Greed is Good:
A Unifying Perspective on Guided Generation

Zander W. Blasingame Chen Liu
Clarkson University Clarkson University
blasinzw@clarkson.edu cliu@clarkson.edu
Abstract

Training-free guided generation is a widely used and powerful technique that
allows the end user to exert further control over the generative process of flow/dif-
fusion models. Generally speaking, two families of techniques have emerged for
solving this problem for gradient-based guidance: namely, posterior guidance
(i.e., guidance by projecting the current sample to the target distribution via the
target prediction model) and end-to-end guidance (i.e., guidance by performing
backpropagation throughout the entire ODE solve). In this work, we show that
these two seemingly separate families can actually be unified by looking at the
posterior guidance as a greedy strategy of end-to-end guidance. We explore the
theoretical connections between these two families and provide an in-depth the-
oretical understanding of these two techniques relative to the continuous ideal
gradients. Motivated by this analysis, we then show a method for interpolating
between these two families enabling a trade-off between compute and accuracy
of the guidance gradients. We then validate this work on several inverse image
problems and property-guided molecular generation.

1 Introduction

Guided generation greatly extends the utility of state-of-the-art generative models by allowing the
end user to exert greater control over the generative process, ultimately making the tool more useful
in a wide variety of applications ranging from conditional generation, editing of samples, inverse
problems &c. We focus particularly on a subset of neural differential equations that model affine
probability paths, in other words, diffusion and flow models due to their widespread adoption in a
large variety of practical tasks. E.g., audio [47, 66], images [62, 3], biometrics [6], molecules [31, 2],
proteins [82, 68], &c.

We focus on training-free guidance methods—in contrast to training-based methods which require
training an additional component—due to their flexibility in downstream tasks. These training-free
techniques can be further broken down into two sub-categories, i.e., posterior and end-to-end guidance.
The former class of techniques uses a simple estimation of the posterior distribution that can be easily
found in diffusion models [10] and some flow models [cf. 45, Section 4.8]. This simple posterior
estimate can then be fed into a guidance function to construct a gradient w.r.t. to the current timestep.
The latter class of techniques, in contrast, performs backpropagation throughout the entire sampling
process of the flow/diffusion model [2, 4]. We refer to this category as end-to-end guidance as it
performs backpropagation throughout the entire sampling trajectory.

The aim of this work is to bring these two seemingly disparate family of techniques together into
a single unified view. Our key insight is that we can bridge between techniques that use posterior
sampling and techniques that use end-to-end optimization for guidance by viewing the former as a
greedy strategy on the latter.
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Figure 1: The greedy perspective as a unification of separate families in the taxonomy of training-free
guided generation. We provide a more detailed version of this in Figure 5.

Contributions. In light of this insight, we compare several state-of-the-art techniques from this
perspective, showing how this perspective yields a unified and flexible framework for viewing guided
generation with flow/diffusion models. We perform a detailed analysis of this greedy strategy,
showing that it is not only a unifying view, but that it actually makes good decisions under certain
scenarios. We then show a perspective which allows one to move between these two classes of guided
generation techniques, opening up an exciting and novel design space. Lastly, we conduct some
numerical experiments on inverse image problems and molecule generation.

Preliminaries. Flow models [44] are a highly popular class of generative models that model the
generative process as a neural ordinary differential equation (ODE) [9]. Consider two R%-valued
random variables: Xy ~ p(x) and X; ~ ¢(x), denoting the source (noise) and rarget (data)
distributions, respectively. Then consider a time-dependent vector field u € C17 ([0, 1] x R%; R%)!
with 7 > 1 which determines a time-dependent flow ®; € C17([0, 1] x R%; R?) which satisfies the
ODE

d

Op(x) = x, T

Oy (x) = u(t, Di(x)). €))

This is known as a C"-flow and this flow is diffeomorphism in its second argument for all ¢ € [0, 1].
For notational simplicity let u;(x) — w(t, ). A special case of flow models are known as affine
probability paths and are defined as X; = «; X + 0+ X with schedule (o, o). We provide more
details on flow models in Section B.1.?

2 An overview of training-free guidance with gradients

We explore techniques for solving training-free guidance problems—this is in contrast with techniques
like classifier [13, 72] and classifier-free [28] guidance—which use some off-the-shelf guidance
function £ € C!(R?) defined on the output of the flow model. I.e., we wish to optimize the ODE solve
such that the output &1 minimizes £. Suppose we have numerical scheme (Euler, RK4, DPM-Solver,
&c.) denoted

®:RxRxRYxCRxRERY) =R, ®(ty, tyy1, Tn,ul) = gy )
For simplicity we will omit the explicit dependency of the numerical scheme on u{ and assume it

implicitly; likewise, let ®},(t,,, -, -) — ®(t,, tnt1, -, ) Wwhere h = t,,11 — t,,. We write this objective
more formally below in Equation (3).

"For notational simplicity, we let C*¥1:%2:-%n (X x X» x --- x X,,;Y) denote the set of continuous
functions that are k;-times differentiable in the i-th argument mapping from (X1 X X2 X -+ X X,)to Y, if Y
is omitted, then Y = R.

*Without loss of generality we consider flow models which subsume the ODE formulation of diffusion
models.
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Figure 2: Visual comparison of different training-free guided generation techniques.

Problem statement. Given some ¢; € [0, 1) and step size regime {t; < ts < ... <ty =1}
solve:

Find a sequence  {x, })_, which minimizes £(z ),
subject to Tpir1 = P(tnt1,tn, Tn).

3)

Next, we will detail two popular families of techniques for solving the problem mentioned above. We
illustrate the relationships between these different families in Figure 1, a taxonomy of training-free
guidance methods. We note that these two seemingly separate branches can be unified back into a
single branch, by the viewing posterior guidance techniques as a greedy strategy of the later. Likewise,
we provide a visual overview of the guidance mechanisms in Figure 2.

Posterior guidance. A popular technique for training-free guidance is what we will term posterior
guidance [10, 84]. The key idea behind this strategy is to use the parameterized target prediction
model w?lt(m), i.e., the expected value of the posterior distribution given X; = , to provide a

guidance gradient of the form Vmﬁ(wf‘t(:c)) for some guidance function £ € C!(R?). For literature

working with score-based generative models [72], this interpretation arose from the famous Tweedie’s
formula [74, 17]. Thus, for each x,, in the ODE solve, we add guidance to it in the form of posterior
guidance gradient.

End-to-end optimization for guidance. Another popular class of techniques is what we will
term end-to-end guidance [2, 4], i.e., techniques which perform guidance by optimizing the initial
condition xy w.r.t. the guidance function £; such techniques require performing backpropagation
through a neural ODE. The first technique for performing this kind of guidance is known as discretize-
then-optimize (DTO) where the numerical scheme (cf. Equation (2)) is part of the computation graph
of the model reverse-mode automatic differentiation [43] is applied, i.e., vanilla backpropagation.
The memory cost of such techniques, however, is O(n), prompting researchers to explore the second
method known as optimize-then-discretize (OTD) which instead solves another ODE in reverse-
time which models the continuous-time dynamics of reverse-mode differentiation, this is called the
continuous adjoint method [9, c¢f. 37, Section 5.1.2]. This approach has a constant memory cost
O(1); however, this comes with the cost of several drawbacks related to the numerical scheme. While
these issues are not particularly relevant to our theoretical analyses, we note them in Appendix E for
the ML practitioner.

3 A greedy perspective on guidance

Now returning back to our problem statement from Equation (3), the end-to-end guidance techniques
amount to optimizing the initial condition x in light of the entire solution trajectory admitted by
the numerical scheme. A natural question we consider for problems of this form is that rather than
finding the full sequence {x,}, can we make use of local information instead? ILe., rather than
solving the full ODE from x, what if we greedily took a locally optimal step at each x, instead?



Formally, we define a greedy strategy is the following augmentation to the numerical scheme from
Equation (2) as

ch :g(tn,mn,ufn), Ln+1 = @(tn,tn+1,:cg), “4)
where G is the greedy action which makes its decision from only information available at time ¢,,.

Now in particular we are interested in a specific greedy action, i.e., posterior guidance. We define this
greedy action as the solution to the following iterative process with initial value w%o) = x,, which

solves
D) =2k v (w‘iltn (w(k))) ’ N

n

for some sufficient number k£ > 0 and learning rate > 0.

By construction this greedy action is the popular strategy of posterior guidance. The rest of this
section is then devoted to exploring the connections between this greedy action and end-to-end
guidance schemes. More, succinctly we state our insight as: posterior guidance can be viewed as
Euler schemes within the DTO or OTD backpropagation schemes.

To make our analysis simpler, let us write the flow from s to ¢ in terms of the target prediction
model. The flow from time s to time ¢ can then be expressed as the integral of the right-hand side
of Equation (13) over time. Thus, the flow is now expressed as a semi-linear integral equation with
linear term a;x and non-linear term bt:vf‘ ;(x). Due to this semi-linear structure, we apply the same
technique of exponential integrators [29] that has been successfully used to simplify numerical
solvers for diffusion models [49, 86, 21]. N.B., the full derivations and proofs for this section can be
found in Appendix B.

Let v; = ay/o; denote the signal-to-noise ratio (SNR), then 7; is a monotonically increasing
sequence in ¢, due to the properties of (o, o) (¢f. Equation (11)) and thus has an inverse ¢ such

that t.,(y(t)) = t. With abuse of notation, we let @, := x; () and {_(-) = m‘iﬂw(ﬂ(')' As such,

we can rewrite the solution to the flow model in terms of v by making use of exponential integrators,
which we show in Proposition 3.1 with the full proof provided in Section B.3.

Proposition 3.1 (Exact solution of affine probability paths). Given an initial value of x s at
time s € [0, 1] the solution x; at time t € [0, 1] of an ODE governed by the vector field in
Equation (12) is:
ot Yt o
T, = —T,+ Jt/ wlw(:m,) d~y. (6)

S s

Greedy guidance as an Euler scheme. Now equipped with this simplified form, we show in
Theorem 3.2 we draw connections between the greedy strategy both DTO and OTD schemes for
backpropagation, as an Euler discretization of these schemes with step size h = 1 — ;.

Theorem 3.2 (Greedy as an Euler scheme). For some trajectory state x at time t, the greedy
gradient given by Vmﬁ(azf‘t(a:)) is:

1. a DTO scheme with an explicit Euler discretization with step size h = y1 — 7, and
2. an OTD scheme with implicit Euler discretization with step size h = 1 — V.

3.1 Isgreed good?

A natural question to ask in light of this discussion on taking this greedy action is why even bother
backpropagating through the ODE solve at all for guidance? After all, we could simply run the
optimization process directly in the data space (c¢f. Equation (5)). So why perform end-to-end
guidance or this greedy action at all? N.B., the full derivations and proofs for this section may be
found in Appendix C.

We consider how the output of the flow model will change under greedy guidance. In particular, we
are interested in how <I>?’1 () changes under the following gradient step

' =x—nV.L (m‘f‘t(m)) . (7
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To do this, we make use of the Gateaux differential [20] which allows us to define the differential that
describes how the output of the flow model x; evolves with changes to x at time ¢. We present the
result to this question in Proposition 3.3 below.

Proposition 3.3 (Dynamics of greedy gradient guidance). Consider the standard affine Gaus-
sian probability paths model trained to zero loss. The Gateaux differential of x at some time

t € [0, 1] in the direction of the gradient V 5 L (m?“x)) is given by

55(1)?,1(33) = _qu)?,l(w)vwm%t(a’)—rvwl‘c(:ﬂl)' (®)

Remark 3.1. From [2, Proposition 4.1] we know that both qu)f,l(:c) and mef‘t(a:) consist of

covariance matrices, thus the dynamics of greedy gradient guidance are governed by this covariance
projection of the loss.

An important question is whether a greedy strategy makes good decisions at each timestep. Le., if we
make a good decision at time ¢, does that ensure that an optimal solution was made in the sense of
<I>f71 (). A natural way to examine this question is to consider whether convergence in the local case
implies convergence of the whole solution trajectory. We find that up to a bound dependent on the
step size, convergence in the greedy solution implies convergence in the flow, which we state more
formally in Theorem 3.4.

Theorem 3.4 (Greedy convergence). For affine probability paths, if there exists a sequence of

states mﬁ”) at time t such that it converges to the locally optimal solution w%t(wgn)) — x].
Then the solution, <I>f71 (:c,E”’) converges to a neighborhood of size O(h?) centered at x.

3.2 Beyond Euler

Motivated by this connection between the powerful, but expensive, end-to-end guidance techniques
and posterior guidance techniques, we ask is there a middle-ground between them? A natural
extension would be to consider something beyond the Euler scheme from the previous section, e.g.,
applying the midpoint method or two Euler steps. To motivate this discussion more rigorously we
present Theorem 3.5, which shows that for any explicit single-step Runge-Kutta solver, the error
between the ideal gradient and this estimated gradient is on the order of the local truncation error of
the underlying numerical solver.

Theorem 3.5 (Truncation error of single-step gradients). Let ® be an explict Runge-Kutta
solver of order o > 0 of a flow model with flow @g,t(a:). Then for any t € [0, 1],

[Va®f 1 () — Vo1 (2)|| = O, )
where h =1 —t.

Insight. We can use a higher-order solver to move between posterior and end-to-end guidance
exchanging compute for gradient accuracy.

This theoretical tool enables us to move between posterior and full end-to-end guidance choosing
whichever point between compute and accuracy happens to be most suitable, hopefully opening a
larger design space for solving interesting problems. Additional discussions and the full derivations
are found in Appendix D.

4 Experiments

Motivated by the theoretical connections from the previous sections we apply the greedy posterior
strategy (Euler) to several problems using flow/diffusion models, as well as several methods lying in
the in between space of end-to-end guidance and posterior guidance, namely, a single-step midpoint
scheme and 2-step Euler scheme.



Figure 3: Qualitative visualization of using posterior guidance to solve an inverse problem on the task
of inpainting with a 70% random mask. Top row is the ground truth, middle row is the measurement,
and the bottom row is the reconstruction.

Table 1: A snapshot of the quantitative results for solving inverse image problems on FFHQ. We
report the mean performance (PSNR, SSIM, and LPIPS) across 100 validation images. All tasks are
using a noisy measurement with noise level 3, = 0.05. The full results are found in Table 5.

Task Method PSNR (1) SSIM (1) LPIPS() FID()
Greedy (Euler) 30.87 0.823 0.141 40.73

Inpaint (random) Greedy (midpoint) 31.03 0.816 0.139 38.80
Greedy (2-step Euler) 30.80 0.811 0.144 39.23
DAPS 31.12 0.844 0.098 32.17
DPS 25.46 0.823 0.203 69.20

4.1 Inverse problems for images

A common application of posterior guidance has been in solving inverse problems [72, 11] (cf.
Appendix G). As such, we explore several inverse problems in the image domain. In particular, we
explore a set of inverse image problems on a subset of 100 images from the FFHQ [33] 256 x 256
dataset. We make use of the pre-trained diffusion model from Chung, J. Kim, et al. [10] trained on the
FFHQ dataset. Following [85] we conduct experiments on the following linear tasks: super resolution,
Gaussian deblurring, motion deblurring, inpaintining (with a box mask), and inpainting (with a
70% random mask); along with three non-linear problems: phase retrieval, high dynamic range
(HDR) reconstruction, and non-linear deblurring. We use the standard evaluation metrics of peak
signal-to-noise-ratio (PSNR), structural similarity index measure (SSIM), Learned Perceptual Image
Patch Similarity (LPIPS) [87], and Fréchet Inception Distance (FID) [26]. Further configuration
details are reported in Section H.1.

Results. We present some qualitative results on reconstructing images from a random mask in
Section 4. Quantitatively we present a snapshot of our full results (cf. Table 5) on the inpainting with
random mask and Gaussian deblurring tasks. For reference we include the standard DPS [10] and
the recent state-of-the-art DAPS [85]. We observe that the posterior guidance strategy works well
performing closer to DAPS than DPS. Interestingly, on these tasks the extra compute and smaller
truncation error of the midpoint and 2-step Euler did not lead to any noticeable performance gains.
We report further results in Section 1.2 along with additional analysis and discussion.

4.2 Molecule generation for QM9

We also illustrate the core ideas with some experiments in controllable molecule generation on the
QM9 dataset [63], a popular molecular dataset containing small molecules with up to 29 atoms.
Following Hoogeboom et al. [31] and Ben-Hamu et al. [2], we perform the conditional generation of
molecules with specified quantum chemical property values. In particular, we target the following
properties: polarizability «, orbital energies egomo, eLumo and their gap Ae, dipole moment i,
and heat capacity C,,. The property classifiers were trained following the methodology outlined in
Hoogeboom et al. [31]. The underlying flow model is an unconditional equivariant flow matching
model with conditional optimal transport path [45, Section 4.7], i.e., the EquiFM [73] model. Further
details are provided in Section H.2. To evaluate the guided generation we calculate the mean
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Figure 4: Qualitative visualization of controlled generated molecules for various polarizability ()
levels. Top row is generated using a end-to-end guidance with a DTO scheme and the bottom row is
generated using posterior guidance.

absolute error (MAE) between the predicted property value of the generated molecule by the property
classifier and the target property value [65]. Additionally in Section 1.1 we report the quality of the
generated molecules by evaluating the atom stability (the percentage of atoms with correct valency)
and molecule stability (the percentage of molecules where all atoms are stable).

Table 2: Quantitative evaluation of conditional molecule generation. The MAE is reported for each
molecule property (lower is better).

Property o Ae  €HOMO ELUMO w Cy

Unit Bohr? meV meV meV D K‘f:]lol
Greedy (Euler) 11.282 1265 725 1092 1.559  6.469
Greedy (midpoint) 5313 1196 599 1057 1.417  2.967
Greedy (2-step Euler)  5.377 1275 560 1204 1.563  2.975
DTO 1.404 401 176 373 0.372  0.866
EquiFM 9.525 1494 622 1523 1.628  6.689
Lower bound 0.10 64 39 46 0.043  0.040

Results. In Section 4.1 we present a visual comparison between molecules generated targeting
different polarizability « values using a DTO end-to-end guidance scheme (essentially D-Flow) and
the posterior guidance scheme. Notice that as « increases the compactness of the molecules generated
by a DTO scheme decreases. This trend is less noticeable for the posterior guided samples. We report
quantitative results in Table 2. We report the unguided EquiFM generated molecules as an upper
bound and include the theoretical lower bounds from Ben-Hamu et al. [2]. It is here that we notice
a sharp decrease in performance from using posterior guidance. In particular the greedy (Euler)
strategy is is highly unstable even performing worse than the unguided model on the « property. The
introduction of an additional step in the form of either midpoint or 2-step Euler does seem to improve
performance; although the significance varies property to property.

5 Conclusion

In this paper we present a unifying view of two different families of guided generation: end-to-end
guidance and posterior guidance from the lens of a greedy algorithm. We present numerous theoretical
connections tying these two families together. Our theoretical analysis shows that there might be
some reason to believe that such a cheap approximation of the gradient can be reasonable for certain
tasks. By exploiting the theoretical connections we created, we investigate guidance techniques which
lie in between these two families giving rise to an exciting novel design space. We then conduct
several experiments on inverse image problems and on controlled molecule generation to illustrate
this new design space. We hope that our findings can help future researchers find the optimal spot
between computational cost and accuracy of gradients for guidance problems.
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Organization of the appendix

In Appendix A we discuss previous approaches by exploring posterior guidance and end-to-end
guidance in greater detail to provide a more comprehensive overview of how this greedy perspective
connects these various works. Appendix B is devoted to the proofs and derivations from Section 3 in
the main paper. Likewise, Appendices C and D is devoted to proofs and derivations from Sections 3.1
and 3.2 respectively. In Appendix E we discuss some important practical issues when using OTD
for guidance, which we believe several to be useful background for the reader. We provide some
additional connections between posterior guidance and control signal optimization in Appendix F that
we were unable to include in the main paper. Appendix G is devoted to providing a brief background
on inverse problems. Likewise, Appendix H is devoted to discussing the implementation details of the
numerical experiments in Section 4 and providing a background for the experiments. In Appendix I
we include additional results that we could not fit into the main paper. Lastly, in Appendix J we
discuss the limitations and broader impacts of this research.
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Figure 5: A more detailed taxonomy of training-free guided generation methods from Figure 1 from
the main paper.

A Related works

We provide a brief summary of previous work exploring either posterior guidance or end-to-end
guidance strategies. In Figure 5 we provide a more detailed taxonomy of training-free methods for
gradient-based guided generation based on Figure 1 from the main paper.

A.1 Posterior guidance

Recent work in flow/diffusion models has explored the guidance using this strategy; we highlight
a few notable examples. Diffusion Posterior Sampling (DPS) [10] is a guidance method that uses
Tweedie’s formula [74] to estimate the gradient of some guidance function defined in the output
state w.r.t. the noisy state, i.e., E[X|X; = x]. Likewise, the work of Bansal et al. [1], Y. Wang, Yu,
and J. Zhang [81], and Yu et al. [84] explores similar concepts by employing Tweedie’s formula for
diffusion models. Most of these works have explored using the SDE (or Markov chain) formulation
of diffusion models rather than the ODE formulation, which is what we primarily focused on in our
analysis.

Correcting the guidance trajectory. Several works have explored extensions to the DPS framework
by using multiple steps of an SDE solver to correct errors made by the guidance steps. In particular,
FreeDoM [84] explores the usage of a time-reversal strategy repeated for a set number of times in
each sampling step to correct possible guidance errors. Likewise, recent work by B. Zhang et al. [85]
explored modeling Langevin dynamics on top of a diffusion ODE to correct measurement errors in
inverse problems.

Scheduled hyperparameters. Researchers realized that extra performance can be gained in such
problems by scheduling hyperparameters like the learning rate (or guidance strength) at different

timesteps in the numerical scheme [55, 84].

Beyond Euler. Recent work by Moufad et al. [55] explores an extension to [10] by using a two-step
method to estimate the guidance gradient. This is mostly closely related to the greedy (2-step Euler)
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method from the main paper, although they use a stochastic sampling method, so it would be more
akin to taking two Euler-Maruyama steps.

A.2 End-to-end guidance

Within the last year, many researchers have explored backpropagation through flow/diffusion models
for controllable generation. As mentioned in the main paper, the two main strategies for solving such
a problem is a DTO or OTD scheme (cf. Appendix E).

Discretize-then-optimize. FlowGrad proposed by X. Liu et al. [48] uses a DTO scheme to optimize
an additional control signal (more details on this later) to perform guidance with flow models.
Although the analysis of Ben-Hamu et al. [2] makes use of the continuous adjoint equations, in
practice they use the generally preferred approach of DTO with gradient checkpointing.® Likewise,
Clark et al. [12], Karunratanakul et al. [35], and Novack et al. [57] all use gradient checkpointing
with DTO to perform backpropagation through the flow/diffusion model.

Optimize-then-discretize. Another stream of work has explored the use of continuous adjoint
equations to perform the backpropagation. The advantage of such approaches is the O(1) memory
cost, and we enumerate the drawbacks in Appendix E, but suffice to say there are several. To the
best of our knowledge, the first work to explore this was Nie et al. [56] which used OTD with
SDE:s for the adversarial purification task. More general work came later by Ben-Hamu et al. [2],
Blasingame and C. Liu [4], and Pan, Liew, et al. [59]. More specifically, Pan, Liew, et al. [59] and
Pan, Yan, et al. [60] explore bespoke solvers for the continuous adjoint equations of diffusion ODE:s.
Blasingame and C. Liu [4] extends these works by developing bespoke solvers for diffusion ODEs
and SDEs and performs more theoretical analysis of the problem in the SDE setting. Marion et al.
[53] explore using the continuous adjoint equations as a part of a larger bi-level optimization scheme
for guided generation. The work of Ben-Hamu et al. [2] extends the analysis of continuous adjoint
equations for diffusion models to flow-based models and provides an alternative perspective to the
analysis performed in the earlier works. Recent work by L. Wang et al. [80] explores an extension of
Ben-Hamu et al. [2] to Riemannian manifolds which incorporates a control signal to the vector field
and optimizes both the solution state and co-state, they call their approach OC-Flow.

Parallel to these works (conceptually) is the work of Wallace, Gokul, Ermon, et al. [77] who uses
EDICT [78], an invertible formulation of diffusion models, to perform backpropagation through the
diffusion model. Although not presented or viewed this way in the original work, the later work
by Blasingame and C. Liu [4] showed that this approach can be viewed as a specific discretization
scheme of continuous adjoint equations. We note that the EDICT solver, while reversible, is a
zeroth-order solver and has poor convergence properties [cf. 79].

Control signal optimization. We discuss this in more detail in Appendix F, but there are several
works that explore the optimization of an additional control signal z(¢) rather than the solution
trajectory x(t); namely, X. Liu et al. [48] and L. Wang et al. [80].

B A greedy perspective

We present the proofs and derivations associated with Section 3.

B.1 Additional details on flow models

Applying this flow to the random variable X, we define a continuous-time Markov process
{Xi}iepo,) with mapping X; = ®;(X,). The goal, then, is to learn a flow ®; such that
X1 = ®1(Xo) ~ ¢(x). This procedure amounts to learning a neural network parameterized
vector field u® € C17(]0, 1] x R%; R%); this learning procedure can be performed efficiently through
a simulation-free training process known as flow matching [44] or more generally generator matching
[30].

3See https://docs.kidger.site/diffrax/api/adjoints/ for an excellent summary of such design
considerations and why DTO is generally preferable over OTD.
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Throughout the rest of this paper we will assume a standard flow model trained to zero loss and we
denote the parameterized flow model via ®¢ (x). We let @ ;(z) = (®; o &7 1)(x) denote the flow
from time s to time ¢, s,t € [0, 1].

Affine probability paths. A special subset of flow models, are flows which model an affine
probability path, i.e., given a schedule (o, o) the random process { X } is described via the affine
equation

X = o X1 + 01X, (10)
where o, 0y € C*([0, 1]; [0, 1]) which satisfy
ag=01=0, ar=09=1, Vte(0,1)][a >0, 6 <0 (11)
The marginal vector field can then be expressed as the following conditional expectation:
ui(x) = Eldy X5 + 6: Xo| X = x]. (12)

This nice form of the marginal vector field enables use to rewrite the vector field in the forms of either
source [27] or target [40] prediction as

uy(x) = be x4 LT p (), (13)
B e
~—
=ay =b;
where 3; = —a; for source prediction with f;(x) = x| () = E[Xo|X; = x| and 3; = o, for

target prediction with f;(x) = x1.(z) = E[X|X; = x|; and a, b; are useful shorthands to be
used later.

Remark B.1. The probability flow ODE formulation of diffusion models [72] is subsumed by flow
models, and represents a model with an affine Gaussian probability paths (AGGP), i.e., (X, X1) ~
70,1 (o, 1) = p(xo)q(z1) with p(x) = N (x|0,0°I) [45]. Thus without loss of generality we
consider flow models of affine probability paths.*

B.2 Assumptions

Throughout the norm || - || corresponds to the Euclidean norm || - ||2. Additionally, we make the
following (mild) regularity assumptions:

Assumption B.1. The function a; = g—z is integrable in [0, 1].

0

Assumption B.2. The rotal derivatives % {ar:ll .

(:1:)} exist and are continuous for 0 <n < k — 1.

Assumption B.1 is necessary for the simplification that we perform with exponential integrators and
Ben-Hamu et al. [2] make the same assumption in their analysis of the continuous adjoint equations
for affine probability paths. Assumption B.2 is to ensure that we can take a Taylor expansion of

m?lv(a:).

B.3 Proof of Proposition 3.1

We restate Proposition 3.1 below.

Proposition 3.1 (Exact solution of affine probability paths). Given an initial value of x5 at
time s € [0,1] the solution x; at time t € [0,1] of an ODE governed by the vector field in
Equation (12) is:

o Tt 0
Ty = —x, + 0 a:l‘,y(:c,y) d~. (6)

s s

Proof. Recall that we uniquely define a flow model through the vector field u € C11([0, 1] x R%; R%).
The vector field which models the affine conditional flow with schedule (o, 0¢), is defined as

u!(x) = Ela, X, + 6, Xo| X; = x]. (14)

*Clearly, diffusion models which solve the reverse-time SDE are different and require a separate analysis.
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With some simple algebra, we can rewrite the vector field in terms of iut,

ul(x) = ayx + btm‘f”(:c),
o o (15)

ay = — bt:dt—at—.
Ot Ot

Now using this definition we can rewrite the solution for x; from x; in terms of &1,
t
T = T, +/ ul(x,) dr, (16)
S

t
Ty = Ts —|—/ ar Ty + bT:cﬁlT(wT) dr. 17

Note the semi-linear form of the integral equation. We can exploit this structure using the technique
of exponential integrators, [see 21, 49, 86], to simplify Equation (17), under Assumption B.1, to

t
T = eJs au dug, —|—/ el7 au d“brw?‘T(wT) dr. (18)

S
Now, the integrating factor simplifies quite nicely to
efstaudu:efst%duzef::%da:2 (19)

)
Os

such that Equation (18) becomes

t
by

T, = 2335 + O't/ U—w%T(mT) dr. (20)
S T

Os
We can simplify b; /oy to find:

bt dtO't — atdt d (673 d
_ - — = — 21
o o? dt at @

oy
where 7; = a;/0y, i.e., the signal-to-noise ratio. As such, we can rewrite Equation (20) with a

change of variables ¢, = T 1) = T

o vt
Ty = —La, + Ut/ m?"y(m’}/) d, (22)

s s

concluding the proof. O
Remark B.2. This result bears some similarity to Lu et al. [50, Propostion 5.1]; however, they
integrate w.r.t. the log-SNR; their result can be recovered, mutatis mutandis, with the identity

Ar = log .

B.4 Proof of Theorem 3.2

We restate Theorem 3.2 below.

Theorem 3.2 (Greedy as an Euler scheme). For some trajectory state x, at time t, the greedy
gradient given by Vmﬁ(mf‘t(m)) is:

1. a DTO scheme with an explicit Euler discretization with step size h = v, — v, and
2. an OTD scheme with implicit Euler discretization with step size h = 1 — ;.

Proof. We prove both statements invidually as seperate propositions in Sections B.4.1 and B.4.2. [J

19



B.4.1 Proof of Proposition B.1

Proposition B.1 (Greedy as an explicit Euler scheme within DTO). For some trajectory state
x; at time t, the greedy gradient given by Vwﬁ(acf‘t(a:)) is the DTO scheme with an explicit

Euler discretization with step size h = v — ;.

Proof. From Proposition 3.1 we see that using the target prediction model to estimate x; is akin
to taking a first-order approximation of the flow. More specifically, under Assumption B.2 we can
construct a (k — 1)-th Taylor expansion of Equation (6) with:

k=1 ., n
Ty = 2ms + 0 Z di |:w? (w“/):| /’Yt M d’}/ + O(hk+1)7 (23)
O o d~m v e e n!
o n
= Moty |2l () T ok (24)
Os ~ dym Ly \y 7:% (n+1)! )

where h = 7; — -, is the step size. Then it follows that for £ = 1 the first-order discretization of the
flow, omitting high-order error terms becomes,

.o ot
Ty N Ty = U—tws + (a + ;—)w‘fls(ws). (25)

In the limit as ¢ — 1 we have ; = a:?‘s(zcs).s Thus, the greedy gradient is a DTO scheme with an
explicit Euler discretization with step size h = 1 — ;. O

B.4.2 Proof of Proposition B.2

We restate Proposition B.2 below.

Proposition B.2 (Greedy as an implicit Euler scheme within OTD). For some trajectory state
x; at time t, the greedy gradient given by thﬁ(wf‘t(a:t)) is an implicit Euler discretization
of the continuous adjoint equations for the true gradients with step size h = y1 — V¢.

For clarity we restate the definition of the continuous adjoint equations. Let ug € C11([0, 1] x R%; R9)
be a model that models the vector field of some ODE and be Lipschitz continuous in its second
argument. Let = : [0,1] — R? be the solution to the ODE with the initial condition zy € R,
&y = ug(t, x;). For some scalar-valued loss function £ € C2(R%) in ¢y, let ag = L/0x; denote
the gradient. Then a, and related quantity ag := 0L/00 can be found by solving an augmented
ODE of the form,

_ oL daw o TO%
as(l) =g () = —an() (@), o
d 0
a(1)=0, ) =—a,(t)T 7 (1@,

Now we present the proof.

Proof. The adjoint state can be simplified by rewriting the vector field in terms of the target prediction

model to find ; ()
da 83}1‘ (xy
—2(t) = —ayaz(t) — biag(t) ———.
q ) = ~waa(t) —baa(t) —5

We can express this backwards-in-time ODE as an integral equation in the form of

27)

s 0
Ao (s) = a(t) — /t arag(t) + bTaT,(T)TM dr,

x,

¢ awi)lT(:cT)
= ay(t) + / aragz(t) + bTam(T)TT dr. (time-reversal) (28)

>Note that despite o; — 0 the asymptotic behavior is well-defined [see 2].
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Using the technique of exponential integrators we rewrite the integral as

t 8113 b
am(s) :€f5 ay du / f ay dub ay ( ) 1a| ( ) dT,

0zl (z,)

= — T

= am(t)+at/s . T ag(T) Do dr,
0

o " a7 i)

=5, o) o L 5 ax(7) oz, dy. (29)

By Assumption B.2 it follows that the vector-Jacobian product has (k — 1)-th total derivatives,
allowing us to define a first-order Taylor expansion around ~,:

a:i: S wS
au(s) = Zag(t) + (o0 — Laryay(s) T 20l2e)

+ O(h?). (30)

Thus, the first-order approximation of the adjoint state at time ¢ with a step size of h = y; — 7, is the
implicit equation
T 653 1 ‘ t (a:t)

5mt

Now to solve the implicit equation we can use the fixed-point iteration method. Let a5 (t)(?) = a(1),
then the first iteration has

az(t) = ax(t) (31)

T 8é1\t($t)
8:ct

Thus, we have shown that the greedy gradients are equivalent to the first iteration of an implicit Euler
discretization of the continuous adjoint equations.

ax () = ag(1) = Va, L(&1):(2:)). (32)

O

C Dynamics of guidance

In this section we detail some of the formalisms omitted in the main paper concerning the dynamics
of the gradient flow and greedy gradients.

We begin by re-establishing some useful prior results. Ben-Hamu et al. [2, Proposition 4.1] showed
that the gradient of the target prediction model is proportional to the variance of the random variable
defined by py.(1|x), we restate their result below.

Lemma C.1 (Gradient of target prediction model). For affine Gaussian probability paths, the gradient
of the target prediction model :L‘f‘t(:c) w.r.t. @ is proportional to the variance of py|;(x1|x), i.e.,

«
Vo), (@) = ?%Var”t("”)’ (33)

where
Vary (@) = By, a1 fo) | (@1 — @), (@) (@1 - ), (@) 7] (34)

Remark C.1. This can be written more generally in terms of the (pushforward) differential Dmmf‘ ()

where the underlying spaces are smooth manifolds and ac(fl ; s a smooth map between them [2]. In

this section, we only consider flow models defined in Euclidean spaces, and so we opt not to elaborate
on this generalization.

We restate a well-known result below in Lemma C.2 regarding the continuous-time analogue to
forward-mode autodifferentiation, or in other words, forward sensitivity.

Lemma C.2 (Dynamics of Jacobian matrices for flows). Let g € R? and let f € C11([0,T] x
R%; R?) be uniformly Lipschitz in x. Let « : [0, T| — R? be the unique solution to

2(0) =20, (1) = flt2(1). 35)
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Let @, (), s,t € [0, T denote the flow associated with Equation (35). Then let Js(t) == V4P ()
denote the Jacobian matrices, where J; : [s, T| — R**4 solve the differential equation

2 (1) = Vad (1. @ (2(5) T4 (1), 36)

where N 5 f (t, -) refers to the gradient w.r.t. the second argument.

Js(s) =1,

Remark C.2. This result is well known and has been extended to controlled differential equations
[19, Theorem 4.4] and rough differential equations [19, Theorem 11.3]. Kidger [37, Theorem 5.8]
discusses this result for neural ODEs.

C.1 Proof of Theorem C.3

We prove an additional result about the flow of Jacobian matrices for affine Gaussian probability
paths which complements our analysis.

Theorem C.3 (Jacobian matrices of affine Gaussian probability paths). For the standard affine
Gaussian probability path with flow model ég,t (x), the Jacobian matrix V o @ () as function
of x is given as the solution to

t
Vo, (z) = ?1 to, / "yuZ—“Varl‘u(qu(w))Vw@iu(ac) du, (37)
where
Varyy(@) = Epy mifo) | (@1 = (@) (@1 — 20(2)) 7] - (38)

Remark C.3. From Theorem C.3 we observe the Jacobian-vector product V',,J(I)z’t (x) T corresponds
to an integral of covariance projections applied to v.°

This proof follows a similar technique to that used by Blasingame and C. Liu [4] to simplify adjoint
equations for diffusion models using exponential integrators.

Proof. Now recall Lemma C.2 which discusses the dynamics of Jacobian matrices for flows, rewriting
this as an integral equation yields:

Vo, (x) =T+ / Ve, ul (@ (x) V@ (z) du. (39)

Now recall the definition of the marginal vector field in terms of the target prediction model (cf.
Equation (13)) which we use to rewrite Equation (39) as

Vae® (z) =1+ / Ve, 0u®] ,(€)Va®) () + Va, by, (9, (2) V2!, (z) du,

DL [ 0T (@) 400V, 00, (0 )Vt 0) (40)

where (i) holds by V,, <I>g7u (z) = I. Next we can make use of the popular technique of exponential

integrators to simplify Equation (39) in combination with Equation (13). Thus, the integral equation
in Equation (40) becomes

t
Vo®f (z) = Aa(s, t)I+/ Ao (, )by Vo, @), (99, (2) V2!, (z) du, (41)

where A, (s,t) == exp fst a,, du is the integrating factor. This simplifies to A, (s,t) = 0+/0,. Using
this, Equation (41) can be simplified to

t
bu
Vwéz,t(a:):ﬁI—Fat/ p — Vg, ], (90, (@) Ve®! (o) du. (42)

S

®Readers familiar with the work of Ben-Hamu et al. [2] may notice some similarities between our result
Theorem C.3 and Ben-Hamu et al. [2, Theorem 4.2]. We discuss this more in Remark C.4.
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Now we can apply Lemma C.1 to further simplify Equation (42) to find

t
Ve®?, () = ?I + at/ %bu\/aruu(ég,u(x))vm@gu(x) du. (43)

s u

Next we simplify the coefficient v, b, /o2 in the integral term. Let ; := /o equal the signal-to-

noise-ratio. Then we observe
Qi . O\ o
b= =|d—ar— | =3,
o ot ) o}

Qo — 00

o

() d [ag| a1

o dt Ot | Ot Ot

(ii) .

Ly (44)
Ot

where (i) holds by the quotient rule and (ii) holds by definition of ;. Using this simplification we
can perform a change-of-variables to simplify the gradient resulting in

t
g .
Vad{s(w) = “T+o / o T Varyy (9,,(2)) Vo, (2) du. (45)

S

O

Remark C.4. Readers familiar with the work of Ben-Hamu et al. [2] may notice some similarities
between our result Theorem C.3 and Ben-Hamu et al. [2, Theorem 4.2]. The difference between the
two is that the former is a simplified integral equation; whereas, the latter is the exact solution and
no longer requires solving an ODE. However, this later solution does require solving a time-ordered
exponential which requires a formal truncated series expansion, e.g., Magnus expansion.

Theorem C.3 is closely related to Ben-Hamu et al. [2, Theorem 4.2] which we restate below within
the context of our notational conventions.’

Theorem C.4. For the standard affine Gaussian probability path, the differential of fI)g,l (x) as of
function of x is

1
1
Vméal(w) =017 exp {/ 5"yt2Var1‘t(x) dt|, (46)
0

where T exp denotes the time-ordered exponential.

The time-ordered exponential® [24] is defined as

T exp MlA(s) ds] 27}”[@1...[ dsn T{A(s1) ... A(sn)},

0 1 S1 Sn—1
= Z / dsq / dsg--- / ds, A(s1)A(s2)...A(sn),
——_ t ¢

and the solution can be found the Dyson series [64] or Magnus expansion [51], which are truncated
in practice. The meta-operator 7 denotes the time-ordering [16], e.g., consider the time-ordering of
two operators A, B:

(47)

T{A(s1)B(s2)} — {igiiiifji i @9

For more details we refer the reader to Weinberg [83].

"With abuse of notation let 47 denote the time derivative of 2.
8This is closely related to the Peano-Baker series [see 18, Section 7.5].
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C.2 Dynamics of gradient guidance

We state this more formally below in Proposition C.5.

Proposition C.5 (Dynamics of gradient guidance). Consider the standard affine Gaussian
probability paths model trained to zero loss. The Gateaux differential of x at some time
t € [0,1] in the direction of the gradient V5 L (9} | ()) is given by

52Pf 1 (@) = —Vo @) () Vo @] 1 (x) " Vo, L(1). (49)

Thus the behavior of ; when guided by £ is determined by the operator qu)?,1 () which iteratively
projects the gradient of the loss function by the covariance matrix Vary;(z). Put another way:

Performing gradient guidance with £ at time ¢ < 1 amounts to guidance which follows the
target distribution p(X) by projecting V5, £(21) onto to the target distribution via the local
covariance matrix.

It is for this reason that it is undesirable to simply perform guidance in the data space as we are likely
to deviate from this target distribution. From Equation (49) we know that applying the gradient at
earlier timesteps causes the initial gradient V, £(21) to be projected into high-variance directions
of the target distribution causing the guided sample to stay closer to the true target distribution.

The next question is: how does x; change when x is updated with our greedy guidance strategy?

C.3 Proof of Proposition C.5

We restate Proposition C.5 below.

Proposition C.5 (Dynamics of gradient guidance). Consider the standard affine Gaussian
probability paths model trained to zero loss. The Gateaux differential of x at some time
t € [0,1] in the direction of the gradient V 5L (<I>f,1 ()) is given by

6298 1(x) = Vo @) | (x)Ve®! | (x) Vo, L(z1). (49)

Proof. This can be shown from a straightforward derivation:

=

i) d
5200 () dn| i (2= nVaL (31 (@))).
n=0

=

i)

= *qu)f,l (m —NVal ((I)?l(m))) VL (‘bf,l(m)) )

n=0
= _qu)te,l(m)vwﬁ (‘I’te,l(w)) )
iid)
W V0! (€)Vad!  (2) Va, L(1), (50)
where (i) holds by the definition of the Gateaux differential, (ii) holds by the chain rule, and (iii)
holds by a substitution of ?? with the simplification of 1 = ®{ , (x). O

C4 Proof of Proposition 3.3

We restate Proposition 3.3 below.

Proposition 3.3 (Dynamics of greedy gradient guidance). Consider the standard affine Gaus-
sian probability paths model trained to zero loss. The Gateaux differential of x at some time

t € [0, 1] in the direction of the gradient V L (a:f‘t(m)> is given by

55(1)?,1(“’) = _Vfcq)g,l(w)v:cw?u(m)val['(wl)- 3
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Proof. This can be shown from a straightforward derivation:

@ d
52@21(33) = 0177

(I’f,1 (5’5 — VgL (m?hﬁ(m))) )

n=0

D0, 2 VL (00, ())) oL (o (@))

= -V, 0! (z)VaL (w?,t(w)) ;

(&) —Va:@?,l(x)vww%t(m)Tvan‘c(wl)’ (1)

where (i) holds by the definition of the Gateaux differential, (ii) holds by the chain rule, and (iii)
holds by the chain rule. O

We note an interesting corollary below.

Corollary C.5.1 (Dynamics of gradient vs greedy guidance). The difference between the dynamics
of gradient guidance in Proposition C.5 and greedy gradient guidance in Proposition 3.3 for a point
x at time t with guidance function £ € C*(R?) is

]
6208, () — 0201, (&) = Vol (o) (Vo0 () = Tual@)) Vo Llo)

. (52)

C.5 Proof of Theorem C.6

Next, we ask what is the difference between the idealized gradient V,:(I)f’l (z) and the greedy gradient
me?l ,(z)? Intuitively, we find that it is bound by the local truncation error, i.e., O(h?) which we
show below.

Theorem C.6 (Dynamics of gradient vs greedy guidance). The difference between the dynamics
of gradient guidance in Proposition C.5 and greedy gradient guidance in Proposition 3.3 for a
point T at time t with guidance function £ € C*(R?) is bounded by O(h?) where h := 1 — 7,
ie,

|V=2?1(2) - Vool (@)]| = 2. (53)

Proof. From Corollary C.5.1 it is clear that the difference between 6, ®{ | () and 0 ® | () amounts
to the difference between the true gradient and gradient of the target prediction model. Recall
Theorem C.3 which enables to write the gradient as the solution to an integral equation:

1
V! | (x) = %I + 01/ A'/uZ—“Varuu((bg’u(m))Vmcbf’u(w) du. (54)
t t u
Now as 0, — 0 as t — 1, we can simplify the integral equation
1
qu)f,l(a:) =01 / f'yuZ—uVarl‘u(q)ﬁu(w))VﬁDf’u(w) du, (55)
t u
and then by rewriting the integral in terms of dy = ~,, du we find
0 Ty 0 0
V@i () = 01/ U—Varl‘,y(@WW(:E))VQCCD%V(:B) d~. (56)
vt ol

Next we take a first-order Taylor expansion of - Vary, (<I>§;f - (x))Vz®?
S s

9. (x) centered at -, which
yields:

g
avar1|7(<biw(w))vm<1>3m

(%) = T Vary,(@) + Oy — ) 7)

For this analysis, it is actually more convenient to include the « term as part of the Taylor expansion
rather than computing it in closed form in the integral. Now plugging Equation (57) into Equation (56)
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yields

Y1 1
Vol (z) = o0 / 1o Vary(@) + Oy = ) d,

Yt

71
@ o1 —Var”t( )/ dy + O(h?),
5y

t

=0 U—tVar”t(w) (71 — 7)) + O(h?), (58)
where (i) holds with A := v, — ~;. Then, with a little algebra we have

«
Va1 (@) = 0125 (31 — %) Vary (@) + O(2),
t

=017 (al - at) Vary(x) + O(h%),

o; \ 01 oy

o
— <a1 — 010t> Vary () + C’)(hQ),
t

i) «
@ U—;Varl‘t(a:) +O(h?), (59)
t
where (i) holds by the boundary conditions of the schedule (¢f. Equation (11)). Now recall Lemma C.1

which states:

e
Vmw%t(m) = O—t;Varl‘t(:c). (60)
Thus from Equation (59) and Equation (60) it is easy to see that
|Va2?, (@) - vmwmw)H - o), (61)
holds and thus
|02®¢ 1 (x) — 05®7 | ()| = (62)
O

C.6 Proof of Theorem 3.4

‘We restate Theorem 3.4 below.

Theorem 3.4 (Greedy convergence). For affine probability paths, if there exists a sequence of

states mi”) at time t such that it converges to the locally optimal solution x¢ (mgn)) — .

1)t
Then the solution, ®¢ | (:Jc,(5 )) converges to a neighborhood of size O(h?) centered at .

Proof. By Assumption B.2, we can take a (k — 1)-th order Taylor expansion around +; of the flow in
Equation (6) to obtain

71 k—1 dn ( _ )n
o0 _ o / 0 Ty O(RF+1
(@) Ot Tt ¥t nz:;) dyn mlh(mv) Y=t n! el )
k-1
o1 d” 0 / (’7 ’Yt) k+1
= — — —————dvy+O(h
Rt X ][O 0 oney,
g1 —~ 4" [ o hrtt k+1
= — — O(h 63
Ut$t+017;)d,yn |:m1"/($7):|’y_% (n+1)| + ( )7 ( )
where h := v, — 7 is the stepsize. Let k = 1, then we have:
@) (@) = T, + o1@yu(@)h + O(h?), (64)
t
o 010 .
= a, + (a — —L)dyy () + O(h2). (65)
Ot Ot
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By definition o7 = 0 and a; = 1, then

07 (1) = s (ar) + O(B?), (66)
which is equivalent to

@71 () — &1p0 () || < C1R2, (67)

(n)

for some constant C; > 0. Since z¥,(x;"’) — x} we know that for any ¢ > 0 there exists some

1t
n > N such that ||z} — mf‘t(mgn))H < €. Thus,

@0, (@) - @t

< [[@f1@™) - 2l @)|| + @1 - 28 (@) < e+ ?hz )
=C2

Therefore, @, 4 (scgn)) converges to a point inside a neighborhood centered at % with radius O(h?).

O
D Beyond Euler
In this section we provide the full proofs and derivations for Section 3.2 in the main paper.
D.1 Proof of Theorem 3.5
Before showing Theorem 3.5 we show a more general version below.
Theorem D.1 (Local truncation error of discretize-then-optimize gradients). Let ® be an
explict Runge-Kutta solver of order oo > 0 to the ODE
dz
on [0, T) which satisfies the regularity conditions for the Picard-Lindeldf theorem. Let @Z,t (x)
denote the flow from s to t, for any s,t € [0, T| admitted by the ODE. Then,
V2@, (@) = Vo i(@)|| = O(h*TH). (70)
Proof. Consider an explicit k-stage Runge-Kutta method given by
J
Unj = Up (tn + ¢jh, @, + hZa]un> . i=12..k (71)
i=1
k
Tpt1 = Ty +thjun7j7 (72)
j=1

where a; ;, b, c; are all given via the Butcher Tableau [75, Section 6.1.4]. Now, we consider a single
step from time s to time ¢ with initial value @ and step size h := ¢ — s. Then, the gradient is

k J
Vae®si(x) =Vex +h Z b;iVaug (s +cjh,x+h Z am-uZ) ,

j=1 i=1
k J
= I—i—th] va‘:j’U,g(S—‘erh,ij) (I—i—hZajJVmui)] s (73)
j=1 i=1
where we let
J
ilA)j =x+h Z Qg iU;. (74)
i=1
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Next, recall Lemma C.2 which gives the following ODE

dJ;
dt
Next, we augmented the ODE above with the underyling ODE for the solution state, &(t) =

ug(t, x(t)). We now apply the same Runge-Kutta solver to this augmented ODE for the Jacobian
matrices which yields

Js(s) =1,

(t) = Vaug(t, D5 (), (t). (75)

k J
Uj=I+hY b |Vaug(s+cihx+ ;) (I—i—hZaj,iVmui)] : (76)

Jj=1 i=1

Clearly, Equation (76) and Equation (73) are equivalent. Now as the underlying numerical solver has
local truncation error O(h**1) we find that

|Va®? (2) — Val, ()| = OhT). (77)
O

Remark D.1. This result is intuitive as differentiation is a linear operator. However simple, we
believe the insight is useful on the discussion of using DTO/OTD/posterior methods for guidance and
thus include it here.

Remark D.2. Theorem D.1 shows that DTO and OTD are really just two sides of the same coin and
that one of the main differences is the choice of end points when discretizing.

Remark D.3. Onken and Ruthotto [58, Appendix A] made similar observations; however, it is for
only of the case of Euler.

Remark D.4. This result bears some resembelmance to work done on using high-resolution ODEs
for modelling the continuous-time approximation of momentum gradient descent [67].

Theorem 3.5 (Truncation error of single-step gradients). Let ® be an explict Runge-Kutta
solver of order o > 0 of a flow model with flow @?t(m). Then for any t € [0, 1],

[Ve®! 1 (x) — Vol ()| = O(R*HY), ©9)

where h =1 —t.

Proof. This follows as a corollary of Theorem D.1. O

Corollary D.1.1 (Convergence of a a-th order posterior gradient). For affine probability paths, if

(n)

there exists a sequence of states ;" at time t such that it converges to the locally optimal solution

tI>t971 (mgn)) — @}. Then solution, ® | (:cg")) converges to a neighborhood of size O(h®*1) centered

at xj.
Proof. This follows as a straightforward derivation from Theorem D.1. O

D.2 A useful reparameterization of the flow model

We present a useful reparameterization of the flow model, which is a parallel result to Proposition 3.1.

Proposition D.2 (Reparameterized for the target prediction model of affine probability paths).
The ODE governed by the vector field in Equation (12) can be reparameterized as

dy, o (%
WZUOfB”( ;ch > (78)

e}
& L.

where y; =
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Proof. The ODE governed by the vector field in Equation (12) can be written as

dx
ditt = QtT¢ —+ btw(;lt(wt). (79)

Now we can use the technique of exponential integrators to rewrite the ODE as

d t t
& |:e.f0 —u dumt:| = efO ~O0u dubtﬂf?lt($t). (80)

The exponential term can be simplified to

elo —auwdu - 20 81)
gt
We introduce a change-of-variables, y; = %wt- Thus, the ODE becomes
dy, 00 0 Oy
— =—b — . 82
ar o, t L1 ont (82)
Next, recall that b; /o, = 4; (¢f. Equation (21)) which enables a change of integration variable:
dy 0o (O
d—’;’ = 00y, (ngv) . (83)
O

Remark D.5. Recall that, often, for affine probability paths we let o9 = 1, further simplifying
Proposition D.2 to

dy

T = T (0wn). (84)

Remark D.6. Proposition D.2 is a tangential result to the prior result of Pan, Liew, et al. [59, Equation
(11)] which was for diffusion models and was developed w.r.t. the source prediction model rather
than the target prediction model and was solved in reverse-time.’

This parameterization in Proposition D.2 can be combined with Theorem D.1 to construct a DTO
approximation of the gradient with truncation error (y; — 75 )**1.

E Notes on using OTD in practice

While the OTD approach has become quite popular after the work of R. T. Chen et al. [9], several
later works have noticed several key issues that we wish to note for ML practitioners.

Recall our prototypical neural ODE (or flow model) of the form

dx

E(t) = ug(t, z(t)), (85)

and assume it is defined on the interval [0, 7] and the flow model statifies the usual regularity
conditions. Then, the continuous adjoint equations [37, Theorem 5.2] are:

oL dag g
aac(T) = %7 W(t) = _aw(t)Taiw(t,w(t))v (86)
aM)=0,  204) = —ag(t)T T 1, w(1),

where ax(t) = 0L/0x(t) and ay(0) := 0L/D0.

Technically forward-time due to the conventions of diffusion models.
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Table 3: Comparison of different strategies for performing backpropagation through flow models.
For the complexity analysis n denotes the number of discretization steps and d the dimensionality of
the state. Note, for accuracy we mean there are no truncation errors. Note that whilst in general the
stability of reversible solvers is quite poor, there are some solvers which have a non-trival region of
stability.

Method Time Memory Accurate gradients Stability
DTO O(n) O(nd?) v -
DTO + recursive checkpointing  O(nlogn) O(d?logn) v -
OTD + stored trajectory O(n) O(nd + d?) v -
OTD + reversible solver O(n) O(d?) v ?
OTD O(n) O(d?) X

Truncation errors. One area of concern is the potential mismatch between the forward trajectory
{x;, }I¥ | and the backward trajectory {&;, })¥., when performing the backwards solve. E.g., consider
an explicit Euler scheme

wti+1 = $ti + (tl+1 - tz)“@ (tza $ti)' (87)
The same scheme when applied to solving the backward trajectory would yield,
iti = 5:1‘/1:+1 + (ti - ti+1)u9(ti+1a jti+1)' (88)

Clearly, there is no guarantee that these two trajectories match during the forward and backward solve
introducing a source of error. One potential solution is to use an algebraically reversible solver [see
7, 38, 54] which guarantees that the forward and backward trajectory match perfectly. Another option
is to store the forward trajectory {x, })¥.; in memory and use interpolated adjoints if the backward
timesteps do not perfectly align with the forward timesteps [see 39].

Stability concerns. Consider the simple ODE, g(t) = Ay(t) defined on ¢ € [0, T'| with y(0) = yq
and A < 0. Clearly, most ODE solvers with a non-trivial region of stability [see 25, Definition 2.1]
will solve this ODE without an issue, as the errors will decrease exponentially with A < 0. However,
in the backwards in time solve from y(7T') the errors will grow exponentially. It can be shown that
the adjoint state suffers from similar stability issues. The local behavior of a differential equation is
described through the eigenvalues of the Jacobian of the vector field [see 8]. For x; this is given by
ou

S and for a, this is given by

. 8u9

o~ aa TG t.2(0)) = - 52 1 00). )

Clearly, the Jacobians for a, and x; solved in reverse-time are identical, meaning the stability of
the backward solve is pushed onto the solve for the adjoint state [see 37, Section 5.1.2.4] for more
details. Reversible solvers eliminate truncation errors, but tend to suffer from poor stability, e.g., the
region of stability for reversible Heun applied to neural ODEs is the complex interval [—i, 7| [38].
Recent work by McCallum and Foster [54], however, has shown a strategy for constructing reversible
solvers with a non-trivial region of stability.

Recommendations. In light of these concerns we propose we consider to be best practices for
deciding what scheme to use.

Generally, the best choice is DTO when memory allows as it is the most accurate in terms of the
forward discretization. If memory is an issue then using a clever checkpointing scheme [22, 23, 76]
can help alleviate such issues in exchange for additional compute time. The recursive checkpointing
strategy in combination with DTO is actually the default (and recommended) implementation in the
Diffrax library. Alternatively, one could store the forward trajectory in memory and then apply the
OTD scheme on these stored states (not activations). This strategy of caching the forward trajectory is
quite popular and was used by Blasingame and C. Liu [4] and Domingo-Enrich et al. [14] in practice
when solving the continuous adjoint equations. Another option is to use an algebraically reversible
solver in conjunction with OTD. Lastly, one could use vanilla OTD, which we should mention can
actually work reasonably well depending on the application despite the concerns listed above.

In Table 3 we summarize the discussion of this section and hope it is helpful to the reader.
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F On control signal optimization

Rather than optimizing the trajectory of the solution or the initial condition, several works [48, 80]
have explored the guidance from the perspective of optimal control [41]. In essence this technique
first injects an additional control signal, z € ct (R; Rd), to the vector field, uf , such that

dﬂ:t
dt
Thus, instead of optimizing {@ };c[o,4 directly, this control signal can instead be optimized, serving

as one of the key insights in [48, 80]. Le., suppose we have a neural ODE with vector field u! (z),
then we can write the optimization problem as

= ul(x;) + 2(t). (90)

T
min  L(zr) + )\/ llz(t)| dt,
- 0 ©1)

T
s.t. @ =xg +/ ul(x;) + z(t) dt.
0

The next natural question then is to ask about the behavior of a greedy strategy applied to z(¢). To
simplify the analysis, we now consider a control signal applied to the posterior model a:?lt such
that it is replaced by wf‘t(wt) + z(t) which amounts to simply rescaling z(t) from Equation (90)
with b;. From this construction, it should be clear that the greedy gradient for the control signal is
merely Vz, £(21). If using the original formulation where the control signal is applied to the vector
field, rather than the denoiser, the gradient is simply scaled by a weighting function dependent on
time. Note that this approach is similar to the greedy approach taken by Blasingame and C. Liu [5];
however, they inject the control signal to the source prediction model rather than the target prediction
model.

F.1 Continuous adjoint equations for control signals

We can model the gradient for this signal by augmenting the continuous adjoint equations with the
adjoint state a (t) := 9L/0z(t). In Theorem F.1 we show that this gradient is simply an integral of
the adjoint state a,,(t).

Theorem F.1 (Continuous adjoint equations for the control term). Let uf € C*'([0,T] x
R?=; R%) be a parameterization of some time-dependent vector field of a neural ODE that
is Lipschitz continuous in its second argument, and let z € C*([0,1];R?) be an additional
control signal such that the new dynamics are given by Equation (90). Let a(t) := 0L/0z(t),
then

a(t) = 7/ az(s) ds. (92)

T

Our proof follows the structure of the modern proof of Pontryagin’s original result [61] presented by
[9]; and is similar to the form used by Blasingame and C. Liu [4, Theorem 2.2].

Proof. For notational clarity, we use the notation x(t) = x;. We define the augmented state on [0, T']
as

d [z B _ [ue(t, (1)) + 2(t)

a {Zil (t) - faug - |: %(t) ’ (93)

and the augmented adjoint state as
OES [Zm} (1)- (94)

The Jacobian of f,,; has form

95)

0 0]

Ofws _ [Puslia(®) g
a6
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The evolution of the adjoint state is given by

daaug _ afaug
S () = ~[ae @] (0500 %6)
Therefore, a,,(t) evolves with
da
au(T) =0, —=(1) = —az(t), O7)
thereby finishing the proof. O

G A brief introduction to inverse problems

Inverse problems cover a large class of scientific problems [10] that encompass scenarios where a
partial measurement y is made of . When the mapping « — y is not an injection, recovering
from y becomes an ill-posed inverse problem. Generally, the relationship between the underlying
sample x and the measurement y is given by

y=Ax)+n,  yneRY zecR™, (98)

where A : R% — R is the forward measurement operator and i ~ (0, BZI ) is the measurement
noise.

The inverse problem then is to find p(x|y).

More details on these types of problems can be found in Chung, J. Kim, et al. [10], Moufad et al.
[55], and B. Zhang et al. [85].

G.1 Inverse problems and diffusion models

Recall that the ODE formulation of diffusion models is just a particular type of affine Gaussian
probability path [45]. Following the conventions of the EDM model [34] we write this ODE
formulation, known in the literature as the probability flow ODE, below in

de; = —610¢ V4, logp(or, ) dt, 99)

where p(oy, x;) is the joint distribution of x; at noise level 0..'% N.B., for diffusion models dt is
a negative timestep and we integrate in reverse-time from 7" to 0. These models are also called
score-based generative models due to learning the score function Vo, log p(oy, x¢).

One of the insights of Chung, J. Kim, et al. [10] and Y. Song, Sohl-Dickstein, et al. [72] is to apply
Bayes’ theorem for inverse problems to score-based generative models, i.e.,

p(ylz)p(x)

p(xly) = ; (100)
(zly) p(y)
Vazlogp(x|y) = Vg logp(x) + Vi log p(y|x). (101)
Adapting this for diffusion models, assuming A is defined on xq (the output), we have
Vi, logp(or, @ily) = Vg, logp(or, i) + Va, log p(ylxe, o1). (102)

The unconditional score term is the regular score function learned by diffusion models and thus is
appropriately learned; however, the other term is much more difficult to work with. The approach of
Chung, J. Kim, et al. [10] is to use an approximation of

p(ylxe, o) = ]Ea:grvp(mo\:ct)[p(y|x05 00)], (103)
via Tweedie’s formula [74] to write
p(ylxs, o) = p(y|Elxo|x:], 00). (104)

The approximation error can be quantified by the Jensen gap [10, Theorem 1].

10T his o 1s not the same as the o; from the scheduler (at, crt) used in the main paper.
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H Experimental details

We provide additional details of the experiments performed in Section 4. N.B., for all experiments we
used fixed random seeds between the different software components to ensure a fair comparison.

H.1 Inverse image problems

Inverse problems. The inverse problems are implemented in the same way as in B. Zhang et al.
[85]. We reiterate some of the important settings below. For Gaussian and motion deblurring we
made use of kernels of size 61 x 61 with standard deviations of 3.0 and 0.5 respectively. The box
inpainting task makes use of a random box of size 128 x 128 to mask the original images, while the
random inpainting task randomly masks each pixel with a probability of 70% following [69]. The
measure for the high dynamic range reconstruction problem is defined as

y ~ N(clip(azo, —1,1), B I), (105)
with o = 2.

Diffusion model. We make use of the pre-trained diffusion model from Chung, J. Kim, et al.
[10], trained on the FFHQ 256 x 256 dataset. We focus on the probability flow ODE formulation
popularized by Karras, Aittala, et al. [34] known as EDM described as

da:t = —dtatvmt logp(ot,wt) dt. (106)
Following Ben-Hamu et al. [2], we employ a midpoint scheme to solve this ODE in reverse-time

with N = 20 steps. We use the noise schedule o, = ¢ which means ¢; = 1. The discretized noise
schedule {7, }_; is given by the following polynomial interpolation

1 n 1 1 P
On = <Ur%ax + ﬁ (0;1“1 - Ur%ax)) . (107)

Weuse p="7,T = omax = 100, and € = op,;, = 0.01 for all experiments and integrate over [e, T'.
N.B., truncating the integration domain at € rather than 0 is quite common in diffusion models [71].

Hyperparameters. Unlike previous works [85] we did not adjust the hyperparameters per task
and left them the same throughout. The learning rate was set at 7 = 1 for all experiments, and we
performed nqp = 50 optimization steps with the stock implementation of the torch.optim.SGD
method for each step of the ODE solve. We set 3, = 0.05 for all tasks.

H.2 Molecule generation for QM9

We follow the experimental methodology taken in previous work [2, 80] and follow the conditional
generation pipeline used by Hoogeboom et al. [31]. An equivariant graph neural network (GNN)
was trained for each property on half of the QM9 dataset, serving as a classifier—this model was
then used as a guidance function during the experiments. The EquiFM [73] model was trained on the
whole QMO training set and was used as the underlying flow model for the experiments. Following
L. Wang et al. [80], the test time properties were sampled from the whole training set; in contrast to
Ben-Hamu et al. [2].

Following Ben-Hamu et al. [2] we used the L-BFGS algorithm [46] with 5 optimizer steps and 5 inner
steps with a linear search, in particular we used the stock PyTorch implementation torch. opt.LBFGS.
For the DTO experiment we used a learning rate of = 1. We tried this for the posterior guidance
experiments but encountered severe instability. We found that a learning rate of 7 = 0.001 seemed to
work better.

Recall that Proposition 3.3 states that the greedy gradient is scaled by the covariance projection.
This effect is lessened as ¢ — 1, thus in later timesteps the greedy gradient is more likely to push
samples off the data manifold. We observed this, with exploding losses even at small learning rates.
To remedy this, we took inspiration from other works [10, 55, 84] and annealed the learning rate. We
chose the following simple scheduler:

1—-¢) t>0.5
mz{g( bl (108)

where 17 = 0.001 is the base learning rate.
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Runge-Kutta 4. Additionally, we ran some experiments using RK4 but ran into insurmountable
stability issues. Recall that RK4 is given by

ki =g (tn, ), (109)

h h
k:2:u9 <tn+2,$n+2k1) ) (110)

h h
ks =g <tn+2a$n+2k2)7 (111)
ks = uyg (tn+h,$n+hk3)7 (112)

h

Tpt1 = Ty + 6(’61 + 2ko + 2ks3 + k4) (113)

Using the step size h = 1 — ¢t we encountered large stability issues with the k4 term due to being
evaluated at the endpoint of the flow model trajectory. We tried a mixed-solver scheme were we
would start with Euler and then switch to RK4, but that did not help. We also tried the common
diffusion trick of truncated the time interval to [0, 1 — €] for some small € > 0, but this did not solve
the stability issues either. Ultimately, we abandoned it for this work and left such explorations for
future work. It seems reasonable to suppose that schemes which don’t evaluate on the endpoint, e.g.,
Ralston’s method, Heun’s third-order method, or Ralton’s third-order method may fair better.

H.3 Numerical schemes

We detail the numerical schemes used for posterior guidance beyond Euler.

Midpoint. The midpoint scheme used in both experiments is implemented as

h h
L1 :xt+hue <t+2,$t+ 2U9(t,$t)> (114)

with step size h = 1 — ¢.!!

2-step Euler. This scheme used in both experiments is implemented as

h
Toy =@t guglt @), (11s)
h h
xlzmt+%+§u9 <t+2,xt+g), (116)

with step sizes h = 1 — ¢.

H.4 Hardware and compute cost

Inverse image problems. The inverse image problem experiments were run on a single NVIDIA
H100 80GB GPU. It took roughly 4 minutes and 78 GB of VRAM to generate 10 images for each
inverse problem. As such each experiment took about an 40-50 minutes. Experiments which used
the midpoint method, unsurprisingly ran about 90% slower.

Molecule generation. The molecule generation experiments were run on a single NVIDIA V100
16GB GPU. It took about 3 minutes and 1.5 GB of VRAM to generate 1 molecule leading to the
experiments taking on the order of 300 minutes to complete. Experiments which used the midpoint
method, unsurprisingly ran about 90% slower.

I Further experimental results

We present additional experimental results that we could not include in the main paper for the sake of
space.

"'This is appropriately adjusted for diffusion models with a terminal time of 0.
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I.1 Molecule generation for QM9

In Table 4 we present the atom stability percentage (ASP) and molecule stability percentage (MSP) per
property for each guided generation model. Interestingly, despite their poor quantitative performance
in MAE (cf. Table 2) the greedy (midpoint) and (2-step Euler) strategies have slightly better stability
than DTO.

Table 4: Stability reported in ASP/MSP per property.

Property @ Ae EHOMO ELUMO 7 Cy
DTO 94.90/65.00 96.20/74.00 95.90/67.00 96.00/65.00 94.60/61.00 95.00/67.00
Greedy (Euler) 94.70/68.80 96.40/76.00 97.40/79.00 98.40/84.80 97.60/84.00 85.55/21.20
Greedy (midpoint) 97.46/80.00 97.51/83.00 97.91/81.00 97.77/83.00 97.70/81.00 97.09/80.00
Greedy (2-step Euler)  97.67/82.00  96.95/74.00  98.18/84.00  96.29/72.00  97.40/93.00  97.75/84.00
EquiFM 98.88/89.00

I.2 Further results on inverse image problems

To put the results from Section 4.1 into context we present some detailed comparisons to other works
from the domain of inverse problems with diffussion models, namely:

DAPS [85],

DPS [10],

DDRM [36],

DDNM [81],

DCDP [42],

FPS-SMC [15],

DiffPIR [88], and

RED-diff [52].

e A R

We present the full comparison in Table 5.
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Table 5: Additional results for inverse image problems on FFHQ 256 x 256.

Task Method PSNR (1) SSIM (1) LPIPS () FID ({)
Greedy (Euler) 27.94 0.728 0.217 66.64
Greedy (midpoint) 27.98 0.727 0.224 70.96
Greedy (2-step Euler) 27.95 0.728 0.220 68.93
DAPS 29.07 0.818 0.177 51.44
Super resolution 4 DPS 25.86 0.753 0.269 81.07
DDRM 26.58 0.782 0.282 79.25
DDNM 28.03 0.795 0.197 64.62
DCDP 28.66 0.807 0.178 53.81
FPS-SMC 28.42 0.813 0.204 49.25
DiftPIR 26.64 - 0.260 65.77
Greedy (Euler) 23.74 0.732 0.187 46.87
Greedy (midpoint) 24.08 0.724 0.186 44.55
Greedy (2-step Euler) 23.88 0.720 0.188 44.09
DAPS 24.07 0.814 0.133 43.10
Inpaint (box) DPS 22.51 0.792 0.209 61.27
DDRM 22.26 0.801 0.207 78.62
DDNM 24.47 0.837 0.235 46.59
DCDP 23.89 0.760 0.163 45.23
FPS-SMC 24.86 0.823 0.146 48.34
Greedy (Euler) 30.87 0.823 0.141 40.73
Greedy (midpoint) 31.03 0.816 0.139 38.80
Greedy (2-step Euler) 30.80 0.811 0.144 39.23
Inpaint (random) DAPS 31.12 0.844 0.098 32.17
DPS 25.46 0.823 0.203 69.20
DDNM 2991 0.817 0.121 44.37
DCDP 30.69 0.842 0.142 52.51
FPS-SMC 28.21 0.823 0.261 61.23
Greedy (Euler) 28.01 0.766 0.182 57.04
Greedy (midpoint) 28.36 0.776 0.185 58.55
Greedy (2-step Euler) 28.18 0.774 0.181 57.18
DAPS 29.19 0.817 0.165 53.33
Gaussian deblurring DPS 25.87 0.764 0.219 79.75
DDRM 24.93 0.732 0.239 92.43
DDNM 28.20 0.804 0.216 57.83
DCDP 27.50 0.699 0.304 86.43
FPS-SMC 26.54 0.773 0.253 67.45
DiffPIR 27.36 - 0.236 59.65
Greedy (Euler) 29.35 0.748 0.207 63.05
Greedy (midpoint) 29.73 0.762 0.207 66.21
Greedy (2-step Euler) 29.64 0.764 0.203 63.99
Motion deblurring DAPS 29.66 0.847 0.157 39.49
DPS 24.52 0.801 0.246 65.23
DCDP 25.08 0.512 0.364 125.13
FPS-SMC 27.39 0.826 0.227 48.32
DiffPIR 26.57 - 0.255 65.78
Greedy (Euler) 15.10 0.282 0.598 298.06
Greedy (midpoint) 15.10 0.286 0.595 299.45
Greedy (2-step Euler) 15.07 0.284 0.598 304.60
Phase retrieval DAPS 30.63;&3,13 0.851i0,072 6.139:&04060 42.71
DPS 17.6442 .97 0.44140.129 0.41040.090 104.52
RED-diff 15-60i4.48 0.398i0,195 0.596i0_092 167.43
DCDP 28.65 +8.09 0.78140.217 0.203+0.196 68.13
Greedy (Euler) 24.767 0.551 0.327 79.06
Greedy (midpoint) 25.09 0.558 0.332 76.73
Greedy (2-step Euler) 24.81 0.547 0.330 76.26
Nonlinear deblur DAPS 28.29;&1,77 O~783i0,036 0.155:&0‘032 49.38
DPS 23.3942.01 0.62340.082 0.27840.060 91.31
RED-diff 30.8640.51 0.79540.028 0.160+0.034 43.84
DCDP 27.9242 64 0.779+0.067 0.183+0.051 51.96
Greedy (Euler) 24.16 0.767 0.181 43.59
Greedy (midpoint) 26.62 0.809 0.160 37.86
High dynamic range Greedy (2-step Euler) 25.70 0.797 0.165 3797
DAPS 27.1243 53 0.75240.041 0.16240.072 42.97
DPS 22.7346.07 0.59140.141 0.26440.156 112.82
RED-diff 22.164+3.41 0.51240.083 0.25840.089 108.32
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I.3 Sampling trajectories for inverse problems

We present the solution trajectories the different guidance algorithms below for solving the HDR
inverse problem. Note that the midpoint and 2-step Euler, unsurprisingly, have better approximations
of ¢ 1-

Figure 6: Sampling trajectory for greedy (Euler) solving the HDR inverse problem. Top row is
m‘flt(mt) and the bottom row is x;.

Figure 7: Sampling trajectory for greedy (midpoint) solving the HDR inverse problem. Top row is
midpoint estimate and the bottom row is x;.

Figure 8: Sampling trajectory for greedy (2-step Euler) solving the HDR inverse problem. Top row is
2-step Euler estimate and the bottom row is x;.

L4 More qualitative samples for inverse problems

We showcase some examples generated by the greedy gradient strategy (Euler) on the different
inverse problems.

37



Figure 9: Qualitative visualization of using greedy guidance to solve the super resolution 4 X inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 10: Qualitative visualization of using greedy guidance to solve the super resolution 4 x inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 11: Qualitative visualization of using greedy guidance to solve the Gaussian deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.
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Figure 12: Qualitative visualization of using greedy guidance to solve the motion deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 13: Qualitative visualization of using greedy guidance to solve the Phase retrieval inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 14: Qualitative visualization of using greedy guidance to solve the nonlinear deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.
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Figure 15: Qualitative visualization of using greedy guidance to solve the HDR inverse problem. Top
row is the ground truth, middle row is the measurement, and the bottom row is the reconstruction.
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Figure 16: Qualitative visualization of controlled generated molecules for various dipole moments
(). Top row is generated using a end-to-end guidance with a DTO scheme and the bottom row is
generated using posterior guidance.

LI.5 More qualitative samples for controlled molecule generation

In Section 1.4 we present some qualitative results for property-guided molecule generation. In
particular, we target different dipole moments.

J Discussions

J.1 Broader Impacts

Controllable generation can be used for many tasks both benign and malicious. The insights from
this paper could be used to develop more effective adversarial attacks, generation of harmful content,
or other malicious applications.

J.2 Limitations

As this work is mostly theoretical, our experimental illustrations are limited, serving more to illustrate
the key concepts rather than advancing the state-of-the-art within the particular problem. We believe
that future work can use these insights to make informed design choices when developing solutions
to guided generation problems.

In our controllable molecule generation experiments, we take a naive strategy for annealing the
learning rate leaving performance on the table. Moreover, we don’t consider mixed accuracy schemes,
i.e., using Euler for certain steps closer to the target and midpoint for steps further away [cf. 55].
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