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Abstract

Despite significant research, discovering causal relationships from fMRI remains a challenge. Popular
methods such as Granger Causality and Dynamic Causal Modeling fall short in handling contempora-
neous effects and latent common causes. Methods from causal structure learning literature can address
these limitations but often scale poorly with network size and need acyclicity. In this study, we first
provide a taxonomy of existing methods and compare their accuracy and efficiency on simulated fMRI
from simple topologies. This analysis demonstrates a pressing need for more accurate and scalable meth-
ods, motivating the design of Causal discovery for Large-scale Low-resolution Time-series with Feedback
(CaLLTiF). CaLLTiF is a constraint-based method that uses conditional independence between contem-
poraneous and lagged variables to extract causal relationships. On simulated fMRI from the macaque
connectome, CaLLTiF achieves significantly higher accuracy and scalability than all tested alternatives.
From resting-state human fMRI, CaLLTiF learns causal connectomes that are highly consistent across
individuals, show clear top-down flow of causal effect from attention and default mode to sensorimo-
tor networks, exhibit Euclidean distance-dependence in causal interactions, and are highly dominated
by contemporaneous effects. Overall, this work takes a major step in enhancing causal discovery from
whole-brain fMRI and defines a new standard for future investigations.
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Introduction

A major step in the global drive for understanding the brain (Adams et al., 2020; Amunts et al., 2016;
Jorgenson et al., 2015; Okano et al., 2015; Poo et al., 2016) is to move beyond correlations and understand
the causal relationships among internal and external factors — a process often referred to as causal discov-
ery (Assaad et al., 2022; Glymour et al., 2019). When possible, causal discovery can be greatly simplified
by intervening in one variable and observing the effect in others. However, such interventions are often
costly and/or infeasible, necessitating the significantly more challenging task of causal discovery from purely
observational data.

A particularly rich set of observational data for the brain comes from functional MRI (fMRI) (Goense and
Logothetis, 2008; Winder AT and PJ, 2017). The whole-brain coverage allowed by fMRI is valuable for causal
discovery not only because it allows for purely data-driven and unbiased discovery of potentially unexpected
causal relationships (Bressler and Menon, 2010; Bullmore and Sporns, 2012; Fornito and Bullmore, 2015), but
also because of the great extent to which the presence of unobserved variables can complicate delineating
causal adjacencies and orientations (Entner and Hoyer, 2010; Gerhardus and Runge, 2020; Hasan et al.,
2023; Malinsky and Spirtes, 2018). Nevertheless, many characteristics of fMRI also make causal discovery



challenging, including its large dimensionality, low temporal resolution, and indirect reflection of underlying
neural processes (Ramsey et al., 2010).

This has motivated a large and growing body of literature on causal discovery from fMRI. A common
approach for causal discovery using neuroimaging and neurophysiology data is Granger Causality (GC) (Seth
et al., 2015). GC has a long history in neuroscience (Barnett and Seth, 2014; Seth et al., 2015), but also
has well-known limitations, including its lack of ability to account for contemporaneous causal relationships
and the presence of latent nodes. The former is particularly important for fMRI. The temporal resolution in
fMRI is typically within a few hundred milliseconds to several seconds (Huettel et al., 2009), which is about
one order of magnitude slower than the time that it takes for neural signals to travel across the brain (Nunez
and Srinivasan, 2006; Sutton and Begleiter, 1979; Sutton et al., 1965). Therefore, from one fMRI sample to
the next, there is enough time for causal effects to flow between almost all pairs of nodes in the network (cf. a
related in-depth discussion in (Nozari et al., 2019, Appendix A)). Such fast sub-TR interactions demonstrate
themselves as causal effects that appear to be “contemporaneous” and can even be cyclic, making causal
discovery significantly more challenging (Supplementary Note 1). Similar to GC, Dynamic Causal Modeling
(DCM) has also been widely used with fMRI data (Friston et al., 2003, 2019, 2014; Stephan and Roebroeck,
2012) and fundamentally relies on the temporal order of a generative dynamical model to infer causation
from correlations, making it similarly unable to account for contemporaneous causal relationships (Friston
et al., 2013; Friston, 2011; Logothetis, 2008).

Discovering causal relationships without reliance on time has been the subject of extensive research in
the causal inference literature (Glymour et al., 2019; Pearl, 1988, 2009a,b; Spirtes et al., 2000; Spirtes and
Zhang, 2016). A wide range of algorithmic solutions have been proposed (Chickering, 2002a; Glymour et al.,
2019; Henry and Gates, 2017; Meek, 1995, 1997; Pearl, 2009a; Ramsey et al., 2010; Shimizu et al., 2006;
Smith et al., 2011; Spirtes and Glymour, 1991; Spirtes et al., 1995), which are often classified based on their
methodology into constraint-based (Dawid, 1979; Pearl, 1988, 2009b), noise-based (Shimizu, 2014; Shimizu
et al., 2006), and score-based (Chickering, 2002b; Heckerman et al., 1995). Nevertheless, which of these
algorithms are suitable for whole-brain fMRI causal discovery and how they compare against each other in
terms of accuracy and scalability have remained largely unknown.

In this study, we first discuss and compare existing causal discovery algorithms for their suitability for
whole-brain fMRI, demonstrate a large gap between what causal discovery for fMRI needs and what existing
algorithms can achieve, propose CaLLTiF to address this gap, and demonstrate its higher accuracy and
scalability on synthetic and real fMRI.

Results

A Taxonomy of Causal Discovery for Whole-Brain fMRI

A vast array of algorithmic solutions exist for learning causal graphs from observational data, but not all
are suitable for fMRI data. We selected a subset of state-of-the-art algorithms suitable for whole-brain
fMRI data based on four criteria: (1) ability to learn cycles, (2) ability to learn contemporaneous effects,
(3) assuming complete coverage of relevant variables in observed data, and (4) linearity (see Discussions).
Table 1 shows several state-of-the-art methods that satisfy criteria (1)-(4). Multivariate Granger Causality
(MVGC) (Barnett and Seth, 2014; Granger, 1969) does not satisfy criteria (2), but we still included it in our
subsequent analyses due to its popularity in neuroscience (Ding et al., 2006; Goebel et al., 2003; Liao et al.,
2010; Roebroeck et al., 2005). On the other hand, we excluded LING (Ramsey et al., 2018) from further
analysis since it is considered by its proposers as generally inferior to the hybrid FASK algorithm (Sanchez-
Romero et al., 2019). We also chose FASK for implementation over GANGO (Rawls et al., 2022), a similarly
hybrid method with the additional caveat of not having a unified publicly available code distribution.

We compared the accuracy of the resulting list of algorithms (MVGC, PCMCI, PCMCIT, VARLINGAM,
DYNOTEARS, FASK, and DGlearn) using simulated fMRI data from a benchmark of simple (5-10 nodes)
networks introduced in (Sanchez-Romero et al., 2019). The ground truth graphs are shown in Figure la,
and details on the fMRI time series generation for each node in these graphs are provided under Methods.
To evaluate the success of each algorithm, we treated the causal discovery problem as a binary classification
problem for each directed edge and calculated the resulting F1 score, both for the directed graphs as well
as their undirected skeletons (see Methods for details). Figure 1b illustrates the distribution of F1 scores
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Figure 1: Results of comparing several state-of-the-art causal discovery algorithms over a benchmark of sim-
ulated fMRI (Sanchez-Romero et al., 2019) generated from simple networks with 5-10 nodes each. (a) Ground
truth graphs of the simple networks in the benchmark. Despite all being small-scale, the graphs vary widely in their density,
number of cycles, etc. (b) F1 scores of seven state-of-the-art algorithms (six from Table 1 and MVGC) for correctly identifying
the full (directed) graphs. All methods are evaluated using optimized values of their respective hyperparameters (see Methods).
The benchmark data includes 60 repetitions of fMRI data from each of the 9 graphs, so each violin plot is based on 540 F1
score samples. The PCMCI method achieves the highest median F1 score, both directed and undirected (see Supplementary
Figure 3). (c) The mean execution time (averaged over all 60 repetitions) of different algorithms as a function of network size.
Note the logarithmic scaling of the vertical axis. Error bars, though hardly visible, show 1 s.e.m.

for all algorithms, combined across nine simple networks. The results show that the PCMCI algorithm
achieved significantly higher median F1 score compared to all other algorithms over the directed graphs (all
Cohen’s d > 0.23 and p < 10~%, pairwise one-sided Wilcoxon signed-rank test) and compared to all but
DYNOTEARS over the undirected skeletons (Supplementary Figure 3, all Cohen’s d > 0.44 and p < 10729,
pairwise one-sided Wilcoxon signed-rank test. Also see Supplementary Figures 4 and 5 for precision and
recall). The PCMCI algorithm also has the smallest computational complexity on simple networks, as seen
from Figure lc. Furthermore, our results indicate that FASK, DGlearn, and PCMCI" (at their best values
of hyperparameters) do not scale well with network size, forcing us to exclude them from further analysis as
we move on to larger networks (see Supplementary Figures 13, 14, and 15).

Next, we compared the remaining four algorithms (PCMCI, MVGC, DYNOTEARS, and VARLINGAM)
on a larger-scale, more realistic simulated benchmark. The graph shown in Figure 2a, called the ‘Small-Degree
Macaque’ network, consists of a complete macaque anatomical connectome with 28 nodes and 52 directed
edges (Sanchez-Romero et al., 2019) but the generative model used to simulate fMRI data from this graph
remains the same (see Methods for details). The distributions of F1 scores are shown in Figure 2b. PCMCI
and MVGC achieved very similar success in learning both the full graph and its undirected skeleton, while
significantly outperforming DYNOTEARS and VARLINGAM. A similar result is obtained when comparing
adjacency F1 scores for detecting the network’s undirected skeleton (Supplementary Figure 17, also see
Supplementary Figures 18 and 19 for precision and recall). As far as execution time is concerned, however,
MVGC showed a significant advantage over PCMCI (Figure 2c¢). Therefore, despite its simplistic nature,
MVGC was found most successful in causal discovery from medium-sized simulated macaque fMRI data (but

Table 1: List of causal discovery methods suitable for use with whole-brain fMRI, divided by methodological category
(constraint-, noise-, and score-based). All these methods (1) allow for cycles, (2) allow for contemporaneous effects, (3)
assume complete coverage of relevant variables in observed data, and (4) learn linear relationships. The FASK algorithm is
fundamentally hybrid and therefore listed as both constraint-based and noise-based.

Type Category Constraint-based Noise-based Score-based
"~ Timo-series PCMCT (Runge et al., 2019), PCMCIT (Runge, 2020) VARLINGAM (Hyvérinen et al., 2010) DYNOTEARS (Pamfil et al., 2020)
Cross-sectional with cycles FASK (Sanchez-Romero et al., 2019) FASK (Sanchez-Romero et al., 2019), LING (Lacerda et al., 2008) DGlearn (Ghassami et al., 2020)
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Figure 2: Comparing the scalable subset of algorithms from Figure 1 over simulated fMRI data from the Small
Degree Macaque benchmark (Sanchez-Romero et al., 2019). (a) ground-truth Small Degree Macaque network. (b)
F1 scores of identifying the full (directed) graph. Each distribution consists of 10 F1 scores calculated based on 10 repetitions
of simulated data from the same underlying graph. (c¢) Mean execution times for each method (error bars show one standard
deviation).

also see Figure 3).

CaLLTiF: A New Causal Discovery Algorithm for Whole-Brain fMRI

The best-performing algorithms on Small-Degree Macaque, i.e., PCMCI and MVGC, suffer from three main
drawbacks: (1) poor scalability (only for PCMCI), (2) inability to learn directed contemporaneous effects
(PCMCIT only learns undirected contemporaneous effects while MVGC learns none), and (3) having sparsity-
controlling hyperparameters that are subjectively selected in the absence of ground-truth graphs. In this
section, we describe the design of a new algorithm based on PCMCI that mitigates these drawbacks and
demonstrate its superior performance over existing methods.

Our first modification to PCMCI is with regard to scalability and computational complexity. The com-
putational complexity of PCMCI depends heavily on the value of its ‘PC Alpha’ hyperparameter, which
controls the sparsity of the set of potential common causes on which the algorithm conditions when checking
the conditional independence of each pair of nodes (Supplementary Figure 16a). Higher values of PC Alpha
make these sets denser and accordingly decrease statistical power in the subsequent conditional independence
tests, ultimately conditioning on all other nodes (and all of their lags) when PC Alpha = 1. Nevertheless,
interestingly, our experiments on the Small-Degree Macaque data show that the maximum achievable accu-
racy of PCMCI (i.e., F1 score maximized over Alpha Level for each fixed value of PC Alpha) monotonically
increases with PC Alpha, reaching its maximum at PC Alpha = 1 (Supplementary Figures 16b and 16c¢).
Therefore, while this may seem to cause a trade-off between accuracy and scalability, it is in fact an oppor-
tunity for maximizing both. At PC Alpha = 1, the PC part of PCMCI (a.k.a. the S1 algorithm in (Runge
et al., 2019)) is theoretically guaranteed to return a complete conditioning set for all pairs of nodes, and can
thus be skipped entirely. The PC part is further responsible for the poor scalability of PCMCI. Thus its
removal significantly improves the computational efficiency of the resulting algorithm without compromising
accuracy (cf. Discussions for a potential explanation of why conditioning on all other nodes may improve
accuracy despite lowering statistical power).

Our second modification addresses the lack of directed contemporaneous causal effects (see Introduction
for why these effects are particularly important in fMRI). By default, MVGC returns no contemporaneous
edges and PCMCI returns o—o ones which only indicate the presence of significant partial correlations but
does not resolve between —, +—, or 5. However, we know from decades of tract tracing studies that reciprocal
connections are significantly more common than unidirectional connections in the primate brain (Felleman
and Van Essen, 1991; Markov et al., 2014; Tigges et al., 1973). Therefore, we replace all o edges returned by
PCMCI by the more likely choice of 5. The only exception comes from (the often minority of) pairs of nodes
that have a lagged directed edge between them, in which case we leave the direction of the contemporaneous
effect between them the same as their lagged effect.

Figure 3 shows how the resulting CaLLTiF algorithm performs on a synthetic fMRI dataset generated
from the significantly larger full macaque structural connectome with 91 nodes and 1,615 ground-truth
edges (Figure 3a, see also Methods). CaLLTiF has a significantly higher F1 score compared to PCMCI,
VARLINGAM, DYNOTEARS, and MVGC in its discovery of the complete directed graph (Figure 3b, all
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Figure 3: Comparisons between the proposed algorithm (CaLLTiF) and state-of-the-art alternatives over
simulated fMRI from the Full Macaque connectome. (a) ground-truth Full Macaque network. (b,c) Distributions of
F1 scores for CaLLTiF and state-of-the-art alternatives in discovering the full (directed) graph (b) and its undirected adjacency
skeleton (c). For all repetitions, the best performance of MVGC occurs at @ = 0.5 which returns a complete graph, hence the
point distributions for MVGC. *** denotes p < 0.001. All statistical comparisons are performed using a one-sided Wilcoxon
signed-rank test. In all boxplots, the center line represents the median, the box spans the interquartile range (IQR), and the
whiskers extend up to 1.5 times the IQR from the box limits.

Cohen’s d > 15, p < 1075, one-sided Wilcoxon signed-rank test) as well as its undirected adjacency skeleton
(Figure 3c, all Cohen’s d > 7, p < 1075, one-sided Wilcoxon signed-rank test). Precisions and recalls are
also shown in Supplementary Figures 25 and 26. We also compared CaLLTiF (and PCMCI) against
a middle-ground ‘Mixed-PCMCT’ variant where the o—o edges returned by PCMCI are used only in the
computation of adjacency F1 score (Supplementary Figures 27-29, see also Methods). Mixed-PCMCI benefits
from contemporaneous effects as much as CaLLTiF in terms of adjacency F1 score, but not so in terms of
full F1 score, further motivating the inclusion of directed contemporaneous connections as done in CaLLTiF.
Detailed performances of all compared algorithms are provided in Supplementary Figures 28-35.

Finally, the third aspect in which CaLLTiF departs from PCMCI is the choice of sparsity-controlling
hyperparameter ‘Alpha Level’. Most, if not all, algorithms for causal discovery have at least one hyper-
parameter (often a threshold) that controls the sparsity of the resulting graphs. Different from PC Alpha
described earlier, Alpha Level in PCMCI is the standard type-I error bound in determining statistical sig-
nificance in each partial correlation test (cf. Supplementary Figure 16). By default, Alpha Level is selected
subjectively, based on domain knowledge and expected level of sparsity. However, in CaLLTiF, we select
Alpha Level objectively based on a novel method for correction for multiple comparisons (see Methods) that
occur when collapsing a time-series graph over lagged variables into a final summary graph. This step is
critical, particularly in the absence of ground-truth connectivity, to ensure that we have statistical confidence
in every edge of the final summary graph returned by CaLLTiF.

In summary, CaLLTiF starts by constructing an extended time-lagged graph among all the variables
Xi(t—7),i=1,...,nand all lags 7 = 0,1, ..., Tmax. To establish a causal link between any pair of variables
Xi(t — 7) and X,(t), CaLLTiF performs a conditional independence test (using linear partial correlation)
between X;(¢t —7) and X(t), conditioned on all other lagged variables (X;(t—s),s =1,...,Tmax). A causal
link is established if the null hypothesis of conditional independence is rejected at a significance threshold
‘Alpha Level’. By default, ‘Alpha Level’ is selected based on CaLLTiF’s type I error control, but it can also
be optimized in simulated data using ground-truth knowledge. If 7 > 0, the direction of the edge is clearly



X;(t —71) = X,;(t). When 7 = 0, CaLLTiF returns X;(¢)5X;(t) if no other edges exist between X; and
X; at higher lags, and places the edge(s) consistent with the corresponding lagged direction(s) otherwise.
Finally, the extended time-lagged graph is collapsed into a summary graph by taking an OR operation for
each edge across all lags (cf. Methods for details).

Causal Discovery from Resting-State Human fMRI

We next applied CaLLLTiF on resting-state fMRI from 200 subjects from the Human Connectome Project
(HCP) (See Methods). Each scan from each subject was parcellated into 100 cortical and 16 subcortical
regions. CaLLTiF was then performed on all four resting-state scans for each subject, resulting in one causal
graph per individual.

Learned causal graphs are highly consistent across subjects. Despite individual differences, a
remarkably common causal connectome emerged across subjects. Figure 4a shows the average causal graph
among the subjects and Figure 4b shows the intersection graph that contained the edges common across
all subjects. Due to the binary nature of individual graphs, the former can also be viewed as a matrix of
probabilities, where entry (4, j) shows the probability of region i causing region j across all subjects. As a
result of the significant commonalities that exist in the causal graphs among subjects, the average graph
has a bimodal distribution, with the vast majority of average weights being close to either 0 or 1. These
extreme values of average weights can also be seen as a measure of the confidence of the algorithm in the
presence or lack of most edges, and have a clear contrast with the weights of the average of randomized
surrogate graphs generated independently across subjects (Supplementary Figure 42). In the absence of a
ground truth causal connectivity for direct comparison, such strong commonalities among subjects serve as
an alternative measure of validation and provide insights into the general patterns and characteristics of the
causal relationships in a resting brain.

Nodal centralities also show strong consistency among the subjects. Figure 4c¢ shows the nodal degrees
for all subjects (gray lines) as well as its mean across subjects (black line, also depicted in Figure 4d).
Statistically significant differences exist between the degree distributions of many pairs of nodes (about
90% of the pairs have p < 0.001, two-sided Wilcoxon signed-rank test, computed between nodal degrees
of each pair of parcels), while significant correlations exist between nodal degrees for all pairs of subjects
(all pairs have 0.56 < r < 0.96, p < 1071%, Pearson Correlation Coefficient, computed based on the nodal
degrees of each pair of subjects separately). Similar consistency for in-degree, out-degree, betweenness, and
eigenvector centralities can be observed among subjects (Supplementary Figures 43-46). Consistently across
subjects, medial ventral attention regions, cingulate cortices, and lateral primary sensorimotor areas show
particularly low nodal degrees across both hemispheres, whereas bilateral default mode areas, particularly
the left ventromedial prefrontal cortex, show notably strong nodal degrees. Bilateral anterior thalami are
particularly causally connected compared to other subcortical regions, even though subcortical areas have
significantly lower degrees than cortical areas in general, with bilateral posterior thalami, nuclei accumbens,
and globus pallidi showing the least causal connections across the whole brain at rest.

Causal graphs are also sparser and more consistent across subjects compared to functional connectivity.
A major motivation for building causal connectomes is the removal of spurious connections in functional
connectivity (FC) profiles that reflect mere correlation but no causation. For causal graphs learned by
CaLLTiF, we indeed observed significantly lower edge density compared to FC graphs (see Methods for
details on the computation of FC graphs) (Supplementary Figures 41a,41b, no overlap existing between the
support of the two distributions). In fact, FC graphs included approximately 95% of Cal.LTiF’s discovered
causal edges (Supplementary Figure 41c), while only about half of all functional connectivity edges are also
causal (Supplementary Figure 41d). Interestingly, among the approximately 5% of causal edges that were
not in the FC graphs, the majority came from non-zero lags. This is remarkable, given that causal edges from
non-zero lags are significantly fewer in general (cf. Figure 6a), but are fundamentally not discoverable by
FC which only measures contemporaneous co-fluctuations. Moreover, causal connectomes are significantly
more consistent across subjects compared to FC connectomes (Supplementary Figure 4le, Cohen’d > 2,
p < 0.001, one-sided Wilcoxon signed-rank test), further reinforcing the expectation that causal edges are
“pruned” and more reliable compared to functional edges.
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colors correspond to different subjects and the black line shows the average nodal degrees across subjects. (d) Average cortical
nodal degree (black line in (c)) shown over the brain cortical surface.



Net resting-state causal effect flows from attention and default mode to sensorimotor networks.
One of the main advantages of directed causal connectomes over undirected functional and structural con-
nectomes is the former’s ability to show the directed flow of causal effect between brain regions. In graphs
learned by CaLLTiF, nodal causal flows (outflow minus inflow, see Methods) are also highly consistent across
subjects (Figure 5¢,5d), even though the two notions of centrality are generally dissociated across parcels
(Figure 5b and Supplementary Figure 51). On average across all subjects, we observed particularly high
causal flows (source-ness) in several regions of bilateral medial ventral attention networks, specific dorsal
attention areas (ventral precentral, ventral frontal cortices, and frontal eye fields), and bilateral hippocampi,
even though subcortical areas are much less connected to the rest of the network in general. In contrast,
bilateral visual areas show the strongest negative causal flow (sink-ness) across all subjects. There is also
notable variability among parcels within a subnetwork, such as the notable bilateral contrast between the
strongly positive and weakly negative causal flows of frontal and posterior parts of the dorsal attention
network, respectively.

To better assess the overall net causal effects between different functional networks, we computed an
average “subnetwork graph” in which each node represents a functional cortical network and edges denote
thresholded average directed connectivity from one functional network to another (see Methods for detailed
computations). The result is illustrated in Figure 5a. Ventral attention and visual networks are clearly
the strongest source and sink of causal flow, respectively. The dorsal attention and somatomotor networks
are also a clear (though weaker) source and sink, respectively. The default mode network (DMN) is also a
net source of causal flow, even though its outflows and inflows are nearly balanced. Similarly, the control
and limbic networks have near-zero causal flows (near-balanced inflow and outflow). Several directed paths,
however, can be seen from both attention and default mode networks to sensorimotor networks through the
limbic and control networks. Therefore, in summary, causal graphs learned by CaLLTiF show the strongest
net resting state causal effect to flow from the ventral and dorsal attention as well as the default mode
networks, through control and limbic networks, towards sensorimotor networks, with the DMN serving both
as a hub and a weak source of causal flow (cf. Discussion for a more detailed summary).

Casual graphs are strongly dominated by contemporaneous and lag-1 connections. Given that
the final causal graph returned by CaLLTiF is a union over subgraphs at different lags (cf. Methods), we can
go back and ask how much causal effects in each lag have contributed to the final graph. Figure 6a shows the
percentage of edges in the final graph that exist only in one lag (including lag 0, or contemporaneous edges).
Increasing the lag order resulted in significantly sparser single-lag subgraphs, which contributed less to the
end result. In particular, approximately 70% of the end graphs came from lag 0 alone, a pattern that appears
consistently across all subjects (Supplementary Figure 55). Even further, such contemporaneous edges are
substantially stronger than edges from lags 1-3 (Figure 6b). This further confirms that the contemporaneous
effects are particularly important for fMRI, where most neural dynamics occur at timescales shorter than
1 TR (typically shorter than 1-2 seconds). This is even the case in HCP data, with TR = 0.72s which
is among the shortest TRs currently available in fMRI research. That being said, all lags had a non-zero
(and significant by construction) contribution to the end graph in all subjects. Even lag 3 had a median
of approximately 0.2% unique contributions to the final graph across subjects. We also found very small
intersections among lags. This not only highlights the importance of considering multiple lags rather than
just the first one or two but also demonstrates that it is incorrect to assume that if one region causes
another, that causation will appear continuously across all lags. In summary, we found contemporaneous
effects dominant in the final causal graphs of CaLLTiF, even though all lags had significantly non-zero and
mostly unique contributions.

Causal connections are modulated by pairwise Euclidean distance. As one would expect from a
network learned over a set of nodes embedded in physical space, the causal graphs learned by CaLLTiF are
modulated in a number of ways by the Euclidean distance between pairs of nodes. First, we found degree
similarity (correlation coefficient between nodal degrees of two parcels over all subjects) to decay statistically
significantly, though weakly in effect size, with parcel distance (Pearson r = —0.12, p = 10743, 95% confidence
interval (—0.14,—0.1)) as shown in Figure 7a (See Supplementary Figures 52 and 53 for separate maps
of degree similarities and pairwise nodal distances). This relationship is stronger among intra-hemispheric
parcels (Pearson r = —0.27,p = 10782, 95% confidence interval (—0.29, —0.24)) where connections are denser
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Figure 5: Patterns of causal flow across subjects. (a) The average subnetwork graph, computed as the mean of
subnetwork graphs of all the subjects. In the subnetwork graph of each subject, the weight of an edge from subnetwork 7 to
7 is the number of nodes in subnetwork ¢ that connect to nodes in subnetwork j, normalized by the number of all possible
edges between these subnetworks. Edges with weights less than 0.5 are removed for better visualizations. To further ease the
visual inspection of causal flows, if two networks are bidirectionally coupled we have shown the stronger edge with a thicker line
(see Supplementary Figures 49, 50 for the weight matrix before thresholding and the corresponding nodal degrees and causal
flows.) (b) The joint distributions of causal flow and degree for each "node” of the subnetwork graphs across all subjects.
(c) Distribution of nodal causal flow, computed separately for each node in the causal graph and each subject. Gray colors
correspond to different subjects and the black line shows the average nodal degrees across subjects. (d) Average cortical nodal
causal flows (black line in (c)) shown over the brain cortical surface.
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Figure 6: The contributions of each lag to the final causal graph in CaLLTIiF. (a) For each lag, the box plot shows the
distribution of the percentage of edges that come only from that lag across subjects. In all boxplots, the center line represents
the median, the box spans the interquartile range (IQR), the whiskers extend up to 1.5 times the IQR from the box limits,
and individual points beyond the whiskers indicate outliers.(b) The strength (statistical significance) of edges across lags. For
each edge within the subgraph of each lag, we define its strength as the p-value of the partial correlation test that was used
to conclude the presence of that edge (see Methods) even though all edges have a statistically significant p-value by definition,
edges in larger lags are significantly closer to the threshold for significance than those in smaller lags. *** = p < 0.001, one-sided
Wilcoxon rank-sum test.

and shorter-distance, compared to inter-hemispheric parcels (Pearson r = —0.09,p = 1075, 95% confidence
interval (—0.13,—0.05)). Thus, in summary, nodes that are physically closer to each other also have more
similar causal connections to the rest of the network, particularly if they belong to the same hemisphere.

The strength of CaLLTiF edges is also modulated by the Euclidean distance between edge endpoints,
even though we observed that there are approximately as many long-distance edges as short ones (See
Supplementary Figures 54). We define the strength of each edge in the final graph (union over lags) as the
minimum p-value of respective partial correlation tests across all lags (cf. Methods). As seen from Figure 7b,
the mean strength of causal edges (black solid line) initially increases with the Euclidean length of the edge
until about 20mm and then decays with Euclidean edge length thereafter.

Finally, we found no major differences between the Euclidean distances of edges contributed by different
lags. Given that causal effects take time to spread along axonal fibers throughout the brain, one might
expect physically-closer pairs of nodes to be connected by lower-lag edges and more distant pairs of nodes to
be connected by larger-lag edges. However, as seen in Supplementary Figure 56, this is not quite the case.
Given the slow sampling of fMRI, even the most distant regions can causally affect each other in time scales
shorter than 1 TR. Thus, the observation that the physical distance of pairs of nodes was not related to edge
lag should not be taken as an indication that such relationships would — or would not — be observed when
sampling with higher temporal precision.

Degree, but not casual flow, shows significant laterality and gender differences. We observed
that nodal degrees were statistically significantly higher in the right hemisphere (Figure 8a, Cohen’s d
= 0.07 and p = 10~*®, one-sided Wilcoxon signed-rank test), even though no such laterality was found in
nodal causal flows (Figure 8b, Cohen’s d = 0.02 and p = 0.23, one-sided Wilcoxon signed-rank test). To
understand which subnetworks might be playing a stronger role in the hemispheric asymmetry observed in
the distribution of nodal degrees, Figure 8c shows the mean degrees of corresponding pairs of regions in
the left and right hemispheres, color-coded by functional subnetworks (cf. Supplementary Figures 47 for
separate plots per subnetwork). The ventral attention, dorsal attention, and executive control networks
show clearly larger causal degrees in the right hemisphere, whereas the limbic network and DMN have larger
causal degrees in the left hemisphere. A similar plot for causal flows (Figure 8d, Supplementary Figure 48)
shows a lot more symmetry, except for the limbic network which shows exceptionally higher causal flows
(i.e., source-ness) in the right compared to the left hemispheres. The DMN also shows some asymmetry in
its causal flow, where right DMN nodes are mostly sources of causal flow whereas left DMN causal flows are
more evenly distributed around zero. Thus, in summary, various functional subnetworks show laterality in
degree distributions, culminating in a net increase in right vs. left nodal degrees. Causal flows, however,
are mostly symmetric, except for the limbic network which shows a strong flow from the right to the left
hemisphere.
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Figure 7: Effect of Euclidean distance on edge attributes. (a)Degree similarity (correlation coefficient between nodal
degrees of two parcels over all subjects) as a function of the Euclidean distance between the parcels. Parcel pairs in the same
hemisphere (intra-hemispheric) and parcels in two different hemispheres (inter-hemispheric) are shown in blue and red, respec-
tively. Degree similarity decays statistically significantly with parcel distance (Pearson r = —0.12, p = 1043, 95% confidence
interval (—0.14, —0.1)), much more so among intra-hemispheric parcels (Pearson r = —0.27, p = 10732, 95% confidence interval
(—0.29, —0.24)) than inter-hemispheric ones (Pearson r = —0.09, p = 1075, 95% confidence interval (—0.13, —0.05)). (b) Edge
strength (as in Figure 6b) as a function of Euclidean distance between edge endpoints (note the inverted vertical axis). The
solid line shows the corresponding moving average of log(p) with 10mm window size and 8mm window overlap. The upper limit
of the vertical axis is limited to —30 for better visualization.

Similarly, degree, but not casual flow, shows a small but statistically significant difference between men
and women. In causal connectomes learned by CaLLTiF, we found nodal degrees to be statistically sig-
nificantly higher in women compared to men (Figure 8e, Cohen’s d > 0.05, p < 10>, one-sided Wilcoxon
rank-sum test). Nodal causal flows, on the other hand, where statistically indistinguishable between men and
women (Figure 8f, Cohen’s d = —3.77 x 10718, p = 0.81, one-sided Wilcoxon rank-sum test). These result
demonstrate that nodal degrees in causal connectomes are generally more heterogeneous and sensitive while
causal flows tend to be more homogeneous and stereotyped across individuals and hemispheres. Further
research is needed to pinpoint the root causes of these differences (and lacks thereof) as well as potential
implications of them in health and disease.

Discussion

In this study, we investigated the problem of whole-brain causal discovery from fMRI. We first compre-
hensively compared existing causal discovery techniques suitable for whole-brain fMRI by examining both
theoretical properties and numerical outcomes on simulated fMRI. To address the limitations of existing
algorithms, we proposed CaLLTiF which improves upon the state of the art in several directions including
learning contemporaneous edges and cycles, type I error control, and scalability. A core aspect of CaLLTiF
is its treatment of contemporaneous effects. Our results with the HCP data (Figures 6a and 6b) confirmed
the importance of being able to reveal such “contemporaneous” effects, where these effects accounted for
the majority and strongest of network edges. Further, the distributions of edges with different Euclidean
distances at each lag (Supplementary Figure 56) demonstrates how broadly neural signals can propagate
across the brain in one TR interval, even with the relatively fast sampling (TR = 0.72s) in the HCP dataset.

Furthermore, in interpreting CaLLLTiF’s outputs, it is important to note its by-design conservative method
of correction for temporal multiple comparisons. In simulated Full Macaque data where the ground truth
is known, we found Alpha Level = 0.01 to maximize the F1 score, while CaLLTiF’s correction for temporal
multiple comparisons would have suggested 0.01/32 = 0.0003 (cf. Equation (4)) and thus would have obtained
sparser graphs. Similarly, we obtained causal graphs from human fMRI that are about 30-55% dense across
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Figure 8: Hemispheric laterality and gender differences in causal connectomes. (a) Distributions of nodal degree
in the right and left hemispheres, combined across all subjects. (b) Similar to (a) but for causal flows. (c¢) Nodal degrees,
averaged across subjects and color-coded by functional subnetwork, for pairs of corresponding parcels within the right and
left hemispheres. To properly pair nodes across the two hemispheres, degrees of all the parcels with the same label in the
Schaefer/Tian atlas were averaged and then paired. Deviations from the dashed y = x line indicate laterality. (d) Similar to
(c) but for causal flows. (e) Distributions of nodal degrees in female and male subjects, combined across all brain regions. (f)
Similar to (e), but for causal flows.
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all subjects and 40-60% dense among cortical nodes (Supplementary Figure 41a). These are generally
consistent with, but sparser than, the near-66% cortical density found using tract-tracing results in non-
human primates (Markov et al., 2014). In other words, graphs returned by CaLLTiF are likely to have
higher precision but lower recall than what would maximize the F1 score. This conservativeness is by design
and desirable in the absence of a ground-truth causal graph, ensuring that we have strong confidence in all
discovered edges (at least 99% confidence in every detected edge in our experiments with human fMRI).
Nevertheless, CaLLTiF’s level of conservativeness can also be tuned as needed by tuning its pre-correction
significance threshold (¢ in Equation (4)).

An unexpected finding of our study was the higher accuracy of causal discovery when conditioning
pairwise independence tests (see Equation (1)) on all other nodes in the network, as done in CaLLTiF,
compared to using a more restricted parent set found by PCMCI (cf. Supplementary Figure 16). The
approach taken by PCMCI increases statistical power (cf. the trend of optimal ‘Alpha Level’ values in
Supplementary Figure 16b), but can significantly increase type I error in the presence of contemporaneous
effects. Even further, we found that even using the (lagged) ground-truth parent sets for each node leads to
a lower F1 score compared to using complete conditioning sets (Supplementary Figure 38-40). This is likely
because CaL.LLTiF’s conditioning on the past of all variables serves as a proxy for the missing contemporaneous
parents that should have been conditioned on. On the other hand, one may wonder if this issue could have
been better resolved by conditioning on contemporaneous variables themselves. However, this can result
in spurious statistical dependence if conditioning on all contemporaneous variables (consider, e.g., testing
X; L X;| Xy with the ground-truth causal graph X; — X < X;). For a detailed discussion on this see
Supplementary Note 3.

Causal connectivity during resting state. When applying CaLLTiF to resting state human fMRI, we
found the strongest causal effect to flow from attention to sensorimotor networks. The strongest sources
and sinks were the ventral attention and visual networks, followed by dorsal attention and somatomotor
networks, respectively. Despite the lack of “ground-truth” connectivity as in simulated data, we can still
evaluate these findings based on their agreement with prior findings on the roles of resting state networks.
The dorsal attention network (involving regions in the intraparietal and superior frontal cortex) is commonly
believed to handle top-down selection processes and is only modulated by stimulus detection, while the
ventral attention network (including areas such as the temporoparietal and inferior frontal cortex) specializes
in detecting behaviorally relevant stimuli, particularly those that are salient or unexpected, and directing
attention to them (Corbetta and Shulman, 2002). These networks exhibit internally correlated activity
patterns (particularly during the task) (Corbetta et al., 2008) and their flexible interaction facilitates dynamic
attentional control aligned with both top-down goals and bottom-up sensory inputs (Vossel et al., 2014).
Nonetheless, the ventral attention network is more strongly involved in the “reorientation” of attention,
namely, interrupting one thought process and orienting attention towards something salient, while the dorsal
attention network is more strongly implicated in focused and guided attentional tasks such as visual search
under high short-term memory load (Vossel et al., 2014).

Arguably, resting state activity is more aligned with the former (salience-based reorientation) than the
latter (goal-driven focused attention). Despite a lack of sensory salience, attention is frequently reoriented
during periods of rest by endogenously-salient thoughts and memories. Intermittent periods of focused
attention can also arise, particularly given the long durations of each resting-state scan (~ 15min). Our
findings thus confirm and corroborate the existing hypotheses about the roles of attention networks and how
they jointly but unevenly drive brain dynamics during rest. Furthermore, due to the lack of meaningful
sensory (particularly visual) input during a resting state scan, sensory areas receive more top-down influence
from higher-order cortices than they provide bottom-up information to them. As such, the sink-ness of
sensorimotor areas in graphs learned by CaLLTiF is arguably more consistent with the nature of resting
state activity compared to a contrasting, sensory-driven flow found, e.g., in (Rawls et al., 2022). Finally, we
found the DMN to be both a hub and a weak source of causal flow, which is consistent with its well-known
role in resting state dynamics (Andrews-Hanna et al., 2014; Greicius et al., 2003; Raichle et al., 2001).

Resting-state causal graphs learned by CaLLTiF are also notably aligned with the literature in terms of
the laterality of different functional subnetworks (Figure 8c and Supplementary Figure 47). Several studies
have found the ventral attention system to be predominantly lateralized to the right hemisphere (Corbetta
et al., 2008; Corbetta and Shulman, 2002; Mengotti et al., 2020; Vossel et al., 2014). Similarly, the degree
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distribution of ventral attention nodes in graphs learned by CaLLTiF is strongly right-lateralized. We found
the dorsal attention network to also be right-lateralized, but not as strongly as the ventral network. Similarly,
The dorsal attention network is found by prior studies to be organized mostly bilaterally, except for specific
regions (Intraparietal sulcus and frontal eye field) in the right dorsal network that show stronger involvement
in the attentional control of both hemispheres compared to their left counterparts (Mengotti et al., 2020).
Also similar is alignment in the lateralization of the default mode network, where both CaLLTiF several past
studies have found it to be left lateralized (Agcaoglu et al., 2015; Banks et al., 2018; Nielsen et al., 2013;
Swanson et al., 2011). Sensorimotor cortices, on the other hand, were found to be highly symmetric and
not particularly lateralized to either hemisphere in causal graphs learned by CaLLTiF, a finding that is also
consistent with the generally symmetric involvement of primary sensory and motor areas in contralateral
processing (Agcaoglu et al., 2015). Finally, research on the laterality of the control and limbic networks
is ongoing and, to the best of our knowledge, inconclusive (see, e.g., (Morton, 2020)). In graphs learned
by CaLLTiF, however, we observe strong left lateralization of the limbic and right lateralization of the
control networks, respectively. Thus, in summary, we observe clear laterality in all but sensorimotor cortical
networks which either corroborate the existing literature or clarify previously inconclusive observations.

Limitations. The present study has a number of limitations. The TR value of 720ms in the HCP data
limits the precision of causal discovery. As we saw from Supplementary Figure 56, edges of all lengths are
observed even at lag 0. This indicates the possibility that some of the edges discovered by CaLLTiF may be
polysynaptic paths but resemble a direct monosynaptic connection at low temporal resolution. Moreover,
similar to most constraint-based methods, the causal graphs returned by CaLLTiF are not tied to a generative
dynamical model (as is the case with VARLINGAM, DYNOTEARS, DCM, etc). If such generative models
are needed, VAR models based on CaLLTiF’s extended time-lagged graph constitute a natural choice, but
further research is needed to compare the dynamic predictive accuracy of such models against potential
alternatives (Ljung, 1999).

Conclusions. Overall, this study demonstrates the interplay between the theoretical challenges of causal
discovery and the practical limitations of fMRI, and the design of an algorithmic solution that can bridge
this gap. This work motivates several follow-up studies, including the application of the proposed CaLLTiF
method to task fMRI and comparing its outcomes against structural connectivity.

Material and methods
Simulated fMRI Data

When comparing different causal discovery algorithms or different hyperparameters of the same algorithm,
we used several benchmarks of simulated fMRI data with known ground truth connectivity from (Sanchez-
Romero et al., 2019). In general, this dataset included two groups of networks, one consisting of 9 simple
small-scale synthetic graphs and one consisting of two graphs extracted from the macaque connectome. From
the latter group, we only used the smallest (‘Small-Degree Macaque’) and the largest (‘Full Macaque’).
The details of generating BOLD signals from each graph are detailed in (Sanchez-Romero et al., 2019). In
brief, the same simulation procedure was used for simple and macaque-based graphs, where the authors used
the model proposed in (Smith et al., 2011) which is itself based on the DCM architecture of (Friston et al.,
2003). Underlying neural dynamics are simulated using the linear differential equation dz/dt = 0 Az + Clu,
where A denotes the ground-truth connectivity. To simulate resting-state data, the u input was modeled
using a Poisson process for each of the regions (C' = I). The neuronal signals z were then passed through
the Balloon-Windkessel model (Buxton et al., 1998; Smith et al., 2011) to obtain simulated BOLD data.

Resting-State fMRI from the Human Connectome Project

For the real fMRI analysis, we used ICA-FIX resting-state data from the Human Connectome Project S1200
release (Barch, 2017; Burgess et al., 2016; Essen et al., 2013). Resting-state fMRI images were collected with
the following parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52 deg, FOV = 208x108 mm, matrix
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= 104x90, slice thickness = 2.0 mm, number of slices = 72 (2.0 mm isotropic), multi-factor band = 8, and
echo spacing = 0.58 ms. Brains were normalized to fslr32k via the MSM-AII registration and the global
signal was removed. We removed subjects from further analysis if any of their four resting state scans had
excessively large head motion, defined by having frames greater than 0.2 mm frame-wise displacement or a
derivative root mean square (DVARS) above 75. Also, subjects listed in (Elam, 2020) under “3T Functional
Preprocessing Error of all 3T RL fMRI runs in 25 Subjects” or “Subjects without Field Maps for Structural
scans” were removed. Among the remaining 700 subjects, the 200 with the smallest head motion (DVARS)
were selected for analysis. For all subjects, we parcellated the brain into 100 cortical regions (Schaefer 100x7
atlas (Schaefer et al., 2018)) and 16 subcortical ones (Melbourne Scale I atlas (Tian et al., 2020)). The
Human Connectome Project experiments were carried out by the WU-Minn consortium and its adherence to
ethical standards was approved by the by the Internal Review Board of the respective institutions. Explicit
informed consent was acquired from all participants involved in the study (Essen et al., 2013).

Causal discovery methods

One aim of causal inference is to construct a causal graph based on observational data. The relationship
between a probability distribution and its depiction as a graph plays a significant role in this process. Never-
theless, it is not always feasible to deduce a causal graph solely from observational data. Further assumptions
are therefore required. Here, we briefly summarize the main assumptions and principles underlying the list
of causal discovery methods studied in this work (cf. Table 1).

PCMCI. PCMCI was proposed in (Runge et al., 2019) as a constraint-based causal discovery method
designed to work with time-series data. The algorithm is composed of two main steps. In the first step, the
algorithm selects relevant variables using a variant of the skeleton discovery part of the PC algorithm (Spirtes
and Glymour, 1991). This step removes irrelevant variables for conditioning and therefore increases statistical
power. In the second step, the algorithm uses the momentary conditional independence (MCI) test, which
measures the independence of two variables conditioned on the set of their parents identified in step 1. The
MCI test helps to reduce the false positive rate, even when the data is highly correlated. PCMCI assumes that
the data is stationary, has time-lagged dependencies, and has causal sufficiency. Even when the stationarity
assumption is violated, PCMCI was shown to perform better than Lasso regression or the PC algorithm
(Runge et al., 2019). However, PCMCI is considered not suitable for highly predictable (almost deterministic)
systems with little new information at each time step (Runge et al., 2019). The Python implementation of
PCMCI is available in the Tigramite package at https://github.com/jakobrunge/tigramite.

As noted earlier, PCMCI only returns o—o edges among contemporaneous variables. While this allows
PCMCI to relax the common DAG assumption and allow for cycles, it results in a mixed summary graph,
where multiple types of edges («—, —, and/or o—o) can exist between two nodes. In contrast, we require all
algorithms to output a directed graph. Therefore, when reporting F1 scores for PCMCI, we only include
directed edges coming from lagged relationships and exclude the contemporaneous o—o edges. The only
exception is what we call ‘Mixed PCMCT’ (See Supplementary Figures 27- 29), where the contemporaneous o-
o edges are also included in the computation of adjacency F1 scores.

PCMCI*t. PCMCIT is an extension of the PCMCI method which incorporates directed contemporaneous
links in addition to the lagged ones (Runge, 2020). The approach revolves around two key concepts. First,
it divides the skeleton edge removal phase into separate lagged and contemporaneous conditioning phases,
thereby reducing the number of conditional independence tests required. Second, it incorporates the idea
of momentary conditional independence (MCI) tests from PCMCI (Runge et al., 2019) specifically in the
contemporaneous conditioning phase. PCMCIT also outputs a time-series graph with different types of
contemporaneous edges, including directed edges (— and <), unoriented edges (o—o), and conflicting edges
(x — x). Consistent with our requirement of a regular digraph at the end, we disregarded the unoriented
and conflicting edges and retained only the directed ones. Similar to most other causal discovery algorithms,
PCMCI™ does not permit cycles in the contemporaneous links, which could potentially account for its
relatively underwhelming performance over fMRI data. The Python implementation of PCMCI+ is also
available in the Tigramite package https://github.com/jakobrunge/tigramite.
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VARLINGAM. VARLINGAM is a causal discovery method that combines non-Gaussian instantaneous
models with autoregressive models. This method, proposed in (Hyvérinen et al., 2010), builds on the
fact that in the absence of unobserved confounders, linear non-Gaussian models can be identified without
prior knowledge of the network structure. VARLINGAM is capable of estimating both contemporaneous
and lagged causal effects in models that belong to the class of structural vector autoregressive (SVAR)
models and provides ways to assess the significance of the estimated causal relations. These models are a
combination of structural equation models (SEM) and vector autoregressive (VAR) models. In addition,
VARLINGAM emphasizes the importance of considering contemporaneous influences, as neglecting them
can lead to misleading interpretations of causal effects. Nevertheless, VARLINGAM does not permit cycles
in the contemporaneous links either, which could potentially account for its relatively poor performance
over brain fMRI data with many feedback loops. The VARLINGAM method is available from https://
github.com/cdt15/1lingam and a tutorial can be found at https://lingam.readthedocs.io/en/latest/
tutorial/var.html.

DYNOTEARS. Dynamic NOTEARS (DYNOTEARS) method, proposed in (Pamfil et al., 2020), is a
score-based method designed to discover causal relationships in dynamic data. It simultaneously estimates
relationships between variables within a time slice and across different time slices by minimizing a penalized
loss function while ensuring that the resulting directed graph is acyclic (including acyclicity of contemporane-
ous connections). The goal is to identify the best set of conditional dependencies that are consistent with the
observed data. DYNOTEARS builds on the original NOTEARS method proposed in (Zheng et al., 2018),
which uses algebraic properties to characterize acyclicity in directed graphs for static data. Python imple-
mentations are available from the CausalNex library (https://github.com/quantumblacklabs/causalnex)
as well as https://github.com/ckassaad/causal_discovery_for_time_series.

DGlearn. DGlearn is a score-based method for discovering causal relationships from observational data.
Importantly, it is one of few algorithms that can learn cyclic structures from cross-sectional data. The
method, introduced in (Ghassami et al., 2020), is based on a novel characterization of equivalence for poten-
tially cyclic linear Gaussian directed graphical models. Two structures are considered equivalent if they can
generate the same set of data distributions. DGlearn utilizes a greedy graph modification algorithm to return
a graph within the equivalence class of the original data-generating structure. The Python implementation
of DGlearn is available at https://github.com/syanga/dglearn.

FASK. The Fast Adjacency Skewness (FASK) method, proposed in (Sanchez-Romero et al., 2019), is a
hybrid method for causal discovery from cross-sectional data, combining constraint-based and noise-based
elements. It leverages (and needs) non-Gaussianity in the data and allows for cycles. This algorithm is
composed of two main steps. The first step, called FAS-Stable, outputs an undirected graph Gq by iteratively
performing conditional independence tests under the increasing size of the conditioning set and using the
Bayesian information criterion (BIC) to compare the conditioning sets. In the second step, assuming i.i.d.
non-Gaussian data, each of the X — Y adjacencies in G are oriented as a 2-cycle (5) if the difference
between corr(X,Y) and corr(X,Y|X > 0), and corr(X,Y) and corr(X,Y|Y > 0), are both significantly
nonzero, and as a unidirectional edge otherwise. The pseudo-code for FASK can be found in Supporting
Information A of (Sanchez-Romero et al., 2019) and Java source code for it is available at http://github.
com/cmu-phil/tetrad.

MVGC. In (Granger, 1969), Granger introduced a statistical version of Hume’s regularity theory, stating
that X, Granger-causes X, if past values of X, provide unique, statistically significant information about
future values of X, (Assaad et al., 2022). While this allows for optimal forecasting of an effect and has been
extended to multivariate systems (Barnett and Seth, 2014), MVGC cannot account for contemporaneous
effects and the presence of unobserved confounders can result in spurious edges. Python implementation of
MVGC is available at https://github.com/ckassaad/causal_discovery_for_time_series.

NTS-NOTEARS. NTS-NOTEARS is a nonlinear causal discovery method designed for time-series data
(Sun et al., 2021). It employs 1-D convolutional neural networks to capture various types of relationships,
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including linear, nonlinear, lagged, and contemporaneous connections among variables. The method ensures
that the resulting causal structure forms a directed acyclic graph. It builds upon the NOTEARS approach
(Zheng et al., 2018), and is similarly based on continuous optimization. Similar to other algorithms above, it
assumes the presence of no hidden confounding factors and stationarity of the data-generating process. In our
analysis, we compare NTS-NOTEARS as a state-of-the-art nonlinear method against the aforementioned
linear algorithms in synthetic fMRI (cf. Supplementary Figure 36). A Python implementation of NTS-
NOTEARS is available at https://github.com/xiangyu-sun-789/NTS-NOTEARS

CaLLTiF (proposed method). The proposed CaLLTiF method builds upon PCMCI (Runge et al., 2019)
but, instead of using a PC-type approach in the first step to estimate the set of parents for lagged variables,
it starts from a complete conditioning set including all lagged variables. This choice dramatically decreases
computational cost, but surprisingly, it is also optimal, as shown in Supplementary Figure 16, because as
mentioned in the discussion section, the approach of PCMCI discards contemporaneous effects. Using a
complete conditioning set, CaLLTiF then performs Momentary Conditional Independence (MCI) partial
correlation tests between all pairs of variables. Specifically, for any pair X;(t — 7), X;(¢t) with 4,5 € 1,...,N
and time delays 7 € 0,1,. .., Tyqq, & causal link is established (X;(t —7) — X, (t) if 7 > 0 and X;(t)o-o0X;(t)
if 7 =0), if and only if:

Cond. Ind. Test: X;(t — 7). X;(t) | {Xe(t—s):k=1,...,N,s=1,... ., Tmax} \ {Xs(t = 7)}. (1)

Note that, despite being complete, the conditioning sets only include variables from prior time lags. As
noted earlier, to test a conditional independence of the form X [ Y|Z, we compute the partial correlation
coefficient p(X,Y|Z) between X and Y conditioned on the set of variables in Z and the corresponding
p-value for the null hypothesis that p(X,Y|Z) = 0. An edge is placed between X, (t) and X;(t — 7) if this
p-value is less than the hyperparameter ‘Alpha Level’. The value of this threshold was selected optimally in
simulated fMRI and using temporal correction for multiple comparisons (see below) in real data. Finally, for
contemporaneous pairs (7 = 0), each o—o edge is replaced with % if there are no other edges between those
two variables at other lags, and is replaced with a directed edge or a & based on the lagged direction(s)
otherwise. For a more detailed summary of the partial correlation-based edge discovery in CaLLTiF, see
Supplementary Note 2.

Finally, it is imperative to acknowledge the possibility that some of the directed edges detected by our
methodology do not possess a strictly causal connotation. As previously indicated, the orientation method
relies on the widely accepted premise that bidirectional connections hold notably greater prevalence than
unidirectional links. Thus, we believe that the presented approach shall yield a proximate representation
of the true causal graph, concurrently accommodating cyclic structures and circumventing computational
barriers.

Construction of summary causal graphs from causal graphs over lagged variables

Causal discovery algorithms designed for time series data often return a causal graph among the lagged
variables

Xl(t - Tmax)a .- '7X1(t - 1)7X1(t)
X2(t - Tmax)a cee aXQ(t - 1)3X2(t) (2)

'Xn(t — Tmax)y -, Xn(t — 1), X5 (t)

From this, we extract a final summary graph among the variables X1, ..., X,, by placing an edge from X; to
X if there exists any 7 > 0 for which there is an edge from X;(t —7) to X;(¢). This is equivalent to an OR
operation among binary edges (as opposed, e.g., to a majority vote) and must be taken into account when
interpreting the obtained summary graphs.
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Correction for multiple comparisons across lags in CaLLTiF

As noted above, CaLLTiF places an edge from X; to X; in its summary graph if there exists at least one
7 > 0 for which there is an edge from X, (¢ —7) to X;(¢). Therefore, the decision to place an edge from X; to
X; depends on the outcomes of Tax + 1 statistical tests, and to maintain a desired bound on the probability
of type I error for each edge in the summary graph, we need to account for multiple comparisons across lags.

Formally, for each edge X; — X; in the final graph, the null hypothesis (i.e., lack of a direct causal effect
from X; to X;) can be formulated as

Tmax

Hy = Hoo N Hoy M-+ N Hopr,,, = ] Hor

Hor = {Xi(t —7) # X;(t)}.

Let p, denote the p-value of the partial correlation test between X;(t — 7) and X,(¢) and ¢ denote the
significance threshold for each partial correlation test. Then, the probability of type I error is

Tmax Tmax

P(Type I Error) ( U {pr < q} ‘ ﬂ Hy a)

Note that this is different from the family-wise error rate (FWER, bounded by the Bonferroni method and
its extensions) or the false discovery rate (FDR). In particular, this is different from FWER in that only one
decision is made and the probability of error is computed for that single decision only. So, for instance, if
in reality any subset (even one) of {Hy .} is false and the algorithm rejects any subset (even all) of {Hy .},
there is no type I error, as an edge exists from X; to X; both in the data-generating process and in the final
summary graph.

The type I error can then be bounded as

Tmax Tmax Tmax

P(Type I Error) ( U {pr < q} ‘ ﬂ H, g) i P({pT < q} ’ ﬂ H, g>

Tmas P({pT <q} N N2 Ho a) _ Tmay P(‘[PT <qt N HO,T)

= T“lax < Ttnax 3
=0 P<mg:0 HO’U) =0 P(na:[) HO,U) ( )
R pmy) (<o) 0 ) | R pm,)
= Pz Hoo) - PlFor) 2 P o)

The last expression has no dependence on the data and depends only on the prior distribution we consider
on graphs. Assuming a uniform prior, P(Hy ;) = 1/2. Further,

Tmax

P( QO HO,U) —p

We assume a prior where knowledge of the lack of an edge from X; to X; at one lag either increases the
probability of lack of an edge between them at other lags or, at least, does not decrease it (independence
across lags). Then,

=N HOmiax) U P(H07Tmax_l |H07Tmax) ' P(HOmiax)

= 1\ Tmax+1
P( N HOJ) > P(Hoo) - P(Ho,rpa—1) - P(Ho rya) = (5)
o=0

Putting everything together, we get

(Tmax + 1)/2

P(Type I Error) < g (1/2)7me T

= (Tmax + 1)2702.

18



Note, for analogy, that the correction factor (Tmax + 1)27ax takes place of the factor (7max + 1) in a corre-
sponding Bonferroni correction. To have P(Type I Error) less than a prescribed threshold «, we choose
@

- - 4

1 (Tmax+ 1)27—”"“" ( )

In our experiments with the HCP data, we have 7., = 3 and a = 0.01, giving a per-lag significance

threshold of approximately 0.0003. This is notably smaller than the Alpha Level values that maximized F1

scores in simulated Full Macaque data (0.1 for adjacency F1 score and 0.01 for F1 score), and is due to the
conservative nature of this correction for temporal multiple comparisons.

Computing Functional Graphs

In order to calculate the functional graphs for each subject, we consolidated the data from the four sessions
of each subject in the HCP and computed the pairwise correlations among all pairs of parcels. To form
a binary functional graph, we placed an edge between any two parcels displaying a statistically significant
correlation coefficient (p < 0.01, t-test for Pearson correlation coefficient).

Hyperparameter Selection

All the methods we described in Table 1 have at least one main hyperparameter that significantly affects the
end result, particularly in terms of edge density. These include ‘PC Alpha’ and ‘Alpha Level’ for PCMCI,
‘PC Alpha’ for PCMCI™, ‘Alpha’ for VARLINGAM, DYNOTEARS, and MVGC, and FASK, and ’BIC
Coefficient’ for DGlearn. These hyperparameters were swept over (simultaneously for PCMCI) using the
simulated data and selected such that the F1 score with the ground truth graph is maximized in each case.
This process was repeated for all algorithms and all experiments (simple graphs, Small-Degree Macaque,
Full Macaque). Performance metrics such as Recall, Precision, and F1 scores of each method for a range of
their hyperparameters are shown in Supplementary Figures 6-12 for the simulated Simple Network graphs, in
Supplementary Figures 20-24 for the simulated Small-Degree Macaque data, and in Supplementary Figures
30-36 for the simulated Full Macaque data.

Time-series algorithms (PCMCI, PCMCI", VARLINGAM, DYNOTEARS) also have a hyperparameter
controlling the number of lags used for causal discovery. Based on our prior work (Nozari et al., 2023), we
set this value to 3 for the HCP data (TR = 0.72s), and confirmed its sufficiency based on the contributions
of higher-order lags (Figure 6a). For the simulated data, (TR = 1.2s), we used a maximum lag of 2 to match
its slower sampling.

Computing F1 Scores, Degrees, and Causal Flows

In our experiments using simulated fMRI data, access to ground truth graphs allows for evaluating the
performance of causal discovery methods. In this work, we evaluate causal discovery algorithms as binary
classifiers deciding the presence or lack of n? edges among n nodes. This allows us to evaluate algorithms using
standard classification metrics such as precision, recall, and F1 score (Davis and Goadrich, 2006; Fawcett,
2006; Powers, 2020; Sokolova and Lapalme, 2009; Tharwat, 2020). Given that the F1 score provides a
balanced trade-off between precision and recall, we use it as our measure of accuracy. We define two
separate metrics, (full) F1 score and adjacency F1 score. For the former, each of the n? edges (including any
self-loops due to dampening autocorrelation for each node) in the graph is considered as one test sample for
classification. In the latter, the ground-truth and learned graphs are first transformed into an undirected
skeleton, placing an edge between two nodes if a directed edge existed in at least one direction. The resulting
(g) possible edges are then treated as test samples for classification and computation of adjacency F1 score.

To determine the degree and causal flow of a node 7 in a binary directed graph, its in-degree (number of
edges pointing toward node ) and out-degree (number of edges originating from node %) are first computed
and normalized by the total number of nodes in the graph. The degree of node 7 is then computed as the
sum of the out-degree and in-degree, while the causal flow is obtained by subtracting the in-degree from the
out-degree. The same process is followed for weighted graphs except that the calculation of in-degree and
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out-degree involves a weighted mean. Mathematically,

N
1
Causal Flow (i) = N ZG(iaj) -

2|~

N
> G(Gii) , i=1,2,...,N
j=1

Il
-
Il

Degree (i) = G(i,7) + G(,i) , i=1,2,..,.N

2=
IM= 1
2=

1

J J

where G denotes the graph’s (binary or weighted) adjacency matrix.

Computing Subnetwork Graphs from Parcel-Level Graphs

Subnetwork graphs were computed by aggregating parcel-level binary graphs into graphs between 16 sub-
networks. These subnetworks consist of the standard 7 resting-state subnetworks (Yeo et al., 2011) plus
one subcortical subnetwork, separately for the left and right hemispheres. A subnetwork-level graph is then
computed for each subject, whereby the weight of an edge from subnetwork i to j is the number of nodes in
subnetwork ¢ that connect to nodes in subnetwork j, normalized by the number of all possible edges between
these subnetworks. The results are then averaged over the subject, as depicted in Supplementary Figure 49.

Computing

All the computations reported in this study were performed on a Lenovo P620 workstation with AMD 3970X
32-Core processor, Nvidia GeForce RTX 2080 GPU, and 512GB of RAM.
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