
Do LLMs Paint Within the Lines? Evaluating the Ability of LLMs to
Follow Fine-grained Text Editing Instructions

Anonymous ACL submission

Abstract
Instruction-tuned large language models001
(LLMs) have shown improved performance on002
a variety of NLP tasks and are used extensively003
in many NLP applications, including writing004
assistants. However, little is known about005
their ability to consistently and rigorously006
follow fine-grained instructions, especially007
text editing instructions. In this work, we008
comprehensively characterize the ability009
of popular LLMs to follow fine-grained010
text editing instructions. By introducing a011
benchmark suite that enables a controlled012
evaluation, we show that state-of-the-art LLMs013
show varied performance and can struggle on014
even elementary text editing tasks revealing015
key insights into the limitations of current016
LLMs. We finally show that further instruction017
tuning on text-editing instruction data can be018
an effective approach to improve performance019
on both seen and unseen text-editing tasks.020

1 Introduction021

Modern large-scale language models (LLMs) have022

been aligned to follow instructions. Such LLMs023

have shown the ability to perform several tasks024

like sentiment classification, question answering,025

text summarization, machine translation, and code026

generation when these tasks are described as in-027

structions in suitable prompts (Wang et al., 2018,028

2019; Brown et al., 2020; Hendrycks et al., 2020;029

Surameery and Shakor, 2023).030

Despite instruction-tuned LLMs being used very031

widely, we do not have a clear understanding032

of their instruction-following ability. Prior work033

on rigorously evaluating the instruction-following034

ability of LLMs is relatively scarce (Webson and035

Pavlick, 2022; Min et al., 2022; Kung and Peng,036

2023; Li et al., 2023). Kung et al. (2023) sug-037

gest that some instruction-finetuned models might038

be relying less on the instructions than previously039

thought. Instead, they latch onto superficial arti-040

facts, such as the outputs’ format. Li et al. (2023)041

argue that prior knowledge encoded in the pretrain- 042

ing stage can limit the steerability of models. Still, 043

a fundamental question remains unanswered: How 044

good are current LLMs at following instructions? 045

How does their effectiveness vary with the number 046

of instructions, their complexity, and the depen- 047

dence relations between instructions? 048

In this paper, we seek to advance research on 049

these specific questions in the domain of text- 050

editing instructions. Characterizing the ability of 051

LLMs to follow a set of instructions is critical to 052

many practical text-editing applications in which 053

multiple operations need to be performed in a sin- 054

gle interaction. For example, one might want to 055

correct formatting and grammar as well as improve 056

clarity and then rewrite text to a specific tone. More 057

generally, improving the ability of LLMs to follow 058

a set of (complex) instructions would enable LLMs 059

to rewrite text according to specific style guides, 060

such as AP or MLA. These style guides, which 061

contain instructions on how text must be written 062

to conform to that style, are adopted by publishers, 063

businesses, and media houses to ensure consistency 064

across their communications. 065

We empirically investigate the above questions 066

for popular LLM models. We introduce a suite 067

of text-editing tasks and associated benchmarks 068

to probe the instruction-following ability of each 069

LLM. To do this, we identify three key dimensions 070

on which to probe model performance. We then de- 071

sign text-editing tasks that assess their performance 072

in a controlled manner across representative points 073

along these dimensions (see Figure 1). We observe 074

that model performance varies markedly on these 075

tasks, and even the best models can struggle on 076

some instructions. Our main findings are: 077

• LLMs find many text-editing tasks (even some 078

elementary ones) challenging. Performance 079

is negatively correlated with both instruction 080

complexity and input length. Introducing de- 081

1



pendencies between instructions (especially082

sequential ones) poses even more challenges.083

• OpenAI models generally outperform084

LLAMA2 models. Larger models gener-085

ally perform better, which reinforces the086

importance of model scaling.087

• Fine-tuning of models using text-editing in-088

structions significantly improves performance089

over the baseline on both seen and unseen text-090

editing tasks, suggesting the effectiveness of091

further domain-specific instruction tuning.092

To conclude, our analysis reveals important093

insights into the instruction-following ability of094

LLMs in the domain of text editing - an ability that095

is at the heart of writing assistants.096

2 Setup097

First, we define a set of primary (main) text edit-098

ing tasks and how we constructed benchmarks for099

them. Next, because we also consider settings100

where LLMs may be fine-tuned on instructions101

from the main set of tasks, we also outline a set102

of additional text-editing tasks to evaluate the abil-103

ity to generalize to new tasks/instructions in such104

settings. Finally, we conclude by describing the105

details of the evaluation strategy.106

2.1 Main Tasks107

Our main set of text editing tasks falls into two108

groups: Elementary text editing and Practical text109

editing. (A summary is in Figure 1):110

2.1.1 Elementary Text-Editing Tasks111

Elementary text-editing tasks involve elementary112

string manipulation. Each instruction is very sim-113

ple, the expected output is unambiguous, and eval-114

uation data can be constructed computationally.115

Copy A list of instructions asking the LLM to116

output a specific sequence of tokens. This task117

probes model performance when: (a) each instruc-118

tion is trivial in complexity and (b) each instruction119

is completely independent of others. An example120

is shown below:121

Execute the following instructions:

<instruction> Output the sequence of
tokens enclosed between <token> and </token>
on a new line: <token>cat</token>
<instruction> Output the sequence of tokens
enclosed between <token> and </token> on a
new line: <token>house</token>

Output:

We consider two settings Copy-1 and Copy-N, cor- 122

responding to single and multiple instructions. 123

Edit A list of instructions that transform a source 124

string to a target string in terms of only IN- 125

SERT/DELETE/REPLACE instructions on indices 126

of the source. Such instructions can be efficiently 127

computed using the classic Fisher-Wagner algo- 128

rithm. An example of instructions that transforms 129

coastal to postal is shown below: 130

Execute the below instructions.
All position indexes mentioned are 0-based.

<instruction> Set s to coastal </instruction>
<instruction> Replace the character at
position 0 of s with p and set s to the new
string obtained. </instruction>
<instruction> Delete the character at
position 2 of s and set s to the new string
obtained. </instruction>
<instruction> Output only the string s
</instruction>

Output:

In contrast to Copy task, even though each individ- 131

ual instruction is simple, there is a strict sequential 132

dependency on instructions. Each instruction oper- 133

ates on the output of the prior instruction. Again, 134

we consider two settings Edit-1 and Edit-N, corre- 135

sponding to single and multiple instructions. 136

For both tasks, we generate a test (N:1000) and 137

a non-intersecting training set (N:10000) with vary- 138

ing task parameters (eg. length of strings). 139

2.1.2 Practical text-editing tasks (miniAP) 140

In addition to the elementary tasks, we consider 141

instructions on text editing and manipulation men- 142

tioned in popular language style guides, thus mir- 143

roring practical text-editing scenarios. Since we 144

draw heavily on instructions from the AP (Associ- 145

ated Press) style guide, the task is called miniAP. 146

We consider a set of 15 instructions (see Appendix 147

E) in the AP style guide that are related to the usage 148

of (a) Punctuation, (b) Abbreviations, (c) Capital- 149

ization, (d) Plurals, (e) Number formatting, and 150

2



Figure 1: Our framework for visualizing the different dimensions on which instruction following performance can be measured.
Our tasks are designed to probe model performance at different points in the space spanned by these dimensions. Task names
follow the convention:task-#(instructions)-input size.

(f) Date and Time formatting. We follow instruc-151

tions related to these dimensions because they are152

relatively unambiguous; compliance can be com-153

putationally verified, and collecting relevant data is154

easy. Instructions related to other dimensions, like155

clarity, tone, and sensitivity, tend to be subjective156

and require human evaluation, which we leave to157

future work. We give the model instructions from158

the above set, an input text, and ask the model to159

rewrite the text to comply with the instructions.160

The example below illustrates this:161

Rewrite the text enclosed between <QASD> and
</QASD> so that it complies with the provided
style guide.
<styleguide>
<instruction> Write single-digit numbers in
words. </instruction>
</styleguide>

<QASD>
I bought 9 apples.
</QASD>

Output:

We look at three settings with rising complexity:162

• miniAP-1-1: one instruction and one input163

sentence. This is the easiest configuration.164

• miniAP-N-1: multiple instructions and one165

input sentence. This is a slightly more chal-166

lenging setting since the majority of the in-167

structions may not apply to the input sentence.168

Models need to ignore inapplicable instruc-169

tions but still apply one or more applicable170

instructions.171

• miniAP-N-P: multiple instruction with the 172

input embedded in a five-sentence paragraph. 173

This extends the multiple instruction setting 174

in that the input text is larger and has multiple 175

(potentially) non-compliant sentences 1. 176

To generate test and training data, we use the popu- 177

lar SELFINSTRUCT paradigm (Wang et al., 2022). 178

We use GPT-4 to generate candidate sentences re- 179

lated to a linguistic dimension (e.g. Number us- 180

age). Then we use regular expressions to manip- 181

ulate the sentences in order to generate compliant 182

and non-compliant versions. These are manually re- 183

viewed for correctness). The is a dataset containing 184

triplets of the form (a style guide instruction, 185

a non-compliant sentence, a compliant 186

version) and corresponds to the miniAP-1-1 set- 187

ting. To construct datasets for the other two set- 188

tings, we adapt the dataset as follows: (a) for the 189

miniAP-N-1 setting, replace the instruction field so 190

that it contains all instructions. If needed, we man- 191

ually edit the compliant version to ensure global 192

compliance (compliance with all instructions). (b) 193

for the paragraph-level dataset, miniAP-N-P, we 194

randomly sample records and concatenate them to 195

generate a five-sentence paragraph. For each set- 196

ting, we generate a test set (N:1000) and a training 197

set (N:10000), ensuring that the sets are disjoint. 198

Finally, to evaluate the ability of models to not 199

make erroneous edits to already compliant input, 200

1Both miniAP-N-1 and miniAP-NP settings resemble a
realistic use case where a user might provide several instruc-
tions from a style guide and ask that the LLM rewrite input as
necessary to comply.

3



all datasets contain some records where the input201

text already conforms to the instructions so no edits202

are needed.203

2.2 Additional Tasks and Data204

In addition to the main editing tasks introduced in205

the prior section, we outline two additional tasks.206

These are used to evaluate the ability of text-editing207

instruction fine-tuned LLM models to generalize to208

new instructions/tasks. We also describe the con-209

struction of an additional text instruction following210

dataset GENERIC-TE which we use for further fine-211

tuning of the LLMs.212

miniAP-reversed Task We construct this set of213

instructions from the miniAP-1-1 task by negating214

the original instructions (where the negation is un-215

ambiguous) and swapping the target and the input.216

This asks the model to execute the reverse of the217

original instruction. This strategy is applied to the218

miniAP-1-1 data and is called miniAP-reversed.219

UpperLower task (UL) Task The task and220

settings are identical to the Edit task with one221

major change: Instead of instructions that in-222

sert/delete/replace characters at specific indices and223

have sequential dependencies, the instructions in-224

volve only upper-case/lower-case characters at spe-225

cific indexes. Furthermore, the final output does226

not depend on the instruction application order.227

GENERIC-TE Dataset GENERIC-TE is a large-228

scale diverse text-editing instruction dataset. Prior229

works like ALPACA (Taori et al., 2023) have demon-230

strated that instruction fine-tuning on a large di-231

verse instruction set improves model performance232

on various downstream NLP tasks. Building on this233

observation, we explore the effect of instruction234

fine-tuning on a large, diverse set of text-editing235

instructions. We construct a dataset of 50K exam-236

ples of instruction following data largely adopting237

the process outlined in (Taori et al., 2023) with238

one minor change – in the SELFINSTRUCT stage,239

we ask the model to only focus on text-editing in-240

structions spanning a very diverse set of linguistic241

dimensions (like tone, sensitive language, etc.). We242

use this data only for supervised fine-tuning and not243

for evaluation (since this dataset spans linguistic244

dimensions where evaluation is largely subjective).245

2.3 Evaluation Details246

Prompting Strategy We encode the instructions247

and the input text in a reasonable prompt (like248

the examples shown above), accommodating mi- 249

nor variations that may be needed (e.g. remov- 250

ing the system prompt, etc.). We adopt a best- 251

effort approach to prompt engineering, incorporat- 252

ing known best practices to design prompts. An im- 253

plicit but practical assumption is that “prompt engi- 254

neering effort” is negatively correlated with “model 255

steering/instruction-following ability”. Therefore, 256

when a model requires extensive prompt engineer- 257

ing to follow instructions, intuitively, it implies the 258

model is not as steerable and ranks lower than a 259

model that requires less effort. 260

Evaluation Metric Because we want to measure 261

the ability of models to follow text editing instruc- 262

tions precisely, we use an exact match with the 263

compliant text to be a measure of success and to 264

report accuracy. To maximize success potential, 265

we allow models to be flexible on the output for- 266

mat and perform appropriate post-processing on 267

the output as long as they are largely consistent 268

with their output format (e.g., some models output 269

rewritten text between <output> </output> tags 270

while some just output the rewritten text). 271

3 Models 272

We consider three models: ChatGPT, GPT4 (Ope- 273

nAI, 2023), and LLAMA2 (Touvron et al., 2023). 274

ChatGPT and GPT-4 are closed models, but they 275

are considered to be state-of-the-art and thus es- 276

tablish strong baselines. However, because these 277

models are closed, to investigate the effect of as- 278

pects like (a) model scale, (b) training procedures, 279

and (c) training data, we consider LLAMA2 an 280

open model as well. We focus on the 13B variant 281

unless specified. 2 282

4 Zero-shot Performance 283

We report and analyze the zero-shot performance 284

of our models on our established tasks. 285

Overall Performance. Figure 2 shows overall 286

performance from which we note: 287

• All models perform the Copy task almost per- 288

fectly. Recall that this task involves instruc- 289

tions where (a) each instruction is trivial in 290

complexity and (b) instructions are completely 291

independent. This suggests that very low 292

2We consider the chat variant of LLAMA2 since the base
model is not instruction fine-tuned. We focus on the 13B
variant since it is both an expedient choice and also more
representative of practical use cases.

4



instruction complexity and independence293

correlate with higher performance.294

• All models find the Edit task challenging.295

Even performance on the single instruction296

setting (edit-1) is low. Prior work has noted297

that LLMs (including GPT4) may still strug-298

gle at seemingly elementary tasks like count-299

ing, article swapping, and shift ciphers (Mc-300

Coy et al., 2023). Index-based string editing301

operations is potentially yet another task. Fi-302

nally, performance drops even further in the303

multiple-instruction setting, suggesting that304

sequential dependencies between instruc-305

tions pose additional challenges. We con-306

jecture that this is because models need to op-307

erate implicitly on intermediate outputs, thus308

introducing more points of failure.309

• On the miniAP tasks, we note that perfor-310

mance on the single instruction, single sen-311

tence setting (miniAP-1-1) is generally higher312

than the other settings (miniAP-N-*) reveal-313

ing a clear trend that model performance314

decreases as input size increases. This obser-315

vation further supports the observation around316

general challenges of LLMs handling long317

contexts (Liu et al., 2023). We character-318

ized how performance drops as input length319

increases by analyzing performance at first P320

sentences shown in Figure 3.321

• OpenAI models outperform LLAMA2 on322

average. Both ChaGPT and GPT4 generally323

outperform LLAMA2. Between ChatGPT324

and GPT4, GPT4 generally performs similarly325

to ChatGPT except for the Edit task, where it326

significantly outperforms ChatGPT.327

Effect of Model Scale. Figure 4 shows the im-328

pact of model scale on performance. We can draw329

the following conclusions: On very simple tasks,330

like the Copy task, smaller models perform as well331

as larger ones. On tasks that involve non-trivial332

instructions, the 7B and the 13B models generally333

perform similarly. The largest model (70B) shows334

a clear benefit overall (especially on the edit-1,335

miniAP-1-1 and miniAP-N-1 tasks), suggesting336

that model scaling might yield improvements be-337

yond specific thresholds (here, beyond 13B).338

Effect of Instruction Alignment with Prior339

Knowledge. Because LLMs are trained on mas-340

sive amounts of text and instructions from diverse341

3Error bars represent 95% confidence intervals.

co
py

-1

co
py

-N

ed
it-

1

ed
it-

N

m
in

iA
P-

1-
1

m
in

iA
P-

N-
1

m
in

iA
P-

N-
P

Task

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

model
ChatGPT
GPT4
LLAMA2-13B

Figure 2: Overall performance of models on following text
editing instructions. Models achieve relatively high accuracy
when asked to follow a single instruction or when the instruc-
tions are very simple. However, they struggle in following
multiple instructions, or on larger inputs. 3

1 2 3 4 5
P:#(Sentences)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

@
 fi

rs
t P

miniAP-N-P
ChatGPT
GPT4
LLAMA2-13B

Figure 3: Effect of input length on performance of models.
Accuracy at the first P sentences on the miniAP-N-P task.
Note that as input text length increases, performance drops
and all models display very similar trends.

co
py

-1

co
py

-N

ed
it-

1

ed
it-

N

m
in

iA
P-

1-
1

m
in

iA
P-

N-
1

m
in

iA
P-

N-
P

Task

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

#(params)
7B
13B
70B

Figure 4: Effect of model size on performance. Performance
is stable or increases with model size except on Edit-N.

5



sources, including the Internet, one might con-342

jecture that LLMs have internalized many of the343

miniAP-style instructions. Thus we ask: To what344

extent is model performance a reflection of instruc-345

tions being well-aligned with prior knowledge inter-346

nalized by models during their training phase?. To347

shed some light on this, we measure model perfor-348

mance on counterfactual instructions that likely de-349

viate from the LLM prior. The miniAP-reversed350

task consists of precisely these counterfactual in-351

structions. Table 1 shows the result of this evalu-352

ation. First, we observe that there is a significant353

drop in the performance of ChatGPT (0.82 vs 0.61)354

and LLAMA2 (0.47 vs 0.25) in the counterfactual355

setting when compared to the likely well-aligned356

miniAP setting. This suggests that there is a signif-357

icant effect of priors on model performance, and358

these models are hard to override. GPT4, on the359

other hand, shows some drop but not a significant360

one (0.71 vs 0.68), indicating that GPT4 is likely361

more steerable than the others. These findings are362

in line with Li et al. (2023); Wu et al. (2023), who363

make similar observations regarding the effect of364

prior knowledge on task performance.365

Model Accuracy
MiniAP
(Natural)

Reversed MiniAP
(Counterfactual)

CHATGPT 0.82 0.61
LLAMA2-7B 0.54 0.43
LLAMA2-13B 0.47 0.25
LLAMA2-70B 0.61 0.47
GPT4 0.71 0.68

Table 1: Performance of models (especially ChatGPT and
LLAMA2) degrade when instructions are potentially not well-
aligned with model priors.

co
py

-1

co
py

-N

ed
it-

1

ed
it-

N

m
in

iA
P-

1-
1

m
in

iA
P-

N-
1

m
in

iA
P-

N-
P

Task

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 5: Performance when using a mixture-of-experts ap-
proach. Note the significant improvements on the Edit tasks.

Dimension Error %
ChatGPT LLAMA2

YEAR ABBREV. 7.6 7.3
TITLE ABBREV. 4.8 6.3
PUNCTUATION 15.2 21.6
PLURAL POSS. 24.2 7.5
NUMBER FORMATTING 23.6 21.3
COLON 18.5 17.0
CAPITALIZATION 6.2 19.0

Table 2: Error buckets of models on the miniAP task. Both
model families struggle with instructions related to number
formatting and punctuation inter alia.

miniAP-1-1
FN

miniAP-1-1
FP

miniAP-N-1
FN

miniAP-N-1
FP

Task

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r
ra

te

model
ChatGPT
GPT4
LLAMA2-13B

Figure 6: Performance of models on miniAP-1-1 and
miniAP-N-1 tasks broken down by two major error classes
(a) False Negatives (FN): Error rate on records with non-
compliant input (b) False Positives (FP): Error rate on records
with already compliant input text with no edits needed.

miniAP Task Error Analysis Error analysis of 366

models on the miniAP task. There are two main 367

error categories: False Negatives and False Posi- 368

tives. False negatives occur when the model either 369

misses an error or incorrectly edits non-compliant. 370

False positives occur when the model erroneously 371

makes edits to fully compliant text. 372

Figure 6 shows the error rates for each of these 373

classes for all models in the miniAP-*-1 settings4. 374

We find significant differences between models. 375

First, LLAMA2 performs worse than the OpenAI 376

models. Second, comparing ChatGPT and GPT4 377

in the miniAP-1-1 setting, GPT4 tends to have a 378

much higher false-positive rate, indicating that it 379

is more aggressive than ChatGPT at making ed- 380

its. However, in the multiple instruction setting 381

(miniAP-N-1), GPT-4 has significantly lower false 382

negatives than ChatGPT, indicating it is better at 383

both detecting errors and rewriting the text to be 384

compliant when given multiple instructions. 385

4We focus on single-sentence settings since it is easier to
analyze errors on a single sentence and are representative.

6



What linguistic dimensions pose the most chal-386

lenge? Table 2 shows the breakdown of the errors387

on the miniAP-1-1 task for representative mod-388

els from both families. Observe that all models389

generally find instructions related to ABBREVIA-390

TIONS easier than others. Instructions related to391

PLURAL POSSESSIVES, NUMBER FORMATTING,392

and COLON USAGE tend to be challenging for all393

models. This is likely because these instructions394

tend to be nuanced and have many exceptions.395

Does Instruction Application via Code Genera-396

tion Help? Many of the instructions in our tasks397

can actually be implemented as simple rules. It is,398

therefore, indeed sobering that LLMs may still find399

such instructions challenging to follow. That said,400

we ask whether we can leverage an adjacent ability401

of LLMs – namely, their ability to generate code to402

translate such instructions to computer code instead.403

This may offer a practical alternative with a few404

advantages: (a) Improved consistency–it might be405

easier to generate correct code for an instruction406

relative to directly following it (for e.g., edit-N in-407

structions). (b) Improved interpretability: The408

generated code offers better interpretability and409

potential guarantees of correctness. (c) Reduced410

error rates – the resulting code can be applied411

consistently regardless of input size. (d) Obviously,412

while such instructions could be translated to code413

by human programmers, using LLMs can be much414

more scalable. We thus adopt a mixture-of-experts415

approach: First, we ask the LLM to identify instruc-416

tions that can be implemented as simple Python417

functions and then generate corresponding code.418

The application of the full instruction set is as fol-419

lows: (1) Apply the subset of instructions encoded420

as functions and (2) apply the remaining instruc-421

tions by defaulting to the prompting strategy.422

Figure 5 shows the results of this approach using423

GPT4 5. The results are mixed. Note the large424

gains in performance on the Edit-1 (0.99 vs 0.5)425

and Edit-N (0.6 vs 0.2) tasks relative to our default426

prompting approach (compare to GPT4 results in427

Figure 2). This is because GPT4, by-in-large, gen-428

erates correct code implementing these operations.429

However, on the miniAP tasks, the overall perfor-430

mance is slightly worse because it generates incor-431

rect code for some of the instructions (e.g. number432

formatting). To conclude, such an approach can be433

5We only consider GPT4 as it is known to be much better
at code generation over ChatGPT and CodeLLAMA and thus
establishes a ceiling over both.

effective when LLMs are able to translate human- 434

readable instructions to correct code with a high 435

enough precision to overcome the error rate of the 436

default prompting strategy. 437

5 Does Supervised Fine-tuning help? 438

We noted significant gaps in model performance 439

in the zero-shot setting. Therefore, we ask: 440

Does further fine-tuning on potentially task- 441

specific instruction-following data help boost per- 442

formance? Additionally, we ask how well do such 443

fine-tuned models generalize to unseen tasks like 444

those we outlined in Section 2.2? We investigate 445

further supervised fine-tuning and consider task 446

mixtures that progressively increase the number of 447

held-out tasks: 448

• all-main: We use data from all the tasks out- 449

lined in Section 2.1. 450

• 1-Inst: We only use data from single instruc- 451

tion settings from the tasks outlined in Sec- 452

tion 2.1. This setting assesses whether models 453

trained only on single instructions generalize 454

to multiple instruction settings. 455

• miniAP-held-out: We use data from all tasks 456

outlined in Section 2.1 except the miniAP task. 457

Instead, we include GENERIC-TE, the large- 458

scale generic text editing instruction dataset. 459

• all-held-out: We hold out all tasks and only 460

train on GENERIC-TE. 461

For each main task included, we use 1, 000 train- 462

ing examples per task. We use all examples from 463

GENERIC-TE when it is included. 464

5.1 Fine-tuning Procedure 465

We finetune the LLAMA2(13B) model using stan- 466

dard instruction-based fine-tuning with one minor 467

difference: we use a “completions-only” loss where 468

the loss is computed only on the expected com- 469

pletion (output tokens), although we attend to all 470

tokens. This encourages the model to focus on 471

learning to generate the required output rather than 472

learning to auto-complete parts of the input. We 473

train all models for 1 epoch on 1 A100 instance 474

with 8 GPUs using a per-device batch size of 8. 475

5.2 Evaluation 476

Overall Performance. Tables 3 and 4 show the 477

performance of instruction fine-tuned models. In 478

every setting, the overall performance (see Table 479

4) improves significantly over the baseline. As ex- 480

pected, the gains on the seen tasks are the highest. 481

7



copy
-1

copy
-N

edit
-1

edit
-N

miniAP
-1-1

miniAP
-N-1

miniAP
-N-P

UL
-1

UL
-N

miniAP
(Reversed)

Untrained 0.97 0.99 0.06 0.0 0.47 0.53 0.1 0.15 0.02 0.26
all-main 1.0 1.0 0.86 0.56 0.99 0.97 0.93 0.24 0.04 0.08
1-Inst 0.97 0.41 0.83 0.01 0.98 0.89 0.22 0.51 0.07 0.17
miniAP-heldout 1.0 1.0 0.93 0.58 0.86 0.74 0.42 0.55 0.1 0.58
all-heldout 0.93 0.44 0.13 0.01 0.85 0.65 0.46 0.1 0.0 0.53

Table 3: Performance of supervised fine-tuned models. Blue cells indicate those tasks are held-out in that setting.

Average Accuracy
Overall Seen Unseen

Untrained 0.36 – 0.36
all-main 0.67 0.9 0.12
1-inst 0.51 0.93 0.33
miniAP-heldout 0.68 0.88 0.54
all-heldout 0.41 – 0.41

Table 4: Average performance of LLAMA models on tasks
specific to different settings in supervised fine-tuning.

However, when trained on all the seen tasks, sig-482

nificant gains on seen tasks may result in a perfor-483

mance drop on unseen tasks, especially tasks that484

are counterfactual to the seen task (see miniAP-485

reversed for all-main:0.08 and 1-Inst:0.17 com-486

pared to Untrained:0.26 in Table 3). Instruction487

fine-tuning on a small set of tasks adapts the model488

more aggressively to those tasks, thus limiting gen-489

eralization to new tasks. There is, however, some490

evidence that single-instruction fine-tuned models491

can generalize to apply multiple instructions and492

outperform the baseline overall (0.51 vs 0.36 in Ta-493

ble 4). Finally, settings that include the GENERIC-494

TE dataset significantly boost overall performance,495

demonstrating value in training on a large and very496

diverse set of instructions (see miniAP-heldout497

and all-heldout).498

6 Related Work499

While there is a large body of work on instruc-500

tion fine-tuning (Mishra et al., 2022; Iyer et al.,501

2022; Chung et al., 2022; Taori et al., 2023), ex-502

plicitly evaluating the instruction-following capa-503

bility of LLMs is relatively scarce with the most re-504

lated work being Webson and Pavlick (2022); Kung505

et al. (2023); Zhou et al. (2023); Zeng et al. (2023).506

Webson and Pavlick (2022) investigate the extent507

to which prompt-based models understand their508

prompts and that note good model predictions even509

with misleading prompts, thus cautioning against510

attributing model performance to prompt under-511

standing. Similarly, Kung et al. (2023) argue that512

many instruction fine-tuned models may be relying513

on prompt artifacts (eg., output format) and advise514

caution in ascribing superior performance to their 515

instruction-following ability. Zeng et al. (2023) 516

look at the related problem of evaluating the effi- 517

cacy of “LLM-evaluators” – where an LLM and 518

a prompting strategy are used to rank other LLM 519

model outputs according to some specific criterion 520

(e.g. sensitivity). They propose a benchmark called 521

for evaluating such evaluators and note many evalu- 522

ators vary in their preferred outputs showing signif- 523

icant room for improvement. Li et al. (2023) inves- 524

tigate the reliance of models on prior knowledge, 525

encoded during training when following instruc- 526

tions (e.g., instructions on classifying text). They 527

note that model performance deteriorates signifi- 528

cantly when instructions deviate from the model’s 529

prior knowledge – a finding that is also supported 530

by our work. 531

We differ from the above work in that we eval- 532

uate LLMs on their ability to follow fine-grained 533

text-editing instructions across various dimensions 534

in a controlled manner. We introduce a benchmark 535

suite of tasks consisting of elementary text-editing 536

instructions as well as text-editing instructions de- 537

rived from popular style guides. Finally, we inves- 538

tigate the effect of various model parameters that 539

can guide modeling improvements and practical 540

applications. 541

7 Conclusion 542

We comprehensively investigated the instruction- 543

following ability of LLMs in the context of text 544

editing. We introduced specific tasks and bench- 545

marks to enable a controlled evaluation and provide 546

important insights into the effect of instruction pa- 547

rameters (number, complexity, and dependencies) 548

as well as model parameters (scale, training meth- 549

ods) on model performance. Our findings can help 550

inform LLM modeling efforts and application de- 551

velopment. 552

Limitations 553

Our work has the following limitations. First, we 554

focus only on English. It is quite possible that 555

8



the performance might be significantly different in556

other languages. Second, we focused on a subset557

of instructions of the AP style guide for which it558

was relatively easy to gather gold-standard compli-559

ant data and evaluate automatically. Consequently,560

we do not consider style guidelines that are sub-561

jective and/or related to pragmatic intent (For ex-562

ample: “Keep the audience in mind and make sure563

to encourage them to respond”, “Make the text564

witty and engaging to the audience”). Third, our565

evaluation is limited to paragraph sized text. We566

do not characterize performance on very long in-567

puts (like entire documents or entire style guides568

spanning hundreds of pages). While we expect569

performance to be worse for longer inputs, it is570

additionally possible that we may uncover new in-571

structions that may prove to be challenging at the572

document level. Fourth, our characterization of573

OpenAI model performance is subject to limita-574

tions around their closed nature (e.g. model be-575

havior might change over time and under our feet).576

Finally, it is important to recognize that we seek577

to characterize model performance favoring lower578

efforts in prompt engineering. We concede that579

with extensive prompt engineering, one may find580

prompts that improve model performance on our581

task, but then again, we argue that in such cases,582

such a model is less steerable when adjusted for583

the prompt engineering effort.584

Ethical Considerations585

We use text that is either computationally generated586

(edited) or generated via LLMs (in line with their587

terms of service). Our work does not introduce588

additional ethical considerations other than those589

broadly associated with large language models.590

References591

Tom Brown, Benjamin Mann, Nick Ryder, Melanie592
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind593
Neelakantan, Pranav Shyam, Girish Sastry, Amanda594
Askell, et al. 2020. Language models are few-shot595
learners. Advances in neural information processing596
systems, 33:1877–1901.597

Hyung Won Chung, Le Hou, Shayne Longpre, Barret598
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi599
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.600
2022. Scaling instruction-finetuned language models.601
arXiv preprint arXiv:2210.11416.602

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,603
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.604

2020. Measuring massive multitask language under- 605
standing. arXiv preprint arXiv:2009.03300. 606

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, 607
Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shus- 608
ter, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. 609
2022. Opt-iml: Scaling language model instruc- 610
tion meta learning through the lens of generalization. 611
arXiv preprint arXiv:2212.12017. 612

Po-Nien Kung and Nanyun Peng. 2023. Do models re- 613
ally learn to follow instructions? an empirical study 614
of instruction tuning. In Proceedings of the 61st An- 615
nual Meeting of the Association for Computational 616
Linguistics (Volume 2: Short Papers), pages 1317– 617
1328, Toronto, Canada. Association for Computa- 618
tional Linguistics. 619

Po-Nien Kung et al. 2023. Do models really learn to 620
follow instructions? an empirical study of instruction 621
tuning. In Proceedings of the 61st Annual Meeting of 622
the Association for Computational Linguistics (Vol- 623
ume 2: Short Papers), pages 1317–1328, Toronto, 624
Canada. Association for Computational Linguistics. 625

Shiyang Li, Jun Yan, Hai Wang, Zheng Tang, Xi- 626
ang Ren, Vijay Srinivasan, and Hongxia Jin. 2023. 627
Instruction-following evaluation through verbalizer 628
manipulation. arXiv preprint arXiv:2307.10558. 629

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 630
jape, Michele Bevilacqua, Fabio Petroni, and Percy 631
Liang. 2023. Lost in the middle: How lan- 632
guage models use long contexts. arXiv preprint 633
arXiv:2307.03172. 634

R Thomas McCoy, Shunyu Yao, Dan Friedman, 635
Matthew Hardy, and Thomas L Griffiths. 2023. Em- 636
bers of autoregression: Understanding large language 637
models through the problem they are trained to solve. 638
arXiv preprint arXiv:2309.13638. 639

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, 640
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle- 641
moyer. 2022. Rethinking the role of demonstrations: 642
What makes in-context learning work? In Proceed- 643
ings of the 2022 Conference on Empirical Methods in 644
Natural Language Processing, pages 11048–11064, 645
Abu Dhabi, United Arab Emirates. Association for 646
Computational Linguistics. 647

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 648
Hannaneh Hajishirzi. 2022. Cross-task generaliza- 649
tion via natural language crowdsourcing instructions. 650
In Proceedings of the 60th Annual Meeting of the 651
Association for Computational Linguistics (Volume 652
1: Long Papers), pages 3470–3487, Dublin, Ireland. 653
Association for Computational Linguistics. 654

OpenAI. 2023. Gpt-4 technical report. ArXiv, 655
abs/2303.08774. 656

Nigar M Shafiq Surameery and Mohammed Y Shakor. 657
2023. Use chat gpt to solve programming bugs. In- 658
ternational Journal of Information Technology & 659
Computer Engineering (IJITC) ISSN: 2455-5290, 660
3(01):17–22. 661

9

https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2023.acl-short.113
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://api.semanticscholar.org/CorpusID:257532815


Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann662
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,663
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:664
An instruction-following llama model.665

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-666
bert, Amjad Almahairi, Yasmine Babaei, Nikolay667
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti668
Bhosale, et al. 2023. Llama 2: Open founda-669
tion and fine-tuned chat models. arXiv preprint670
arXiv:2307.09288.671

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-672
preet Singh, Julian Michael, Felix Hill, Omer Levy,673
and Samuel Bowman. 2019. Superglue: A stick-674
ier benchmark for general-purpose language under-675
standing systems. Advances in neural information676
processing systems, 32.677

Alex Wang, Amanpreet Singh, Julian Michael, Felix678
Hill, Omer Levy, and Samuel R Bowman. 2018.679
Glue: A multi-task benchmark and analysis platform680
for natural language understanding. arXiv preprint681
arXiv:1804.07461.682

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-683
isa Liu, Noah A Smith, Daniel Khashabi, and Han-684
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-685
guage model with self generated instructions. arXiv686
preprint arXiv:2212.10560.687

Albert Webson and Ellie Pavlick. 2022. Do prompt-688
based models really understand the meaning of their689
prompts? In Proceedings of the 2022 Conference of690
the North American Chapter of the Association for691
Computational Linguistics: Human Language Tech-692
nologies, pages 2300–2344, Seattle, United States.693
Association for Computational Linguistics.694

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,695
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-696
dreas, and Yoon Kim. 2023. Reasoning or reciting?697
exploring the capabilities and limitations of language698
models through counterfactual tasks. arXiv preprint699
arXiv:2307.02477.700

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya701
Goyal, and Danqi Chen. 2023. Evaluating large702
language models at evaluating instruction following.703
arXiv preprint arXiv:2310.07641.704

Jeffrey Zhou et al. 2023. Instruction-following eval-705
uation for large language models. arXiv preprint706
arXiv:2311.07911.707

10

https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167


A Data Availability708

We will release the benchmark data publicly as a709

resource to the community for academic research710

purposes.711

B Error analysis of Edit Task712

Why do LLMs struggle to perform the Edit task.713

Based on our observations, we can make two con-714

jectures: First, we note that even performance on715

the single instruction case is still only about 50%716

(GPT-4). This suggests that both ChatGPT and717

GPT4 find it challenging to follow basic operations718

on characters at specific indices consistently (note719

even with explicit instructions that 0-based index-720

ing is used. We also noted that explicit CoT and721

implicit CoT prompting also did not yield signifi-722

cant improvement). Second, sequential dependency723

between instructions can be additionally challeng-724

ing because models need to maintain an internal725

scratch buffer because the output at any step crit-726

ically depends on the intermediate output at the727

previous instruction. Both these conjectures sug-728

gest that the final predicted output is likely to be729

close in “edit-distance” similarity to the expected730

output, and we might expect to see the accuracy and731

“edit-distance” similarity drop as the number of in-732

structions increases. Figure 7 shows the accuracy733

and a measure of edit-distance-based similarity6 on734

the test set stratified by a number of instructions.735

Indeed, we note that while the accuracy is low736

as expected, the edit-distance similarity is higher737

(closer to 0.6) and suggests that many characters in738

the predicted output match the characters from the739

expected output with a few errors.740

C Effect of number of training examples741

over performance.742

Figure 8 shows the performance of LLAMA mod-743

els as a function of number of training examples per744

seen task in the supervised fine-tuned setting. Note745

that for simple tasks like the Copy task, only 10746

examples are sufficient to guide the model to learn747

the specific task. In settings with multiple instruc-748

tions or instructions with sequential dependencies,749

one might need up to 1000 examples.750

6We use the measure 2M
T

, which will be between 0 and 1.
M is the total number of character matches, and T is the total
of characters in both prediction and the expected strings.

6 8 10 12 14 16 18
#(Instructions)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y

Accuracy
Similarity

Figure 7: edit-N task: Performance versus #(instructions).
Note that performance drops further when number of instruc-
tions is greater than 15.

co
py

-1

co
py

-N

ed
it-

1

ed
it-

N

m
in

iA
P-

1-
1

m
in

iA
P-

N-
1

m
in

iA
P-

N-
P

Task

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

#(examples)
10
100
1000

Figure 8: Performance of LLAMA models with super-vised
fine-tuning on the benchmark tasks.

D Effect of Text-Editing instruction 751

tuning on general task performance 752

Here, we document the effect of further text-editing 753

instruction tuning on general task performance. We 754

do this by evaluating the performance of our fine- 755

tuned model on the following popular benchmarks: 756

HELLASWAG, ARC_EASY, LAMBADA_OPENAI, 757

MMLU and compare against the corresponding 758

baseline model. Table 5 shows the result of this 759

evaluation. We note that while there is a small 760

drop in overall performance on these general bench- 761

marks, as expected; our substantial improvement in 762

the text-editing instructions more than compensates 763

for this. Furthermore, this observation suggests that 764

the slight drop in general NLP task performance in 765

lieu of a significant improvement in a specific set 766

of tasks might be a viable trade-off for the usage 767

of such LLMs in practical settings, especially in 768

text-editing applications. 769

11



HELLA SWAG ARC_EASY LAMBADA_OPENAI MMLU

Acc (std.err) Acc
Norm (std.err) Acc (std.err) Acc

Norm (std.err) Perplexity (std.err) Acc (std.err)

LLAMA13B 0.607(0.004) 0.796(0.004) 0.775(0.008) 0.737(0.009) 2.971(0.070) 0.531(0.138)
LLAMA13B
(miniAP-heldout) 0.581(0.004) 0.777(0.004) 0.767(0.008) 0.720(0.009) 3.153(0.067) 0.498(0.135)

Table 5: Performance on general tasks of our text-editing instruction fine-tuned model against the corresponding baseline. Note
that while there is some drop in performance compared to the baseline this is more than compensated by the very significant
performance gain on text editing instructions, suggesting the tradeoff might be a viable one in practice where one might want to
use LLMs for text-editing applications.

E miniAP Instructions770

Figure 9 is the list of instructions in the miniAP771

task.772

12



<styleguide>
<punctuation>
<instruction> Add an apostrophe if using a possessive form of a plural form ending in s.
</instruction>
<instruction> Add an apostrophe s if using a possessive form of a plural form not ending in s.
</instruction>
<instruction> Capitalize the first word after a colon if the word that follows a colon is a proper
noun. </instruction>
<instruction> Capitalize the first word after a colon if what follows a colon is a complete
sentence.
</instruction>
<instruction> Do not capitalize the first word after a colon if what follows is a list or a phrase
that does not begin with a proper noun. </instruction>
<instruction> Do not use [] but replace them with (). </instruction>
<instruction> Use slash without spaces to signify alternatives and not a hyphen. </instruction>
</punctuation>

<abbreviation>
<instruction> Abbreviate titles of persons before their name. </instruction>
<instruction> Abbreviate titles of persons (Junior, Senior) after their name. </instruction>
</abbreviation>

<dateandtime>
<instruction> Abbreviate years using two digits. When abbreviating a year with an apostrophe, the
apostrophe should be turned away from the date.
</instruction>
</dateandtime>

<capitalization>
<instruction> Capitalize only proper nouns and product names. </instruction>
<instruction> Do not capitalize season names except when they are the first word of a sentence.
</instruction>
</capitalization>

<numbers>
<instruction> For single-digit numbers, write them in words. For eg. 9 apples => Nine apples.
</instruction>
<instruction> Write numbers with more than 5 digits using groups of three digits each starting
from the right end. If there is a decimal point, the grouping should only be on the integer side
of the decimal point. </instruction>
<instruction> Use . as a decimal separator when using the decimal point. </instruction>
</numbers>
</styleguide>

Figure 9: List of instructions in the miniAP task.

13


	Introduction
	Setup
	Main Tasks
	Elementary Text-Editing Tasks
	Practical text-editing tasks (miniAP)

	Additional Tasks and Data
	Evaluation Details

	Models
	Zero-shot Performance
	Does Supervised Fine-tuning help?
	Fine-tuning Procedure
	Evaluation

	Related Work
	Conclusion
	Data Availability
	Error analysis of Edit Task
	Effect of number of training examples over performance.
	Effect of Text-Editing instruction tuning on general task performance
	miniAP Instructions

