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Abstract— Achieving equivariance in robot learning tasks,
particularly in the generation of grasp poses for various objects,
has garnered significant attention due to its advantages such
as data efficiency, generalization, and robustness. In this paper,
we propose GraspECMF (Equivariant Conditional Manifold
Flows for grasping), a novel method for SO(3)-equivariant
grasp pose generation. Our method leverages SO(3)-equivariant
representations of objects to learn the invariant distribution of
grasp poses conditioned on the objects. Experimental validation
demonstrates that our method outperforms existing methods,
showcasing enhanced accuracy in grasp pose distribution learn-
ing and resulting in a higher grasp success rate.

I. INTRODUCTION

In robot learning tasks, the principle of equivariance –
that when a symmetry transformation is applied to the
environment, the robot’s action (e.g., end-effector’s pose or
trajectory) should undergo a transformation identical to that
applied to the environment – has drawn significant attention
for its advantages in enhancing data efficiency, generaliza-
tion, and robustness [1], [2]. To achieve such equivariance,
one of the most fundamental ingredients is the equivariant
representation of the environment.

In this work, we focus on the task of generating 6-DoF
grasp poses for 3D objects. The primary objective is, given
a dataset comprised of objects and their corresponding grasp
poses, to train a model that can generate grasp poses for
unseen, novel objects. The principle of SO(3)-equivariance
plays a pivotal role in the grasp pose generation task. As
depicted in Figure 1, this principle dictates that, for any
given rotated object, the generated grasp poses should be
consistently rotated. This equivariance is vital for accurately
training the generator, ensuring that it remains relevant and
applicable irrespective of the object’s orientation.

Recent studies have investigated the grasp pose generation
task incorporating the equivariance. Zhu et al. [3] examined
SE(2)-equivariance within the context of planar (3-DoF)
grasping, while Huang et al. [4] explored SE(3)-equivariance
in 6-DoF grasping scenarios. Despite these advancements,
both approaches are constrained by their generation of a
limited number of grasp poses. This limitation inherently
increases the risk of grasping failures, which may arise
from environmental obstacles or the robot’s configuration
constraints.
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Fig. 1. An example of SO(3)-equivariant grasp pose generation: the
generated grasp poses consistently rotate with the object.

Learning the distribution of grasp poses can mitigate this
issue by enabling the generation of multiple grasp poses from
the learned distribution, rather than being confined to limited
set. Furthermore, this approach facilitates the adoption of
various grasping strategies for diverse downstream tasks.
6-DOF GraspNet [5] and SE(3)-DiffusionFields [6] are
proposed in this regard. However, these models do not fulfill
the SO(3)-equivariance requirement, resulting in less-than-
desirable performance. The fundamental reason lies in their
lack or only partial inclusion of a component required for
learning equivariant representations of objects.

We propose a novel approach, termed Equivariant Con-
ditional Manifold Flows for grasping (GraspECMF),
for learning the distribution of grasp poses that complies
with the SO(3)-equivariance. Leveraging SO(3)-equivariant
representations of objects extracted through vector neurons
[7], we extend the equivariant manifold flow framework
[8] – originally designed to learn invariant unconditional
distributions on manifolds – to learn invariant conditional
distributions specifically tailored for equivariant grasp pose
generation. Our method builds upon three core ideas: (i) em-
ploying the objects’ SO(3)-equivariant representations as the
conditional variables, (ii) extending the equivariant manifold
flow framework to learn invariant conditional distributions,
and (iii) designing a novel equivariant layer for our method.

Through experiments conducted using the ACRONYM
dataset [9] and the Nvidia Isaac Gym simulator [10], we
validate that our model surpasses existing state-of-the-art
methods, 6-DOF GraspNet and SE(3)-DiffusionFields, in
accurately learning the grasp pose distribution and generating
grasp poses with a higher success rate.

II. METHOD
A. Learning Grasp Pose Distribution

The goal of the grasp pose generation is to find the
distribution of 6-DoF grasp poses x ∈ SE(3) given the 3D
point cloud P representing a geometry of an object. We train
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Fig. 2. The architecture of the equivariant conditional manifold flows
utilized for equivariant grasp pose generation and the grasp pose sampling
process. ⊕ denotes the concatenation of lists of 3D vectors.

a conditional generative model q(x|P), approximated with a
deep neural network, by a dataset D = {Pi, {xj

i}j |x
j
i ∈

SE(3)}i: each i-th object’s point cloud Pi is labelled by
multiple grasp poses {xj

i}j . We adopt encoder-based frame-
work, which is standard to extract representations of P
via an encoder E , denoted by z = E(P) ∈ Z . Then we
model q(x|P) as the distribution conditioned on z, such that
p(x|z) = p(x|E(P)) = q(x|P) holds.

We employ the Continuous Normalizing Flow [11] as
the generative model, as depicted in Figure 2. This model
generates grasp poses by initially sampling from a simple
prior distribution p0 on the SE(3) manifold and pushing
forward these samples via the flow ϕt, which is constructed
from a time-dependent vector field vt. Distinct from tradi-
tional flow models, our model utilizes the representation z
as the conditional variable. Thus, the time-variant conditional
vector field vt(z, x), is optimized to construct a conditional
flows ϕt(z, x), such that the pushed-forward samples follow
the target conditional distribution p(x|z).

B. Equivariant Grasp Pose Generation with Equivariant
Representations

In this section, we propose an SO(3)-equivariant grasp
pose generation method, utilizing SO(3)-equivariant repre-
sentations of objects. Consider the rotation group SO(3) and
denote the group action of g ∈ SO(3) on P by g · P and
that on x by g · x (3D rotation of the points in P and the
grasp pose x with respect to the reference frame). To ensure
that the generated grasp poses are equivariant, conditional
distribution q(x|P) should be invariant: q(g · x|g · P) =
q(x|P).

In particular, for the model involving the point cloud en-
coder E and its representation z ∈ Z , ensuring the invariance
of the conditional distribution q(x|P) necessitates satisfying
these conditions: (i) a group action of SO(3) is defined in
Z with g · z denoting the action applied to z, (ii) an encoder
should be SO(3)-equivariant, i.e., g · z = E(g · P), and (iii)
p(x|z) should be SO(3)-invariant, i.e., p(x|z) = p(g ·x|g ·z).
Then it achieves the invariance condition as follows:

q(g · x|g · P) = p(g · x|E(g · P))

= p(g · x|g · z) = p(x|z) = q(x|P).
(1)

To construct the invariant distribution p(x|z) conditioned
on the representation, we extend the equivariant manifold

flow framework proposed by Katsman et al. [8]. This
framework is designed to learn an invariant unconditional
distribution by utilizing an invariant prior distribution p0(x)
and an equivariant vector field vt(x) which uniquely in-
duces an equivariant flow ϕt(x). We extend this framework
to learn an invariant conditional distribution, particularly
by leveraging equivariant representations as the conditional
variables. Therefore, we model the invariant conditional
distribution p(x|z) by using an equivariant conditional vector
field vt(z, x) and an invariant prior distribution p0(x|z).
Throughout, we use an unconditional prior distribution
p0(x|z) = p0(x) that is invariant, i.e., p0(g · x) = p0(x),
for simplicity. We refer to our framework as Equivariant
Conditional Manifold Flows for grasping (GraspECMF).

We train two neural networks. One is an equivariant neural
vector field vt(z, x) to push forward the given invariant prior
distribution p0(x) to model the target invariant distribution
p(x|z). The other is an equivariant encoder network E(P)
to extract equivariant representations. Figure 2 illustrates
the entire model and its grasp pose sampling process. The
network details are explained in the subsequent section.

C. Network Implementation

We adopt vector neurons (VN) [7] to model both vt(z, x)
and E(P). We use the standard VN-DGCNN to model E(P).
On the other hand, it is not straightforward to directly use the
architectures introduced in [7] – designed for 3D point cloud
inputs – for our equivariant vector field vt(z, x). To use the
VN architectures, the input should only consist of a list or
set of 3D vectors. Consider the input variables of the vector
field. The representation z obtained by the VN-DGCNN is
a list of 3D vectors and x ∈ SE(3) can be considered as a
list of 3D vectors. However, the time variable t is a scalar
value, making it challenging to use the VN architectures.

In this work, we propose an equivariant lifting layer
designed to elevate the scalar variable t to a list of vectors,
enabling its integration with the VN architecture. Consider
a list of scalar values represented as a column vector s ∈
RC1×1 – with the time variable corresponds to the case when
C1 = 1. And let V ∈ RC2×3 be a list of 3D vectors, e.g., in
our case, it corresponds to (z, x) or its sub-list.

A lifting layer is a mapping

flift : RC1×1 × RC2×3 → RC1×3, (2)

and it is an equivariant layer if it satisfies g · flift(s, V ) =
flift(s, g · V ) for any g ∈ SO(3) ⊂ R3×3, where g · V for
V ∈ RC×3 is defined by the matrix multiplication between
V and gT , i.e., g · V := V gT .

We construct the equivariant lifting layer as follows:

flift(s, V ) = sfequi(V ), (3)

where fequi : RC2×3 → R1×3 is any equivariant mapping,
i.e., fequi(g · V ) = g · fequi(V ). It is trivial to show that
this construction leads to the equivariance of flift. For fequi,
we use the VN architecture [7]. Finally, with the proposed
equivariant lifting layer, we construct an equivariant neural
networks to model the time-dependent vector field vt(z, x).



TABLE I
THE EVALUATION RESULTS OF EMD AND GRASP SUCCESS RATE

EMD Grasp success rate
(%)

None z SO(3) None z SO(3)

6-DOF GraspNet (VAE) 0.8788 0.8916 0.6040 19.27 17.48 51.68
6-DOF GraspNet (GAN) 0.8653 0.8707 0.7179 11.72 13.22 18.63
SE(3)-DiffusionFields 0.9458 0.8483 0.6269 13.02 22.50 83.80
GraspECMF (Ours) 0.3490 0.3457 0.3634 81.45 84.03 83.75

III. EXPERIMENTS

A. Experiment Settings

1) Dataset and Training: We utilize a dataset obtained
from the Mug category of the ACRONYM dataset [9], which
comprises 101 distinct mugs along with the poses of the
Franka Panda gripper configured to grasp them. For the
data augmentation, we constructed three strategies: None
denotes no augmentation, z-aug denotes augmenting data
by rotating through z-axis, SO(3)-aug denotes augmenting
data by random arbitrary rotation in SO(3). For the test
dataset, we utilize the dataset with the SO(3)-aug strategy.
Riemannian Flow Matching [12] is employed to train our
model.

2) Baselines: We compare our model with 6-DOF Grasp-
Net [5] and SE(3)-DiffusionFields [6]. 6-DOF GraspNet
comprises two versions utilizing Variational Autoencoder
(VAE) and Generative Adversarial Network (GAN) archi-
tectures, respectively. SE(3)-DiffusionFields employs a dif-
fusion model for generating the grasp poses.

3) Metrics: The evaluation metrics we utilize are Earth
Mover’s Distance (EMD) [13] and the grasp success rate.
EMD measures the discrepancy between generated and
ground-truth grasp poses, calculating the minimum distance
(geodesic distance on the SE(3) manifold) necessary to align
them. The grasp success rate is evaluated using the Nvidia
Isaac Gym simulator [10], where the simulation involves
grasping and shaking the object, determining success if the
gripper holds the object afterward. We test 100 generated
grasp poses per object, and both EMD and grasp success rate
are averaged across three random rotations for each object.

B. Results

The evaluation results are presented in Table I and Fig-
ure 3. The column headers in the second row indicate the
augmentation strategy of the training dataset used in each
experiment. Figure 3 shows the grasp pose generation results
on test data for the models trained with SO(3) augmentation.

The existing methods do not account for the SO(3)-
equivariance in grasp pose generation, leading to insufficient
performance with high EMD in both None and z-aug set-
tings, as shown in Table I. Conversely, our GraspECMF
incorporates SO(3)-equivariance, which results in better
performance as indicated by low EMD in these settings.
Moreover, even when arbitrary rotations augment the training
dataset (SO(3)-aug), there exists a significant discrepancy in
the EMD values between our GraspECMF and the baselines,
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Fig. 3. Grasp pose generation results on test data for the models trained
with SO(3) augmentation. 6-DOF GraspNet models produce ungraspable
poses (black circles), while SE(3)-DiffusionFields focuses on specific parts
(black dashed circles), which lack diversity in generating grasp poses.

underscoring our method’s enhanced data efficiency and
generalizability.

Our method’s superior performance is also evident in grasp
success rates presented in Table I. 6-DOF GraspNet (VAE)
and 6-DOF GraspNet (GAN) exhibit low success rates due to
generating unfeasible grasp poses that collide with the cup, as
indicated by black circles in Figure 3. SE(3)-DiffusionFields
similarly shows low success rates in both None and z-aug
settings. In contrast, our GraspECMF consistently achieves
high success rates across all settings, benefiting from its
incorporation of SO(3)-equivariance.

In the majority of scenarios, GraspECMF exhibits superior
performance; however, it is marginally surpassed by SE(3)-
DiffusionFields in the SO(3)-aug setting. The reason behind
this phenomenon is shown in Figure 3. The grasp poses
generated by GraspECMF are distributed across a diverse
range of graspable areas on the cup, closely mirroring the
distribution of the ground-truth grasp poses. In contrast,
the grasp poses generated by SE(3)-DiffusionFields tend to
be concentrated on specific regions of the mug, which is
indicated by black dashed circles. Therefore, the compara-
ble grasp success rate of the SE(3)-DiffusionFields to our
GraspECMF can be said to be due to a lack of diversity
in grasp poses. In contrast, our GraspECMF achieves both
the diversity of the generated grasp poses and a high grasp
success rate.

IV. CONCLUSIONS

In this paper, we introduce GraspECMF, an SO(3)-
equivariant grasp pose generation model. Our approach re-
volves around three main ideas: (i) the utilization of SO(3)-
equivariant representations of objects, (ii) the extension of
the equivariant manifold flow framework for learning invari-
ant conditional distributions, termed Equivariant Conditional
Manifold Flows (ECMF), and (iii) the design of a novel
equivariant layer for our method. Unlike existing grasp pose
generation methods, our model ensures SO(3)-equivariance
in generating grasp poses, resulting in enhanced data effi-
ciency and generalizability. We verify the equivariance of the
generated grasp poses and conduct quantitative evaluations
against baselines, demonstrating the superior grasp pose
generation performance of our model.



ACKNOWLEDGMENT

This work was supported in part by IITP-MSIT grant
2021-0-02068 (SNU AI Innovation Hub), IITP-MSIT grant
2022-0-00480 (Training and Inference Methods for Goal-
Oriented AI Agents), KIAT grant P0020536 (HRD Program
for Industrial Innovation), ATC+ MOTIE Technology Inno-
vation Program grant 20008547, SRRC NRF grant RS-2023-
00208052, SNU-AIIS, SNU-IAMD, SNU BK21+ Program
in Mechanical Engineering, and SNU Institute for Engineer-
ing Research.

Yonghyeon Lee was the beneficiary of an individual
grant from CAINS supported by a KIAS Individual Grant
(AP092701) via the Center for AI and Natural Sciences at
Korea Institute for Advanced Study.

REFERENCES

[1] B. Lee, Y. Lee, S. Kim, M. Son, and F. C. Park, “Equivariant motion
manifold primitives,” in 7th Annual Conference on Robot Learning,
2023.

[2] S. Kim, B. Lim, Y. Lee, and F. C. Park, “Se (2)-equivariant pushing
dynamics models for tabletop object manipulations,” in Conference on
Robot Learning. PMLR, 2023, pp. 427–436.

[3] X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt, “Sample
efficient grasp learning using equivariant models,” arXiv preprint
arXiv:2202.09468, 2022.

[4] H. Huang, D. Wang, X. Zhu, R. Walters, and R. Platt, “Edge grasp
network: A graph-based se (3)-invariant approach to grasp detection,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 3882–3888.

[5] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp.
2901–2910.

[6] J. Urain, N. Funk, J. Peters, and G. Chalvatzaki, “Se (3)-
diffusionfields: Learning smooth cost functions for joint grasp and
motion optimization through diffusion,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
5923–5930.

[7] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J.
Guibas, “Vector neurons: A general framework for so (3)-equivariant
networks,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 12 200–12 209.

[8] I. Katsman, A. Lou, D. Lim, Q. Jiang, S. N. Lim, and C. M.
De Sa, “Equivariant manifold flows,” Advances in Neural Information
Processing Systems, vol. 34, pp. 10 600–10 612, 2021.

[9] C. Eppner, A. Mousavian, and D. Fox, “Acronym: A large-scale grasp
dataset based on simulation,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 6222–6227.

[10] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[11] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neu-
ral ordinary differential equations,” Advances in neural information
processing systems, vol. 31, 2018.

[12] R. T. Chen and Y. Lipman, “Riemannian flow matching on general
geometries,” arXiv preprint arXiv:2302.03660, 2023.

[13] A. Tanaka, “Discriminator optimal transport,” Advances in Neural
Information Processing Systems, vol. 32, 2019.


