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Abstract

In the real world, documents are organized in001
different formats and varied modalities. Tradi-002
tional retrieval pipelines require tailored docu-003
ment parsing techniques and content extraction004
modules to prepare input for indexing. This pro-005
cess is tedious, prone to errors, and has infor-006
mation loss. To this end, we propose Document007
Screenshot Embedding (DSE), a novel retrieval008
paradigm that regards document screenshots009
as a unified input format, which does not re-010
quire any content extraction preprocess and011
preserves all the information in a document012
(e.g., text, image and layout). DSE leverages013
a large vision-language model to directly en-014
code document screenshots into dense represen-015
tations for retrieval. To evaluate our method,016
we first craft the dataset of Wiki-SS, a 1.3M017
Wikipedia web page screenshots as the corpus018
to answer the questions from the Natural Ques-019
tions dataset. In such a text-intensive document020
retrieval setting, DSE shows competitive effec-021
tiveness compared to other text retrieval meth-022
ods relying on parsing. For example, DSE out-023
performs BM25 by 17 points in top-1 retrieval024
accuracy. Additionally, in a mixed-modality025
task of slide retrieval, DSE significantly out-026
performs OCR text retrieval methods by over027
15 points in nDCG@10. These experiments028
show that DSE is an effective document re-029
trieval paradigm for diverse types of documents.030
Model checkpoints, code, and Wiki-SS collec-031
tion will be released.032

1 Introduction033

Information retrieval systems help users access ex-034

ternal information from documents in varied modal-035

ities, including text, images, charts, and tables. As036

shown in Figure 1(a), existing document retrieval037

paradigms typically process these modalities sep-038

arately. For example, traditional lexical retriever039

BM25 (Robertson and Zaragoza, 2009) or neural040

retrievers such as DPR (Karpukhin et al., 2020) rely041

on extracted text contents from documents. Recent042

multimodal retrieval (Yang et al., 2023; Wei et al., 043

2023) leverage both processed text and image units 044

to broaden the scope of retrieval, thus supporting 045

text-image tasks. 046

However, the existing retrieval paradigms lack 047

a unified encoding process across modalities, lead- 048

ing to two underlying issues. Firstly, preprocess- 049

ing is not a trivial effort. Specialized processing 050

is required to handle various document types and 051

content modalities, and they are often imperfect. 052

For instance, HTML files in the wild can present 053

significant complexity due to their varied struc- 054

tures, making it difficult for a single tool to parse 055

all information accurately. Similarly, slides and 056

PDFs often require OCR models to extract text and 057

handle other content types like tables and figures 058

separately (Huang et al., 2022; Tanaka et al., 2023). 059

Managing these diverse modalities separately is 060

tedious, and precisely dealing with the long-tailed 061

document appearances in the real world is often 062

impractical. Secondly, this process “breaks” the 063

original appearance of the document, disrupting 064

its visual context and layout integrity. The visual 065

presentation of a document can convey essential 066

information that is difficult to capture through con- 067

tent extraction alone. For example, in addition to 068

the contents of texts and images, the size and posi- 069

tion of these elements in a document may encode 070

the importance of the information they contain (Xu 071

et al., 2020; Huang et al., 2022). 072

To tackle the aforementioned issues, we intro- 073

duce Document Screenshot Embedding (DSE), a 074

new information retrieval paradigm that unifies the 075

varied formats and modalities in a single form for 076

direct document encoding and indexing: screen- 077

shot. Unlike the texts and images extracted from 078

a document, screenshots are easy to obtain. More 079

importantly, screenshots naturally preserve all the 080

information in a document. As illustrated in Fig- 081

ure 1(b), DSE directly encodes the screenshot of 082

any given document into a dense representation 083
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Figure 1: Comparison between (a) existing document retrieval paradigm and (b) our proposed paradigm. DSE
bypasses the document parsing and content extraction process, directly encoding the original appearance of
documents with multimodal contents into a dense representation for indexing

through a large vision-language model. During084

search, a user’s query is encoded by a language085

model to locate the nearest document embeddings.086

We conduct empirical studies to demonstrate that087

DSE is effective for document retrieval. Specif-088

ically, we conduct experiments on two types of089

document retrieval settings: text-intensive setting090

and text-image mixed one. For the former, we col-091

lect 1.3 million Wikipedia web page screenshots092

as our corpus and fine-tune a large vision-language093

model as a bi-encoder to conduct dense retrieval094

on questions in the NQ dataset (Kwiatkowski et al.,095

2019). Experimental results show that DSE outper-096

forms the traditional text-based retrieval method097

BM25 by 17 points in top-1 retrieval accuracy on098

NQ questions and is competitive with text-based099

dense retrieval methods in a text-oriented evalua-100

tion. This experiment indicates that DSE can suffi-101

ciently encode the textual information in a screen-102

shot. For the image-text mixed setting, we use slide103

retrieval. We turn the existing SlideVQA (Tanaka104

et al., 2023) dataset into an open-domain retrieval105

setting, where models are required to retrieve rel-106

evant slides from a pool of 50k slides for given107

questions. Results show that DSE outperforms all108

text-based retrieval methods which rely on OCR109

(including BM25 and dense text retrieval) by over110

15 points in nDCG@10.111

2 Related Work112

2.1 Neural Document Retrieval113

Traditional document retrieval methods such as TF-114

IDF and BM25 (Robertson and Zaragoza, 2009)115

represent text as bag-of-words representations and116

conduct efficient search over an inverted index.117

Recent neural retrieval methods represented by118

DPR (Karpukhin et al., 2020), proposed to use119

to finetune pretrained neural networks such as120

BERT (Devlin et al., 2019) to encode query and121

document separately into dense semantic vectors in 122

a bi-encoder architecture. The effectiveness of text 123

dense retriever has been boosted in recent years 124

by various training strategies such as data augmen- 125

tation (Xiong et al., 2021; Lin et al., 2023; Xiao 126

et al., 2023), pretraining (Izacard et al., 2021; Gao 127

and Callan, 2022; Wang et al., 2023a), and distilla- 128

tion (Lin et al., 2021; Ren et al., 2021). With the 129

growth of large language models finetuning LLM 130

as text embedding demonstrated further improve- 131

ment in both in-domain and out-domain retrieval 132

effectiveness (Ma et al., 2023; Wang et al., 2023b; 133

Lee et al., 2024). 134

Besides text retrieval, prior multi-modal retrieval 135

studies (Wei et al., 2023; Koukounas et al., 2024) 136

have explored retrieval across various combinations 137

of text and image inputs for queries and documents. 138

These approaches aim to bridge the gap between 139

different modalities, enabling more comprehensive 140

retrieval systems. 141

Existing text and multi-modal retrieval works 142

assume that the datasets are well pre-processed, 143

where text and image data are carefully extracted 144

and organized for model inputs. However, this 145

is not always true in real-world scenarios where 146

documents are often unstructured and diverse. In 147

this work, we consider the document retrieval tasks 148

that begin with the original look of documents. 149

2.2 Large Vision-Language Model 150

Large language models (LLMs) like Chat- 151

GPT (OpenAI, 2022) and LLaMA (Touvron et al., 152

2023), pre-trained on massive corpora and fine- 153

tuned to follow user instructions, have shown 154

success in various natural language generation 155

tasks (Wei et al., 2022). Recent advancements have 156

integrated vision capabilities into LLMs, enabling 157

them to process both text and images simultane- 158

ously. Commercial models like GPT-4V (OpenAI, 159

2024) and open-source models such as LLaVA (Liu 160
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et al., 2023) exhibit strong performance. Build-161

ing upon LLaVA, recent works such as LLaVA-162

NEXT (Liu et al., 2024a), Idefics2 (Laurençon163

et al., 2024), and Phi-3-vision (Abdin et al., 2024)164

have further improved performance. They enable165

the processing of higher-resolution images and han-166

dle more challenging vision-language tasks, such167

as OCR (Liu et al., 2024a,b). Inspired by the capa-168

bilities of large vision-language models, our work169

pioneers its application in document retrieval tasks.170

2.3 Document Retrieval Datasets171

Commonly used text retrieval datasets such as172

MS MARCO (Bajaj et al., 2018), Wikipedia-173

NQ (Karpukhin et al., 2020), and BEIR (Thakur174

et al., 2021) are typically released in well-175

preprocessed and cleaned text contents. Similarly,176

multi-modal retrieval datasets like AToMIC (Yang177

et al., 2023) and m-BEIR (Wei et al., 2023) have178

text and images extracted from their sources and179

separately stored.180

On the other hand, existing datasets designed181

for question-answering tasks based on document182

images include DocVQA (Mathew et al., 2021),183

VisualMRC (Tanaka et al., 2021), WebSRC (Chen184

et al., 2021), and InfographicVQA (Mathew et al.,185

2022). These datasets contain document images186

paired with questions, focusing on reading com-187

prehension evaluation where a ground truth docu-188

ment image is provided for each question. Besides,189

the document image pools in these datasets are190

relatively small, typically comprising only a few191

thousand images.192

To evaluate multi-modal document retrieval in193

a large scale, we crafted a text-intensive image194

corpus called Wiki-SS, containing 1.3 million195

Wikipedia page screenshots which support retrieval196

evaluation in large scale. Additionally, we convert197

SlideVQA (Tanaka et al., 2023) dataset, a visual198

QA dataset, into an open-domain slide retrieval199

dataset, consisting of a corpus of 50K slides.200

3 Method201

3.1 Task Definition202

Given a query Q and a corpus C consisting of doc-203

uments {D1, D2, ..., Dn}, the task of document204

retrieval is to identify the k documents that are205

most relevant to the query Q, with k ≪ n. This206

relevance is determined using a similarity metric207

Sim(Q,D) ∈ R. Note that in this work, the screen-208

shot “document” is a complete information snippet209

(e.g. a web article, a PDF page). This is different 210

from some of the previous retrieval work, where 211

the term “document” denotes arbitrary information 212

snippets like sentences or passages. For queries, 213

we only consider the text inputs similar to the tra- 214

ditional search setting. We leave the exploration of 215

handling image queries for future work. 216

3.2 Document Screenshot Embedding 217

We adopt a bi-encoder architecture for dense re- 218

trieval, where a document screenshot and user text 219

query are encoded into dense vectors using a vi- 220

sion and text encoder, respectively. We can naively 221

apply the vision and text encoders from CLIP (Rad- 222

ford et al., 2021) to our task; however, in our exper- 223

iment, we observe that the vision encoder cannot 224

encode screenshots with more fine-grained informa- 225

tion; thus, we propose to use large vision language 226

models as the document screenshot encoder. 227

Visual Encoder When a document screenshot 228

D is provided, it is first processed by a vision en- 229

coder Ev to generate a sequence of latent represen- 230

tations. The length of the sequence is determined 231

by the image tokenizer of the vision encoder. We 232

take clip-vit-large-patch14-3361 as an ex- 233

ample. Any given screenshot is first converted to 234

an image with 336× 336 pixels and then divided 235

into 24 × 24 patches (i.e., 576 patches in total), 236

each of which consists of 14 × 14 pixels. Each 237

patch is flattened and mapped to a patch embed- 238

ding with a trainable linear projection. The patch 239

embeddings are encoded into latent representations 240

with a vision encoder. However, if a screenshot 241

contains many texts (e.g., Wikipedia webpage), the 242

576 patch latent embeddings may not capture the 243

fine-grained textual information in the screenshot. 244

Vision Language Model In order to ad- 245

dress the aforementioned issue, we leverage 246

a large vision language model, Phi-3-vision2, 247

which uses the same image tokenizer from 248

clip-vit-large-patch14-336 but can represent 249

an image with more patches by cropping it into 250

sub-images. For example, given a screenshot, we 251

can choose to divide it into (Cx × 24)× (Cy × 24) 252

patches. The given screenshot is converted to an 253

image with (Cx × 336) × (Cy × 336) pixels and 254

cropped into Cx × Cy sub-images, each of which 255

has 336× 336 pixels. Similarly, each sub-image is 256

1ViT-Large
2Phi-3-vision
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Figure 2: Overview of DSE encoder architecture. DSE adopts a bi-encoder architecture, where the document tower
encodes the document screenshot into dense vector by taking vision input and the query tower encodes the query by
taking text input. Document and query encoders share the same language model.

encoded into 576 patch latent representations inde-257

pendently. Note that Phi-3-vision further converts258

the whole screenshot into 336 × 336 pixels and259

encodes them into an additional 576 patch latent260

representations to capture the global information,261

resulting in (Cx × Cy + 1)× 576 patch latent rep-262

resentations in total, as depicted in left side of Fig-263

ure 2. Also, every four patch latent representations264

are merged into one for language model inputs.265

This process yields (Cx × Cy + 1) × 576
4 patch266

latent embeddings as the input for the language267

model El. In Section 5.3, we will show that encod-268

ing a screenshot into more patch latent embeddings269

(increasing Cx and Cy) helps capture more fine-270

grained information in the screenshot but sacrifices271

screenshot document encoding efficiency.272

The encoded patch latent embeddings are con-273

catenated with a text prompt as the input to the274

subsequent language model: “<s><img> What is275

shown in this image?</s>”. Here, the <img> token276

is a special placeholder token and is replaced by277

the sequence of patch latent embeddings. In order278

to better aggregate information using a language279

model with uni-directional attention, following Ma280

et al. (2023), we use the end-of-sequence token281

</s> embedding from the last hidden state as the282

document screenshot embedding:283

Vd = El(Ev(D), prompt)[−1]284

Contrastive Learning The similarity between285

the query and the document is computed as the286

cosine similarity between their embeddings: 287

Sim(Q,D) =
V ⊤
q Vd

∥Vq∥ · ∥Vd∥
. 288

During training, our embedding model is opti- 289

mized using the InfoNCE loss: 290

L(Q,D+, DN) = − log p(D = D+ | Q)

= − log
exp(Sim(Q,D+)/τ)∑

Di∈{D+}∪DN

exp(Sim(Q,Di)/τ)
, 291

where D+ denotes the positive document. DN rep- 292

resents a set of negative documents that are irrele- 293

vant to the query Q, including hard negatives and 294

in-batch negatives. τ is a temperature parameter set 295

to 0.02 in our experiments. Note that we only con- 296

sider text queries, which are directly input to the 297

language model using template f“<s>{query}</s>” 298

and the last hidden state of </s> is used as the 299

query embedding, Vq = El(Q)[−1]. 300

4 Experiment Setup 301

4.1 Web-Page Retrieval 302

Dataset We construct the Wiki-SS dataset, us- 303

ing the Selenium Python toolkit3 to access English 304

Wikipedia pages through URLs and automatically 305

take screenshots. The screenshots are taken with 306

a window size of 980 x 980 pixels to ensure ade- 307

quate coverage of the core content. The screenshot 308

creation process is conducted over a span of four 309

3https://pypi.org/project/selenium/
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days, from May 20 to May 23, 2024. Note that310

storing the entire collection of Wikipedia screen-311

shots would require over 2TB of storage in PNG312

format. In order to make Wiki-SS more manage-313

able for research purposes, we downsize the corpus314

by filtering out the web pages which are consid-315

ered “easy negative samples” for all the questions316

in the train, dev and test sets from Natural Ques-317

tions (Kwiatkowski et al., 2019). Specifically, we318

perform BM25 search for each question to retrieve319

the top 50 documents over the text corpus. The re-320

trieved documents are pooled together as our final321

corpus. Note that we concatenate each question and322

its corresponding ground truth answers as a query323

for BM25 search to ensure that positive and hard324

negative documents for each question are included325

in the downsized corpus. As a result, we obtain a326

collection of 1,267,874 Wikipedia screenshots for327

our experiments.328

To compare with text-based retrieval baselines,329

we create a text version Wikipedia collection which330

mirrors the collection of Wiki-SS. Given the signif-331

icant updates and changes to Wikipedia pages over332

time, the existing Wikipedia dumps (Karpukhin333

et al., 2020; Izacard et al., 2024) cannot be334

used as a fair comparison. Thus, we re-process335

the Wikipedia text contents based on the May336

20, 2024 dump4 uses Wikipeida parsing tool337

mwparserfromhell. For each document in the text338

corpus, we use the first 500 words of each docu-339

ment, mirroring the corpus in Wiki-SS, where each340

screenshot covers only the first-page content.341

Training Data We create the training data by tak-342

ing the questions in the NQ train split as queries343

and using BM25 to retrieve the top-50 relevant doc-344

uments over the text corpus for each question. A345

document candidate (either in screenshot or text)346

is considered positive when the corresponding text347

contains the answers for the question. Otherwise,348

the document is considered a hard negative candi-349

date. We drop the training example if either the350

positive or negative candidate list is empty, result-351

ing in 49,095 training examples of triplets of query,352

positive documents and hard negative documents.353

Evaluation We evaluate the in-domain effec-354

tiveness of retrievers using the 3,610 NQ test355

set questions. Consistent with previous prac-356

tices in evaluating retrieval effectiveness on QA357

4https://huggingface.co/datasets/
legacy-datasets/wikipedia

datasets (Karpukhin et al., 2020), we use top-k 358

retrieval accuracy as the metric. A question is con- 359

sidered correctly answered if one of the candidate 360

documents contains an exact match of the answer 361

string in the corresponding text content. We fol- 362

low the same method for computing exact match 363

accuracy as Karpukhin et al. (2020). 364

4.2 Slide Retrieval 365

Dataset The original SlideVQA (Tanaka et al., 366

2023) data is designed for document visual ques- 367

tion answering. It contains 14.5k QA pairs and 52k 368

slide images in total. The images contain various 369

text formats, layouts, and visual content such as 370

plots and charts. Given a question, the original task 371

is to select the most relevant slides among the same 372

deck with up to 20 slides and then answer the ques- 373

tion based on the selected slides. The document 374

selection process is in the form of reranking and 375

classification. In order to support the evaluation of 376

document retrieval, we modify the SlideVQA to an 377

open-domain retrieval task, where the task is to re- 378

trieve k most relevant slide from the entire pool of 379

slide images. After our processing (e.g. removing 380

the slides that fail to download, and questions that 381

do not have evidence slides available), SlideVQA- 382

open contains 50,714 slide images (screenshots) 383

in its corpus. We also create a corresponding text- 384

based corpus for comparison with text retrievers us- 385

ing pytesseract OCR toolkit to extract text from 386

slides. 387

Training Data We create the training data based 388

on the original train split of SlideVQA, the an- 389

notated evidence slides for a given question are 390

considered positive documents, and the other slides 391

within the same deck are considered as hard nega- 392

tive documents. This process leads to 10,290 train- 393

ing examples in total. 394

Evaluation We construct the SlideVQA-open 395

evaluation set using the 2,136 questions in the test 396

set of SlideVQA. We evaluate the models’ retrieval 397

effectiveness using nDCG@10 and Recall@10. In 398

the following sections, mentions of SlideVQA refer 399

to the open-domain retrieval setup. 400

4.3 Implementation Details 401

We implement DSE by modifying the Tevatron 402

toolkit (Gao et al., 2023), with the model initialized 403

using Phi-3-vision (Abdin et al., 2024), one of the 404

state-of-the-art open-source large vision-language 405

models with 4 billion parameters. This model is 406
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Retriever Document NQ SlideVQA-open
Top 1 Top 5 Top 10 Top 20 nDCG@10 Recall@10

BM25

Text

29.5 52.6 61.3 67.3 55.8 63.7
DPR 42.3 63.9 69.7 74.3 47.4 57.9
E5 47.6 68.6 73.8 77.6 59.3 69.6
Phi-3 50.6 70.9 75.8 79.5 59.0 69.5

CLIP
Screenshot

35.1 50.8 57.7 64.8 61.7 74.7
DSE 46.2 68.5 73.7 77.6 75.3 84.6

Table 1: Supervised retrieval effectiveness comparison. DSE and CLIP directly encode document screenshots while
the other text-based retrieval models encode the extracted text from documents.

recognized for its effective and efficient trade-off407

in performance. To train the model, we employ408

memory-efficient techniques such as LoRA (Hu409

et al., 2022), FlashAttention (Dao, 2024), and Deep-410

Speed (Rasley et al., 2020). The model is trained411

with a batch size of 128 for one epoch on Wikipedia412

webpage retrieval and trained with a batch size of413

64 for two epochs for slide retrieval. The model414

weights are shared between the language models415

for document screenshot and query encoding. In416

both tasks, each training query is paired with one417

positive document and one hard negative document.418

We set (Cx, Cy) = (4, 4) by default; that is, the419

document screenshots are resized to 1344x1344420

pixels and cropped into 4x4 sub-images. The train-421

ing process is conducted on two A100 80GB GPUs.422

During inference, the embeddings are indexed us-423

ing a Flat Faiss index (Douze et al., 2024) for exact424

nearest neighbor search.425

4.4 Baselines426

We compare DSE against the following document427

retrieval methods based on text input: (1) BM25:428

a traditional text retriever based on lexical repre-429

sentation. (2) DPR: we follow the same setting as430

the DPR work (Karpukhin et al., 2020), initialize431

dense retriever with BERT-base, and finetuned on432

our training data based on text input. (3) E5: Simi-433

lar to DPR, we finetune the unsupervised E5-base434

model (Wang et al., 2022), which has BERT further435

pretrained with constrastive learning based on web436

data. (4) Phi-3: we use the same model initializa-437

tion and configuration as DSE but only fine-tune438

the component of the language model as a text-439

based dense retriever. Additionally, we compare440

the fine-tuned CLIP model, whose image encoder441

is also initialized by ViT-large (the same as DSE)442

but only supports a fixed length of patch sequence;443

i.e., (Cx, Cy) = (1, 1). See Appendix A.2 for de- 444

tailed hyper-parameters of DSE and baselines. 445

5 Experimental Results 446

5.1 Supervised Retrieval Effectiveness 447

Table 1 presents the models’ retrieval effective- 448

ness in the supervised setting, where models are 449

fine-tuned on NQ or SlideVQA training queries 450

and evaluated on the corresponding evaluation set. 451

For the Wikipedia webpage retrieval task, DSE 452

demonstrates significant improvements over the tra- 453

ditional text-based retrieval method BM25. Specifi- 454

cally, DSE achieves 46.2% and 77.6% in top-1 and 455

top-20 retrieval accuracy, which are 17 points and 456

10 points higher than BM25, respectively. This indi- 457

cates that DSE can effectively encode text-intensive 458

documents in the format of screenshots for retrieval. 459

When compared with neural text retrieval meth- 460

ods, DSE outperforms smaller model DPR and 461

performs on par with E5. Phi-3, which uses the 462

same language model as DSE (with 4 billion pa- 463

rameters), achieves approximately 4 points higher 464

top-1 retrieval accuracy than DSE. This suggests 465

that existing vision language models still cannot 466

fully capture the text content in a screenshot. 467

In the slide retrieval task, where the documents 468

include a mix of text and visual content, we ob- 469

serve DSE significantly outperforms (i.e., over 15 470

points in both nDCG@10 and Recall@10) all the 471

text retrieval baselines that rely on OCR content 472

extraction. This highlights the risk of information 473

loss in the content extraction step, where OCR is 474

only able to extract text content, thereby losing the 475

visual elements of the documents. Notably, DPR, a 476

neural retrieval method, fails to outperform BM25 477

in this task. This may be due to the varied layouts 478

of slides, which pose additional challenges for text 479

content extraction and result in noisy text input 480
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Zero-Shot TriviaQA SlideVQA-open
Retriever Top 1 Top 10 nDCG@10 Recall@10

BM25 47.4 71.0 55.8 63.7
DPR 37.3 65.5 29.5 39.7
E5 46.9 73.1 42.6 54.4
Phi-3 57.1 78.1 49.7 62.1

CLIP 37.3 65.6 48.4 61.6
DSE 50.3 75.2 64.0 76.1

Table 2: Zero-shot retrieval effectiveness comparison.
Models are trained on Wiki-SS with NQ questions and
evaluated on TriviaQA questions and slide retrieval task.

for text neural retrieval fine-tuning. By contrast,481

DSE bypasses the stage of text content extraction482

and directly encoding document screenshots, which483

preserves more information for retrieval.484

Finally, DSE outperforms CLIP even though485

they use the same backbone of the vision trans-486

former to digest the document screenshots. For487

NQ, DSE surpasses CLIP by 11.1 points in top-1488

accuracy, and for SlideVQA, DSE achieves 12.6489

points higher in nDCG@10. We contribute the ef-490

fectiveness gain to the large vision-language model491

encoder, which as we will show in Section 5.3,492

has the capacity to handle more fine-grained in-493

formation in a screenshot and possibly enhanced494

semantic understanding.495

5.2 Zero-Shot Retrieval Effectiveness496

In this section, we further evaluate the generaliza-497

tion capability of DSE. Specifically, we apply the498

models fine-tuned on NQ questions to retrieve an-499

swers for TriviaQA questions (Joshi et al., 2017)500

over the Wiki-SS (or the corresponding Wiki text)501

corpus, assessing their ability to generalize across502

different query distributions. Additionally, we eval-503

uate the NQ fine-tuned models on the SlideVQA504

dataset to examine cross-task generalization.505

As shown in Table 2, on TriviaQA, the text re-506

triever based on LLM (i.e., Phi-3) achieves the507

best zero-shot effectiveness with a top-1 retrieval508

accuracy of 57.1%. Both DPR and CLIP show509

lower zero-shot effectiveness, being outperformed510

by BM25 by approximately 10 points. In contrast,511

DSE achieves a top-1 retrieval accuracy of 50.3%,512

which is 3 points higher than BM25. This indicates513

that DSE has relatively good zero-shot effective-514

ness across different query distributions but with515

room for improvement.516

On the slide retrieval task, we observe that DSE517

shows the best effectiveness among all. Specif-518

(1, 1) (2, 2)

(3, 3) (4, 4)

Figure 3: A snapshot of a Wikipedia webpage divided
by different numbers of patches (red small squares). As
the number of patches increases, each patch can capture
more fine-grained text information in the screenshot.
(Cx, Cy) means the image are divided into Cx × Cy

sub-images; then converted into (Cx × 24)× (Cy × 24)
patches. See more detail in Section 3.2 and Figure 2.

(1,1) (2,2) (3,3) (4,4)
(Cx, Cy)Number of Sub-Images

Figure 4: Trade-off between effectiveness and efficiency
of DSE with varying numbers of crops for input images.
The inference speed is measured on a single H100 GPU
with BF16 precision and FlashAttention enabled.

ically, DSE outperforms BM25 by 8 points in 519

terms of nDCG@10, while all the other text-based 520

methods underperform BM25. This result shows 521

that even though DSE is only fine-tuned on the 522

Wikipedia webpage retrieval task, where text is the 523

main content, it is still able to encode document 524

information beyond text. This demonstrates the po- 525

tential of DSE in handling diverse document types 526

and tasks without needing task-specific training. 527

5.3 Impacts of Patch Sequence Length 528

As we discussed in Section 3.2, each screenshot in- 529

put to DSE is cropped into Cx×Cy sub-images and 530

encoded as a sequence of patches. Thus, increasing 531

the number of crops yields a more lengthy patch 532

input sequence, which incurs more computation 533

cost for document encoding. On the other hand, in- 534

creasing the number of crops results in patches with 535

more fine-grained visual information, as illustrated 536

in Figure 3. In the setting of (Cx, Cy) = (1, 1), 537

each patch contains multiple words, while in the 538

setting of (Cx, Cy) = (4, 4), a single letter is cov- 539

ered by two patches. This leads to a trade-off be- 540

tween the efficiency and quality of document en- 541
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INPUT GLOBAL-HEAD- 0 GLOBAL-HEAD- 4 LOCAL-HEAD- 3 LOCAL-HEAD-22

Figure 5: Case study on two examples in Wikipedia and SlideQA. We visualize the multi-head attention from the
fine-tuned embedding to the image patches at the last layer. GLOBAL-HEAD is the attention head to the coarse
image features (336×336), while the LOCAL-HEAD is the attention head to more fine-grained image features after
cropping (16×336×336). We verify that the textual information is indeed extracted from the screenshots.

coding. We study this trade-off by training DSE542

with different numbers of crops and evaluate the543

corresponding retrieval effectiveness and document544

encoding speed (Doc/sec) on the Wiki-SS task for545

NQ questions.546

We plot the efficiency and effectiveness in Fig-547

ure 4. When cropping the image into 4x4 sub-548

images for more fine-grained patch encoding, the549

top-10 retrieval accuracy increases from 62.0% to550

73.7%, indicating that finer granularity helps the551

model better understand and encode the document552

screenshot. However, this comes at the cost of com-553

putational efficiency. As the number of sub-images554

increases, the sequence length of the model’s in-555

put grows, resulting in longer encoding times. The556

document encoding speed decreased from 12.2 doc-557

uments per second with 1 × 1 sub-images to 4.3558

documents per second with 4 × 4 sub-images as559

input. Finally, the experiment suggests that using560

(Cx, Cy) = (2, 2) or (3, 3) offers a good balance561

between retrieval effectiveness and computational562

efficiency.563

5.4 Case Study564

We conducted a case study to verify whether the565

fine-tuned embeddings effectively utilize the core566

semantic information in the screenshots. Figure 5567

presents the attention visualization of two examples568

from Wiki-SS and SlideVQA. We used the Phi-3-569

vision model fine-tuned on NQ as the backbone570

and extracted the multi-head attention of the last571

token embedding to the image patches at the final572

layer. The image patches contain both global and 573

local features: Global features are tokenized from 574

the resized full image input (336× 336), while lo- 575

cal features are derived from crops when the image 576

is resized to 1344 × 1344 and then cropped into 577

4× 4 sub-images before encoding. For both exam- 578

ples, the global attention heads appear to focus on 579

general information, such as images, logos, titles, 580

and sections. In contrast, the local attention heads 581

concentrate on finer details in the screenshots, such 582

as individual letters and keywords, which are cru- 583

cial for retrieval. This qualitative evidence suggests 584

that DSE can effectively capture information from 585

various modalities within the screenshots, thereby 586

enhancing its retrieval capabilities. 587

6 Conclusion 588

In this paper, we introduced DSE, a novel informa- 589

tion retrieval paradigm that leverages screenshots 590

to simplify the document retrieval process. By by- 591

passing traditional preprocessing steps and directly 592

encoding documents with a vision-language model, 593

DSE offers a unified approach to handling varied 594

document modalities. We empirically show that 595

DSE outperforms traditional retriever and OCR- 596

based methods on varied document retrieval tasks, 597

such as webpage and slide retrieval. This under- 598

scores the potential of DSE to enhance document 599

retrieval in diverse real-world applications. Future 600

developments could refine encoding techniques and 601

adapt to different document types, setting new stan- 602

dards for multi-modal information retrieval. 603
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7 Limitations604

This work has several limitations that warrant fur-605

ther exploration. Firstly, while we evaluated DSE606

on Wikipedia webpage retrieval and slide retrieval607

datasets, there remains a gap in its effectiveness608

for more general-purpose document retrieval tasks,609

such as those involving PDFs or web pages with610

highly varied structures and content. Future work611

can consider multi-task training across diverse doc-612

ument types and content. Additionally, combin-613

ing our method with extracted text and image con-614

tents could make DSE more versatile for general615

retrieval tasks. Secondly, our current approach re-616

lies solely on supervised fine-tuning. However,617

research in text retrieval has shown that contrastive618

pretraining can significantly improve retriever ef-619

fectiveness. Investigating whether such pretrain-620

ing methods can enhance DSE’s performance is a621

promising direction for future research. Thirdly,622

the reliance on visual data introduces challenges623

in environments where such data is of low quality.624

Blurry or low-resolution screenshots may degrade625

the effectiveness of DSE. Conversely, processing626

very high-resolution images can reduce computa-627

tional efficiency. We leave further explore the bal-628

ance of image quality and computational efficiency629

as future work.630
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A Appendix 911

A.1 Dataset Licences 912

• NQ: Apache License 2.0 913

• TriviaQA: Apache License 2.0 914

• SlideVQA: SOFTWARE LICENSE AGREE- 915

MENT FOR EVALUATION 916

• Wikipedia: Creative Commons Attribution 917

Share Alike, GNU Free Documentation Li- 918

cense family. 919

• Wiki-SS: Creative Commons Attribution 920

Share Alike, GNU Free Documentation Li- 921

cense family. 922

A.2 Hyper-Parameters for Training 923

Please see Table 3 for details. 924

A.3 AI assistants usage 925

GPT4o is used during the writing to capture gram- 926

mar errors and format tables. 927
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Method DPR E5 Phi3 CLIP DSE

Model Init google-bert/bert- intfloat/e5-base- microsoft/Phi-3- openai/clip-vit-large- microsoft/Phi-3-
base-uncased unsupervised vision-128k-instruct patch14-336 vision-128k-instruct

License Apache 2.0 MIT License MIT License MIT License MIT License
# of Parameters 110 M 110 M 4B 430 M 4B
Backbone Modality text text text or vision text XOR vision text OR vision
Learning Rate 1e-5 1e-5 1e-4 1e-5 1e-4
GPU 2xA100 80G 2xA100 80G 2xA100 80G 2xA100 80G 2xA100 80G
Per Device Batch Size 64 64 8 16 8
Hard Neg Per Query 1 1 1 1 1
Gradient Accumulation 1 1 8 (4) 4 8 (4)
Total Batch Size 128 128 128 (64) 128 128 (64)
Pooling cls mean eos mean eos
Temperature 1 0.02 0.02 0.02 0.02
Normalize False True True True True
Epochs 40 40 1 (2) 10 1 (2)
LoRA False False True False True
LoRA r N/A N/A 8 N/A 8
LoRA Alpha N/A N/A 64 N/A 64
LoRA Dropout N/A N/A 0.1 N/A 0.1
LoRA Target N/A N/A *_proj N/A *_proj

Table 3: Detailed hyper-parameter settings for baselines and our method. By default, the parameters are for the
Wiki-SS NQ training. If the setup is different for SlideVQA training, it is noted in parentheses.
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