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Abstract

Instruction-tuned large language models
(LLMs) have shown improved performance on
a variety of NLP tasks and are used extensively
in many NLP applications, including writing
assistants. However, little is known about
their ability to consistently and rigorously
follow fine-grained instructions, especially
text editing instructions. In this work, we
comprehensively characterize the ability
of popular LLMs to follow fine-grained
text editing instructions. By introducing a
benchmark suite that enables a controlled
evaluation, we show that state-of-the-art LLMs
show varied performance and can struggle on
even elementary text editing tasks revealing
key insights into the limitations of current
LLMs. We finally show that further instruction
tuning on text-editing instruction data can be
an effective approach to improve performance
on both seen and unseen text-editing tasks.

1 Introduction

Modern large-scale language models (LLMs) have
been aligned to follow instructions. Such LLMs
have shown the ability to perform several tasks
like sentiment classification, question answering,
text summarization, machine translation, and code
generation when these tasks are described as in-
structions in suitable prompts (Wang et al., 2018,
2019; Brown et al., 2020; Hendrycks et al., 2020;
Surameery and Shakor, 2023).

Despite instruction-tuned LLMs being used very
widely, we do not have a clear understanding
of their instruction-following ability. Prior work
on rigorously evaluating the instruction-following
ability of LLMs is relatively scarce (Webson and
Pavlick, 2022; Min et al., 2022; Kung and Peng,
2023; Li et al., 2023). Kung et al. (2023) sug-
gest that some instruction-finetuned models might
be relying less on the instructions than previously
thought. Instead, they latch onto superficial arti-
facts, such as the outputs’ format. Li et al. (2023)

argue that prior knowledge encoded in the pretrain-
ing stage can limit the steerability of models. Still,
a fundamental question remains unanswered: How
good are current LLMs at following instructions?
How does their effectiveness vary with the number
of instructions, their complexity, and the depen-
dence relations between instructions?

In this paper, we seek to advance research on
these specific questions in the domain of text-
editing instructions. Characterizing the ability of
LLMs to follow a set of instructions is critical to
many practical text-editing applications in which
multiple operations need to be performed in a sin-
gle interaction. For example, one might want to
correct formatting and grammar as well as improve
clarity and then rewrite text to a specific tone. More
generally, improving the ability of LLMs to follow
a set of (complex) instructions would enable LLMs
to rewrite text according to specific style guides,
such as AP or MLA. These style guides, which
contain instructions on how text must be written
to conform to that style, are adopted by publishers,
businesses, and media houses to ensure consistency
across their communications.

We empirically investigate the above questions
for popular LLM models. We introduce a suite
of text-editing tasks and associated benchmarks
to probe the instruction-following ability of each
LLM. To do this, we identify three key dimensions
on which to probe model performance. We then de-
sign text-editing tasks that assess their performance
in a controlled manner across representative points
along these dimensions (see Figure 1). We observe
that model performance varies markedly on these
tasks, and even the best models can struggle on
some instructions. Our main findings are:

* LLMs find many text-editing tasks (even some
elementary ones) challenging. Performance
is negatively correlated with both instruction
complexity and input length. Introducing de-



pendencies between instructions (especially
sequential ones) poses even more challenges.

* OpenAl models generally outperform
LLAMA?2 models. Larger models gener-
ally perform better, which reinforces the
importance of model scaling.

* Fine-tuning of models using text-editing in-
structions significantly improves performance
over the baseline on both seen and unseen text-
editing tasks, suggesting the effectiveness of
further domain-specific instruction tuning.

To conclude, our analysis reveals important
insights into the instruction-following ability of
LLMs in the domain of text editing - an ability that
is at the heart of writing assistants.

2 Setup

First, we define a set of primary (main) text edit-
ing tasks and how we constructed benchmarks for
them. Next, because we also consider settings
where LLMs may be fine-tuned on instructions
from the main set of tasks, we also outline a set
of additional text-editing tasks to evaluate the abil-
ity to generalize to new tasks/instructions in such
settings. Finally, we conclude by describing the
details of the evaluation strategy.

2.1 Main Tasks

Our main set of text editing tasks falls into two
groups: Elementary text editing and Practical text
editing. (A summary is in Figure 1):

2.1.1 Elementary Text-Editing Tasks

Elementary text-editing tasks involve elementary
string manipulation. Each instruction is very sim-
ple, the expected output is unambiguous, and eval-
uation data can be constructed computationally.

Copy A list of instructions asking the LLM to
output a specific sequence of tokens. This task
probes model performance when: (a) each instruc-
tion is trivial in complexity and (b) each instruction
is completely independent of others. An example
is shown below:

Execute the following instructions:

<instruction> OQutput the sequence of
tokens enclosed between <token> and </token>
on a new line: <token>cat</token>
<instruction> Output the sequence of tokens
enclosed between <token> and </token> on a
new line: <token>house</token>

Output:

We consider two settings Copy-1 and Copy-N, cor-
responding to single and multiple instructions.

Edit A list of instructions that transform a source
string to a target string in terms of only IN-
SERT/DELETE/REPLACE instructions on indices
of the source. Such instructions can be efficiently
computed using the classic Fisher-Wagner algo-
rithm. An example of instructions that transforms
coastal to postal is shown below:

Execute the below instructions.
All position indexes mentioned are 0-based.

<instruction> Set s to coastal </instruction>
<instruction> Replace the character at
position @ of s with p and set s to the new
string obtained. </instruction>
<instruction> Delete the character at
position 2 of s and set s to the new string
obtained. </instruction>
<instruction> Output only the
</instruction>

string s

Output:

In contrast to Copy task, even though each individ-
ual instruction is simple, there is a strict sequential
dependency on instructions. Each instruction oper-
ates on the output of the prior instruction. Again,
we consider two settings Edit-1 and Edit-N, corre-
sponding to single and multiple instructions.

For both tasks, we generate a test (N:1000) and
a non-intersecting training set (N:10000) with vary-
ing task parameters (eg. length of strings).

2.1.2 Practical text-editing tasks (miniAP)

In addition to the elementary tasks, we consider
instructions on text editing and manipulation men-
tioned in popular language style guides, thus mir-
roring practical text-editing scenarios. Since we
draw heavily on instructions from the AP (Associ-
ated Press) style guide, the task is called miniAP.
We consider a set of 15 instructions (see Appendix
E) in the AP style guide that are related to the usage
of (a) Punctuation, (b) Abbreviations, (c) Capital-
ization, (d) Plurals, (¢) Number formatting, and
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Task #(Inst) Instruction Input Instruction
Ci lexil C D
Copy-1 1 Very Low Word Independent
Copy-N N Very Low Words Independent
Edit-1 1 Low Word Independent
Edit-N N Low Word Sequential
(Order
Sensitive)
MiniAP-1-1 1 Medium Sentence Independent
MiniAP-N-1 N Medium Sentence Independent
MiniAP-N-P N Medium Paragraph Independent

Figure 1: Our framework for visualizing the different dimensions on which instruction following performance can be measured.
Our tasks are designed to probe model performance at different points in the space spanned by these dimensions. Task names

follow the convention:task-#(instructions)-input size.

(f) Date and Time formatting. We follow instruc-
tions related to these dimensions because they are
relatively unambiguous; compliance can be com-
putationally verified, and collecting relevant data is
easy. Instructions related to other dimensions, like
clarity, tone, and sensitivity, tend to be subjective
and require human evaluation, which we leave to
future work. We give the model instructions from
the above set, an input text, and ask the model to
rewrite the text to comply with the instructions.
The example below illustrates this:

Rewrite the text enclosed between <QASD> and
</QASD> so that it complies with the provided
style guide.

<styleguide>

<instruction> Write single-digit numbers in
words. </instruction>

</styleguide>

<QASD>
I bought 9 apples.
</QASD>

Output:

We look at three settings with rising complexity:

e miniAP-1-1: one instruction and one input
sentence. This is the easiest configuration.

* miniAP-N-1: multiple instructions and one
input sentence. This is a slightly more chal-
lenging setting since the majority of the in-
structions may not apply to the input sentence.
Models need to ignore inapplicable instruc-
tions but still apply one or more applicable
instructions.

* miniAP-N-P: multiple instruction with the
input embedded in a five-sentence paragraph.
This extends the multiple instruction setting
in that the input text is larger and has multiple

(potentially) non-compliant sentences .

To generate test and training data, we use the popu-
lar SELFINSTRUCT paradigm (Wang et al., 2022).
We use GPT-4 to generate candidate sentences re-
lated to a linguistic dimension (e.g. Number us-
age). Then we use regular expressions to manip-
ulate the sentences in order to generate compliant
and non-compliant versions. These are manually re-
viewed for correctness). The is a dataset containing
triplets of the form (a style guide instruction,
a non-compliant sentence, a compliant
version) and corresponds to the miniAP-1-1 set-
ting. To construct datasets for the other two set-
tings, we adapt the dataset as follows: (a) for the
miniAP-N-1 setting, replace the instruction field so
that it contains all instructions. If needed, we man-
ually edit the compliant version to ensure global
compliance (compliance with all instructions). (b)
for the paragraph-level dataset, miniAP-N-P, we
randomly sample records and concatenate them to
generate a five-sentence paragraph. For each set-
ting, we generate a test set (N:1000) and a training
set (N:10000), ensuring that the sets are disjoint.
Finally, to evaluate the ability of models to not
make erroneous edits to already compliant input,

'Both miniAP-N-1 and miniAP-NP settings resemble a
realistic use case where a user might provide several instruc-

tions from a style guide and ask that the LLM rewrite input as
necessary to comply.



all datasets contain some records where the input
text already conforms to the instructions so no edits
are needed.

2.2 Additional Tasks and Data

In addition to the main editing tasks introduced in
the prior section, we outline two additional tasks.
These are used to evaluate the ability of text-editing
instruction fine-tuned LLM models to generalize to
new instructions/tasks. We also describe the con-
struction of an additional text instruction following
dataset GENERIC-TE which we use for further fine-
tuning of the LLMs.

miniAP-reversed Task We construct this set of
instructions from the miniAP-1-1 task by negating
the original instructions (where the negation is un-
ambiguous) and swapping the target and the input.
This asks the model to execute the reverse of the
original instruction. This strategy is applied to the
miniAP-1-1 data and is called miniAP-reversed.

UpperLower task (UL) Task The task and
settings are identical to the Edit task with one
major change: Instead of instructions that in-
sert/delete/replace characters at specific indices and
have sequential dependencies, the instructions in-
volve only upper-case/lower-case characters at spe-
cific indexes. Furthermore, the final output does
not depend on the instruction application order.

GENERIC-TE Dataset GENERIC-TE is a large-
scale diverse text-editing instruction dataset. Prior
works like ALPACA (Taori et al., 2023) have demon-
strated that instruction fine-tuning on a large di-
verse instruction set improves model performance
on various downstream NLP tasks. Building on this
observation, we explore the effect of instruction
fine-tuning on a large, diverse set of text-editing
instructions. We construct a dataset of 50K exam-
ples of instruction following data largely adopting
the process outlined in (Taori et al., 2023) with
one minor change — in the SELFINSTRUCT stage,
we ask the model to only focus on text-editing in-
structions spanning a very diverse set of linguistic
dimensions (like tone, sensitive language, etc.). We
use this data only for supervised fine-tuning and not
for evaluation (since this dataset spans linguistic
dimensions where evaluation is largely subjective).

2.3 Evaluation Details

Prompting Strategy We encode the instructions
and the input text in a reasonable prompt (like

the examples shown above), accommodating mi-
nor variations that may be needed (e.g. remov-
ing the system prompt, etc.). We adopt a best-
effort approach to prompt engineering, incorporat-
ing known best practices to design prompts. An im-
plicit but practical assumption is that “prompt engi-
neering effort” is negatively correlated with “model
steering/instruction-following ability”. Therefore,
when a model requires extensive prompt engineer-
ing to follow instructions, intuitively, it implies the
model is not as steerable and ranks lower than a
model that requires less effort.

Evaluation Metric Because we want to measure
the ability of models to follow text editing instruc-
tions precisely, we use an exact match with the
compliant text to be a measure of success and to
report accuracy. To maximize success potential,
we allow models to be flexible on the output for-
mat and perform appropriate post-processing on
the output as long as they are largely consistent
with their output format (e.g., some models output
rewritten text between <output> </output> tags
while some just output the rewritten text).

3 Models

We consider three models: ChatGPT, GPT4 (Ope-
nAl, 2023), and LLAMA?2 (Touvron et al., 2023).
ChatGPT and GPT-4 are closed models, but they
are considered to be state-of-the-art and thus es-
tablish strong baselines. However, because these
models are closed, to investigate the effect of as-
pects like (a) model scale, (b) training procedures,
and (c) training data, we consider LLAMA?2 an
open model as well. We focus on the 13B variant
unless specified. 2

4 Zero-shot Performance

We report and analyze the zero-shot performance
of our models on our established tasks.

Overall Performance. Figure 2 shows overall
performance from which we note:

* All models perform the Copy task almost per-
fectly. Recall that this task involves instruc-
tions where (a) each instruction is trivial in
complexity and (b) instructions are completely
independent. This suggests that very low

*We consider the chat variant of LLAMA? since the base
model is not instruction fine-tuned. We focus on the 13B
variant since it is both an expedient choice and also more
representative of practical use cases.



instruction complexity and independence
correlate with higher performance.

* All models find the Edit task challenging.
Even performance on the single instruction
setting (edit-1) is low. Prior work has noted
that LLMs (including GPT4) may still strug-
gle at seemingly elementary tasks like count-
ing, article swapping, and shift ciphers (Mc-
Coy et al., 2023). Index-based string editing
operations is potentially yet another task. Fi-
nally, performance drops even further in the
multiple-instruction setting, suggesting that
sequential dependencies between instruc-
tions pose additional challenges. We con-
jecture that this is because models need to op-
erate implicitly on intermediate outputs, thus
introducing more points of failure.

* On the miniAP tasks, we note that perfor-
mance on the single instruction, single sen-
tence setting (miniAP-1-1) is generally higher
than the other settings (miniAP-N-*) reveal-
ing a clear trend that model performance
decreases as input size increases. This obser-
vation further supports the observation around
general challenges of LLMs handling long
contexts (Liu et al., 2023). We character-
ized how performance drops as input length
increases by analyzing performance at first P
sentences shown in Figure 3.

* OpenAl models outperform LLLAMA?2 on
average. Both ChaGPT and GPT4 generally
outperform LLAMA2. Between ChatGPT
and GPT4, GPT4 generally performs similarly
to ChatGPT except for the Edit task, where it
significantly outperforms ChatGPT.

Effect of Model Scale. Figure 4 shows the im-
pact of model scale on performance. We can draw
the following conclusions: On very simple tasks,
like the Copy task, smaller models perform as well
as larger ones. On tasks that involve non-trivial
instructions, the 7B and the 13B models generally
perform similarly. The largest model (70B) shows
a clear benefit overall (especially on the edit-1,
miniAP-1-1 and miniAP-N-1 tasks), suggesting
that model scaling might yield improvements be-
yond specific thresholds (here, beyond 13B).

Effect of Instruction Alignment with Prior
Knowledge. Because LLMs are trained on mas-
sive amounts of text and instructions from diverse

3Error bars represent 95% confidence intervals.
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Figure 2: Overall performance of models on following text
editing instructions. Models achieve relatively high accuracy
when asked to follow a single instruction or when the instruc-
tions are very simple. However, they struggle in following
multiple instructions, or on larger inputs. -

miniAP-N-P
0.8 1 ChatGPT
GPT4
0.7 ® LLAMA2-13B
0.6
a
ju
& 0.5
®
3
® 0.4
3
o
<
0.3
0.2
0.1
1 2 3 4 5

P:#(Sentences)

Figure 3: Effect of input length on performance of models.
Accuracy at the first P sentences on the miniAP-N-P task.
Note that as input text length increases, performance drops
and all models display very similar trends.

1.0 1 #(params)
. 1 7B
. 13B
084 . 708
§ 0.6
S I
g I
<

=}
IS
L

0.2

— = — =4
> > = =
g— o ° 5
8 8 E E

Task

miniAP-1-1
miniAP-N-1
miniAP-N-P

Figure 4: Effect of model size on performance. Performance
is stable or increases with model size except on Edit-N.



sources, including the Internet, one might con-
jecture that LLMs have internalized many of the
miniAP-style instructions. Thus we ask: To what
extent is model performance a reflection of instruc-
tions being well-aligned with prior knowledge inter-
nalized by models during their training phase?. To
shed some light on this, we measure model perfor-
mance on counterfactual instructions that likely de-
viate from the LLM prior. The miniAP-reversed
task consists of precisely these counterfactual in-
structions. Table 1 shows the result of this evalu-
ation. First, we observe that there is a significant
drop in the performance of ChatGPT (0.82 vs 0.61)
and LLAMAZ2 (0.47 vs 0.25) in the counterfactual
setting when compared to the likely well-aligned
miniAP setting. This suggests that there is a signif-
icant effect of priors on model performance, and
these models are hard to override. GPT4, on the
other hand, shows some drop but not a significant
one (0.71 vs 0.68), indicating that GPT4 is likely
more steerable than the others. These findings are
in line with Li et al. (2023); Wu et al. (2023), who
make similar observations regarding the effect of
prior knowledge on task performance.

Model Accuracy
MiniAP Reversed MiniAP
(Natural) | (Counterfactual)
CHATGPT 0.82 0.61
LLAMA2-7B 0.54 0.43
LLAMA2-13B | 0.47 0.25
LLAMA2-70B | 0.61 0.47
Gr14 0.71 0.68

Table 1: Performance of models (especially ChatGPT and
LLAMAZ2) degrade when instructions are potentially not well-
aligned with model priors.
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Figure 5: Performance when using a mixture-of-experts ap-
proach. Note the significant improvements on the Edit tasks.

Dimension Error %
ChatGPT | LLAMA2
YEAR ABBREV. 7.6 7.3
TITLE ABBREV. 4.8 6.3
PUNCTUATION 15.2 21.6
PLURAL PoOsS. 24.2 7.5
NUMBER FORMATTING | 23.6 21.3
COLON 18.5 17.0
CAPITALIZATION 6.2 19.0

Table 2: Error buckets of models on the miniAP task. Both
model families struggle with instructions related to number
formatting and punctuation inter alia.
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Figure 6: Performance of models on miniAP-1-1 and
miniAP-N-1 tasks broken down by two major error classes
(a) False Negatives (FN): Error rate on records with non-
compliant input (b) False Positives (FP): Error rate on records
with already compliant input text with no edits needed.

miniAP Task Error Analysis Error analysis of
models on the miniAP task. There are two main
error categories: False Negatives and False Posi-
tives. False negatives occur when the model either
misses an error or incorrectly edits non-compliant.
False positives occur when the model erroneously
makes edits to fully compliant text.

Figure 6 shows the error rates for each of these
classes for all models in the miniAP-*#-1 settings®.
We find significant differences between models.
First, LLAMAZ2 performs worse than the OpenAl
models. Second, comparing ChatGPT and GPT4
in the miniAP-1-1 setting, GPT4 tends to have a
much higher false-positive rate, indicating that it
is more aggressive than ChatGPT at making ed-
its. However, in the multiple instruction setting
(miniAP-N-1), GPT-4 has significantly lower false
negatives than ChatGPT, indicating it is better at
both detecting errors and rewriting the text to be
compliant when given multiple instructions.

*We focus on single-sentence settings since it is easier to
analyze errors on a single sentence and are representative.



What linguistic dimensions pose the most chal-
lenge? Table 2 shows the breakdown of the errors
on the miniAP-1-1 task for representative mod-
els from both families. Observe that all models
generally find instructions related to ABBREVIA-
TIONS easier than others. Instructions related to
PLURAL POSSESSIVES, NUMBER FORMATTING,
and COLON USAGE tend to be challenging for all
models. This is likely because these instructions
tend to be nuanced and have many exceptions.

Does Instruction Application via Code Genera-
tion Help? Many of the instructions in our tasks
can actually be implemented as simple rules. It is,
therefore, indeed sobering that LLMs may still find
such instructions challenging to follow. That said,
we ask whether we can leverage an adjacent ability
of LLMs — namely, their ability to generate code to
translate such instructions to computer code instead.
This may offer a practical alternative with a few
advantages: (a) Improved consistency—it might be
easier to generate correct code for an instruction
relative to directly following it (for e.g., edit-N in-
structions). (b) Improved interpretability: The
generated code offers better interpretability and
potential guarantees of correctness. (c) Reduced
error rates — the resulting code can be applied
consistently regardless of input size. (d) Obviously,
while such instructions could be translated to code
by human programmers, using LLMs can be much
more scalable. We thus adopt a mixture-of-experts
approach: First, we ask the LLM to identify instruc-
tions that can be implemented as simple Python
functions and then generate corresponding code.
The application of the full instruction set is as fol-
lows: (1) Apply the subset of instructions encoded
as functions and (2) apply the remaining instruc-
tions by defaulting to the prompting strategy.
Figure 5 shows the results of this approach using
GPT4 °. The results are mixed. Note the large
gains in performance on the Edit-1 (0.99 vs 0.5)
and Edit-N (0.6 vs 0.2) tasks relative to our default
prompting approach (compare to GPT4 results in
Figure 2). This is because GPT4, by-in-large, gen-
erates correct code implementing these operations.
However, on the miniAP tasks, the overall perfor-
mance is slightly worse because it generates incor-
rect code for some of the instructions (e.g. number
formatting). To conclude, such an approach can be

SWe only consider GPT4 as it is known to be much better
at code generation over ChatGPT and CodeLLAMA and thus
establishes a ceiling over both.

effective when LLMs are able to translate human-
readable instructions to correct code with a high
enough precision to overcome the error rate of the
default prompting strategy.

5 Does Supervised Fine-tuning help?

We noted significant gaps in model performance
in the zero-shot setting. Therefore, we ask:
Does further fine-tuning on potentially task-
specific instruction-following data help boost per-
formance? Additionally, we ask how well do such
fine-tuned models generalize to unseen tasks like
those we outlined in Section 2.2? We investigate
further supervised fine-tuning and consider task
mixtures that progressively increase the number of
held-out tasks:

* all-main: We use data from all the tasks out-
lined in Section 2.1.

* 1-Inst: We only use data from single instruc-
tion settings from the tasks outlined in Sec-
tion 2.1. This setting assesses whether models
trained only on single instructions generalize
to multiple instruction settings.

* miniAP-held-out: We use data from all tasks
outlined in Section 2.1 except the miniAP task.
Instead, we include GENERIC-TE, the large-
scale generic text editing instruction dataset.

¢ all-held-out: We hold out all tasks and only
train on GENERIC-TE.

For each main task included, we use 1, 000 train-
ing examples per task. We use all examples from
GENERIC-TE when it is included.

5.1 Fine-tuning Procedure

We finetune the LLAMAZ2(13B) model using stan-
dard instruction-based fine-tuning with one minor
difference: we use a “completions-only” loss where
the loss is computed only on the expected com-
pletion (output tokens), although we attend to all
tokens. This encourages the model to focus on
learning to generate the required output rather than
learning to auto-complete parts of the input. We
train all models for 1 epoch on 1 A100 instance
with 8 GPUs using a per-device batch size of 8.

5.2 Evaluation

Overall Performance. Tables 3 and 4 show the
performance of instruction fine-tuned models. In
every setting, the overall performance (see Table
4) improves significantly over the baseline. As ex-
pected, the gains on the seen tasks are the highest.



copy | copy | edit edit miniAP | miniAP | miniAP | UL UL miniAP

-1 -N -1 -N -1-1 -N-1 -N-P -1 -N (Reversed)
Untrained 0.97 | 099 | 0.06 | 0.0 0.47 0.53 0.1 0.15 | 0.02 | 0.26
all-main 1.0 1.0 0.86 | 0.56 | 0.99 0.97 0.93 0.24 | 0.04 | 0.08
1-Inst 0.97 0.41 | 0.83 0.01 | 0.98 0.89 0.22 0.51 | 0.07 | 0.17
miniAP-heldout | 1.0 1.0 0.93 | 0.58 0.86 0.74 0.42 0.55 | 0.1 0.58
all-heldout 0.93 | 0.44 | 0.13 | 0.01 | 0.85 0.65 0.46 0.1 0.0 0.53

Table 3: Performance of supervised fine-tuned models. Blue cells indicate those tasks are held-out in that setting.

Average Accuracy |

Overall | Seen | Unseen
Untrained 0.36 - 0.36
all-main 0.67 0.9 0.12
1-inst 0.51 093 | 0.33
miniAP-heldout | 0.68 0.88 | 0.54
all-heldout 0.41 - 0.41

Table 4: Average performance of LLAMA models on tasks
specific to different settings in supervised fine-tuning.

However, when trained on all the seen tasks, sig-
nificant gains on seen tasks may result in a perfor-
mance drop on unseen tasks, especially tasks that
are counterfactual to the seen task (see miniAP-
reversed for all-main:(.08 and 1-Inst:0.17 com-
pared to Untrained:0.26 in Table 3). Instruction
fine-tuning on a small set of tasks adapts the model
more aggressively to those tasks, thus limiting gen-
eralization to new tasks. There is, however, some
evidence that single-instruction fine-tuned models
can generalize to apply multiple instructions and
outperform the baseline overall (0.51 vs 0.36 in Ta-
ble 4). Finally, settings that include the GENERIC-
TE dataset significantly boost overall performance,
demonstrating value in training on a large and very
diverse set of instructions (see miniAP-heldout
and all-heldout).

6 Related Work

While there is a large body of work on instruc-
tion fine-tuning (Mishra et al., 2022; Iyer et al.,
2022; Chung et al., 2022; Taori et al., 2023), ex-
plicitly evaluating the instruction-following capa-
bility of LLMs is relatively scarce with the most re-
lated work being Webson and Pavlick (2022); Kung
et al. (2023); Zhou et al. (2023); Zeng et al. (2023).
Webson and Pavlick (2022) investigate the extent
to which prompt-based models understand their
prompts and that note good model predictions even
with misleading prompts, thus cautioning against
attributing model performance to prompt under-
standing. Similarly, Kung et al. (2023) argue that
many instruction fine-tuned models may be relying
on prompt artifacts (eg., output format) and advise

caution in ascribing superior performance to their
instruction-following ability. Zeng et al. (2023)
look at the related problem of evaluating the effi-
cacy of “LLM-evaluators” — where an LLM and
a prompting strategy are used to rank other LLM
model outputs according to some specific criterion
(e.g. sensitivity). They propose a benchmark called
for evaluating such evaluators and note many evalu-
ators vary in their preferred outputs showing signif-
icant room for improvement. Li et al. (2023) inves-
tigate the reliance of models on prior knowledge,
encoded during training when following instruc-
tions (e.g., instructions on classifying text). They
note that model performance deteriorates signifi-
cantly when instructions deviate from the model’s
prior knowledge — a finding that is also supported
by our work.

We differ from the above work in that we eval-
uate LLMs on their ability to follow fine-grained
text-editing instructions across various dimensions
in a controlled manner. We introduce a benchmark
suite of tasks consisting of elementary text-editing
instructions as well as text-editing instructions de-
rived from popular style guides. Finally, we inves-
tigate the effect of various model parameters that
can guide modeling improvements and practical
applications.

7 Conclusion

We comprehensively investigated the instruction-
following ability of LLMs in the context of text
editing. We introduced specific tasks and bench-
marks to enable a controlled evaluation and provide
important insights into the effect of instruction pa-
rameters (number, complexity, and dependencies)
as well as model parameters (scale, training meth-
ods) on model performance. Our findings can help
inform LLM modeling efforts and application de-
velopment.

Limitations

Our work has the following limitations. First, we
focus only on English. It is quite possible that



the performance might be significantly different in
other languages. Second, we focused on a subset
of instructions of the AP style guide for which it
was relatively easy to gather gold-standard compli-
ant data and evaluate automatically. Consequently,
we do not consider style guidelines that are sub-
jective and/or related to pragmatic intent (For ex-
ample: “Keep the audience in mind and make sure
to encourage them to respond”, “Make the text
witty and engaging to the audience”). Third, our
evaluation is limited to paragraph sized text. We
do not characterize performance on very long in-
puts (like entire documents or entire style guides
spanning hundreds of pages). While we expect
performance to be worse for longer inputs, it is
additionally possible that we may uncover new in-
structions that may prove to be challenging at the
document level. Fourth, our characterization of
OpenAl model performance is subject to limita-
tions around their closed nature (e.g. model be-
havior might change over time and under our feet).
Finally, it is important to recognize that we seek
to characterize model performance favoring lower
efforts in prompt engineering. We concede that
with extensive prompt engineering, one may find
prompts that improve model performance on our
task, but then again, we argue that in such cases,
such a model is less steerable when adjusted for
the prompt engineering effort.

Ethical Considerations

We use text that is either computationally generated
(edited) or generated via LLMs (in line with their
terms of service). Our work does not introduce
additional ethical considerations other than those
broadly associated with large language models.
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A Data Availability

We will release the benchmark data publicly as a
resource to the community for academic research
purposes.

B Error analysis of Edit Task

Why do LLMs struggle to perform the Edit task.
Based on our observations, we can make two con-
jectures: First, we note that even performance on
the single instruction case is still only about 50%
(GPT-4). This suggests that both ChatGPT and
GPT4 find it challenging to follow basic operations
on characters at specific indices consistently (note
even with explicit instructions that 0-based index-
ing is used. We also noted that explicit CoT and
implicit CoT prompting also did not yield signifi-
cant improvement). Second, sequential dependency
between instructions can be additionally challeng-
ing because models need to maintain an internal
scratch buffer because the output at any step crit-
ically depends on the intermediate output at the
previous instruction. Both these conjectures sug-
gest that the final predicted output is likely to be
close in “edit-distance” similarity to the expected
output, and we might expect to see the accuracy and
“edit-distance” similarity drop as the number of in-
structions increases. Figure 7 shows the accuracy
and a measure of edit-distance-based similarity® on
the test set stratified by a number of instructions.
Indeed, we note that while the accuracy is low
as expected, the edit-distance similarity is higher
(closer to 0.6) and suggests that many characters in
the predicted output match the characters from the
expected output with a few errors.

C Effect of number of training examples
over performance.

Figure 8 shows the performance of LLAMA mod-
els as a function of number of training examples per
seen task in the supervised fine-tuned setting. Note
that for simple tasks like the Copy task, only 10
examples are sufficient to guide the model to learn
the specific task. In settings with multiple instruc-
tions or instructions with sequential dependencies,
one might need up to 1000 examples.

%We use the measure %, which will be between 0 and 1.
M is the total number of character matches, and T is the total
of characters in both prediction and the expected strings.
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Figure 8: Performance of LLAMA models with super-vised
fine-tuning on the benchmark tasks.

D Effect of Text-Editing instruction
tuning on general task performance

Here, we document the effect of further text-editing
instruction tuning on general task performance. We
do this by evaluating the performance of our fine-
tuned model on the following popular benchmarks:
HELLASWAG, ARC_EASY, LAMBADA_OPENAI,
MMLU and compare against the corresponding
baseline model. Table 5 shows the result of this
evaluation. We note that while there is a small
drop in overall performance on these general bench-
marks, as expected; our substantial improvement in
the text-editing instructions more than compensates
for this. Furthermore, this observation suggests that
the slight drop in general NLP task performance in
lieu of a significant improvement in a specific set
of tasks might be a viable trade-off for the usage
of such LLMs in practical settings, especially in
text-editing applications.



HELLA SWAG ARC_EASY LAMBADA_OPENAI | MMLU
Acc Acc .
Acc (std.err) Norm (std.err) Acc (std.err) Norm (std.err) Perplexity (std.err) Acc (std.err)
LLAMA13B 0.607(0.004) | 0.796(0.004) 0.775(0.008) | 0.737(0.009) 2.971(0.070) 0.531(0.138)
LLAMA13B
(miniAP-heldout) 0.581(0.004) | 0.777(0.004) 0.767(0.008) | 0.720(0.009) 3.153(0.067) 0.498(0.135)

Table 5: Performance on general tasks of our text-editing instruction fine-tuned model against the corresponding baseline. Note
that while there is some drop in performance compared to the baseline this is more than compensated by the very significant
performance gain on text editing instructions, suggesting the tradeoff might be a viable one in practice where one might want to

use LLMs for text-editing applications.

E miniAP Instructions

Figure 9 is the list of instructions in the miniAP

task.
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<styleguide>

<punctuation>

<instruction> Add an apostrophe if using a possessive form of a plural form ending in s.
</instruction>

<instruction> Add an apostrophe s if using a possessive form of a plural form not ending in s.
</instruction>

<instruction> Capitalize the first word after a colon if the word that follows a colon is a proper
noun. </instruction>

<instruction> Capitalize the first word after a colon if what follows a colon is a complete
sentence.

</instruction>

<instruction> Do not capitalize the first word after a colon if what follows is a list or a phrase
that does not begin with a proper noun. </instruction>

<instruction> Do not use [] but replace them with (). </instruction>

<instruction> Use slash without spaces to signify alternatives and not a hyphen. </instruction>
</punctuation>

<abbreviation>

<instruction> Abbreviate titles of persons before their name. </instruction>

<instruction> Abbreviate titles of persons (Junior, Senior) after their name. </instruction>
</abbreviation>

<dateandtime>

<instruction> Abbreviate years using two digits. When abbreviating a year with an apostrophe, the
apostrophe should be turned away from the date.

</instruction>

</dateandtime>

<capitalization>

<instruction> Capitalize only proper nouns and product names. </instruction>

<instruction> Do not capitalize season names except when they are the first word of a sentence.
</instruction>

</capitalization>

<numbers>

<instruction> For single-digit numbers, write them in words. For eg. 9 apples => Nine apples.
</instruction>

<instruction> Write numbers with more than 5 digits using groups of three digits each starting
from the right end. If there is a decimal point, the grouping should only be on the integer side
of the decimal point. </instruction>

<instruction> Use . as a decimal separator when using the decimal point. </instruction>
</numbers>

</styleguide>

Figure 9: List of instructions in the miniAP task.
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