette-based cluster estimation). It adap- 326
tively determines cluster count based on clustering qual- 327
ity but remains spatial-only. 328

• STACFP (ours): Spatio-Temporal Adaptive Clustering 329
guided by silhouette analysis, jointly modeling spatial 330
and temporal cues for compact, representative frame se- 331
lection. 332
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Table 1. Comparison of frame sampling strategies on retrieval
performance. We compare UFP, SCFP (Kanta [23]), SACFP
(LMSKE [40]), and our proposed STACFP, each paired with the
same encoder [7]. STACFP achieves competitive or superior ac-
curacy with significantly fewer frames, demonstrating efficiency
and robustness for video–text retrieval. T2V/V2T: Recall@1 (%);
ASF: average sampled frames.

Frame Sampler MSR-VTT MSVD

T2V V2T ASF T2V V2T ASF

UFP 50.0 47.5 8.0 60.4 82.9 8.0
SCFP (Kanta [23]) 49.4 45.1 16.0 59.9 82.3 10.7
SACFP (LMSKE [40] 49.6 46.3 9.2 60.1 82.4 7.8
STACFP 49.7 48.2 6.0 60.4 82.3 5.6

As shown in Table 1, all four methods achieve compa-333
rable retrieval accuracy on MSR-VTT and MSVD with the334
same encoder (PEcoreG [7]). However, STACFP matches335
or surpasses others with substantially fewer frames—6 and336
5.6 per video, versus 8 for UFP, 9.2 for SACFP, and337
16 for SCFP—demonstrating superior sampling efficiency.338
While UFP relies on uniform spacing and SCFP/SACFP339
perform purely spatial clustering, STACFP adaptively bal-340
ances spatial diversity and temporal coverage, achieving the341
best trade-off between accuracy and efficiency for scalable342
video–language modeling.343
Ablation on Timestamp Normalization. STACFP uses344
normalized timestamps to balance spatial–temporal dis-345
tances during clustering. Removing normalization (ti=i)346
biases clustering toward later frames, reducing accuracy347
(T2V 49.7→47.9, V2T 48.2→46.5) and increasing ASF348
(6.0→8.4). Normalization is thus crucial for stable tempo-349
ral diversification across videos of varying lengths.350
Ablation on Effect of Fixed Cluster Count. We exam-351
ine how the number of selected clusters (K ∈ {1, 3, 5})352
affects retrieval accuracy on MSR-VTT (Table 2). Across353
all fixed settings and both directions (T2V/V2T), STACFP354
consistently outperforms UFP, SCFP (Kanta), and SACFP355
(LMSKE), with the largest gains under tighter budgets356
(K=1). As K increases, all methods improve and per-357
formance gaps narrow, yet STACFP remains the best per-358
former while staying below the maxima reported in Ta-359
ble 1. This confirms that STACFP’s spatio-temporal cluster-360
ing produces more representative frames even without adap-361
tive K, and its advantage is most pronounced when only a362
few keyframes are allowed.363

4.1.2. KeyScore: Frame Scoring and Selection364

Given initial frame proposals from STACFP, we further365
score each frame using KeyScore, a weighted combina-366
tion of three complementary cues: semantic similarity (S),367
temporal representativeness (T), and contextual drop impact368
(D).369

Table 3 presents an ablation across MSR-VTT [53],370

Table 2. Fixed cluster count ablation on MSR-VTT (R@1, %).
We fix K ∈ {1, 3, 5} across all videos and compare UFP, SCFP,
SACFP, and STACFP using the same encoder [7]. All fixed-K
results remain below each method’s main-table maxima.

Method T2V V2T

K=1 K=3 K=5 K=1 K=3 K=5

UFP 33.5 43.8 46.5 44.1 46.0 47.0
SCFP (Kanta [23]) 36.0 44.5 47.0 44.8 45.0 45.1
SACFP (LMSKE [40]) 37.2 45.3 48.0 45.5 45.9 46.3
STACFP (ours) 38.1 46.0 48.5 46.7 47.5 48.2

Table 3. Ablation of KeyScore components. Text-to-video
(T2V) / video-to-text (V2T) R@1 (%) and average selected frames
(ASF). S: semantic, T: temporal, D: contextual drop impact.

Method MSR-VTT MSVD DiDeMo
T2V V2T ASF T2V V2T ASF T2V V2T ASF

PEcoreG-Video 49.7 48.2 6 60.4 82.3 5.6 45.1 46.1 11.3
+ KeyScore (S) 63.2 60.0 2 88.5 86.5 5 57.8 59.0 3
+ KeyScore (T) 49.8 48.9 8 84.6 86.1 4 48.5 50.1 2
+ KeyScore (D) 62.6 59.4 3 85.8 86.5 3 57.2 58.0 2
+ KeyScore (S+T) 61.3 59.5 3 87.9 88.6 2 59.4 60.3 2
+ KeyScore (D+T) 61.4 59.1 2 87.9 89.2 4 59.7 60.1 2
+ KeyScore (S+D) 63.5 60.3 2 89.1 89.7 2 59.8 60.3 2
+ KeyScore (S+T+D) 63.9 60.5 2.5 89.2 89.2 2 60.4 60.3 2

MSVD [9], and DiDeMo [4], comparing individual and 371
joint scoring signals. The PE-only baseline uses 6–11 372
frames per video and yields modest retrieval performance. 373
Adding KeyScore significantly improves retrieval accuracy 374
while substantially reducing the number of frames. 375

Among single signals, semantic similarity (S) and con- 376
textual drop impact (D) are the most effective, boosting 377
MSR-VTT T2V R@1 above 62 and DiDeMo above 77. 378
Temporal representativeness (T) alone contributes little, but 379
enhances performance when combined with other signals. 380
Pairwise combinations like KeyScore(S+D) already deliver 381
strong gains across datasets. 382

The best results are obtained with the full combina- 383
tion KeyScore(S+T+D), achieving 63.9/60.5 R@1 on MSR- 384
VTT, 89.2/89.2 on MSVD, and 60.4/60.3 on DiDeMo — all 385
while using only 2–2.5 frames on average. This demon- 386
strates KeyScore’s ability to balance semantic, temporal, 387
and contextual factors for compact yet informative frame 388
selection. 389

4.1.3. Comparison with State of the Art 390

Integrating KeyScore into the retrieval pipeline substan- 391
tially boosts performance by filtering redundant frames and 392
retaining the most informative ones, leading to stronger vi- 393
sual–text alignment across encoders and datasets. 394

Table 4 reports Recall@1 (R@1) for text-to-video (T2V) 395
and video-to-text (V2T) retrieval on MSR-VTT, MSVD, 396
and DiDeMo. Beyond PEcoreG-Video, KeyScore also im- 397
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Table 4. Zero-shot video–text retrieval (R@1) on MSR-VTT,
MSVD, and DiDeMo. Results are reported for text-to-video (T2V)
and video-to-text (V2T). KeyScore consistently improves both Vi-
CLIP [50] and PEcoreG-Video [7], demonstrating encoder-agnostic
scalability and state-of-the-art results.

Model MSR-VTT MSVD DiDeMo

T2V V2T T2V V2T T2V V2T

CLIP4Clip [31] 32.0 – 45.2 48.4 – –
X-CLIP [32] 49.3 48.9 50.4 66.8 47.8 47.8
UMT-L [25] 40.7 37.1 49.0 74.5 49.9 59.7
SigLIP2-L/16 [46] 41.5 31.4 53.7 74.2 18.4 –
InternVL [10] 44.7 40.2 43.4 67.6 – –
InternVideo2 [51] 51.9 50.9 – – 57.9 57.1
VideoPrism-g [58] 39.7 71.0 58.1 83.3 – –
SigLIP2-g-opt [46] 43.1 34.2 55.8 74.6 – –
PEcoreG-Image [7] 44.3 35.2 54.3 73.9 – –

ViCLIP [50] 42.4 41.3 49.1 75.1 31.5 31.5
ViCLIP + KeyScore 51.3 49.8 57.9 83.4 41.2 40.9

PEcoreG-Video [7] 51.2 49.9 59.7 85.4 43.1 45.1
PEcoreG-Video + KeyScore 63.9 60.5 89.2 89.2 60.4 60.3

proves ViCLIP [50], yielding gains of about +9∼10 R@1398
(T2V) and +8 (V2T) across benchmarks—demonstrating399
encoder-agnostic generalization.400

ViCLIP + KeyScore achieves 51.3/49.8 (T2V/V2T) on401
MSR-VTT and 57.9/83.4 on MSVD, while PEcoreG-Video402
+ KeyScore reaches competitive with recent large models403
while using only 2–3 frames results: 63.9/60.5 on MSR-404
VTT, 89.2/89.2 on MSVD, and 60.4/60.3 on DiDeMo.405
These consistent improvements confirm that KeyScore gen-406
eralizes across architectures and enhances retrieval robust-407
ness without any retraining.408

4.1.4. Frame Reduction Analysis409

To quantify the efficiency of KeyScore, we measure the pro-410
portion of frames it discards relative to standard baselines.411
We define the Frame Reduction Rate (FRR) as:412

FRR-UFP = 1− Nsel

NUFP
, FRR-Avg = 1− Nsel

Navg
,413

where Nsel is the number of frames selected by KeyScore,414
NUFP=8 corresponds to uniform fixed sampling, and Navg415
denotes the dataset-specific average frame count. A higher416
FRR indicates greater efficiency (i.e., more frames saved).417

Dataset-Level Frame Savings. Table 5 reports the av-418
erage selected frames (ASF), and frame reduction rates419
(FRR-UFP and FRR-Avg) across three datasets. On MSR-420
VTT (avg. 408 frames), KeyScore retains only 2–3 frames421
(FRR-UFP = 0.69, FRR-Avg = 0.99), achieving over422
a 99% reduction relative to the dataset average. On423
MSVD (avg. 275 frames), similar efficiency is observed424
(FRR-UFP = 0.75, FRR-Avg = 0.99), while on DiDeMo,425
KeyScore reduces 11 sampled frames to just 2–3 (FRR-426

UFP = 0.63–0.75, FRR-Avg = 0.99). These results con- 427
firm KeyScore’s consistent ability to maintain high retrieval 428
accuracy, even under extreme frame reduction. 429

Discussion. Across datasets, KeyScore consistently saves 430
70–75% of frames relative to UFP and nearly 99% rela- 431
tive to raw video averages, while preserving or improving 432
retrieval performance. The S+D+T configuration achieves 433
the optimal trade-off between semantic coverage and effi- 434
ciency, demonstrating the complementarity of its three cues. 435

4.2. Keyframe Extraction 436

We evaluate KeyScore on two widely used keyframe ex- 437
traction benchmarks: TVSum20 [39] and SumMe [18]. For 438
TVSum, we pair KeyScore with CLIP-ViT-H/14 [36], while 439
for SumMe, we use PEcoreG-Video [7] with KeyScore. Fol- 440
lowing the evaluation protocol of [8], we report F1 scores 441
computed using frame-level color histogram similarity. As 442
shown in Table 6, KeyScore and its variants achieve strong 443
results, outperforming TRIPSSsemantic and several recent 444
baselines, despite relying solely on semantic alignment. 445

4.3. Runtime & Frame Efficiency Analysis (TV- 446
Sum20) 447

We further evaluate sampling efficiency on TVSum20, 448
which contains 20 videos with 2.5k–6.9k frames each. Uni- 449
form and SCFP [23] sample 8 frames per video, while 450
STACFP adaptively selects 5–8 frames (typically 8). 451

Table 7 summarizes per-video runtime and frame reduc- 452
tion rates. UFP is the fastest but lacks adaptivity. SCFP in- 453
curs heavy clustering cost over all frames, whereas STACFP 454
achieves a strong balance—processing long videos 3× 455
faster than SCFP while retaining comparable coverage. 456
Conclusion. STACFP achieves near-identical frame reduc- 457
tion to static methods (∼99.8%) while reducing runtime by 458
over 68% compared to SCFP, demonstrating that adaptive 459
clustering delivers both efficiency and scalability for long 460
videos. 461

4.4. Zero-Shot Video Action Classification 462

We further evaluate our frame proposal and scoring strate- 463
gies on the HMDB-51 [24] benchmark, which contains 51 464
human action categories. Following Qwen-2.5-VL [44], we 465
first generate captions for each video clip and use them to 466
guide KeyScore-based frame scoring. For classification, 467
we employ the PEcoreG-Video [7] frame-based video en- 468
coder. Frames are selected according to score thresholds, 469
and for scoring-based methods we report the best F1 ob- 470
tained across thresholds. 471

Table 8 presents zero-shot video action classification 472
results on HMDB51. Among the baseline models, In- 473
ternVL [49], InternVideo2 [51], and SigLIP2-g-opt [45] 474
achieve F1 scores in the 0.518–0.555 range with FRR-Avg 475
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Table 5. KeyScore frame reduction across datasets. We report average selected frames (ASF), FRR-UFP, and FRR-Avg. Combining
semantic (S), temporal (T), and drop-impact (D) cues yields the best balance between efficiency and robustness. Note FRR can be negative
when a variant uses more than 8 frames

Frame Scoring MSR-VTT (avg. 408) MSVD (avg. 275) DiDeMo (avg. 1728)

ASF FRR-UFP↑ FRR-Avg↑ ASF FRR-UFP↑ FRR-Avg↑ ASF FRR-UFP↑ FRR-Avg↑

PEcoreG-Video + KeyScore(S) 2.00 0.75 0.99 5.00 0.38 0.98 3.00 0.63 0.99
PEcoreG-Video + KeyScore(T) 8.20 -0.03 0.98 4.00 0.50 0.99 2.00 0.75 0.99
PEcoreG-Video + KeyScore(D) 3.00 0.63 0.99 6.00 0.25 0.98 2.00 0.75 0.99
PEcoreG-Video + KeyScore(S+T) 3.30 0.59 1.00 2.00 0.75 0.99 2.00 0.75 0.99
PEcoreG-Video + KeyScore(D+T) 2.57 0.68 0.99 2.00 0.50 0.99 2.00 0.75 0.99
PEcoreG-Video + KeyScore(S+D) 2.69 0.66 0.99 2.00 0.75 0.99 2.00 0.75 0.99
PEcoreG-Video + KeyScore(S+D+T) 2.50 0.69 0.99 2.00 0.75 0.99 2.00 0.75 0.99

Table 6. F1 scores on TVSum20 [39] and SumMe [18].
KeyScore with CLIP/PE outperforms or matches prior baselines.

TVSum20 SumMe

Method F1↑ Method F1↑

HistDiff [37] 0.338 H-MAN [30] 0.518
VS-UID [14] 0.462 SUM-GDA [26] 0.528
GMC [15] 0.483 STVS [22] 0.536
VSUMM [11] 0.489 TAC-SUM [20] 0.545
KMKey [33] 0.504 PGL-SUM [5] 0.556
LBP-Shot [34] 0.505 SMN [48] 0.583
VS-Inception [14] 0.517 AugFusion [35] 0.584
LMSKE [40] 0.531 Ldpp-c [21] 0.588
TRIPSS 0.610 TRIPSS 0.590

CLIP [36] + KeyScore 0.539 PE [7] + KeyScore 0.655

Table 7. Runtime and frame reduction on TVSum20. FRR-
Avg: ratio of discarded frames to total video length.

Method Frames Runtime (s) FRR-Avg (%)

UFP (Uniform) 8 15.04 99.7
SCFP (Kanta [23]) 8 178.95 99.7
STACFP (ours) 5–8 56.20 99.8

values of 0.915, reflecting strong but comparable perfor-476
mance across different architectures and resolutions. In477
contrast, PEcoreG-Video + KeyScore delivers a substantial478
improvement, achieving an F1 of 0.675 and an FRR-Avg479
of 0.972. This represents an absolute gain of +12.0 F1480
points over the strongest baseline (InternVL), while simul-481
taneously discarding a larger fraction of frames. The higher482
FRR-Avg demonstrates that KeyScore can aggressively re-483
duce frame inputs while preserving the frames most critical484
for action understanding.485

These results reveal two important trends. First,486
semantic- and context-aware scoring is more effective487
for action classification than dense uniform sampling, as488
KeyScore prioritizes frames aligned with action semantics489
rather than treating all frames equally. Second, KeyScore’s490
ability to retain fewer frames yet improve accuracy high-491
lights its efficiency, making it particularly suitable for large-492

Table 8. Zero-shot video action classification results on
HMDB51 [24]. Our method (PEcoreG-Video + KeyScore)
achieves the best F1 with the highest FRR-Avg.

Model Resolution F1↑ FRR-Avg↑

InternVL [49] 224 0.555 0.915
InternVideo2 [51] 224 0.539 0.915
SigLIP2-g-opt [47] 384 0.518 0.915
PEcoreG-Video [7] + KeyScore 448 0.675 0.972

scale video understanding tasks where both performance 493
and computational cost are critical. Overall, the combina- 494
tion of PEcoreG-Video with KeyScore establishes a new state 495
of the art on HMDB51 under zero-shot evaluation by jointly 496
optimizing recognition accuracy and frame efficiency. 497

5. Discussion & Limitations 498

KeyScore substantially reduces frame redundancy but cur- 499
rently relies on accompanying captions for semantic guid- 500
ance. Future extensions could explore unsupervised or gen- 501
erative captioning to broaden applicability to unlabeled or 502
streaming videos. 503

6. Conclusion 504

We introduced KeyScore, a caption-grounded frame scor- 505
ing framework that integrates semantic, temporal, and con- 506
textual cues to select the most informative video frames. 507
Across retrieval, summarization, and action recognition 508
tasks, KeyScore improves accuracy while cutting frame us- 509
age by 70–99% versus full videos and 63–75% over 8-frame 510
baselines. By converting video–caption pairs into frame- 511
level importance, KeyScore enables efficient keyframe se- 512
lection for video encoders and Video-LLMs. Future work 513
will explore unsupervised or auto-captioned variants and in- 514
tegrate KeyScore into long-form and streaming multimodal 515
systems for scalable video understanding. 516
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