
Greed is Good:
A Unifying Perspective on Guided Generation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Training-free guided generation is a widely used and powerful technique that1

allows the end user to exert further control over the generative process of flow/dif-2

fusion models. Generally speaking, two families of techniques have emerged for3

solving this problem for gradient-based guidance: namely, posterior guidance4

(i.e., guidance by projecting the current sample to the target distribution via the5

target prediction model) and end-to-end guidance (i.e., guidance by performing6

backpropagation throughout the entire ODE solve). In this work, we show that7

these two seemingly separate families can actually be unified by looking at the8

posterior guidance as a greedy strategy of end-to-end guidance. We explore the9

theoretical connections between these two families and provide an in-depth the-10

oretical understanding of these two techniques relative to the continuous ideal11

gradients. Motivated by this analysis, we then show a method for interpolating12

between these two families enabling a trade-off between compute and accuracy13

of the guidance gradients. We then validate this work on several inverse image14

problems and property-guided molecular generation.15

1 Introduction16

Guided generation greatly extends the utility of state-of-the-art generative models by allowing the17

end user to exert greater control over the generative process, ultimately making the tool more useful18

in a wide variety of applications ranging from conditional generation, editing of samples, inverse19

problems &c. We focus particularly on a subset of neural differential equations that model affine20

probability paths, in other words, diffusion and flow models due to their widespread adoption in a21

large variety of practical tasks. E.g., audio [47, 66], images [62, 3], biometrics [6], molecules [31, 2],22

proteins [81, 67], &c.23

We focus on training-free guidance methods—in contrast to training-based methods which require24

training an additional component—due to their flexibility in downstream tasks. These training-free25

techniques can be further broken down into two sub-categories, i.e., posterior and end-to-end guidance.26

The former class of techniques uses a simple estimation of the posterior distribution that can be easily27

found in diffusion models [10] and some flow models [cf . 45, Section 4.8]. This simple posterior28

estimate can then be fed into a guidance function to construct a gradient w.r.t. to the current timestep.29

The latter class of techniques, in contrast, performs backpropagation throughout the entire sampling30

process of the flow/diffusion model [2, 4]. We refer to this category as end-to-end guidance as it31

performs backpropagation throughout the entire sampling trajectory.32

The aim of this work is to bring these two seemingly disparate family of techniques together into33

a single unified view. Our key insight is that we can bridge between techniques that use posterior34

sampling and techniques that use end-to-end optimization for guidance by viewing the former as a35

greedy strategy on the latter.36
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Figure 1: The greedy perspective as a unification of separate families in the taxonomy of training-free
guided generation. We provide a more detailed version of this in Figure 5.

Contributions. In light of this insight, we compare several state-of-the-art techniques from this37

perspective, showing how this perspective yields a unified and flexible framework for viewing guided38

generation with flow/diffusion models. We perform a detailed analysis of this greedy strategy,39

showing that it is not only a unifying view, but that it actually makes good decisions under certain40

scenarios. We then show a perspective which allows one to move between these two classes of guided41

generation techniques, opening up an exciting and novel design space. Lastly, we conduct some42

numerical experiments on inverse image problems and molecule generation.43

Preliminaries. Flow models [44] are a highly popular class of generative models that model the44

generative process as a neural ordinary differential equation (ODE) [9]. Consider two Rd-valued45

random variables: X0 ∼ p(x) and X1 ∼ q(x), denoting the source (noise) and target (data)46

distributions, respectively. Then consider a time-dependent vector field u ∈ C1,r([0, 1]× Rd;Rd)147

with r ≥ 1 which determines a time-dependent flow Φt ∈ C1,r([0, 1]× Rd;Rd) which satisfies the48

ODE49

Φ0(x) = x,
d

dt
Φt(x) = u(t,Φt(x)). (1)

This is known as a Cr-flow and this flow is diffeomorphism in its second argument for all t ∈ [0, 1].50

For notational simplicity let ut(x) 7→ u(t,x). A special case of flow models are known as affine51

probability paths and are defined as Xt = αtX0 + σtX1 with schedule (αt, σt). We provide more52

details on flow models in Section B.1.253

2 An overview of training-free guidance with gradients54

We explore techniques for solving training-free guidance problems—this is in contrast with techniques55

like classifier [13, 71] and classifier-free [28] guidance—which use some off-the-shelf guidance56

function L ∈ C1(Rd) defined on the output of the flow model. I.e., we wish to optimize the ODE solve57

such that the output x1 minimizes L. Suppose we have numerical scheme (Euler, RK4, DPM-Solver,58

&c.) denoted59

Φ : R× R× Rd × C(R× Rd;Rd) → Rd, Φ(tn, tn+1,xn,u
θ
t ) 7→ xn+1. (2)

For simplicity we will omit the explicit dependency of the numerical scheme on uθ
t and assume it60

implicitly; likewise, let Φh(tn, ·, ·) 7→ Φ(tn, tn+1, ·, ·) where h = tn+1− tn. We write this objective61

more formally below in Equation (3).62

1For notational simplicity, we let Ck1,k2,...,kn(X1 × X2 × · · · × Xn;Y ) denote the set of continuous
functions that are ki-times differentiable in the i-th argument mapping from (X1 ×X2 × · · · ×Xn) to Y , if Y
is omitted, then Y = R.

2Without loss of generality we consider flow models which subsume the ODE formulation of diffusion
models.
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Figure 2: Visual comparison of different training-free guided generation techniques.

Problem statement. Given some t1 ∈ [0, 1) and step size regime {t1 < t2 < . . . < tN = 1}
solve:

Find a sequence {xn}Nn=1 which minimizes L(xN ),
subject to xn+1 = Φ(tn+1, tn,xn).

(3)

63

Next, we will detail two popular families of techniques for solving the problem mentioned above. We64

illustrate the relationships between these different families in Figure 1, a taxonomy of training-free65

guidance methods. We note that these two seemingly separate branches can be unified back into a66

single branch, by the viewing posterior guidance techniques as a greedy strategy of the later. Likewise,67

we provide a visual overview of the guidance mechanisms in Figure 2.68

Posterior guidance. A popular technique for training-free guidance is what we will term posterior69

guidance [10, 83]. The key idea behind this strategy is to use the parameterized target prediction70

model xθ
1|t(x), i.e., the expected value of the posterior distribution given Xt = x, to provide a71

guidance gradient of the form ∇xL(xθ
1|t(x)) for some guidance function L ∈ C1(Rd). For literature72

working with score-based generative models [71], this interpretation arose from the famous Tweedie’s73

formula [73, 17]. Thus, for each xn in the ODE solve, we add guidance to it in the form of posterior74

guidance gradient.75

End-to-end optimization for guidance. Another popular class of techniques is what we will76

term end-to-end guidance [2, 4], i.e., techniques which perform guidance by optimizing the initial77

condition x0 w.r.t. the guidance function L; such techniques require performing backpropagation78

through a neural ODE. The first technique for performing this kind of guidance is known as discretize-79

then-optimize (DTO) where the numerical scheme (cf . Equation (2)) is part of the computation graph80

of the model reverse-mode automatic differentiation [43] is applied, i.e., vanilla backpropagation.81

The memory cost of such techniques, however, is O(n), prompting researchers to explore the second82

method known as optimize-then-discretize (OTD) which instead solves another ODE in reverse-83

time which models the continuous-time dynamics of reverse-mode differentiation, this is called the84

continuous adjoint method [9, cf . 37, Section 5.1.2]. This approach has a constant memory cost85

O(1); however, this comes with the cost of several drawbacks related to the numerical scheme. While86

these issues are not particularly relevant to our theoretical analyses, we note them in Appendix E for87

the ML practitioner.88

3 A greedy perspective on guidance89

Now returning back to our problem statement from Equation (3), the end-to-end guidance techniques90

amount to optimizing the initial condition x0 in light of the entire solution trajectory admitted by91

the numerical scheme. A natural question we consider for problems of this form is that rather than92

finding the full sequence {xn}, can we make use of local information instead? I.e., rather than93

solving the full ODE from xt, what if we greedily took a locally optimal step at each xt instead?94
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Formally, we define a greedy strategy is the following augmentation to the numerical scheme from95

Equation (2) as96

xG
n = G(tn,xn,u

θ
tn), xn+1 = Φ(tn, tn+1,x

G
n), (4)

where G is the greedy action which makes its decision from only information available at time tn.97

Now in particular we are interested in a specific greedy action, i.e., posterior guidance. We define this98

greedy action as the solution to the following iterative process with initial value x
(0)
n = xn which99

solves100

x(k+1)
n = x(k)

n − η∇L
(
xθ
1|tn(x

(k)
n )
)
, (5)

for some sufficient number k > 0 and learning rate η > 0.101

By construction this greedy action is the popular strategy of posterior guidance. The rest of this102

section is then devoted to exploring the connections between this greedy action and end-to-end103

guidance schemes. More, succinctly we state our insight as: posterior guidance can be viewed as104

Euler schemes within the DTO or OTD backpropagation schemes.105

To make our analysis simpler, let us write the flow from s to t in terms of the target prediction106

model. The flow from time s to time t can then be expressed as the integral of the right-hand side107

of Equation (13) over time. Thus, the flow is now expressed as a semi-linear integral equation with108

linear term atx and non-linear term btx
θ
1|t(x). Due to this semi-linear structure, we apply the same109

technique of exponential integrators [29] that has been successfully used to simplify numerical110

solvers for diffusion models [49, 85, 21]. N.B., the full derivations and proofs for this section can be111

found in Appendix B.112

Let γt := αt/σt denote the signal-to-noise ratio (SNR), then γt is a monotonically increasing113

sequence in t, due to the properties of (αt, σt) (cf . Equation (11)) and thus has an inverse tγ such114

that tγ(γ(t)) = t. With abuse of notation, we let xγ := xtγ(γ) and xθ
1|γ(·) = xθ

1|tγ(γ)(·). As such,115

we can rewrite the solution to the flow model in terms of γ by making use of exponential integrators,116

which we show in Proposition 3.1 with the full proof provided in Section B.3.117

Proposition 3.1 (Exact solution of affine probability paths). Given an initial value of xs at
time s ∈ [0, 1] the solution xt at time t ∈ [0, 1] of an ODE governed by the vector field in
Equation (12) is:

xt =
σt

σs
xs + σt

∫ γt

γs

xθ
1|γ(xγ) dγ. (6)

118

Greedy guidance as an Euler scheme. Now equipped with this simplified form, we show in119

Theorem 3.2 we draw connections between the greedy strategy both DTO and OTD schemes for120

backpropagation, as an Euler discretization of these schemes with step size h = γ1 − γt.121

Theorem 3.2 (Greedy as an Euler scheme). For some trajectory state xt at time t, the greedy
gradient given by ∇xL(xθ

1|t(x)) is:

1. a DTO scheme with an explicit Euler discretization with step size h = γ1 − γt, and
2. an OTD scheme with implicit Euler discretization with step size h = γ1 − γt.

122

3.1 Is greed good?123

A natural question to ask in light of this discussion on taking this greedy action is why even bother124

backpropagating through the ODE solve at all for guidance? After all, we could simply run the125

optimization process directly in the data space (cf . Equation (5)). So why perform end-to-end126

guidance or this greedy action at all? N.B., the full derivations and proofs for this section may be127

found in Appendix C.128

We consider how the output of the flow model will change under greedy guidance. In particular, we129

are interested in how Φθ
t,1(x) changes under the following gradient step130

x′ = x− η∇xL
(
xθ
1|t(x)

)
. (7)
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To do this, we make use of the Gateaux differential [20] which allows us to define the differential that131

describes how the output of the flow model x1 evolves with changes to x at time t. We present the132

result to this question in Proposition 3.3 below.133

Proposition 3.3 (Dynamics of greedy gradient guidance). Consider the standard affine Gaus-
sian probability paths model trained to zero loss. The Gateaux differential of x at some time
t ∈ [0, 1] in the direction of the gradient ∇xL

(
xθ
1|t(x)

)
is given by

δGxΦ
θ
t,1(x) = −∇xΦ

θ
t,1(x)∇xx

θ
1|t(x)

>∇x1
L(x1). (8)

134

Remark 3.1. From [2, Proposition 4.1] we know that both ∇xΦ
θ
t,1(x) and ∇xx

θ
1|t(x) consist of135

covariance matrices, thus the dynamics of greedy gradient guidance are governed by this covariance136

projection of the loss.137

An important question is whether a greedy strategy makes good decisions at each timestep. I.e., if we138

make a good decision at time t, does that ensure that an optimal solution was made in the sense of139

Φθ
1|t(xt). A natural way to examine this question is to consider whether convergence in the local case140

implies convergence of the whole solution trajectory. We find that up to a bound dependent on the141

step size, convergence in the greedy solution implies convergence in the flow, which we state more142

formally in Theorem 3.4.143

Theorem 3.4 (Greedy convergence). For affine probability paths, if there exists a sequence of
states x(n)

t at time t such that it converges to the locally optimal solution xθ
1|t(x

(n)
t ) → x∗

1.

Then the solution, Φθ
1|t(x

(n)
t ), converges to a neighborhood of size O(h2) centered at x∗

1.
144

3.2 Beyond Euler145

Motivated by this connection between the powerful, but expensive, end-to-end guidance techniques146

and posterior guidance techniques, we ask is there a middle-ground between them? A natural147

extension would be to consider something beyond the Euler scheme from the previous section, e.g.,148

applying the midpoint method or two Euler steps. To motivate this discussion more rigorously we149

present Theorem 3.5, which shows that for any explicit single-step Runge-Kutta solver, the error150

between the ideal gradient and this estimated gradient is on the order of the local truncation error of151

the underlying numerical solver.152

Theorem 3.5 (Truncation error of single-step gradients). Let Φ be an explict Runge-Kutta
solver of order α > 0 of a flow model with flow Φθ

s,t(x). Then for any t ∈ [0, 1],∥∥∇xΦ
θ
t,1(x)−∇xΦt,1(x)

∥∥ = O(hα+1), (9)

where h = 1− t.
153

We can use a higher-order solver to move between posterior and end-to-end guidance exchanging154

compute for gradient accuracy.155

This theoretical tool enables us to move between posterior and full end-to-end guidance choosing156

whichever point between compute and accuracy happens to be most suitable, hopefully opening a157

larger design space for solving interesting problems. Additional discussions and the full derivations158

are found in Appendix D.159

4 Experiments160

Motivated by the theoretical connections from the previous sections we apply the greedy posterior161

strategy (Euler) to several problems using flow/diffusion models, as well as several methods lying in162

the in between space of end-to-end guidance and posterior guidance, namely, a single-step midpoint163

scheme and 2-step Euler scheme.164
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Figure 3: Qualitative visualization of using posterior guidance to solve an inverse problem on the task
of inpainting with a 70% random mask. Top row is the ground truth, middle row is the measurement,
and the bottom row is the reconstruction.

Table 1: A snapshot of the quantitative results for solving inverse image problems on FFHQ. We
report the mean performance (PSNR, SSIM, and LPIPS) across 100 validation images. All tasks are
using a noisy measurement with noise level βy = 0.05. The full results are found in Table 5.

Task Method PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓)

Inpaint (random)

Greedy (Euler) 30.87 0.823 0.141 40.73
Greedy (midpoint) 31.03 0.816 0.139 38.80
Greedy (2-step Euler) 30.80 0.811 0.144 39.23
DAPS 31.12 0.844 0.098 32.17
DPS 25.46 0.823 0.203 69.20

4.1 Inverse problems for images165

A common application of posterior guidance has been in solving inverse problems [71, 11] (cf .166

Appendix G). As such, we explore several inverse problems in the image domain. In particular, we167

explore a set of inverse image problems on a subset of 100 images from the FFHQ [33] 256× 256168

dataset. We make use of the pre-trained diffusion model from Chung, J. Kim, et al. [10] trained on the169

FFHQ dataset. Following [84] we conduct experiments on the following linear tasks: super resolution,170

Gaussian deblurring, motion deblurring, inpaintining (with a box mask), and inpainting (with a171

70% random mask); along with three non-linear problems: phase retrieval, high dynamic range172

(HDR) reconstruction, and non-linear deblurring. We use the standard evaluation metrics of peak173

signal-to-noise-ratio (PSNR), structural similarity index measure (SSIM), Learned Perceptual Image174

Patch Similarity (LPIPS) [86], and Fréchet Inception Distance (FID) [26]. Further configuration175

details are reported in Section H.1.176

Results. We present some qualitative results on reconstructing images from a random mask in177

Section 4. Quantitatively we present a snapshot of our full results (cf . Table 5) on the inpainting with178

random mask and Gaussian deblurring tasks. For reference we include the standard DPS [10] and179

the recent state-of-the-art DAPS [84]. We observe that the posterior guidance strategy works well180

performing closer to DAPS than DPS. Interestingly, on these tasks the extra compute and smaller181

truncation error of the midpoint and 2-step Euler did not lead to any noticeable performance gains.182

We report further results in Section I.2 along with additional analysis and discussion.183

4.2 Molecule generation for QM9184

We also illustrate the core ideas with some experiments in controllable molecule generation on the185

QM9 dataset [63], a popular molecular dataset containing small molecules with up to 29 atoms.186

Following Hoogeboom et al. [31] and Ben-Hamu et al. [2], we perform the conditional generation of187

molecules with specified quantum chemical property values. In particular, we target the following188

properties: polarizability α, orbital energies εHOMO, εLUMO and their gap ∆ε, dipole moment µ,189

and heat capacity Cv. The property classifiers were trained following the methodology outlined in190

Hoogeboom et al. [31]. The underlying flow model is an unconditional equivariant flow matching191

model with conditional optimal transport path [45, Section 4.7], i.e., the EquiFM [72] model. Further192

details are provided in Section H.2. To evaluate the guided generation we calculate the mean193
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Figure 4: Qualitative visualization of controlled generated molecules for various polarizability (α)
levels. Top row is generated using a end-to-end guidance with a DTO scheme and the bottom row is
generated using posterior guidance.

absolute error (MAE) between the predicted property value of the generated molecule by the property194

classifier and the target property value [65]. Additionally in Section I.1 we report the quality of the195

generated molecules by evaluating the atom stability (the percentage of atoms with correct valency)196

and molecule stability (the percentage of molecules where all atoms are stable).197

Table 2: Quantitative evaluation of conditional molecule generation. The MAE is reported for each
molecule property (lower is better).

Property α ∆ε εHOMO εLUMO µ Cv

Unit Bohr2 meV meV meV D cal
K·mol

DTO 1.404 401 176 373 0.372 0.866
Greedy (Euler) 11.282 1265 725 1092 1.559 6.469
Greedy (midpoint) 5.313 1196 599 1057 1.417 2.967
Greedy (2-step Euler) 5.377 1275 560 1204 1.563 2.975

EquiFM 9.525 1494 622 1523 1.628 6.689
Lower bound 0.10 64 39 46 0.043 0.040

Results. In Section 4.1 we present a visual comparison between molecules generated targeting198

different polarizability α values using a DTO end-to-end guidance scheme (essentially D-Flow) and199

the posterior guidance scheme. Notice that as α increases the compactness of the molecules generated200

by a DTO scheme decreases. This trend is less noticeable for the posterior guided samples. We report201

quantitative results in Table 2. We report the unguided EquiFM generated molecules as an upper202

bound and include the theoretical lower bounds from Ben-Hamu et al. [2]. It is here that we notice203

a sharp decrease in performance from using posterior guidance. In particular the greedy (Euler)204

strategy is is highly unstable even performing worse than the unguided model on the α property. The205

introduction of an additional step in the form of either midpoint or 2-step Euler does seem to improve206

performance; although the significance varies property to property.207

5 Conclusion208

In this paper we present a unifying view of two different families of guided generation: end-to-end209

guidance and posterior guidance from the lens of a greedy algorithm. We present numerous theoretical210

connections tying these two families together. Our theoretical analysis shows that there might be211

some reason to believe that such a cheap approximation of the gradient can be reasonable for certain212

tasks. By exploiting the theoretical connections we created, we investigate guidance techniques which213

lie in between these two families giving rise to an exciting novel design space. We then conduct214

several experiments on inverse image problems and on controlled molecule generation to illustrate215

this new design space. We hope that our findings can help future researchers find the optimal spot216

between computational cost and accuracy of gradients for guidance problems.217
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Organization of the appendix495

In Appendix A we discuss previous approaches by exploring posterior guidance and end-to-end496

guidance in greater detail to provide a more comprehensive overview of how this greedy perspective497

connects these various works. Appendix B is devoted to the proofs and derivations from Section 3 in498

the main paper. Likewise, Appendices C and D is devoted to proofs and derivations from Sections 3.1499

and 3.2 respectively. In Appendix E we discuss some important practical issues when using OTD500

for guidance, which we believe several to be useful background for the reader. We provide some501

additional connections between posterior guidance and control signal optimization in Appendix F that502

we were unable to include in the main paper. Appendix G is devoted to providing a brief background503

on inverse problems. Likewise, Appendix H is devoted to discussing the implementation details of the504

numerical experiments in Section 4 and providing a background for the experiments. In Appendix I505

we include additional results that we could not fit into the main paper. Lastly, in Appendix J we506

discuss the limitations and broader impacts of this research.507
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Figure 5: A more detailed taxonomy of training-free guided generation methods from Figure 1 from
the main paper.

A Related works575

We provide a brief summary of previous work exploring either posterior guidance or end-to-end576

guidance strategies. In Figure 5 we provide a more detailed taxonomy of training-free methods for577

gradient-based guided generation based on Figure 1 from the main paper.578

A.1 Posterior guidance579

Recent work in flow/diffusion models has explored the guidance using this strategy; we highlight580

a few notable examples. Diffusion Posterior Sampling (DPS) [10] is a guidance method that uses581

Tweedie’s formula [73] to estimate the gradient of some guidance function defined in the output582

state w.r.t. the noisy state, i.e., E[X1|Xt = x]. Likewise, the work of Bansal et al. [1], Y. Wang, Yu,583

and J. Zhang [80], and Yu et al. [83] explores similar concepts by employing Tweedie’s formula for584

diffusion models. Most of these works have explored using the SDE (or Markov chain) formulation585

of diffusion models rather than the ODE formulation, which is what we primarily focused on in our586

analysis.587

Correcting the guidance trajectory. Several works have explored extensions to the DPS framework588

by using multiple steps of an SDE solver to correct errors made by the guidance steps. In particular,589

FreeDoM [83] explores the usage of a time-reversal strategy repeated for a set number of times in590

each sampling step to correct possible guidance errors. Likewise, recent work by B. Zhang et al. [84]591

explored modeling Langevin dynamics on top of a diffusion ODE to correct measurement errors in592

inverse problems.593

Scheduled hyperparameters. Researchers realized that extra performance can be gained in such594

problems by scheduling hyperparameters like the learning rate (or guidance strength) at different595

timesteps in the numerical scheme [55, 83].596

Beyond Euler. Recent work by Moufad et al. [55] explores an extension to [10] by using a two-step597

method to estimate the guidance gradient. This is mostly closely related to the greedy (2-step Euler)598
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method from the main paper, although they use a stochastic sampling method, so it would be more599

akin to taking two Euler-Maruyama steps.600

A.2 End-to-end guidance601

Within the last year, many researchers have explored backpropagation through flow/diffusion models602

for controllable generation. As mentioned in the main paper, the two main strategies for solving such603

a problem is a DTO or OTD scheme (cf . Appendix E).604

Discretize-then-optimize. FlowGrad proposed by X. Liu et al. [48] uses a DTO scheme to optimize605

an additional control signal (more details on this later) to perform guidance with flow models.606

Although the analysis of Ben-Hamu et al. [2] makes use of the continuous adjoint equations, in607

practice they use the generally preferred approach of DTO with gradient checkpointing.3 Likewise,608

Clark et al. [12], Karunratanakul et al. [35], and Novack et al. [57] all use gradient checkpointing609

with DTO to perform backpropagation through the flow/diffusion model.610

Optimize-then-discretize. Another stream of work has explored the use of continuous adjoint611

equations to perform the backpropagation. The advantage of such approaches is the O(1) memory612

cost, and we enumerate the drawbacks in Appendix E, but suffice to say there are several. To the613

best of our knowledge, the first work to explore this was Nie et al. [56] which used OTD with614

SDEs for the adversarial purification task. More general work came later by Ben-Hamu et al. [2],615

Blasingame and C. Liu [4], and Pan, Liew, et al. [59]. More specifically, Pan, Liew, et al. [59] and616

Pan, Yan, et al. [60] explore bespoke solvers for the continuous adjoint equations of diffusion ODEs.617

Blasingame and C. Liu [4] extends these works by developing bespoke solvers for diffusion ODEs618

and SDEs and performs more theoretical analysis of the problem in the SDE setting. Marion et al.619

[53] explore using the continuous adjoint equations as a part of a larger bi-level optimization scheme620

for guided generation. The work of Ben-Hamu et al. [2] extends the analysis of continuous adjoint621

equations for diffusion models to flow-based models and provides an alternative perspective to the622

analysis performed in the earlier works. Recent work by L. Wang et al. [79] explores an extension of623

Ben-Hamu et al. [2] to Riemannian manifolds which incorporates a control signal to the vector field624

and optimizes both the solution state and co-state, they call their approach OC-Flow.625

Parallel to these works (conceptually) is the work of Wallace, Gokul, Ermon, et al. [76] who uses626

EDICT [77], an invertible formulation of diffusion models, to perform backpropagation through the627

diffusion model. Although not presented or viewed this way in the original work, the later work628

by Blasingame and C. Liu [4] showed that this approach can be viewed as a specific discretization629

scheme of continuous adjoint equations. We note that the EDICT solver, while reversible, is a630

zeroth-order solver and has poor convergence properties [cf . 78].631

Control signal optimization. We discuss this in more detail in Appendix F, but there are several632

works that explore the optimization of an additional control signal z(t) rather than the solution633

trajectory x(t); namely, X. Liu et al. [48] and L. Wang et al. [79].634

B A greedy perspective635

We present the proofs and derivations associated with Section 3.636

B.1 Additional details on flow models637

Applying this flow to the random variable X0 we define a continuous-time Markov process638

{Xt}t∈[0,1] with mapping Xt = Φt(X0). The goal, then, is to learn a flow Φt such that639

X1 = Φ1(X0) ∼ q(x). This procedure amounts to learning a neural network parameterized640

vector field uθ ∈ C1,r([0, 1]× Rd;Rd); this learning procedure can be performed efficiently through641

a simulation-free training process known as flow matching [44] or more generally generator matching642

[30].643

3See https://docs.kidger.site/diffrax/api/adjoints/ for an excellent summary of such design
considerations and why DTO is generally preferable over OTD.
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Throughout the rest of this paper we will assume a standard flow model trained to zero loss and we644

denote the parameterized flow model via Φθ
t (x). We let Φs,t(x) = (Φt ◦ Φ−1

s )(x) denote the flow645

from time s to time t, s, t ∈ [0, 1].646

Affine probability paths. A special subset of flow models, are flows which model an affine647

probability path, i.e., given a schedule (αt, σt) the random process {Xt} is described via the affine648

equation649

Xt = αtX1 + σtX0, (10)
where αt, σt ∈ C∞([0, 1]; [0, 1]) which satisfy650

α0 = σ1 = 0, α1 = σ0 = 1, ∀t ∈ (0, 1) [α̇t > 0, σ̇t < 0]. (11)

The marginal vector field can then be expressed as the following conditional expectation:651

ut(x) = E[α̇tX1 + σ̇tX0|Xt = x]. (12)

This nice form of the marginal vector field enables use to rewrite the vector field in the forms of either652

source [27] or target [40] prediction as653

ut(x) =
β̇t

βt︸︷︷︸
=at

x+
σtα̇t − σ̇tαt

βt︸ ︷︷ ︸
=bt

ft(x), (13)

where βt = −αt for source prediction with ft(x) = x0|t(x) = E[X0|Xt = x] and βt = σt for654

target prediction with ft(x) = x1|t(x) = E[X1|Xt = x]; and at, bt are useful shorthands to be655

used later.656

Remark B.1. The probability flow ODE formulation of diffusion models [71] is subsumed by flow657

models, and represents a model with an affine Gaussian probability paths (AGGP), i.e., (X0,X1) ∼658

π0,1(x0,x1) = p(x0)q(x1) with p(x) = N (x|0, σ2I) [45]. Thus without loss of generality we659

consider flow models of affine probability paths.4660

B.2 Assumptions661

Throughout the norm ‖ · ‖ corresponds to the Euclidean norm ‖ · ‖2. Additionally, we make the662

following (mild) regularity assumptions:663

Assumption B.1. The function at :=
σ̇t

σt
is integrable in [0, 1].664

Assumption B.2. The total derivatives dn

dγn

[
xθ
1|γ(x)

]
exist and are continuous for 0 ≤ n ≤ k − 1.665

Assumption B.1 is necessary for the simplification that we perform with exponential integrators and666

Ben-Hamu et al. [2] make the same assumption in their analysis of the continuous adjoint equations667

for affine probability paths. Assumption B.2 is to ensure that we can take a Taylor expansion of668

xθ
1|γ(x).669

B.3 Proof of Proposition 3.1670

We restate Proposition 3.1 below.671

Proposition 3.1 (Exact solution of affine probability paths). Given an initial value of xs at
time s ∈ [0, 1] the solution xt at time t ∈ [0, 1] of an ODE governed by the vector field in
Equation (12) is:

xt =
σt

σs
xs + σt

∫ γt

γs

xθ
1|γ(xγ) dγ. (6)

672

Proof. Recall that we uniquely define a flow model through the vector field u ∈ C1,1([0, 1]×Rd;Rd).673

The vector field which models the affine conditional flow with schedule (αt, σt), is defined as674

uθ
t (x) = E[α̇tX1 + σ̇tX0|Xt = x]. (14)

4Clearly, diffusion models which solve the reverse-time SDE are different and require a separate analysis.
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With some simple algebra, we can rewrite the vector field in terms of x̂1|t,675

uθ
t (x) = atx+ btx

θ
1|t(x),

at =
σ̇t

σt
bt = α̇t − αt

σ̇t

σt
.

(15)

Now using this definition we can rewrite the solution for xt from xs in terms of x̂1|t,676

xt = xs +

∫ t

s

uθ
τ (xτ ) dτ, (16)

xt = xs +

∫ t

s

aτxτ + bτx
θ
1|τ (xτ ) dτ. (17)

Note the semi-linear form of the integral equation. We can exploit this structure using the technique677

of exponential integrators, [see 21, 49, 85], to simplify Equation (17), under Assumption B.1, to678

xt = e
∫ t
s
au duxs +

∫ t

s

e
∫ t
τ
au dubτx

θ
1|τ (xτ ) dτ. (18)

Now, the integrating factor simplifies quite nicely to679

e
∫ t
s
au du = e

∫ t
s

σ̇u
σu

du = e
∫ σt
σs

1
σ dσ =

σt

σs
, (19)

such that Equation (18) becomes680

xt =
σt

σs
xs + σt

∫ t

s

bτ
στ

xθ
1|τ (xτ ) dτ. (20)

We can simplify bt/σt to find:681

bt
σt

=
α̇tσt − αtσ̇t

σ2
t

=
d

dt

(
αt

σt

)
=

d

dt
γt, (21)

where γt := αt/σt, i.e., the signal-to-noise ratio. As such, we can rewrite Equation (20) with a682

change of variables xγ = xγ−1
t (γ) = xt,683

xt =
σt

σs
xs + σt

∫ γt

γs

xθ
1|γ(xγ) dγ, (22)

concluding the proof.684

Remark B.2. This result bears some similarity to Lu et al. [50, Propostion 5.1]; however, they685

integrate w.r.t. the log-SNR; their result can be recovered, mutatis mutandis, with the identity686

λt = log γt.687

B.4 Proof of Theorem 3.2688

We restate Theorem 3.2 below.689

Theorem 3.2 (Greedy as an Euler scheme). For some trajectory state xt at time t, the greedy
gradient given by ∇xL(xθ

1|t(x)) is:

1. a DTO scheme with an explicit Euler discretization with step size h = γ1 − γt, and
2. an OTD scheme with implicit Euler discretization with step size h = γ1 − γt.

690

Proof. We prove both statements invidually as seperate propositions in Sections B.4.1 and B.4.2.691
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B.4.1 Proof of Proposition B.1692

Proposition B.1 (Greedy as an explicit Euler scheme within DTO). For some trajectory state
xt at time t, the greedy gradient given by ∇xL(xθ

1|t(x)) is the DTO scheme with an explicit
Euler discretization with step size h = γ1 − γt.

693

Proof. From Proposition 3.1 we see that using the target prediction model to estimate x1 is akin694

to taking a first-order approximation of the flow. More specifically, under Assumption B.2 we can695

construct a (k − 1)-th Taylor expansion of Equation (6) with:696

xt =
σt

σs
xs + σt

k−1∑
n=0

dn

dγn

[
xθ
1|γ(xγ)

]
γ=γs

∫ γt

γs

(γ − γs)
n

n!
dγ +O(hk+1), (23)

=
σt

σs
xs + σt

k−1∑
n=0

dn

dγn

[
xθ
1|γ(xγ)

]
γ=γs

hn+1

(n+ 1)!
+O(hk+1), (24)

where h := γt − γs is the step size. Then it follows that for k = 1 the first-order discretization of the697

flow, omitting high-order error terms becomes,698

xt ≈ x̃t =
σt

σs
xs + (αt +

σtαs

σs
)xθ

1|s(xs). (25)

In the limit as t → 1 we have x̃t = xθ
1|s(xs).5 Thus, the greedy gradient is a DTO scheme with an699

explicit Euler discretization with step size h = γ1 − γt.700

B.4.2 Proof of Proposition B.2701

We restate Proposition B.2 below.702

Proposition B.2 (Greedy as an implicit Euler scheme within OTD). For some trajectory state
xt at time t, the greedy gradient given by ∇xtL(xθ

1|t(xt)) is an implicit Euler discretization
of the continuous adjoint equations for the true gradients with step size h = γ1 − γt.

703

For clarity we restate the definition of the continuous adjoint equations. Let uθ ∈ C1,1([0, 1]×Rd;Rd)704

be a model that models the vector field of some ODE and be Lipschitz continuous in its second705

argument. Let x : [0, 1] → Rd be the solution to the ODE with the initial condition x0 ∈ Rd,706

ẋt = uθ(t,xt). For some scalar-valued loss function L ∈ C2(Rd) in x1, let ax := ∂L/∂xt denote707

the gradient. Then ax and related quantity aθ := ∂L/∂θ can be found by solving an augmented708

ODE of the form,709

ax(1) =
∂L
∂x1

,
dax

dt
(t) = −ax(t)

> ∂uθ

∂x
(t,xt),

aθ(1) = 0,
daθ

dt
(t) = −ax(t)

> ∂uθ

∂θ
(t,xt).

(26)

Now we present the proof.710

Proof. The adjoint state can be simplified by rewriting the vector field in terms of the target prediction711

model to find712

dax

dt
(t) = −atax(t)− btax(t)

> ∂xθ
1|t(xt)

∂xt
. (27)

We can express this backwards-in-time ODE as an integral equation in the form of713

ax(s) = ax(t)−
∫ s

t

aτax(t) + bτax(τ)
> ∂xθ

1|τ (xτ )

xτ
dτ,

= ax(t) +

∫ t

s

aτax(t) + bτax(τ)
> ∂xθ

1|τ (xτ )

∂xτ
dτ. (time-reversal) (28)

5Note that despite σt → 0 the asymptotic behavior is well-defined [see 2].

19



Using the technique of exponential integrators we rewrite the integral as714

ax(s) = e
∫ t
s
au duax(t) +

∫ t

s

e
∫ t
τ
au dubτax(τ)

> ∂xθ
1|τ (xτ )

∂xτ
dτ,

=
σt

σs
ax(t) + σt

∫ t

s

bτ
στ

ax(τ)
> ∂xθ

1|τ (xτ )

∂xτ
dτ,

=
σt

σs
ax(t) + σt

∫ γt

γs

ax(γ)
> ∂xθ

1|γ(xγ)

∂xγ
dγ. (29)

By Assumption B.2 it follows that the vector-Jacobian product has (k − 1)-th total derivatives,715

allowing us to define a first-order Taylor expansion around γs:716

ax(s) =
σt

σs
ax(t) + (αt −

σt

σs
αs)ax(s)

> ∂x̂1|s(xs)

∂xs
+O(h2). (30)

Thus, the first-order approximation of the adjoint state at time t with a step size of h = γ1 − γt is the717

implicit equation718

ax(t) = ax(t)
> ∂x̂1|t(xt)

∂xt
. (31)

Now to solve the implicit equation we can use the fixed-point iteration method. Let ax(t)
(0) = ax(1),719

then the first iteration has720

ax(t)
(1) = ax(1)

> ∂x̂1|t(xt)

∂xt
= ∇xt

L(x̂1|t(xt)). (32)

Thus, we have shown that the greedy gradients are equivalent to the first iteration of an implicit Euler721

discretization of the continuous adjoint equations.722

723

C Dynamics of guidance724

In this section we detail some of the formalisms omitted in the main paper concerning the dynamics725

of the gradient flow and greedy gradients.726

We begin by re-establishing some useful prior results. Ben-Hamu et al. [2, Proposition 4.1] showed727

that the gradient of the target prediction model is proportional to the variance of the random variable728

defined by p1|t(x1|x), we restate their result below.729

Lemma C.1 (Gradient of target prediction model). For affine Gaussian probability paths, the gradient730

of the target prediction model xθ
1|t(x) w.r.t. x is proportional to the variance of p1|t(x1|x), i.e.,731

∇xx
θ
1|t(x) =

αt

σ2
t

Var1|t(x), (33)

where732

Var1|t(x) = Ep1|t(x1|x)

[
(x1 − xθ

1|t(x))(x1 − xθ
1|t(x))

>
]
. (34)

Remark C.1. This can be written more generally in terms of the (pushforward) differential Dxx
θ
1|t(x)733

where the underlying spaces are smooth manifolds and xθ
1|t is a smooth map between them [2]. In734

this section, we only consider flow models defined in Euclidean spaces, and so we opt not to elaborate735

on this generalization.736

We restate a well-known result below in Lemma C.2 regarding the continuous-time analogue to737

forward-mode autodifferentiation, or in other words, forward sensitivity.738

Lemma C.2 (Dynamics of Jacobian matrices for flows). Let x0 ∈ Rd and let f ∈ C1,1([0, T ] ×739

Rd;Rd) be uniformly Lipschitz in x. Let x : [0, T ] → Rd be the unique solution to740

x(0) = x0,
dx

dt
(t) = f(t,x(t)). (35)
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Let Φs,t(x), s, t ∈ [0, T ] denote the flow associated with Equation (35). Then let Js(t) := ∇xΦs,t(x)741

denote the Jacobian matrices, where Js : [s, T ] → Rd×d solve the differential equation742

Js(s) = I,
dJs

dt
(t) = ∇xf(t,Φs,t(x(s)))Js(t), (36)

where ∇xf(t, ·) refers to the gradient w.r.t. the second argument.743

Remark C.2. This result is well known and has been extended to controlled differential equations744

[19, Theorem 4.4] and rough differential equations [19, Theorem 11.3]. Kidger [37, Theorem 5.8]745

discusses this result for neural ODEs.746

C.1 Proof of Theorem C.3747

We prove an additional result about the flow of Jacobian matrices for affine Gaussian probability748

paths which complements our analysis.749

Theorem C.3 (Jacobian matrices of affine Gaussian probability paths). For the standard affine
Gaussian probability path with flow model Φθ

s,t(x), the Jacobian matrix ∇xΦs,t(x) as function
of x is given as the solution to

∇xΦ
θ
s,t(x) =

σt

σs
I + σt

∫ t

s

γ̇u
γu
σu

Var1|u(Φ
θ
s,u(x))∇xΦ

θ
s,u(x) du, (37)

where
Var1|t(x) = Ep1|t(x1|x)

[
(x1 − xθ

1|t(x))(x1 − xθ
1|t(x))

>
]
. (38)

750

Remark C.3. From Theorem C.3 we observe the Jacobian-vector product ∇xΦ
θ
s,t(x)

>v corresponds751

to an integral of covariance projections applied to v.6752

This proof follows a similar technique to that used by Blasingame and C. Liu [4] to simplify adjoint753

equations for diffusion models using exponential integrators.754

Proof. Now recall Lemma C.2 which discusses the dynamics of Jacobian matrices for flows, rewriting755

this as an integral equation yields:756

∇xΦ
θ
s,t(x) = I +

∫ t

s

∇xuu
θ
u(Φ

θ
s,u(x))∇xΦ

θ
s,u(x) du. (39)

Now recall the definition of the marginal vector field in terms of the target prediction model (cf .757

Equation (13)) which we use to rewrite Equation (39) as758

∇xΦ
θ
s,t(x) = I +

∫ t

s

∇xu
auΦ

θ
s,u(x)∇xΦ

θ
s,u(x) +∇xu

bux
θ
1|u(Φ

θ
s,u(x))∇xΦ

θ
s,u(x) du,

(i)
= I +

∫ t

s

au∇xΦ
θ
s,u(x) + bu∇xu

xθ
1|u(Φ

θ
s,u(x))∇xΦ

θ
s,u(x) du, (40)

where (i) holds by ∇xu
Φθ

s,u(x) = I . Next we can make use of the popular technique of exponential759

integrators to simplify Equation (39) in combination with Equation (13). Thus, the integral equation760

in Equation (40) becomes761

∇xΦ
θ
s,t(x) = Λa(s, t)I +

∫ t

s

Λa(u, t)bu∇xu
xθ
1|u(Φ

θ
s,u(x))∇xΦ

θ
s,u(x) du, (41)

where Λa(s, t) := exp
∫ t

s
au du is the integrating factor. This simplifies to Λa(s, t) = σt/σs. Using762

this, Equation (41) can be simplified to763

∇xΦ
θ
s,t(x) =

σt

σs
I + σt

∫ t

s

bu
σu

∇xu
xθ
1|u(Φ

θ
s,u(x))∇xΦ

θ
s,u(x) du. (42)

6Readers familiar with the work of Ben-Hamu et al. [2] may notice some similarities between our result
Theorem C.3 and Ben-Hamu et al. [2, Theorem 4.2]. We discuss this more in Remark C.4.
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Now we can apply Lemma C.1 to further simplify Equation (42) to find764

∇xΦ
θ
s,t(x) =

σt

σs
I + σt

∫ t

s

αu

σ3
u

buVar1|u(Φ
θ
s,u(x))∇xΦ

θ
s,u(x) du. (43)

Next we simplify the coefficient αubu/σ
3
u in the integral term. Let γt := αt/σt equal the signal-to-765

noise-ratio. Then we observe766

bt
αt

σ3
t

=

(
α̇t − αt

σ̇t

σt

)
αt

σ3
t

,

=
α̇tσt − σ̇tαt

σ3
t

αt

σ2
t

,

(i)
=

d

dt

[
αt

σt

]
αt

σt

1

σt
,

(ii)
= γ̇t

γt
σt

, (44)

where (i) holds by the quotient rule and (ii) holds by definition of γt. Using this simplification we767

can perform a change-of-variables to simplify the gradient resulting in768

∇xΦ
θ
s,t(x) =

σt

σs
I + σt

∫ t

s

γ̇u
γu
σu

Var1|u(Φ
θ
s,u(x))∇xΦ

θ
s,u(x) du. (45)

769

Remark C.4. Readers familiar with the work of Ben-Hamu et al. [2] may notice some similarities770

between our result Theorem C.3 and Ben-Hamu et al. [2, Theorem 4.2]. The difference between the771

two is that the former is a simplified integral equation; whereas, the latter is the exact solution and772

no longer requires solving an ODE. However, this later solution does require solving a time-ordered773

exponential which requires a formal truncated series expansion, e.g., Magnus expansion.774

Theorem C.3 is closely related to Ben-Hamu et al. [2, Theorem 4.2] which we restate below within775

the context of our notational conventions.7776

Theorem C.4. For the standard affine Gaussian probability path, the differential of Φθ
0,1(x) as of777

function of x is778

∇xΦ
θ
0,1(x) = σ1T exp

[∫ 1

0

1

2
γ̇2
tVar1|t(x) dt

]
, (46)

where T exp denotes the time-ordered exponential.779

The time-ordered exponential8 [24] is defined as780

T exp

[∫ 1

t

A(s) ds

]
=

∞∑
n=0

1

n!

∫ 1

t

ds1 · · ·
∫ 1

t

dsn T {A(s1) . . .A(sn)},

=

∞∑
n=0

∫ 1

t

ds1

∫ s1

t

ds2 · · ·
∫ sn−1

t

dsn A(s1)A(s2) . . .A(sn),

(47)

and the solution can be found the Dyson series [64] or Magnus expansion [51], which are truncated781

in practice. The meta-operator T denotes the time-ordering [16], e.g., consider the time-ordering of782

two operators A,B:783

T {A(s1)B(s2)} :=

{
A(s1)B(s2) if s1 > s2,

±B(s2)A(s1) otherwise.
(48)

For more details we refer the reader to Weinberg [82].784

7With abuse of notation let γ̇2
t denote the time derivative of γ2

t .
8This is closely related to the Peano-Baker series [see 18, Section 7.5].
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C.2 Dynamics of gradient guidance785

We state this more formally below in Proposition C.5.786

Proposition C.5 (Dynamics of gradient guidance). Consider the standard affine Gaussian
probability paths model trained to zero loss. The Gateaux differential of x at some time
t ∈ [0, 1] in the direction of the gradient ∇xL

(
Φθ

t,1(x)
)

is given by

δxΦ
θ
t,1(x) = −∇xΦ

θ
t,1(x)∇xΦ

θ
t,1(x)

>∇x1
L(x1). (49)

787

Thus the behavior of x1 when guided by L is determined by the operator ∇xΦ
θ
t,1(x) which iteratively788

projects the gradient of the loss function by the covariance matrix Var1|t(x). Put another way:789

Performing gradient guidance with L at time t < 1 amounts to guidance which follows the
target distribution p(X1) by projecting ∇x1L(x1) onto to the target distribution via the local
covariance matrix.

790

It is for this reason that it is undesirable to simply perform guidance in the data space as we are likely791

to deviate from this target distribution. From Equation (49) we know that applying the gradient at792

earlier timesteps causes the initial gradient ∇x1
L(x1) to be projected into high-variance directions793

of the target distribution causing the guided sample to stay closer to the true target distribution.794

The next question is: how does x1 change when x is updated with our greedy guidance strategy?795

C.3 Proof of Proposition C.5796

We restate Proposition C.5 below.797

Proposition C.5 (Dynamics of gradient guidance). Consider the standard affine Gaussian
probability paths model trained to zero loss. The Gateaux differential of x at some time
t ∈ [0, 1] in the direction of the gradient ∇xL

(
Φθ

t,1(x)
)

is given by

δxΦ
θ
t,1(x) = −∇xΦ

θ
t,1(x)∇xΦ

θ
t,1(x)

>∇x1
L(x1). (49)

798

Proof. This can be shown from a straightforward derivation:799

δxΦ
θ
t,1(x)

(i)
=

d

dη

∣∣∣∣
η=0

Φθ
t,1

(
x− η∇xL

(
Φθ

t,1(x)
))

,

(ii)
= −∇xΦ

θ
t,1

(
x− η∇xL

(
Φθ

t,1(x)
))

∇xL
(
Φθ

t,1(x)
) ∣∣∣∣

η=0

,

= −∇xΦ
θ
t,1(x)∇xL

(
Φθ

t,1(x)
)
,

(iii)
= −∇xΦ

θ
t,1(x)∇xΦ

θ
t,1(x)

>∇x1
L(x1), (50)

where (i) holds by the definition of the Gateaux differential, (ii) holds by the chain rule, and (iii)800

holds by a substitution of ?? with the simplification of x1 = Φθ
t,1(x).801

C.4 Proof of Proposition 3.3802

We restate Proposition 3.3 below.803

Proposition 3.3 (Dynamics of greedy gradient guidance). Consider the standard affine Gaus-
sian probability paths model trained to zero loss. The Gateaux differential of x at some time
t ∈ [0, 1] in the direction of the gradient ∇xL

(
xθ
1|t(x)

)
is given by

δGxΦ
θ
t,1(x) = −∇xΦ

θ
t,1(x)∇xx

θ
1|t(x)

>∇x1
L(x1). (8)

804
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Proof. This can be shown from a straightforward derivation:805

δGxΦ
θ
t,1(x)

(i)
=

d

dη

∣∣∣∣
η=0

Φθ
t,1

(
x− η∇xL

(
xθ
1|t(x)

))
,

(ii)
= −∇xΦ

θ
t,1

(
x− η∇xL

(
Φθ

t,1(x)
))

∇xL
(
xθ
1|t(x)

) ∣∣∣∣
η=0

,

= −∇xΦ
θ
t,1(x)∇xL

(
xθ
1|t(x)

)
,

(iii)
= −∇xΦ

θ
t,1(x)∇xx

θ
1|t(x)

>∇x1
L(x1), (51)

where (i) holds by the definition of the Gateaux differential, (ii) holds by the chain rule, and (iii)806

holds by the chain rule.807

We note an interesting corollary below.808

Corollary C.5.1 (Dynamics of gradient vs greedy guidance). The difference between the dynamics809

of gradient guidance in Proposition C.5 and greedy gradient guidance in Proposition 3.3 for a point810

x at time t with guidance function L ∈ C1(Rd) is811 ∥∥δxΦθ
t,1(x)− δGxΦ

θ
t,1(x)

∥∥ =

∥∥∥∥∇xΦ
θ
t,1(x)

(
∇xΦ

θ
t,1(x)−∇xx

θ
1|t(x)

)>
∇x1

L(x1)

∥∥∥∥ . (52)

C.5 Proof of Theorem C.6812

Next, we ask what is the difference between the idealized gradient ∇xΦ
θ
t,1(x) and the greedy gradient813

∇xx
θ
1|t(x)? Intuitively, we find that it is bound by the local truncation error, i.e., O(h2) which we814

show below.815

Theorem C.6 (Dynamics of gradient vs greedy guidance). The difference between the dynamics
of gradient guidance in Proposition C.5 and greedy gradient guidance in Proposition 3.3 for a
point x at time t with guidance function L ∈ C1(Rd) is bounded by O(h2) where h := γ1 − γt,
i.e., ∥∥∥∇xΦ

θ
t,1(x)−∇xx

θ
1|t(x)

∥∥∥ = O(h2). (53)
816

Proof. From Corollary C.5.1 it is clear that the difference between δxΦ
θ
t,1(x) and δGxΦ

θ
t,1(x) amounts817

to the difference between the true gradient and gradient of the target prediction model. Recall818

Theorem C.3 which enables to write the gradient as the solution to an integral equation:819

∇xΦ
θ
t,1(x) =

σ1

σt
I + σ1

∫ 1

t

γ̇u
γu
σu

Var1|u(Φ
θ
s,u(x))∇xΦ

θ
t,u(x) du. (54)

Now as σt → 0 as t → 1, we can simplify the integral equation820

∇xΦ
θ
t,1(x) = σ1

∫ 1

t

γ̇u
γu
σu

Var1|u(Φ
θ
t,u(x))∇xΦ

θ
t,u(x) du, (55)

and then by rewriting the integral in terms of dγ = γ̇udu we find821

∇xΦ
θ
t,1(x) = σ1

∫ γ1

γt

γ

σγ
Var1|γ(Φ

θ
γt,γ(x))∇xΦ

θ
γt,γ(x) dγ. (56)

Next we take a first-order Taylor expansion of 1
σγ

Var1|γ(Φ
θ
γt,γ(x))∇xΦ

θ
γt,γ(x) centered at γt which822

yields:823
γ

σγ
Var1|γ(Φ

θ
γt,γ(x))∇xΦ

θ
γt,γ(x) =

γt
σt

Var1|t(x) +O(γ − γt). (57)

For this analysis, it is actually more convenient to include the γ term as part of the Taylor expansion824

rather than computing it in closed form in the integral. Now plugging Equation (57) into Equation (56)825

24



yields826

∇xΦ
θ
t,1(x) = σ1

∫ γ1

γt

γ
1

σt
Var1|t(x) +O(γ − γt) dγ,

(i)
= σ1

γt
σt

Var1|t(x)

∫ γ1

γt

dγ +O(h2),

= σ1
γt
σt

Var1|t(x) (γ1 − γt) +O(h2), (58)

where (i) holds with h := γ1 − γt. Then, with a little algebra we have827

∇xΦ
θ
t,1(x) = σ1

αt

σ2
t

(γ1 − γt)Var1|t(x) +O(h2),

= σ1
αt

σ2
t

(
α1

σ1
− αt

σt

)
Var1|t(x) +O(h2),

=
αt

σ2
t

(
α1 − σ1

αt

σt

)
Var1|t(x) +O(h2),

(i)
=

αt

σ2
t

Var1|t(x) +O(h2), (59)

where (i) holds by the boundary conditions of the schedule (cf . Equation (11)). Now recall Lemma C.1828

which states:829

∇xx
θ
1|t(x) =

αt

σ2
t

Var1|t(x). (60)

Thus from Equation (59) and Equation (60) it is easy to see that830 ∥∥∥∇xΦ
θ
t,1(x)−∇xx

θ
1|t(x)

∥∥∥ = O(h2), (61)

holds and thus831 ∥∥δxΦθ
t,1(x)− δGxΦ

θ
t,1(x)

∥∥ = O(h2). (62)
832

C.6 Proof of Theorem 3.4833

We restate Theorem 3.4 below.834

Theorem 3.4 (Greedy convergence). For affine probability paths, if there exists a sequence of
states x(n)

t at time t such that it converges to the locally optimal solution xθ
1|t(x

(n)
t ) → x∗

1.

Then the solution, Φθ
1|t(x

(n)
t ), converges to a neighborhood of size O(h2) centered at x∗

1.
835

Proof. By Assumption B.2, we can take a (k − 1)-th order Taylor expansion around γt of the flow in836

Equation (6) to obtain837

Φθ
1|t(xt) =

σ1

σt
xt + σ1

∫ γ1

γt

k−1∑
n=0

dn

dγn

[
xθ
1|γ(xγ)

]
γ=γt

(γ − γt)
n

n!
dγ +O(hk+1),

=
σ1

σt
xt + σ1

k−1∑
n=0

dn

dγn

[
xθ
1|γ(xγ)

]
γ=γt

∫ γ1

γt

(γ − γt)
n

n!
dγ +O(hk+1),

=
σ1

σt
xt + σ1

k−1∑
n=0

dn

dγn

[
xθ
1|γ(xγ)

]
γ=γt

hn+1

(n+ 1)!
+O(hk+1), (63)

where h := γ1 − γt is the stepsize. Let k = 1, then we have:838

Φθ
1|t(xt) =

σ1

σt
xn + σ1x̂1|t(xt)h+O(h2), (64)

=
σ1

σt
xn + (α1 −

σ1αt

σt
)x̂1|t(xt) +O(h2). (65)
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By definition σ1 = 0 and α1 = 1, then839

Φθ
1|t(xt) = x̂1|t(xt) +O(h2), (66)

which is equivalent to840 ∥∥∥Φθ
1|t(xt)− x̂1|t(xt)

∥∥∥ ≤ C1h
2, (67)

for some constant C1 > 0. Since xθ
1|t(x

(n)
t ) → x∗

1 we know that for any ε > 0 there exists some841

n ≥ N such that ‖x∗
1 − xθ

1|t(x
(n)
t )‖ < ε. Thus,842 ∥∥∥Φθ

1|t(x
(n)
t )− x∗

1

∥∥∥ ≤
∥∥∥Φθ

1|t(x
(n)
t )− xθ

1|t(x
(n)
t )
∥∥∥+ ∥∥∥x∗

1 − xθ
1|t(x

(n)
t )
∥∥∥ < ε+ C1h

2︸ ︷︷ ︸
:=C2

. (68)

Therefore, Φ1|t(x
(n)
t ) converges to a point inside a neighborhood centered at x∗

1 with radius O(h2).843

844

D Beyond Euler845

In this section we provide the full proofs and derivations for Section 3.2 in the main paper.846

D.1 Proof of Theorem 3.5847

Before showing Theorem 3.5 we show a more general version below.848

Theorem D.1 (Local truncation error of discretize-then-optimize gradients). Let Φ be an
explict Runge-Kutta solver of order α > 0 to the ODE

x(0) = x0,
dx

dt
(t) = uθ(t,x(t)), (69)

on [0, T ] which satisfies the regularity conditions for the Picard-Lindelöf theorem. Let Φθ
s,t(x)

denote the flow from s to t, for any s, t ∈ [0, T ] admitted by the ODE. Then,∥∥∇xΦ
θ
s,t(x)−∇xΦs,t(x)

∥∥ = O(hα+1). (70)
849

Proof. Consider an explicit k-stage Runge-Kutta method given by850

un,j = uθ

(
tn + cjh,xn + h

j∑
i=1

aj,iun,i

)
, j = 1, 2, . . . , k (71)

xn+1 = xn + h

k∑
j=1

bjun,j , (72)

where aj,i, bj , cj are all given via the Butcher Tableau [74, Section 6.1.4]. Now, we consider a single851

step from time s to time t with initial value x and step size h := t− s. Then, the gradient is852

∇xΦs,t(x) = ∇xx+ h

k∑
j=1

bj∇xuθ

(
s+ cjh,x+ h

j∑
i=1

aj,iui

)
,

= I + h

k∑
j=1

bj

[
∇x̂j

uθ(s+ cjh, x̂j)

(
I + h

j∑
i=1

aj,i∇xui

)]
, (73)

where we let853

x̂j = x+ h

j∑
i=1

aj,iui. (74)
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Next, recall Lemma C.2 which gives the following ODE854

Js(s) = I,
dJs

dt
(t) = ∇xuθ(t,Φs,t(x))Js(t). (75)

Next, we augmented the ODE above with the underyling ODE for the solution state, ẋ(t) =855

uθ(t,x(t)). We now apply the same Runge-Kutta solver to this augmented ODE for the Jacobian856

matrices which yields857

Uj = I + h

k∑
j=1

bj

[
∇x̂j

uθ (s+ cjh,x+ x̂j)

(
I + h

j∑
i=1

aj,i∇xui

)]
. (76)

Clearly, Equation (76) and Equation (73) are equivalent. Now as the underlying numerical solver has858

local truncation error O(hα+1) we find that859 ∥∥∇xΦ
θ
s,t(x)−∇xΦs,t(x)

∥∥ = O(hα+1). (77)

860

Remark D.1. This result is intuitive as differentiation is a linear operator. However simple, we861

believe the insight is useful on the discussion of using DTO/OTD/posterior methods for guidance and862

thus include it here.863

Remark D.2. Theorem D.1 shows that DTO and OTD are really just two sides of the same coin and864

that one of the main differences is the choice of end points when discretizing.865

Remark D.3. Onken and Ruthotto [58, Appendix A] made similar observations; however, it is for866

only of the case of Euler.867

Theorem 3.5 (Truncation error of single-step gradients). Let Φ be an explict Runge-Kutta
solver of order α > 0 of a flow model with flow Φθ

s,t(x). Then for any t ∈ [0, 1],∥∥∇xΦ
θ
t,1(x)−∇xΦt,1(x)

∥∥ = O(hα+1), (9)

where h = 1− t.
868

Proof. This follows as a corollary of Theorem D.1.869

Corollary D.1.1 (Convergence of a α-th order posterior gradient). For affine probability paths, if870

there exists a sequence of states x(n)
t at time t such that it converges to the locally optimal solution871

Φθ
t,1(x

(n)
t ) → x∗

1. Then solution, Φθ
1|t(x

(n)
t ), converges to a neighborhood of size O(hα+1) centered872

at x∗
1.873

Proof. This follows as a straightforward derivation from Theorem D.1.874

D.2 A useful reparameterization of the flow model875

We present a useful reparameterization of the flow model, which is a parallel result to Proposition 3.1.876

Proposition D.2 (Reparameterized for the target prediction model of affine probability paths).
The ODE governed by the vector field in Equation (12) can be reparameterized as

dyγ

dγ
= σ0x

θ
1|ζ

(
σγ

σ0
yζ

)
, (78)

where yt =
σ0

σt
xt.

877

Proof. The ODE governed by the vector field in Equation (12) can be written as878

dxt

dt
= atxt + btx

θ
1|t(xt). (79)
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Now we can use the technique of exponential integrators to rewrite the ODE as879

d

dt

[
e
∫ t
0
−au duxt

]
= e

∫ t
0
−au dubtx

θ
1|t(xt). (80)

The exponential term can be simplified to880

e
∫ t
0
−au du =

σ0

σt
. (81)

We introduce a change-of-variables, yt =
σ0

σt
xt. Thus, the ODE becomes881

dyt

dt
=

σ0

σt
btx

θ
1|t

(
σt

σ0
yt

)
. (82)

Next, recall that bt/σt = γ̇t (cf . Equation (21)) which enables a change of integration variable:882

dyγ

dγ
= σ0x

θ
1|γ

(
σγ

σ0
yγ

)
. (83)

883

Remark D.4. Recall that, often, for affine probability paths we let σ0 = 1, further simplifying884

Proposition D.2 to885

dyγ

dγ
= xθ

1|γ (σγyγ) . (84)

Remark D.5. Proposition D.2 is a tangential result to the prior result of Pan, Liew, et al. [59, Equation886

(11)] which was for diffusion models and was developed w.r.t. the source prediction model rather887

than the target prediction model and was solved in reverse-time.9888

This parameterization in Proposition D.2 can be combined with Theorem D.1 to construct a DTO889

approximation of the gradient with truncation error (γt − γs)
α+1.890

E Notes on using OTD in practice891

While the OTD approach has become quite popular after the work of R. T. Chen et al. [9], several892

later works have noticed several key issues that we wish to note for ML practitioners.893

Recall our prototypical neural ODE (or flow model) of the form894

dx

dt
(t) = uθ(t,x(t)), (85)

and assume it is defined on the interval [0, T ] and the flow model statifies the usual regularity895

conditions. Then, the continuous adjoint equations [37, Theorem 5.2] are:896

ax(T ) =
∂L
∂xT

,
dax

dt
(t) = −ax(t)

> ∂uθ

∂x
(t,x(t)),

aθ(T ) = 0,
daθ

dt
(t) = −ax(t)

> ∂uθ

∂θ
(t,x(t)),

(86)

where ax(t) := ∂L/∂x(t) and aθ(0) := ∂L/∂θ.897

Truncation errors. One area of concern is the potential mismatch between the forward trajectory898

{xti}Ni=1 and the backward trajectory {x̃ti}Ni=1 when performing the backwards solve. E.g., consider899

an explicit Euler scheme900

xti+1 = xti + (ti+1 − ti)uθ(ti,xti). (87)
The same scheme when applied to solving the backward trajectory would yield,901

x̃ti = x̃ti+1
+ (ti − ti+1)uθ(ti+1, x̃ti+1

). (88)

Clearly, there is no guarantee that these two trajectories match during the forward and backward solve902

introducing a source of error. One potential solution is to use an algebraically reversible solver [see903

7, 38, 54] which guarantees that the forward and backward trajectory match perfectly. Another option904

is to store the forward trajectory {xti}Ni=1 in memory and use interpolated adjoints if the backward905

timesteps do not perfectly align with the forward timesteps [see 39].906

9Technically forward-time due to the conventions of diffusion models.
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Table 3: Comparison of different strategies for performing backpropagation through flow models.
For the complexity analysis n denotes the number of discretization steps and d the dimensionality of
the state. Note, for accuracy we mean there are no truncation errors. Note that whilst in general the
stability of reversible solvers is quite poor, there are some solvers which have a non-trival region of
stability.

Method Time Memory Accurate gradients Stability

DTO O(n) O(nd2) 3 -
DTO + recursive checkpointing O(n log n) O(d2 log n) 3 -
OTD + stored trajectory O(n) O(nd+ d2) 3 -
OTD + reversible solver O(n) O(d2) 3 ?
OTD O(n) O(d2) 7 7

Stability concerns. Consider the simple ODE, ẏ(t) = λy(t) defined on t ∈ [0, T ] with y(0) = y0907

and λ < 0. Clearly, most ODE solvers with a non-trivial region of stability [see 25, Definition 2.1]908

will solve this ODE without an issue, as the errors will decrease exponentially with λ < 0. However,909

in the backwards in time solve from y(T ) the errors will grow exponentially. It can be shown that910

the adjoint state suffers from similar stability issues. The local behavior of a differential equation is911

described through the eigenvalues of the Jacobian of the vector field [see 8]. For xt this is given by912
∂uθ

∂x and for ax this is given by913

∂

∂ax

(
− ax(t)

> ∂uθ

∂x
(t,x(t))

)
= −∂uθ

∂x
(t,x(t)). (89)

Clearly, the Jacobians for ax and xt solved in reverse-time are identical, meaning the stability of914

the backward solve is pushed onto the solve for the adjoint state [see 37, Section 5.1.2.4] for more915

details. Reversible solvers eliminate truncation errors, but tend to suffer from poor stability, e.g., the916

region of stability for reversible Heun applied to neural ODEs is the complex interval [−i, i] [38].917

Recent work by McCallum and Foster [54], however, has shown a strategy for constructing reversible918

solvers with a non-trivial region of stability.919

Recommendations. In light of these concerns we propose we consider to be best practices for920

deciding what scheme to use.921

Generally, the best choice is DTO when memory allows as it is the most accurate in terms of the922

forward discretization. If memory is an issue then using a clever checkpointing scheme [22, 23, 75]923

can help alleviate such issues in exchange for additional compute time. The recursive checkpointing924

strategy in combination with DTO is actually the default (and recommended) implementation in the925

Diffrax library. Alternatively, one could store the forward trajectory in memory and then apply the926

OTD scheme on these stored states (not activations). This strategy of caching the forward trajectory is927

quite popular and was used by Blasingame and C. Liu [4] and Domingo-Enrich et al. [14] in practice928

when solving the continuous adjoint equations. Another option is to use an algebraically reversible929

solver in conjunction with OTD. Lastly, one could use vanilla OTD, which we should mention can930

actually work reasonably well depending on the application despite the concerns listed above.931

In Table 3 we summarize the discussion of this section and hope it is helpful to the reader.932

F On control signal optimization933

Rather than optimizing the trajectory of the solution or the initial condition, several works [48, 79]934

have explored the guidance from the perspective of optimal control [41]. In essence this technique935

first injects an additional control signal, z ∈ C1(R;Rd), to the vector field, uθ
t , such that936

dxt

dt
= uθ

t (xt) + z(t). (90)

Thus, instead of optimizing {xt}t∈[0,t] directly, this control signal can instead be optimized, serving937

as one of the key insights in [48, 79]. I.e., suppose we have a neural ODE with vector field uθ
t (x),938
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then we can write the optimization problem as939

min
z

L(xT ) + λ

∫ T

0

‖z(t)‖ dt,

s.t. xT = x0 +

∫ T

0

uθ
t (xt) + z(t) dt.

(91)

The next natural question then is to ask about the behavior of a greedy strategy applied to z(t). To940

simplify the analysis, we now consider a control signal applied to the posterior model xθ
1|t such941

that it is replaced by xθ
1|t(xt) + z(t) which amounts to simply rescaling z(t) from Equation (90)942

with bt. From this construction, it should be clear that the greedy gradient for the control signal is943

merely ∇x̃1
L(x̃1). If using the original formulation where the control signal is applied to the vector944

field, rather than the denoiser, the gradient is simply scaled by a weighting function dependent on945

time. Note that this approach is similar to the greedy approach taken by Blasingame and C. Liu [5];946

however, they inject the control signal to the source prediction model rather than the target prediction947

model.948

F.1 Continuous adjoint equations for control signals949

We can model the gradient for this signal by augmenting the continuous adjoint equations with the950

adjoint state az(t) := ∂L/∂z(t). In Theorem F.1 we show that this gradient is simply an integral of951

the adjoint state ax(t).952

Theorem F.1 (Continuous adjoint equations for the control term). Let uθ
t ∈ C1,1([0, T ] ×

Rdx ;Rdx) be a parameterization of some time-dependent vector field of a neural ODE that
is Lipschitz continuous in its second argument, and let z ∈ C1([0, 1];Rd) be an additional
control signal such that the new dynamics are given by Equation (90). Let az(t) := ∂L/∂z(t),
then

az(t) = −
∫ t

T

ax(s) ds. (92)

953

Our proof follows the structure of the modern proof of Pontryagin’s original result [61] presented by954

[9]; and is similar to the form used by Blasingame and C. Liu [4, Theorem 2.2].955

Proof. For notational clarity, we use the notation x(t) = xt. We define the augmented state on [0, T ]956

as957

d

dt

[
x
z

]
(t) = faug =

[
uθ(t,x(t)) + z(t)

dz
dt (t)

]
, (93)

and the augmented adjoint state as958

aaug(t) :=

[
ax

az

]
(t). (94)

The Jacobian of faug has form959

∂faug

∂[x, z]
=

[
∂uθ(t,x(t))

∂x 1
0 0

]
. (95)

The evolution of the adjoint state is given by960

daaug

dt
(t) = − [ax az] (t)

∂faug

∂[x, z]
(t). (96)

Therefore, au(t) evolves with961

au(T ) = 0,
dau

dt
(t) = −ax(t), (97)

thereby finishing the proof.962
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G A brief introduction to inverse problems963

Inverse problems cover a large class of scientific problems [10] that encompass scenarios where a964

partial measurement y is made of x. When the mapping x 7→ y is not an injection, recovering x965

from y becomes an ill-posed inverse problem. Generally, the relationship between the underlying966

sample x and the measurement y is given by967

y = A(x) + η, y,η ∈ Rdy ,x ∈ Rdx , (98)

where A : Rdx → Rdy is the forward measurement operator and η ∼ (0, β2
yI) is the measurement968

noise.969

The inverse problem then is to find p(x|y).
970

More details on these types of problems can be found in Chung, J. Kim, et al. [10], Moufad et al.971

[55], and B. Zhang et al. [84].972

G.1 Inverse problems and diffusion models973

Recall that the ODE formulation of diffusion models is just a particular type of affine Gaussian974

probability path [45]. Following the conventions of the EDM model [34] we write this ODE975

formulation, known in the literature as the probability flow ODE, below in976

dxt = −σ̇tσt∇xt
log p(σt,xt) dt, (99)

where p(σt,xt) is the joint distribution of xt at noise level σt.10 N.B., for diffusion models dt is977

a negative timestep and we integrate in reverse-time from T to 0. These models are also called978

score-based generative models due to learning the score function ∇xt log p(σt,xt).979

One of the insights of Chung, J. Kim, et al. [10] and Y. Song, Sohl-Dickstein, et al. [71] is to apply980

Bayes’ theorem for inverse problems to score-based generative models, i.e.,981

p(x|y) = p(y|x)p(x)
p(y)

, (100)

∇x log p(x|y) = ∇x log p(x) +∇x log p(y|x). (101)

Adapting this for diffusion models, assuming A is defined on x0 (the output), we have982

∇xt
log p(σt,xt|y) = ∇xt

log p(σt,xt) +∇xt
log p(y|xt, σt). (102)

The unconditional score term is the regular score function learned by diffusion models and thus is983

appropriately learned; however, the other term is much more difficult to work with. The approach of984

Chung, J. Kim, et al. [10] is to use an approximation of985

p(y|xt, σt) = Ex0∼p(x0|xt)[p(y|x0, σ0)], (103)

via Tweedie’s formula [73] to write986

p(y|xt, σt) ≈ p(y|E[x0|xt], σ0). (104)

The approximation error can be quantified by the Jensen gap [10, Theorem 1].987

H Experimental details988

We provide additional details of the experiments performed in Section 4. N.B., for all experiments we989

used fixed random seeds between the different software components to ensure a fair comparison.990

10This σt is not the same as the σt from the scheduler (αt, σt) used in the main paper.
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H.1 Inverse image problems991

Inverse problems. The inverse problems are implemented in the same way as in B. Zhang et al.992

[84]. We reiterate some of the important settings below. For Gaussian and motion deblurring we993

made use of kernels of size 61× 61 with standard deviations of 3.0 and 0.5 respectively. The box994

inpainting task makes use of a random box of size 128× 128 to mask the original images, while the995

random inpainting task randomly masks each pixel with a probability of 70% following [68]. The996

measure for the high dynamic range reconstruction problem is defined as997

y ∼ N (clip(αx0,−1, 1), β2
yI), (105)

with α = 2.998

Diffusion model. We make use of the pre-trained diffusion model from Chung, J. Kim, et al.999

[10], trained on the FFHQ 256× 256 dataset. We focus on the probability flow ODE formulation1000

popularized by Karras, Aittala, et al. [34] known as EDM described as1001

dxt = −σ̇tσt∇xt
log p(σt,xt) dt. (106)

Following Ben-Hamu et al. [2], we employ a midpoint scheme to solve this ODE in reverse-time1002

with N = 20 steps. We use the noise schedule σt = t which means σ̇t = 1. The discretized noise1003

schedule {σn}Nn=1 is given by the following polynomial interpolation1004

σn =

(
σ

1
ρ
max +

n

N − 1

(
σ

1
ρ

min − σ
1
ρ
max

))ρ

. (107)

We use ρ = 7, T = σmax = 100, and ε = σmin = 0.01 for all experiments and integrate over [ε, T ].1005

N.B., truncating the integration domain at ε rather than 0 is quite common in diffusion models [70].1006

Hyperparameters. Unlike previous works [84] we did not adjust the hyperparameters per task1007

and left them the same throughout. The learning rate was set at η = 1 for all experiments, and we1008

performed nopt = 50 optimization steps with the stock implementation of the torch.optim.SGD1009

method for each step of the ODE solve. We set βy = 0.05 for all tasks.1010

H.2 Molecule generation for QM91011

We follow the experimental methodology taken in previous work [2, 79] and follow the conditional1012

generation pipeline used by Hoogeboom et al. [31]. An equivariant graph neural network (GNN)1013

was trained for each property on half of the QM9 dataset, serving as a classifier—this model was1014

then used as a guidance function during the experiments. The EquiFM [72] model was trained on the1015

whole QM9 training set and was used as the underlying flow model for the experiments. Following1016

L. Wang et al. [79], the test time properties were sampled from the whole training set; in contrast to1017

Ben-Hamu et al. [2].1018

Following Ben-Hamu et al. [2] we used the L-BFGS algorithm [46] with 5 optimizer steps and 5 inner1019

steps with a linear search, in particular we used the stock PyTorch implementation torch.opt.LBFGS.1020

For the DTO experiment we used a learning rate of η = 1. We tried this for the posterior guidance1021

experiments but encountered severe instability. We found that a learning rate of η = 0.001 seemed to1022

work better.1023

Recall that Proposition 3.3 states that the greedy gradient is scaled by the covariance projection.1024

This effect is lessened as t → 1, thus in later timesteps the greedy gradient is more likely to push1025

samples off the data manifold. We observed this, with exploding losses even at small learning rates.1026

To remedy this, we took inspiration from other works [10, 55, 83] and annealed the learning rate. We1027

chose the following simple scheduler:1028

ηt =

{
η(1− t) t > 0.5

0 t ≤ 0.5
, (108)

where η = 0.001 is the base learning rate.1029
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Runge-Kutta 4. Additionally, we ran some experiments using RK4 but ran into insurmountable1030

stability issues. Recall that RK4 is given by1031

k1 = uθ (tn,xn) , (109)

k2 = uθ

(
tn +

h

2
,xn +

h

2
k1

)
, (110)

k3 = uθ

(
tn +

h

2
,xn +

h

2
k2

)
, (111)

k4 = uθ (tn + h,xn + hk3) , (112)

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4). (113)

Using the step size h = 1 − t we encountered large stability issues with the k4 term due to being1032

evaluated at the endpoint of the flow model trajectory. We tried a mixed-solver scheme were we1033

would start with Euler and then switch to RK4, but that did not help. We also tried the common1034

diffusion trick of truncated the time interval to [0, 1− ε] for some small ε > 0, but this did not solve1035

the stability issues either. Ultimately, we abandoned it for this work and left such explorations for1036

future work. It seems reasonable to suppose that schemes which don’t evaluate on the endpoint, e.g.,1037

Ralston’s method, Heun’s third-order method, or Ralton’s third-order method may fair better.1038

H.3 Numerical schemes1039

We detail the numerical schemes used for posterior guidance beyond Euler.1040

Midpoint. The midpoint scheme used in both experiments is implemented as1041

x1 = xt + huθ

(
t+

h

2
,xt +

h

2
uθ(t,xt)

)
(114)

with step size h = 1− t.111042

2-step Euler. This scheme used in both experiments is implemented as1043

xt+h
2
= xt +

h

2
uθ(t,xt), (115)

x1 = xt+h
2
+

h

2
uθ

(
t+

h

2
,xt+h

2

)
, (116)

with step sizes h = 1− t.1044

H.4 Hardware and compute cost1045

Inverse image problems. The inverse image problem experiments were run on a single NVIDIA1046

H100 80GB GPU. It took roughly 4 minutes and 78 GB of VRAM to generate 10 images for each1047

inverse problem. As such each experiment took about an 40–50 minutes. Experiments which used1048

the midpoint method, unsurprisingly ran about 90% slower.1049

Molecule generation. The molecule generation experiments were run on a single NVIDIA V1001050

16GB GPU. It took about 3 minutes and 1.5 GB of VRAM to generate 1 molecule leading to the1051

experiments taking on the order of 300 minutes to complete. Experiments which used the midpoint1052

method, unsurprisingly ran about 90% slower.1053

I Further experimental results1054

We present additional experimental results that we could not include in the main paper for the sake of1055

space.1056

11This is appropriately adjusted for diffusion models with a terminal time of 0.

33



I.1 Molecule generation for QM91057

In Table 4 we present the atom stability percentage (ASP) and molecule stability percentage (MSP) per1058

property for each guided generation model. Interestingly, despite their poor quantitative performance1059

in MAE (cf . Table 2) the greedy (midpoint) and (2-step Euler) strategies have slightly better stability1060

than DTO.1061

Table 4: Stability reported in ASP/MSP per property.
Property α ∆ε εHOMO εLUMO µ Cv

DTO 94.90/65.00 96.20/74.00 95.90/67.00 96.00/65.00 94.60/61.00 95.00/67.00
Greedy (Euler) 94.70/68.80 96.40/76.00 97.40/79.00 98.40/84.80 97.60/84.00 85.55/21.20
Greedy (midpoint) 97.46/80.00 97.51/83.00 97.91/81.00 97.77/83.00 97.70/81.00 97.09/80.00
Greedy (2-step Euler) 97.67/82.00 96.95/74.00 98.18/84.00 96.29/72.00 97.40/93.00 97.75/84.00

EquiFM 98.88/89.00

I.2 Further results on inverse image problems1062

To put the results from Section 4.1 into context we present some detailed comparisons to other works1063

from the domain of inverse problems with diffussion models, namely:1064

1. DAPS [84],1065

2. DPS [10],1066

3. DDRM [36],1067

4. DDNM [80],1068

5. DCDP [42],1069

6. FPS-SMC [15],1070

7. DiffPIR [87], and1071

8. RED-diff [52].1072

We present the full comparison in Table 5.1073
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Table 5: Additional results for inverse image problems on FFHQ 256× 256.
Task Method PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓)

Super resolution 4×

Greedy (Euler) 27.94 0.728 0.217 66.64
Greedy (midpoint) 27.98 0.727 0.224 70.96
Greedy (2-step Euler) 27.95 0.728 0.220 68.93
DAPS 29.07 0.818 0.177 51.44
DPS 25.86 0.753 0.269 81.07
DDRM 26.58 0.782 0.282 79.25
DDNM 28.03 0.795 0.197 64.62
DCDP 28.66 0.807 0.178 53.81
FPS-SMC 28.42 0.813 0.204 49.25
DiffPIR 26.64 - 0.260 65.77

Inpaint (box)

Greedy (Euler) 23.74 0.732 0.187 46.87
Greedy (midpoint) 24.08 0.724 0.186 44.55
Greedy (2-step Euler) 23.88 0.720 0.188 44.09
DAPS 24.07 0.814 0.133 43.10
DPS 22.51 0.792 0.209 61.27
DDRM 22.26 0.801 0.207 78.62
DDNM 24.47 0.837 0.235 46.59
DCDP 23.89 0.760 0.163 45.23
FPS-SMC 24.86 0.823 0.146 48.34

Inpaint (random)

Greedy (Euler) 30.87 0.823 0.141 40.73
Greedy (midpoint) 31.03 0.816 0.139 38.80
Greedy (2-step Euler) 30.80 0.811 0.144 39.23
DAPS 31.12 0.844 0.098 32.17
DPS 25.46 0.823 0.203 69.20
DDNM 29.91 0.817 0.121 44.37
DCDP 30.69 0.842 0.142 52.51
FPS-SMC 28.21 0.823 0.261 61.23

Gaussian deblurring

Greedy (Euler) 28.01 0.766 0.182 57.04
Greedy (midpoint) 28.36 0.776 0.185 58.55
Greedy (2-step Euler) 28.18 0.774 0.181 57.18
DAPS 29.19 0.817 0.165 53.33
DPS 25.87 0.764 0.219 79.75
DDRM 24.93 0.732 0.239 92.43
DDNM 28.20 0.804 0.216 57.83
DCDP 27.50 0.699 0.304 86.43
FPS-SMC 26.54 0.773 0.253 67.45
DiffPIR 27.36 - 0.236 59.65

Motion deblurring

Greedy (Euler) 29.35 0.748 0.207 63.05
Greedy (midpoint) 29.73 0.762 0.207 66.21
Greedy (2-step Euler) 29.64 0.764 0.203 63.99
DAPS 29.66 0.847 0.157 39.49
DPS 24.52 0.801 0.246 65.23
DCDP 25.08 0.512 0.364 125.13
FPS-SMC 27.39 0.826 0.227 48.32
DiffPIR 26.57 - 0.255 65.78

Phase retrieval

Greedy (Euler) 15.10 0.282 0.598 298.06
Greedy (midpoint) 15.10 0.286 0.595 299.45
Greedy (2-step Euler) 15.07 0.284 0.598 304.60
DAPS 30.63±3.13 0.851±0.072 6.139±0.060 42.71
DPS 17.64±2.97 0.441±0.129 0.410±0.090 104.52
RED-diff 15.60±4.48 0.398±0.195 0.596±0.092 167.43
DCDP 28.65 ± 8.09 0.781±0.217 0.203±0.196 68.13

Nonlinear deblur

Greedy (Euler) 24.767 0.551 0.327 79.06
Greedy (midpoint) 25.09 0.558 0.332 76.73
Greedy (2-step Euler) 24.81 0.547 0.330 76.26
DAPS 28.29±1.77 0.783±0.036 0.155±0.032 49.38
DPS 23.39±2.01 0.623±0.082 0.278±0.060 91.31
RED-diff 30.86±0.51 0.795±0.028 0.160±0.034 43.84
DCDP 27.92±2.64 0.779±0.067 0.183±0.051 51.96

High dynamic range

Greedy (Euler) 24.16 0.767 0.181 43.59
Greedy (midpoint) 26.62 0.809 0.160 37.86
Greedy (2-step Euler) 25.70 0.797 0.165 37.97
DAPS 27.12±3.53 0.752±0.041 0.162±0.072 42.97
DPS 22.73±6.07 0.591±0.141 0.264±0.156 112.82
RED-diff 22.16±3.41 0.512±0.083 0.258±0.089 108.32
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I.3 Sampling trajectories for inverse problems1074

We present the solution trajectories the different guidance algorithms below for solving the HDR1075

inverse problem. Note that the midpoint and 2-step Euler, unsurprisingly, have better approximations1076

of x1.1077

Figure 6: Sampling trajectory for greedy (Euler) solving the HDR inverse problem. Top row is
xθ
1|t(xt) and the bottom row is xt.

Figure 7: Sampling trajectory for greedy (midpoint) solving the HDR inverse problem. Top row is
midpoint estimate and the bottom row is xt.

Figure 8: Sampling trajectory for greedy (2-step Euler) solving the HDR inverse problem. Top row is
2-step Euler estimate and the bottom row is xt.

I.4 More qualitative samples for inverse problems1078

We showcase some examples generated by the greedy gradient strategy (Euler) on the different1079

inverse problems.1080
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Figure 9: Qualitative visualization of using greedy guidance to solve the super resolution 4× inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 10: Qualitative visualization of using greedy guidance to solve the super resolution 4× inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 11: Qualitative visualization of using greedy guidance to solve the Gaussian deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.
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Figure 12: Qualitative visualization of using greedy guidance to solve the motion deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 13: Qualitative visualization of using greedy guidance to solve the Phase retrieval inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 14: Qualitative visualization of using greedy guidance to solve the nonlinear deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.
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Figure 15: Qualitative visualization of using greedy guidance to solve the HDR inverse problem. Top
row is the ground truth, middle row is the measurement, and the bottom row is the reconstruction.
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Figure 16: Qualitative visualization of controlled generated molecules for various dipole moments
(µ). Top row is generated using a end-to-end guidance with a DTO scheme and the bottom row is
generated using posterior guidance.

I.5 More qualitative samples for controlled molecule generation1081

In Section I.4 we present some qualitative results for property-guided molecule generation. In1082

particular, we target different dipole moments.1083

J Discussions1084

J.1 Broader Impacts1085

Controllable generation can be used for many tasks both benign and malicious. The insights from1086

this paper could be used to develop more effective adversarial attacks, generation of harmful content,1087

or other malicious applications.1088

J.2 Limitations1089

As this work is mostly theoretical, our experimental illustrations are limited, serving more to illustrate1090

the key concepts rather than advancing the state-of-the-art within the particular problem. We believe1091

that future work can use these insights to make informed design choices when developing solutions1092

to guided generation problems.1093

In our controllable molecule generation experiments, we take a naïve strategy for annealing the1094

learning rate leaving performance on the table. Moreover, we don’t consider mixed accuracy schemes,1095

i.e., using Euler for certain steps closer to the target and midpoint for steps further away [cf . 55].1096
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