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Abstract

Selecting a compact yet informative subset of frames is cru-
cial for efficient video understanding, but existing heuris-
tics often overlook semantic grounding and fail to gen-
eralize across tasks. We introduce KeyScore, a caption-
grounded frame scoring framework that integrates three
cues: semantic relevance to captions, temporal distinctive-
ness, and contextual drop impact. KeyScore assigns im-
portance scores to frames that guide keyframe extractors
or multimodal transformers—without any task-specific re-
training. We further propose STACFP (Spatio-Temporal
Adaptive Clustering for Frame Proposals), which adap-
tively partitions videos into diverse, non-redundant seg-
ments for compact and representative coverage. Together,
KeyScore and STACFP achieve up to 99% frame reduction
over full-frame processing and over 70% reduction rela-
tive to 8-frame encoders, consistently outperforming them
in zero-shot settings across benchmarks for video—language
retrieval, keyframe extraction, and action classification.
Our approach enables efficient and transferable zero-shot
video understanding across diverse domains. This is the
first unified caption-grounded and spatio-temporal adaptive
framework for zero-shot video understanding.

1. Introduction

With the exponential growth of video content, video under-
standing has become a central challenge in multimedia re-
search, powering tasks such as video captioning [1], video-
text retrieval [52], and action recognition [54]. A persis-
tent bottleneck across these domains is the need to process
long, redundant, and often noisy frame sequences. Such
inefficiency not only strains computation but also dilutes
semantic signals. Selecting a compact yet informative set
of keyframes—those that best capture the core content of a
video—offers a promising path toward both efficiency and
accuracy. Figure 1 illustrates the goal of our caption-aware
frame scoring approach: to highlight semantically relevant
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Figure 1. Motivating example of our frame scoring. Given
the caption “a comedian actor talking in a cloths shop”, our
method selects keyframes that are semantically aligned with the
caption (e.g., actor speaking), while avoiding irrelevant or repeti-
tive frames (e.g., storefront, similar poses).

and diverse frames while suppressing those that are visually
redundant or off-topic with respect to the caption.

Despite its importance, keyframe scoring remains un-
derexplored from a semantic perspective. Prior meth-
ods [12, 27, 41, 42] rely on low-level features, heuristics,
or unsupervised clustering, overlooking caption semantics.
Uniform sampling, common in video encoders and Video-
LLMs, misses key events and repeats redundant frames.
Clustering-based approaches such as SCFP [23] improve
diversity but ignore temporal dynamics, semantic ground-
ing, and require dataset-specific tuning of k. KeyScore ad-
dresses these gaps by combining caption-grounded scoring
with adaptive spatio-temporal clustering, bridging seman-
tics and temporal structure.

To address these limitations at the proposal stage, we in-
troduce Spatio-Temporal Adaptive Clustering for Frame
Proposals (STACFP), which augments clustering with
temporal encoding and automatically selects the optimal
number of clusters via silhouette analysis. Unlike SCFP,
STACFP adaptively allocates more proposals to dynamic
regions while avoiding redundancy in static segments, pro-
ducing a compact yet diverse set of candidate frames that
better reflect the temporal structure of the video.
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On top of these proposals, we introduce KeyScore,
a caption-aware frame scoring method designed to iden-
tify the most informative frames in video—language tasks.
KeyScore integrates three complementary signals: (1) se-
mantic similarity between frames and captions, (2) tempo-
ral representativeness to ensure coverage of the video time-
line, and (3) contextual drop impact to account for redun-
dancy and diversity. Together, these signals provide frame-
level importance scores that can guide keyframe extraction,
improve the efficiency of video encoders, and accelerate in-
ference in Video-LLMs. Unlike prior work that treats se-
mantics and temporal coverage independently, we propose
a unified scoring function that harmonizes both axes while
being encoder-agnostic and plug-and-play for any Video-
LLM.

KeyScore offers two key advantages. First, it provides
a flexible framework that can be applied directly to large-
scale video—caption datasets, generating frame-level impor-
tance scores without requiring manual annotations. Second,
it enables new evaluation paradigms where frame quality is
judged by semantic alignment and downstream task per-
formance rather than heuristics alone.

We extensively validate KeyScore across retrieval
(MSR-VTT, MSVD, DiDeMo), keyframe extraction (TV-
Sum20, SumMe), and zero-shot action classification
(HMDB-51). Results show that KeyScore consistently out-
performs uniform sampling and clustering-based baselines,
improving accuracy while reducing frame usage by up to
97-99% compared to raw videos and 63—75% compared to
standard 8-frame encoders. These findings demonstrate that
caption-aware frame scoring is a powerful tool for content-
efficient video understanding. To our knowledge, KeyScore
is the first framework to unify caption-grounded semantics,
temporal structure, and contextual dependency into a single,
training-free frame scoring pipeline.

Our contributions are three-fold:

* We propose KeyScore, a caption-aware frame scoring
method that integrates semantic relevance, temporal di-
versity, and drop impact to select keyframes aligned with
video captions.

* We introduce STACFP (Spatio-Temporal Adaptive Clus-
tering for Frame Proposals), a lightweight yet effective
sampling strategy that selects diverse candidate frames
while preserving important content.

* We show that KeyScore improves task performance while
significantly reducing computational cost—achieving up
to 99% frame reduction compared to processing all
frames, and outperforming standard sparse sampling
strategies (e.g., uniform 8-frame inputs) by focusing on
caption-relevant content and filtering out uninformative
frames.

2. Related Works

2.1. Keyframe Selection and Video Summarization

Keyframe selection and video summarization aim to extract
the most informative or representative frames from a video,
thereby reducing redundancy while preserving essential
content. Traditional approaches rely on low-level features
such as motion, color histograms, or temporal differences
to identify representative or diverse frames [16, 55, 57].
Katna [23], for instance, applies K-means clustering on
frame histograms and selects the sharpest frame (via Lapla-
cian variance) from each cluster, further filtering based on
LUV color differences, brightness, and contrast. While ef-
fective, such methods are highly sensitive to feature design
and hyperparameter tuning.

Recent learning-based methods have shifted toward su-
pervised or unsupervised frame importance prediction us-
ing deep visual features [27, 41-43]. However, these ap-
proaches often lack semantic grounding from natural lan-
guage annotations (e.g., captions), which limits their abil-
ity to select frames relevant to higher-level video-language
tasks. Attention-based video transformers [6] and reinforce-
ment learning strategies [29] have also been explored, but a
consistent limitation is the absence of standardized, seman-
tically informed evaluation criteria—making comparisons
across methods less meaningful.

2.2. Frame Sampling and Proposal Methods

Uniform sampling is widely used in Video-LLMs [3, 19,
28, 44, 56] for its simplicity, but often overlooks dynamic
moments and yields redundant frames in static regions.

Clustering-based methods such as VSUMM [11] and
Katna [23] improve diversity but ignore temporal struc-
ture and require predefining the number of clusters.
Adaptive variants incorporate silhouette scores [13] or
use segmentation-based strategies such as KTS [2].
LMSKE [40] applies per-shot clustering with vision-
language features, while TSDPC [42] leverages density
peak clustering over temporal segments. Despite their im-
provements, these methods remain limited by their lack of
semantic integration.

In contrast, our STACFP sampler performs lightweight
global spatio-temporal clustering with automatic k selec-
tion, relying on scene transitions rather than caption infor-
mation. This generates proposals that are temporally di-
verse and structurally coherent, establishing a strong foun-
dation for subsequent caption-aware scoring and video-
language tasks.

2.3. Semantic & Embedding-Aware Frame Scoring

With the rise of vision-language pretraining, frame selec-
tion has increasingly leveraged semantic alignment with
text. KeyVideoLLM [27] uses CLIP-based text—frame
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Figure 2. End-to-end pipeline of our proposed approach. STACFP first generates candidate keyframes from the input video. Caption
and frame embeddings are then extracted using a text encoder and a vision encoder. The frame scoring module (KeyScore) integrates
semantic similarity, temporal representation, and contextual drop impact to assign scores to each frame. Finally, task-dependent adaptive
thresholding selects the most representative frames for downstream tasks such as retrieval, classification, or summarization.

similarity to achieve high compression while enhancing
video QA. AKS [43] formulates keyframe selection as
prompt-aware optimization, balancing semantic relevance
with temporal coverage. Logic-in-Frames [17] integrates
visual-logical dependencies (e.g., causality, spatial rela-
tions) to extract semantically rich frames from long videos.

These approaches demonstrate the promise of
embedding-aware selection, but most rely on a single
criterion—semantic similarity, temporal coverage, or log-
ical reasoning—Ilimiting their ability to generalize across
diverse tasks.

Our KeyScore addresses this by introducing a hybrid
scoring scheme that combines three complementary signals:
(1) semantic similarity, measuring alignment with caption
embeddings; (2) temporal distinctiveness, encouraging di-
verse event coverage over time; and (3) drop impact, penal-
izing redundant or low-utility frames.

This multi-faceted scoring provides a richer assessment
of frame importance, yielding more balanced and context-
aware selection for downstream retrieval, classification, and
summarization tasks.

3. Method Overview

Given a raw video, our method aims to efficiently select
a small set of semantically informative and temporally di-
verse keyframes for downstream video-language tasks. The
pipeline consists of two main stages: (1) STACFP for frame
proposal via spatio-temporal adaptive clustering and (2)

KeyScore for fine-grained frame scoring based on semantic
and structural cues.

As illustrated in Figure 2, a video is first processed by
STACFP to generate candidate frames. These frames are
then encoded and evaluated by KeyScore, which integrates
semantic similarity, temporal contribution, and drop impact
to assign importance scores. A task-dependent thresholding
step selects the final keyframes used for retrieval, classifica-
tion, or summarization.

3.1. Spatio-Temporal Adaptive Clustering for
Frame Proposal (STACFP)

Long videos contain thousands of redundant or irrele-
vant frames, making full-frame processing computation-
ally costly and unnecessary. We propose STACFP, a
lightweight unsupervised method that selects a compact set
of visually diverse and temporally distributed frames for
downstream scoring or inference.

Unlike uniform sampling or prior clustering-based meth-
ods like Katna [23] and VSUMM [11], STACFP encodes
both appearance and time in its clustering space. For each
sampled frame f;, we extract a low-level visual feature vec-
tor v; based on color histograms computed in HSV color
space, which is more perceptually aligned than RGB. This
histogram is flattened into a vector of fixed dimension d.
To encourage temporal dispersion in the clustering process,
we also encode the normalized timestamp of each frame

t; = ﬁ, where ¢ is the index of the frame among N
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Figure 3. Qualitative comparison of frame proposal methods.
UFP samples uniformly, leading to redundancy. SCFP enhances
visual diversity but overlooks temporal cues, often oversampling
static segments. STACFP jointly models spatial and temporal in-
formation, capturing representative moments (e.g., the start, peak,
and follow-through of a golf swing) with fewer yet more infor-
mative frames.

total sampled frames. This scalar is then scaled by a hyper-
parameter i and concatenated with the visual feature:

Xi = [Vi} Yime - i)

This results in a (d 4+ 1)-dimensional feature vector x; for
each frame. The hyperparameter yime € [3, 15] controls the
influence of temporal position relative to visual appearance
in the clustering process.

We perform k-means clustering over these spatio-
temporal features and automatically select the optimal num-
ber of clusters k£* via silhouette score maximization [38]:

k* = arg max Silhouette( X, KMeans(k))

This adaptive strategy allocates fewer proposals to static
scenes and more to dynamic content. The final frame pro-
posals are chosen as the nearest frames to each cluster cen-
troid.

Figure 3 compares UFP, SCFP, and our STACFP.
STACFP more effectively captures key temporal transitions
and semantically important moments, whereas UFP and
SCFP tend to sample redundant or less informative frames.

3.2. Frame Scoring via KeyScore

Given a query caption C and a video V = {f1, fo,..., fr}
with T" frames, our objective is to estimate the importance of
each frame f; in supporting video—caption alignment. We
introduce KeyScore, a hybrid scoring framework that lever-
ages a pretrained video—text model to embed frames and
captions into a shared representation space.

Let f; € R denote the embedding of frame f;, t € RP
the embedding of caption C, and v € R the global video
embedding (computed via mean pooling or text-guided at-
tention over {f;}). All embeddings are {2-normalized.

Overall scoring. KeyScore assigns each frame f; a
weighted score:

KeyScore(i) = a - Ssem (i) + - Stemp(2) + ¥ - Sarop(2) (1)

where a+ 5+~ = 1 and each S. captures a complementary
aspect of frame importance.

3.2.1. Semantic Similarity Score (Sg.m)
Ssem (2) = cos(f;, t) 2)

Ssem measures how well a frame aligns with the caption.
Example: For “a man riding a horse,” frames showing the
man on horseback obtain higher scores.

3.2.2. Temporal Representativeness Score (Siemp)
Stemp (1) = cos(f;, v) 3)

Siemp captures how representative a frame is of the over-
all video context, down-weighting outliers. Example: In a
cooking tutorial, frames of the chef cooking are representa-
tive, while a shot of the wall clock is not.

3.2.3. Contextual Drop Impact Score (Sgrop)
Sarop(i) = cos(v, t) — cos(V™, t) 4)

Sdrop Mmeasures the marginal contribution of frame f; by
measuring how much video—text similarity degrades when
the frame is removed. A high score indicates that the frame
provides indispensable context for aligning the video with
the caption, while redundant or uninformative frames yield
near-zero impact. Example: For “a woman performs a bal-
let spin,” excluding the spin frame sharply reduces align-
ment, revealing its critical role.

Implementation. All components are min—max normal-
ized before combination. KeyScore can be efficiently com-
puted with vectorized pooling, and returns both raw and
weighted scores for downstream selection or ranking.

Figure 4 presents four qualitative examples of KeyScore
applied to different video—caption pairs. In the pros-
thetic setup video (Fig. 4a), KeyScore focuses on frames
that visually capture the medical procedure, while down-
weighting irrelevant early frames. In the mountain scenes
video (Fig. 4b), most frames align with the caption, and
KeyScore identifies representative landscape shots without
redundancy. The comedian actor example (Fig. 4c) high-
lights frames where the actor is clearly visible and contex-
tually important, while the Minnie Mouse cartoon example
(Fig. 4d) selects frames where the character appears promi-
nently.

Across all cases, semantic similarity (S) and contextual
drop impact (D) are the strongest contributors, ensuring se-
mantic and contextual fidelity. Temporal representativeness
(T), although less discriminative, provides complementary
coverage by selecting recurring frames. Together, these sig-
nals enable KeyScore to select just 2-3 frames that faith-
fully capture the essential visual evidence described by the
caption, while discarding redundant or irrelevant content.
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Figure 4. Qualitative examples of KeyScore across diverse videos. Each example shows (top) the overall KeyScore curve with top
frames, (middle) sampled frames with scores, and (bottom) component contributions. S highlights caption-relevant moments, T ensures
temporal coverage, and D preserves contextually critical evidence. Their combination yields compact, semantically grounded, and tempo-

rally diverse keyframes.

4. Experiments

We evaluate KeyScore on three representative
tasks—video—text retrieval, keyframe extraction, and
zero-shot action classification—across multiple public
benchmarks.

4.1. Zero-Shot Video-Text Retrieval

We evaluate KeyScore across four aspects: (1) the im-
pact of frame sampling strategies, (2) encoder compatibility,
(3) comparison with state-of-the-art models, and (4) frame
compression efficiency.

Setup. We follow standard protocols, reporting Re-
call@K (R@1/5/10) for text-to-video (T2V) and video-to-
text (V2T) retrieval.

Backbone. Unless specified, we use the Perception En-
coder (PE) [7] as the vision—language backbone. Each
video is represented by keyframes from the frame proposal
module; when enabled, KeyScore re-ranks and selects the
final subset.

Datasets. Experiments are conducted on MSR-VTT [53],
MSVD [9], and DiDeMo [4] following standard splits and
evaluation protocols.

4.1.1. Frame Proposal Strategies

We evaluate four frame proposal strategies under a con-
trolled retrieval setup:

e UFP: Uniform fixed-interval sampling (typically 8
frames); simple and efficient but prone to redundancy
and sensitive to frame count.

* SCFP (Kanta [23]): K-means clustering in visual space
with a fixed number of clusters; reduces redundancy but
ignores temporal continuity.

* SACFP (LMSKE [40]): Spatial Adaptive Clustering
Frame Proposal, equivalent to the LMSKE variant (K-
means with silhouette-based cluster estimation). It adap-
tively determines cluster count based on clustering qual-
ity but remains spatial-only.

* STACFP (ours): Spatio-Temporal Adaptive Clustering
guided by silhouette analysis, jointly modeling spatial
and temporal cues for compact, representative frame se-
lection.
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Table 1. Comparison of frame sampling strategies on retrieval
performance. We compare UFP, SCFP (Kanta [23]), SACFP
(LMSKE [40]), and our proposed STACFP, each paired with the
same encoder [7]. STACFP achieves competitive or superior ac-
curacy with significantly fewer frames, demonstrating efficiency
and robustness for video—text retrieval. T2V/V2T: Recall@1 (%);
ASF: average sampled frames.

MSR-VTT ‘ MSVD
Frame Sampler
T2V V2T ASF ‘ T2V V2T ASF
UFP 500 475 80 | 604 829 80

SCFP (Kanta [23]) 494 451 16.0 | 599 823 10.7
SACFP (LMSKE [40] 49.6 463 92 | 60.1 824 78
STACFP 49.7 482 6.0 | 604 823 5.6

As shown in Table 1, all four methods achieve compa-
rable retrieval accuracy on MSR-VTT and MSVD with the
same encoder (PE.,.G [7]). However, STACFP matches
or surpasses others with substantially fewer frames—6 and
5.6 per video, versus 8 for UFP, 9.2 for SACFP, and
16 for SCFP—demonstrating superior sampling efficiency.
While UFP relies on uniform spacing and SCFP/SACFP
perform purely spatial clustering, STACFP adaptively bal-
ances spatial diversity and temporal coverage, achieving the
best trade-off between accuracy and efficiency for scalable
video—language modeling.

Ablation on Timestamp Normalization. STACFP uses
normalized timestamps to balance spatial-temporal dis-
tances during clustering. Removing normalization (¢;=1)
biases clustering toward later frames, reducing accuracy
(T2V 49.7—47.9, V2T 48.2—46.5) and increasing ASF
(6.0—8.4). Normalization is thus crucial for stable tempo-
ral diversification across videos of varying lengths.
Ablation on Effect of Fixed Cluster Count. We exam-
ine how the number of selected clusters (K € {1,3,5})
affects retrieval accuracy on MSR-VTT (Table 2). Across
all fixed settings and both directions (T2V/V2T), STACFP
consistently outperforms UFP, SCFP (Kanta), and SACFP
(LMSKE), with the largest gains under tighter budgets
(K=1). As K increases, all methods improve and per-
formance gaps narrow, yet STACFP remains the best per-
former while staying below the maxima reported in Ta-
ble 1. This confirms that STACFP’s spatio-temporal cluster-
ing produces more representative frames even without adap-
tive K, and its advantage is most pronounced when only a
few keyframes are allowed.

4.1.2. KeyScore: Frame Scoring and Selection

Given initial frame proposals from STACFP, we further
score each frame using KeyScore, a weighted combina-
tion of three complementary cues: semantic similarity (S),
temporal representativeness (T), and contextual drop impact
(D).

Table 3 presents an ablation across MSR-VTT [53],

Table 2. Fixed cluster count ablation on MSR-VTT (R@1, %).
We fix K € {1, 3,5} across all videos and compare UFP, SCFP,
SACFP, and STACFP using the same encoder [7]. All fixed-K
results remain below each method’s main-table maxima.

Method 2y | vzt

K=1 K=3 K=5|K=1 K=3 K=5
UFP 335 438 46.5 | 44.1 46.0 47.0
SCFP (Kanta [23]) 36.0 445 470 | 448 450 451
SACFP (LMSKE [40]) 37.2 453 48.0 45.5 45.9 46.3
STACFP (ours) 38.1 460 485 | 46.7 47,5 482
Table 3. Ablation of KeyScore components. Text-to-video

(T2V) / video-to-text (V2T) R@1 (%) and average selected frames
(ASF). S: semantic, T: temporal, D: contextual drop impact.

Method MSR-VTT MSVD DiDeMo
T2V V2T ASF|T2V V2T ASF|T2V V2T ASF
PEcore G-Video 49.7 482 6 |60.4 823 5.6 |45.1 46.1 11.3
+ KeyScore (S) 632 60.0 2 (885 865 5 |57.8 59.0 3
+ KeyScore (T) 49.8 489 8 [84.6 86.1 4 (485 50.1 2
+ KeyScore (D) 62.6 594 3 |85.8 86,5 3 |57.2 58.0 2
+ KeyScore (S+T) 61.3 595 3 |879 88.6 2 |594 60.3 2
+ KeyScore (D+T) 61.4 59.1 2 |87.9 89.2 4 |59.7 60.1 2
+ KeyScore (S+D) 63.5 60.3 2 |89.1 89.7 2 |59.8 60.3 2
+ KeyScore (S+T+D)|63.9 60.5 2.5 |89.2 89.2 2 |60.4 60.3 2

MSVD [9], and DiDeMo [4], comparing individual and
joint scoring signals. The PE-only baseline uses 6-11
frames per video and yields modest retrieval performance.
Adding KeyScore significantly improves retrieval accuracy
while substantially reducing the number of frames.

Among single signals, semantic similarity (S) and con-
textual drop impact (D) are the most effective, boosting
MSR-VTT T2V R@]1 above 62 and DiDeMo above 77.
Temporal representativeness (T) alone contributes little, but
enhances performance when combined with other signals.
Pairwise combinations like KeyScore(S+D) already deliver
strong gains across datasets.

The best results are obtained with the full combina-
tion KeyScore(S+T+D), achieving 63.9/60.5 R@1 on MSR-
VTT, 89.2/89.2 on MSVD, and 60.4/60.3 on DiDeMo — all
while using only 2-2.5 frames on average. This demon-
strates KeyScore’s ability to balance semantic, temporal,
and contextual factors for compact yet informative frame
selection.

4.1.3. Comparison with State of the Art

Integrating KeyScore into the retrieval pipeline substan-
tially boosts performance by filtering redundant frames and
retaining the most informative ones, leading to stronger vi-
sual—text alignment across encoders and datasets.

Table 4 reports Recall@1 (R@1) for text-to-video (T2V)
and video-to-text (V2T) retrieval on MSR-VTT, MSVD,
and DiDeMo. Beyond PE..G-Video, KeyScore also im-
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Table 4. Zero-shot video—text retrieval (R@1) on MSR-VTT,
MSVD, and DiDeMo. Results are reported for text-to-video (T2V)
and video-to-text (V2T). KeyScore consistently improves both Vi-
CLIP [50] and PEco.G-Video [7], demonstrating encoder-agnostic
scalability and state-of-the-art results.

MSR-VTT MSVD DiDeMo
Model

T2V V2T T2V V2T T2V V2T
CLIP4Clip [31] 32.0 - 452 484 - -
X-CLIP [32] 493 489 504 66.8 478 47.8
UMT-L [25] 40.7 37.1 49.0 745 499 597
SigLIP2-L/16 [46] 415 314 537 742 184 —
InternVL [10] 447 402 434 676 - -
InternVideo2 [51] 51.9 509 - - 579 57.1
VideoPrism-g [58] 39.7 71.0 58.1 833 - -
SigLIP2-g-opt [46] 43.1 342 558 746 - -
PEcore G-Image [7] 443 352 543 739 - -
ViCLIP [50] 424 413 49.1 751 315 315
ViCLIP + KeyScore 513 498 579 834 412 409
PE_ o G-Video [7] 51.2 499 59.7 854 43.1 451

PE or.G-Video + KeyScore 639 60.5 89.2 89.2 604 60.3

proves VIiCLIP [50], yielding gains of about +9~10 R@1
(T2V) and +8 (V2T) across benchmarks—demonstrating
encoder-agnostic generalization.

ViCLIP + KeyScore achieves 51.3/49.8 (T2V/V2T) on
MSR-VTT and 57.9/83.4 on MSVD, while PE,.G-Video
+ KeyScore reaches competitive with recent large models
while using only 2-3 frames results: 63.9/60.5 on MSR-
VTT, 89.2/89.2 on MSVD, and 60.4/60.3 on DiDeMo.
These consistent improvements confirm that KeyScore gen-
eralizes across architectures and enhances retrieval robust-
ness without any retraining.

4.1.4. Frame Reduction Analysis

To quantify the efficiency of KeyScore, we measure the pro-
portion of frames it discards relative to standard baselines.
We define the Frame Reduction Rate (FRR) as:

N, sel N@el
FRR-UFP =1- —%  FRR-Avg=1- —%
Nyrp g Navg

where N is the number of frames selected by KeyScore,
Nyrp=8 corresponds to uniform fixed sampling, and N,y
denotes the dataset-specific average frame count. A higher
FRR indicates greater efficiency (i.e., more frames saved).

Dataset-Level Frame Savings. Table 5 reports the av-
erage selected frames (ASF), and frame reduction rates
(FRR-UFP and FRR-Avg) across three datasets. On MSR-
VTT (avg. 408 frames), KeyScore retains only 2-3 frames
(FRR-UFP = 0.69, FRR-Avg = 0.99), achieving over
a 99% reduction relative to the dataset average. On
MSVD (avg. 275 frames), similar efficiency is observed
(FRR-UFP = 0.75, FRR-Avg = 0.99), while on DiDeMo,
KeyScore reduces 11 sampled frames to just 2-3 (FRR-

UFP = 0.63-0.75, FRR-Avg = 0.99). These results con-
firm KeyScore’s consistent ability to maintain high retrieval
accuracy, even under extreme frame reduction.

Discussion. Across datasets, KeyScore consistently saves
70-75% of frames relative to UFP and nearly 99% rela-
tive to raw video averages, while preserving or improving
retrieval performance. The S+D+T configuration achieves
the optimal trade-off between semantic coverage and effi-
ciency, demonstrating the complementarity of its three cues.

4.2. Keyframe Extraction

We evaluate KeyScore on two widely used keyframe ex-
traction benchmarks: TVSum20 [39] and SumMe [18]. For
TVSum, we pair KeyScore with CLIP-ViT-H/14 [36], while
for SumMe, we use PE_q.G-Video [7] with KeyScore. Fol-
lowing the evaluation protocol of [8], we report F1 scores
computed using frame-level color histogram similarity. As
shown in Table 6, KeyScore and its variants achieve strong
results, outperforming TRIPSSgemanic and several recent
baselines, despite relying solely on semantic alignment.

4.3. Runtime & Frame Efficiency Analysis (TV-
Sum?20)

We further evaluate sampling efficiency on TVSum?20,
which contains 20 videos with 2.5k—6.9k frames each. Uni-
form and SCFP [23] sample 8 frames per video, while
STACFP adaptively selects 5—8 frames (typically 8).

Table 7 summarizes per-video runtime and frame reduc-
tion rates. UFP is the fastest but lacks adaptivity. SCFP in-
curs heavy clustering cost over all frames, whereas STACFP
achieves a strong balance—processing long videos 3x
faster than SCFP while retaining comparable coverage.
Conclusion. STACFP achieves near-identical frame reduc-
tion to static methods (~99.8%) while reducing runtime by
over 68% compared to SCFP, demonstrating that adaptive
clustering delivers both efficiency and scalability for long
videos.

4.4. Zero-Shot Video Action Classification

We further evaluate our frame proposal and scoring strate-
gies on the HMDB-51 [24] benchmark, which contains 51
human action categories. Following Qwen-2.5-VL [44], we
first generate captions for each video clip and use them to
guide KeyScore-based frame scoring. For classification,
we employ the PE y.G-Video [7] frame-based video en-
coder. Frames are selected according to score thresholds,
and for scoring-based methods we report the best F1 ob-
tained across thresholds.

Table 8 presents zero-shot video action classification
results on HMDB51. Among the baseline models, In-
ternVL [49], InternVideo2 [51], and SigLIP2-g-opt [45]
achieve F1 scores in the 0.518-0.555 range with FRR-Avg
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Table 5. KeyScore frame reduction across datasets. We report average selected frames (ASF), FRR-UFP, and FRR-Avg. Combining
semantic (S), temporal (T), and drop-impact (D) cues yields the best balance between efficiency and robustness. Note FRR can be negative

when a variant uses more than 8 frames

Frame Scoring MSR-VTT (avg. 408)

MSVD (avg. 275) DiDeMo (avg. 1728)

ASF  FRR-UFP? FRR-Avgt | ASF  FRR-UFPt FRR-Avgl | ASF FRR-UFP? FRR-Avgt
PEcore G-Video + KeyScore(S) 2.00 0.75 0.99 5.00 0.38 0.98 3.00 0.63 0.99
PE¢ore G-Video + KeyScore(T) 8.20 -0.03 0.98 4.00 0.50 0.99 2.00 0.75 0.99
PEcore G-Video + KeyScore(D) 3.00 0.63 0.99 6.00 0.25 0.98 2.00 0.75 0.99
PEcore G-Video + KeyScore(S+T) 3.30 0.59 1.00 2.00 0.75 0.99 2.00 0.75 0.99
PEcore G-Video + KeyScore(D+T) 2.57 0.68 0.99 2.00 0.50 0.99 2.00 0.75 0.99
PEcore G-Video + KeyScore(S+D) 2.69 0.66 0.99 2.00 0.75 0.99 2.00 0.75 0.99
PEcore G-Video + KeyScore(S+D+T)  2.50 0.69 0.99 2.00 0.75 0.99 2.00 0.75 0.99
Table 6. F1 scores on TVSum20 [39] and SumMe [18]. Table 8. Zero-shot video action classification results on
KeyScore with CLIP/PE outperforms or matches prior baselines. HMDB51 [24].  Our method (PEn.G-Video + KeyScore)
TVSum20 SumMe achieves the best F1 with the highest FRR-Avg.
Method F1* ‘ Method F1© Model ‘ Resolution F1* FRR-Avg"
HistDiff [37] 0.338 | H-MAN [30] 0.518 InternVL [49] 224 0.555 0.915
VS-UID [14] 0462 | SUM-GDA [26] 0.528 InternVideo2 [51] 224 0.539 0915
GMC [15] 0.483 | STVS [22] 0536 e
VSUMM [11] 0489 | TAC-SUM [20] 0.545 SigLIP2-g-opt [47] 384 0518 0915
KMKey [33] 0.504 | PGL-SUM [5] 0.556 PEcore G-Video [7] + KeyScore 448 0.675 0.972
LBP-Shot [34] 0.505 | SMN [48] 0.583
VS-Inception [14] 0.517 | AugFusion [35] 0.584
LMSKE [40] 0.531 Ldpp-c [21] 0.588 . .
TRIPSS 0.610 TRI;ESS 0.590 scale video understanding tasks where both performance
CLIP [36] + KeyScore 0539 | PE [7]+ KeyScore 0655 and computational cost are critical. Overall, the combina-

Table 7. Runtime and frame reduction on TVSum20. FRR-
Avg: ratio of discarded frames to total video length.

Method Frames Runtime (s) FRR-Avg (%)
UFP (Uniform) 8 15.04 99.7
SCFP (Kanta [23]) 8 178.95 99.7
STACFP (ours) 5-8 56.20 99.8

values of 0.915, reflecting strong but comparable perfor-
mance across different architectures and resolutions. In
contrast, PE,.G-Video + KeyScore delivers a substantial
improvement, achieving an F1 of 0.675 and an FRR-Avg
of 0.972. This represents an absolute gain of +12.0 F1
points over the strongest baseline (InternVL), while simul-
taneously discarding a larger fraction of frames. The higher
FRR-Avg demonstrates that KeyScore can aggressively re-
duce frame inputs while preserving the frames most critical
for action understanding.

These results reveal two important trends. First,
semantic- and context-aware scoring is more effective
for action classification than dense uniform sampling, as
KeyScore prioritizes frames aligned with action semantics
rather than treating all frames equally. Second, KeyScore’s
ability to retain fewer frames yet improve accuracy high-
lights its efficiency, making it particularly suitable for large-

tion of PE. G-Video with KeyScore establishes a new state
of the art on HMDBS51 under zero-shot evaluation by jointly
optimizing recognition accuracy and frame efficiency.

5. Discussion & Limitations

KeyScore substantially reduces frame redundancy but cur-
rently relies on accompanying captions for semantic guid-
ance. Future extensions could explore unsupervised or gen-
erative captioning to broaden applicability to unlabeled or
streaming videos.

6. Conclusion

We introduced KeyScore, a caption-grounded frame scor-
ing framework that integrates semantic, temporal, and con-
textual cues to select the most informative video frames.
Across retrieval, summarization, and action recognition
tasks, KeyScore improves accuracy while cutting frame us-
age by 70-99% versus full videos and 63—75% over 8-frame
baselines. By converting video—caption pairs into frame-
level importance, KeyScore enables efficient keyframe se-
lection for video encoders and Video-LLMs. Future work
will explore unsupervised or auto-captioned variants and in-
tegrate KeyScore into long-form and streaming multimodal
systems for scalable video understanding.
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