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Abstract
Shift equivariance, integral to object recognition,
is often disrupted in Vision Transformers (ViT)
by components like patch embedding, subsam-
pled attention, and positional encoding. Attempts
to combine convolutional neural network with
ViTs are not fully successful in addressing this
issue. We propose an input-adaptive polyphase
anchoring algorithm for seamless integration into
ViT models to ensure shift-equivariance. We also
employ depth-wise convolution to encode posi-
tional information. Our algorithms enable ViT,
and its variants such as Twins to achieve 100%
consistency with respect to input shift, demon-
strate robustness to cropping, flipping, and affine
transformations, and maintain consistent predic-
tions even when the original models lose 20 per-
centage points on average when shifted by just a
few pixels with Twins’ accuracy dropping from
80.57% to 62.40%.

1. Introduction
Inductive bias helps guide machine learning algorithm de-
sign by reducing the optimal model’s search space. Convo-
lutional Neural Networks (CNNs) owe their success to their
shift equivariance inductive bias, mirroring human object
recognition abilities. However, Transformers, though suc-
cessful in computer vision and natural language processing,
lack shift-equivariance due to patch embedding, positional
embedding, and subsampled attention.

Attempts to integrate CNNs into vision transformers have
only partially addressed this issue. Although Dai et al.
(2021) propose a relative attention method that combines
depthwise convolution with attention to achieve shift equiv-
ariance, this approach requires computing full global atten-
tion, and shift equivariance is not maintained when down-
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sampled attention is required for computational efficiency
(Chu et al., 2021; Tu et al., 2022; Ding et al., 2022). Both
MaxViT (Tu et al., 2022) and Twins transformer (Chu et al.,
2021) utilize depth-wise convolution to encode positional
information, but their block attention (or window attention)
and strided convolution are not shift equivariant.

Our work introduces modules that fully incorporate CNN’s
shift-equivariant inductive bias into vision transformers. We
propose a nonlinear operator - the polyphase anchoring al-
gorithm - ensuring shift-equivariance by choosing the maxi-
mum polyphase as anchors for strided convolution and sub-
sampled attentions. We also employ depthwise convolution
with circular padding to encode positional information.

Our contributions include versatile modules that improve
vision transformer models’ performance, an adaptive nonlin-
ear operator ensuring shift-equivariance, and complete shift-
equivariance capabilities for vision transformers, backed by
theoretical and empirical evidence.

2. Approach
To achieve model-wise shift-equivariance, we first detect the
modules that lack shift equivariance. We then introduce a
polyphase anchoring algorithm to ensure shift-equivariance
for strided convolution and two popular types of subsam-
pled attention — window attention, a widely used local
subsampled attention (Liu et al., 2021; 2022; Tu et al., 2022;
Chu et al., 2021), and global subsampled self-attention, a
popular choice for global subsampled attention (Chu et al.,
2023; 2021). Finally, we use depthwise convolution with cir-
cular padding to guarantee shift-equivariance in positional
encoding. As the composition of shift-equivariant func-
tions remains shift-equivariant, we obtain a shift-equivariant
model.

2.1. Detecting modules lacking shift equivariance

To create a shift-equivariant model, we identify and address
non-shift-equivariant modules in vision transformers (ViTs).
We find that patch embedding, positional encoding, and
subsampled attentions like window and global subsampled
self-attention lack shift-equivariance. In contrast, normal-
ization and MLP layers are shift-equivariant.

To tackle these issues, we introduce a polyphase an-
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(polyphase anchoring)
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Figure 1. The maximum polyphase is colored in blue. Each shape with distinct color represents a token. We also illustrate the concept
of anchors — the top left coordinate in each window. The red and yellow shapes indicate that window attention produces inconsistent
predictions on shifted image whereas the composition of polyphase anchoring and window attention does not.

Table 1. ImageNet1K training from scratch

Model image size #param. Epochs Acc. IN1K Consis. Acc. Rand. S

ViT S 2242 22M 300 75.52 86.61 74.98
ViT S-poly 2242 22M 300 76.37 100 76.37

ViT B 2242 87M 300 73.85 85.60 73.01
ViT B-poly 2242 86M 300 74.62 100 74.62

Twins B 2242 56M 300 80.57 91.25 79.90
Twins B-poly 2242 56M 300 80.59 100 80.59

choring algorithm for strided convolution, window atten-
tion, and global subsampled self-attention, ensuring shift-
equivariance. Additionally, we use depthwise convolution
with circular padding to guarantee shift-equivariance in po-
sitional encoding. With these modifications, we deliver a
fully shift-equivariant model, as the composition of shift-
equivariant functions remains shift-equivariant.

2.2. Polyphase anchoring algorithm

Inspired by the concept of adaptive polyphase sampling pre-
sented in Chaman and Dokmanic (2021), we propose the
polyphase anchoring algorithm, an efficient technique that
can be seamlessly integrated with various types of subsam-
pled attention operators (Tu et al., 2022; Chu et al., 2021;
Liu et al., 2021; 2022; Dong et al., 2021; Ding et al., 2022)
to ensure shift-equivariance. The algorithm is implemented
as an autograd function in PyTorch, making it simple to
incorporate into deep learning models.

Polyphase anchoring identifies the maximum Lp norm

Patch
Embedding

Positional
Encoding Norm

Multi-
head

attention
...

ViT

Figure 2. The figure highlights that, in the context of ViT, patch
embedding and positional encoding do not exhibit shift-equivariant
properties.

polyphase and shifts the input accordingly, so that the maxi-
mum polyphase aligns with the anchor positions of window
attention, as illustrated in Figure 1. Anchors SA of window
attention represent the set of coordinates at the top-left of
each window, as depicted in Figure 1.

SA = {(i, j) | i ≡ 0 (mod s), j ≡ 0 (mod s)} (1)
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Table 2. Robustness experiments on ImageNet1K

Model Acc. Crop Acc. Flip Acc. Affine Worst-of-30 Batch 1 Worst-of-30

ViT S 75.09 75.50 69.85 53.80 68.90
ViT S-poly 76.08 76.34 69.54 76.20 76.02

ViT B 73.31 73.83 68.64 53.20 67.42
ViT B-poly 74.36 74.64 70.46 74.40 74.20

Twins B 80.51 80.60 75.88 62.40 73.86
Twins B-poly 80.43 80.56 76.12 80.78 80.78

where i ≤ H, j ≤ W, i, j ∈ Z, s× s denotes the size of the
window in window attention, (i, j) is a coordinate on a 2D
grid.

Algorithm 1 demonstrates polyphase ordering. For brevity,
we define the polyphase Xpq mathematically here. Let Xpq

be tokens in a polyphase defined by coordinate (p, q) and
stride size s, where Xpq = X[:, p :: s, q :: s].

Algorithm 1 Polyphase anchoring
1: Input X ∈ R...×H×W , stride size s ∈ Z
2: X̂pq = argmax{Xpq|p,q∈{0,...,s−1}} ||Xpq||
3: X̂ = gpq · (X) where gpq circularly shifts X by

(−p,−q) along the last two dimensions.
4: Output: X̂

The polyphase anchoring algorithm is a nonlinear operator
that conditionally shifts the input based on its maximum
Lp norm polyphase. This guarantees shift-equivariance in
strided convolution, subsampled attention like window at-
tention, and GSA. As a result, the lack of shift-equivariance
in patch embedding modules and subsampled attention mod-
ules in ViT variants, such as Twins (Chu et al., 2021), is
addressed.

We provide theoretical guarantee that the composition of
polyphase anchoring with strided convolution, window at-
tention, and global subsampled self-attention results in shift-
equivariant operations. Consequently, we effectively ad-
dress the lack of shift equivariance in patch embedding
modules and subsampled attention modules for ViT vari-
ants such as Twins (Chu et al., 2021). Detailed proofs are
provided in Appendix.

2.3. Positional Embedding

Positional embedding like absolute (Dosovitskiy et al.,
2020) and relative positional embedding (Liu et al., 2021;
2022) can disrupt shift-equivariance. Using zero-padded
depthwise convolution, as introduced by Chu et al. (2023),
we can promote shift-equivariance. With circularly-padded
depthwise convolution replacing positional encoding, shift-

equivariance is achieved.

Formally, we define depthwise convolution operation using
input tensor X and a set of depthwise filters W. Assum-
ing circular padding, each channel’s convolution is shift-
equivariant, making depthwise convolution shift-equivariant
overall.

Ensuring shift-equivariance in patch embedding, positional
embedding, and subsampled attention leads to a fully shift-
equivariant model. Moreover, adding a shift-invariant pool-
ing operation in the classification head can yield a truly
shift-invariant model.

3. Experiments
In this section, we demonstrate that we can construct a
100% shift-equivariant ViT and Twins transformers. Mod-
els employing our algorithm exhibit superior accuracy in
fair comparisons, improved robustness under shifting, crop-
ping, flipping, and random patch erasing, 22.4% relative
percentage point gain (or 41.6% increase) from ViT small
under worst-of-30 shift attack, and 100% consistency under
shift attacks.

Settings. We evaluate six architectures, including ViT base,
ViT small, Twins (Chu et al., 2021) base, and their shift-
equivariant counterparts using polyphase anchoring and
depthwise convolution on ImageNet-1k. We use Twins-SVT
introduced by Chu et al. (2021). To ensure fair comparisons,
we train each model and its counterpart from scratch on
ImageNet-1k under identical training settings including hy-
perparameters and data augmentation strategy.

3.1. Accuracy and Consistency on ImageNet-1k

Evaluation. We measure performance using accuracy, con-
sistency, and accuracy under small random shift from 0 to
15 pixels. Consistency (Chaman and Dokmanic, 2021) mea-
sures the likelihood of the model assigning the image and
its shifted copy to the same class.

Results. Table 1 shows the comparison of ViT and Twins
transformer models against their shift-equivariant counter-
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parts using models training from scratch. Shift-equivariant
models demonstrate superior accuracy under random shifts,
and 100% consistency.

3.2. Robustness tests on ImageNet-1k

Evaluations. We evaluate the the models under random
cropping, horizontal flipping, patch erasing, and affine trans-
formations. Additionally, we perform a worst-of-k shift
attack for each batch of images, we keep the shift within a
small range of (−15, 15), to keep it inconsequential to hu-
man perception, and use the worst-case shift for evaluation.
Some of these metrics are sensitive to the batch size used
since the worst shift is chosen per batch. We use a batch size
of 64 for all metrics and additionally evaluate worst-of-30
with a batch size of 1 for 2000 samples.

Results. As shown in Table 2, shift-equivariant models
obtain comparable or better accuracy than their respective
counterparts. Under the worst-of-k shift attack, our models
achieve significantly improved accuracy and consistency,
while having slight-to-high gains on the other transforma-
tions.

3.3. Stability and shift-equivariance tests on
ImageNet-1K

Output logits variance measures the variability of the
model’s logits predictions with respect to a range of small
random shifts from -5 to 5. It quantifies the spread or dis-
persion of the logits (L) as a function of the input shift.
Mathematically, the output logits variance can be calculated
as follows:

Variance =
1

N

N∑
i=1

(
L(xi)− L̄

)2
(2)

where Variance represents the output logits variance, N is
the total number of samples, xi denotes the input sample,
L(xi) corresponds to the logits prediction for the input xi,
and L̄ represents the mean logits prediction for the given
range of input shifts. The output logits variance concerning
small shift perturbations is almost zero for ViT S/16-poly
and Twins B-poly, indicating that the output logits remain
unchanged under small input shifts. Conversely, the output
logits variance is nonzero for nearly 50% of the input im-
ages, suggesting that the model’s assigned probability for
the input label alters in response to minor pixel shifts.

Shift-equivariance tests are unit tests that measure if the
features are shift-equivariant. Let M be a machine learning
model that takes an input X and produces a feature map
F = M(X). For a given translation g ∈ G, define the
shifted input X′ as X′ = g ·X. Let F′ = M(X′) be the
feature map obtained by applying the model to the shifted

input. The feature shift-equivariance test can be defined as
follows:

shift-equivariance(M) =

{
0, if F′ = g′ · F
∥F′ − F∥, otherwise

(3)
where g′ ∈ G is translation in the feature space, ∥ · ∥ is
L2 norm. Both the polyphase models of ViT and Twins
successfully pass all shift equivariance tests in the feature
space, while the original ViT and Twins models fail to do
so and exhibit substantial norm differences in the feature
space.

4. Related Work
Data augmentation encourages shift-equivariance by
adding shifted copies of images to the training set but lacks
guarantees. In CNNs, it has been shown that models learn
invariance to transformations only for images similar to
typical training set images (Azulay and Weiss, 2018).

Regularization during training encourages shift-
equivariance and invariance using soft constraints. A
pretraining objective during self-supervised learning
can be added to predict transformations applied to the
input (Dangovski et al., 2022). A loss function based
on cross-correlation of embedded features encourages
equivariance (Xie et al., 2022) but does not provide
theoretical guarantee.

Architectural design can also result in shift-equivariance
and invariance. For CNNs, anti-aliasing strategies (Zhang,
2019) and adaptive polyphase sampling (APS) address the
lack of shift-equivariance due to downsampling. The former
lacks guarantees, while the latter is computationally expen-
sive, needing full convolution computations on subsampled
attentions.

5. Conclusions and Discussions
This work fully revives shift equivariance in vision trans-
formers using versatile modules — polyphase anchoring
and depthwise convolution. We detect common modules
in vision transformers that lack shift equivariance and pro-
pose input-adaptive nonlinear operator that ensures shift-
equivariance in patch embedding layer and subsampled at-
tention blocks. While this study prioritized comparative
analysis over achieving state-of-the-art accuracy due to
computational constraints, we demonstrated superior perfor-
mance in certain areas like consistency in classification and
robustness to worst-case shift, cropping, flipping, and affine
transformation. Future work includes leveraging industrial-
scale resources for improved performance.
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A. Appendix
To effectively restore shift-equivariance in vision transformers, it is necessary to examine each individual module and
identify the components responsible for disrupting the shift-equivariance property. To achieve this, we must first establish
formal definitions for equivariance and self-attention.

A.1. Mathematical background

A.1.1. EQUIVARIANCE

Equivariance serves as a formal concept of consistency under transformations (Gruver et al., 2022). A function f : V1 → V2

is considered equivariant to transformations from a symmetry group G if applying the symmetry to the input of f produces
the same result as applying it to the output:

∀g ∈ G : f(g · x) = g′ · f(x) (4)

Here, · denotes the linear mapping of the input by the representation of group elements in G. Throughout this paper, all
instances of · adhere to this definition. When g = g′, the function is referred to as G-equivariant. If g′ is the identity, the
function is G-invariant. For cases where g ̸= g′, the function is considered generally equivariant. General equivariance is a
valuable concept when the input and output spaces have different dimensions. When G represents the translation group, the
above definition yields shift-equivariance.

A.1.2. SELF-ATTENTION

A self-attention operator As exhibits permutation-equivariance. Let X represent the input matrix, and Tπ denote any spatial
permutation. We can express this as:

As(Tπ(X)) = Tπ(As(X)). (5)

As is the self-attention operator with parameter matrices Wq ∈ Rd×dk , Wk ∈ Rd×dk , and Wv ∈ Rd×dv :

As = SoftMax(XWq(XWk)
T )XWv (6)

= SoftMax(QKT )V. (7)

A.2. Detecting modules lacking shift equivariance

We elaborate section 2.1 from the main manuscript in this section and detect modules that lack shift equivariance. Vision
transformers consist of a patch embedding layer, positional encoding, transformer blocks, and MLP layers. We analyze each
of these modules in ViT and its variants, discovering the following:

• Patch embedding layer (strided convolution) is not shift-equivariant due to downsampling.

• Absolute positional encoding (Dosovitskiy et al., 2020) and relative positional embedding (Liu et al., 2021; 2022) are
not shift-equivariant.

• Normalization, global self-attention, and MLP layers are shift-equivariant.

• Subsampled attentions such as window attention (Liu et al., 2021; 2022; Tu et al., 2022; Chu et al., 2021) and global
subsampled self-attention (Chu et al., 2021) are not shift-equivariant.

Patch embedding converts image patches into sequence vector representations through strided convolution. However,
strided convolution is not shift-equivariant due to downsampling, as addressed by Zhang (2019); Chaman and Dokmanic
(2021). Figure 1 illustrates that the image patching layer, or strided convolution, is not shift-equivariant. When an image is
shifted by a pixel, the pixels in each window change, leading to different computations.

Positional encoding is a method for incorporating spatial location information into tokens, the representations of input
image patches. Popular positional encoding techniques such as absolute positional encoding in ViT (Dosovitskiy et al., 2020)
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Figure 3. The top figures display the output logits variance for ViT S, Twins B, and their shift-equivariant counterparts, while the bottom
figures provide a comparison of shift-equivariance tests between ViT S, Twins B, and their respective shift-equivariant versions.

and relative positional encoding in Swin (Liu et al., 2021; 2022) are not shift-equivariant. Absolute positional encoding
(Dosovitskiy et al., 2020) adds the absolute positional information to input tokens by considering an input image as a
sequence or a grid of patches (Dosovitskiy et al., 2020; Wang et al., 2021). Trivially, absolute positional embedding is not
shift-equivariant because the same absolute positional information is added to the input tokens regardless of shift, as shown
in Figure 4 The relative positional embedding introduced by Liu et al. (2021) is the following:

0 31 2 4 5

shifted sequence of tokens

0 31 2 4 5

sequence of tokens

Figure 4. The figure illustrates that the identical absolute positional encoding is applied to both the input and its circularly shifted
counterpart, resulting in a lack of shift-equivariance.

Attention(Q,K, V ) = SoftMax(
QKT

√
d

+B)V, (8)

where B ∈ RM2×M2

is the relative position bias term for each head; Q,K, V ∈ RM2×d are the query, key and value
matrices; d is the query/key dimension, and M2 is the number of patches in a window. Although self-attention is permutation
equivariant, self-attention with relative position bias is not shift-equivariant. Further mathematical deductions are provided
in section A.3.1.

Normalization layers standardize the input data or activations of preceding layers to stabilize training and enhance model
performance by ensuring consistent scales and distributions. Both batch normalization and layer normalization are shift-
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equivariant. Trivially, normalizing a shifted input along batch and feature dimensions is equivalent to shifting the normalized
input.

MLP layers, or Multi-Layer Perceptron layers, are a sequence of feedforward neural network layers that perform a linear
transformation followed by a non-linear activation function. An MLP layer is shift-equivariant. In layer l of an MLP model,
we have:

h(l) = ϕ(xW (l) + b(l)) (9)

where x is a row vector, W is a weight matrix, and b is a bias term. Given an input matrix X whose row vectors are tokens,
it is obvious that the MLP layer is shift equivariant with respect to input tokens.

In the ViT architecture, we have identified that MLP layers and normalization layers are shift-equivariant, while patch
embedding and positional encoding are not. ViT variants (Liu et al., 2021; 2022; Chu et al., 2023; Dong et al., 2021; Wang
et al., 2021; Tu et al., 2022) introduce additional challenges for shift-equivariance, as they typically employ subsampled
attention operations to reduce the quadratic computational complexity with respect to the number of tokens in global
self-attention.

Subsampled attentions are streamlined versions of global self-attentions that can be classified into two categories: local
and global (Liu et al., 2021; 2022; Chu et al., 2021; Zhang et al., 2021; Tu et al., 2022). Local attention is typically
employed in conjunction with subsampled global attention to encode substantial spatial information while avoiding excessive
computational costs (Tu et al., 2022; Chu et al., 2021; 2023; Zhang et al., 2021). However, the use of subsampled attentions
often results in a lack of shift-equivariance due to downsampling. Consequently, addressing the shift-equivariance issue in
these subsampled attentions is crucial.

The most prevalent local attention mechanism is window attention, while a popular subsampled global attention variant is
the global subsampled self-attention (GSA) introduced by Chu et al. (2021). The polyphase anchoring algorithm from the
main manuscript directly tackles the lack of shift-equivariance. This approach is designed to maintain spatial information
while reducing computational complexity, thus promoting shift-equivariance in subsampled attention mechanisms.

A.3. Theoretical guarantees

A.3.1. POSITIONAL ENCODING

In section 2.3 of the main manuscript, we mentioned that relative positional encoding (Liu et al., 2021; 2022) is not
shift-equivariant. We reiterate the definition below and provide a counterexample. Relative positional encoding is defined as:

Ar = SoftMax(XWQ(XWK)T +B)XWV (10)

Counterexample: Let B be a n× n square matrix with two standard basis vectors e1 and e2 and everywhere else zero.

B =


1 0 0 . . .
0 1 0 . . .
0 0 0 . . .
...

...
...

...

 (11)

Let Pπ be the matrix representation for the linear transformation Tπ that circularly shifts the input signals s.t

P =


(en)

T

(e1)
T

(e2)
T

...
(en−1)

T

 . (12)

For relative positional encoding to be shift-equivariant, we must have Ar(Tπ(X)) = Tπ(Ar(X)).

LHS = Ar(Tπ(X)) = SoftMax(Tπ(X)WQ(Tπ(X)WK)T +B)Tπ(X)WV (13)

= SoftMax(PπXWQ(PπXWK)T +B)PπXWV (14)
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RHS = Tπ(Ar(X)) = PπSoftMax(XWQ(XWK)T ) +B)PT
π PπXWV (15)

= SoftMax(PπXWQ(XWK)T )PT
π + PπBPT

π )PπXWV (16)

Assume PπXWV is right-invertible: ∃Q s.t (PπXWV )Q = I . Multiply both LHS and RHS by Q and apply logarithmic
function.

LHS = PπXWQ(XWK)T )PT
π +B + log(S1) (17)

RHS = PπXWQ(XWK)T )PT
π + PπBPT

π + log(S2) (18)

For LHS = RHS, the following much hold:

B = PπBPT
π + C, (19)

where C is a constant matrix. However,

PπBPT
π =

(
0 e2 e3 . . .

)
(20)

QED.

Tangent from the solutions proposed in the main paper, we reveal that relative positional encoding is shift equivariant under
specific conditions. More concretely, if the bias term is shift equivariant, relative positional encoding is shift equivariant
(Liu et al., 2021; 2022). Let Tπ denote the spatial translation of the input X , and Ar denote a self-attention operator with
relative position bias. We have:

Ar(Tπ(X)) = SoftMax(Tπ(X)WQ(Tπ(X)WK)T +B)Tπ(X)WV (21)

= SoftMax(PπXWQ(PπXWK)T +B)PπXWV (22)

= SoftMax(PπXWQ(XWK)TPT
π + PπP

T
π B)PπXWV (23)

= SoftMax(PπXWQ(XWK)TPT
π + PπBPT

π )PπXWV (24)

= PπSoftMax(XWQ(XWK)T ) +B)PT
π PπXWV (25)

= Tπ(Ar(X)) (26)

Although it is not directly related to the solutions proposed in the main manuscript, this finding demonstrates that shift-
equivariance can be ensured in relative positional encoding through constraining the bias term to be shift-equivariant.

A.3.2. POLYPHASE ANCHORING

In section 2.2 of the main manuscript, we claimed that the composition of polyphase anchoring with strided convolution,
window attention, and global subsampled self-attention respectively results in shift-equivariant operations. We provide
proofs for those claims in this section.

Lemma A.1. Polyphase anchoring operator P is general equivariant with respect to ∀g ∈ G, where G is the symmetry
group of translations, and P : V → V is a nonlinear operator that conditionally shift the input X . ∀g ∈ G, ∃g′ ∈ G s.t:

P (g ·X) = g′ · P (X), (27)

where · denotes the linear mapping of the input by the representation of group elements in G.

Proof: let X ∈ R···×H×W ,

P (g ·X) = g|(g·X) · g ·X (28)

where g|(g·X) is some translation conditioned on input g ·X .

P (X) = g|X ·X (29)
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where g|X is some translation conditioned on input X . Since g|X , g|(g·X), g ∈ G, ∃g′ ∈ G s.t

g|(g·X) · g ·X = g′ · g|X ·X (30)
P (g ·X) = g′ · P (X) (31)

QED.

Corollary A.2. P (g ·X) = g′ · P (X) where g′ translates P (X) by an integer multiple of stride size s. Stride size is the
distance between two consecutive tokens in the same polyphase on a 2D grid.

Proof: let X ∈ R···×H×W , X[:, i, j] ∈ C denote a token located at (i, j) coordinate on a 2D grid.

By definition of polyphase anchoring, tokens in the maximum polyphase are at the anchor positions s.t

P (X)[:, 0 :: s, 0 :: s] = arg max
P (X)[:,i::s,j::s]∈{P (X)[:,i::s,j::s]|i,j∈Z,i,j<s}

∥P (X)[:, i :: s, j :: s]∥, (32)

where P (X)[:, 0 :: s, 0 :: s] denotes the polyphase or subsampled grid starting from top left at (0, 0) with stride size s. (This
notation aligns with regular PyTorch usage.) Assuming that maximum polyphase is unique, P (X)[:, 0, 0] P (g ·X)[:, 0, 0]
both belong to the same polyphase. Since coordinate distance between tokens in the same polyphase is a integer multiple of
stride size, we must have P (g ·X) = g′ · P (X), where g′ translate P (X) by a multiple of stride size s on a 2D grid. QED.

Lemma A.3. Given a window attention operator Aw and polyphase anchoring operator P , the composition of these
operators is general shift-equivariant ∀g ∈ G, where G is the translation group, and for s, w ∈ Z such that s = w, where s
is the stride size in the polyphase and w × w is the window size. This can be expressed as:

Aw(P (g ·X)) = g′ ·Aw(P (X)) (33)

Proof: let X ∈ RC×H×W , X =

 X00 · · · X0n

...
...

...
Xm0 · · · Xmn

 where m = H
w , n = W

w , and Xij ∈ RC×w×w,

i ∈ {0, · · · ,m}, j ∈ {0, · · · , n}. We call w × w window size and Xij tokens in the window (i, j). The window
attention operator

Aw(X) =

 As(X00) · · · As(X0n)
...

...
...

As(Xm0) · · · As(Xmn)


, where As is the self attention operator

As(X) = SoftMax(XWq(XWk)
T )XWv = SoftMax(Q(K)T )V

.

Aw(P (X)) = Aw


 X̂00 · · · X̂0n

...
...

...
X̂m0 · · · X̂mn




, where {X̂00[:, 0, 0], · · · , X̂mn[:, 0, 0]} are tokens in the maximum polyphase because the polyphase anchoring algorithm
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conditionally shifts the input data so that the maximum polyphase is X̂[:, 0 :: w, 0 :: w].

Aw(P (g ·X)) = Aw(g
′ · P (X))

= Aw

g′ ·

 X̂00 · · · X̂0n

...
...

...
X̂m0 · · · X̂mn




=


 g′ ·As(X̂ij) · · · g′ ·As(X̂i(j−1))

...
...

...
g′ ·As(X̂(i−1)j) · · · g′ ·As(X̂(i−1)(j−1))


 (Corollary A.2)

= g′ ·


 As(X̂00) · · · As(X̂0n)

...
...

...
As(X̂m0) · · · As(X̂mn)




= g′ ·Aw(P (X))

(34)

QED.

Lemma A.4. Let P be the polyphase anchoring operator and ∗s represent the strided convolution operator. ∀g ∈ G, where
G is the translation group, and ∀s1, s2 ∈ Z s.t s1 = s2, where s1 is the stride size in the polyphase and s2 is the stride size
of convolution, the composition of strided convolution and polyphase anchoring is general shift-equivariant:

h ∗s P (g ·X) = g′ · (h ∗s P (X)) (35)

Here, X denotes the input signal, h is the convolution filter, and · signifies the linear mapping of the input by the
representation of group elements in G. Furthermore, P : V → V is a nonlinear operator acting on the input space V .
Mathematically, strided convolution ∗s can be represented as a full convolution followed by a downsampling operation

h ∗s X = P
(s)
0,0 (h ∗X)

where P
(s)
m,n(·) is a function with a matrix as input and its down-sampled sub-matrix as output. This function select

the elements on the grid defined by m,n, s, where (m,n) denotes the upperleft position of the grid, and s denotes the
sub-sampling stride.

LHS = h ∗s P (g ·X) = P
(s)
0,0 (h ∗ P (g ·X)) (36)

= P
(s)
0,0 (h ∗ (g′ · P (X))) (37)

= P
(s)
0,0 (g

′ · (h ∗ P (X))) (38)

= g′ · (P (s)
0,0 (h ∗ P (X))) (39)

= RHS (40)

where g′ ∈ G translates input by an integer multiple of stride size s. QED.

Lemma A.5. For a global subsampled self-attention operator Ag (Chu et al., 2021) combined with a polyphase anchoring
operator P , general shift-equivariance is achieved for ∀g ∈ G, where G is the translation group, and for s1, s2 ∈ Z such
that s1 = s2. Here, s1 is the stride size in the polyphase, and s2 is the stride size in the global self-subsampled attention.
This can be expressed as:

Ag(P (g ·X)) = g′ ·Ag(P (X)) (41)

In global subsampled self-attention, we have:

Ag(X) = SoftMax(QKT
s )Vs, (42)
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where Ks and Vs are subsampled from the full keys K and values V using strided convolution.

LHS = Ag(P (g ·X)) (43)

= SoftMax(P (g ·X)Wq(h ∗s P (g ·X)Wk)
T )h ∗s P (g ·X)Wv (44)

= SoftMax(g′ · P (X)Wq(h ∗s (g′ · P (X))Wk)
T )h ∗s (g′ · P (X))Wv (45)

= SoftMax(g′ · P (X)Wq(g
′ · (h ∗s P (X))Wk)

T )g′ · (h ∗s P (X))Wv (46)

= SoftMax(Pg′P (X)Wq(Pg′(h ∗s P (X))Wk)
T )Pg′(h ∗s P (X))Wv (47)

= SoftMax(Pg′P (X)Wq((h ∗s P (X))Wk)
TPT

g′ )Pg′(h ∗s P (X))Wv (48)

= Pg′SoftMax(P (X)Wq((h ∗s P (X))Wk)
T )PT

g′Pg′(h ∗s P (X))Wv (49)

= Pg′SoftMax(P (X)Wq((h ∗s P (X))Wk)
T )(h ∗s P (X))Wv (50)

= g′ ·Ag(P (X)) = RHS, (51)

where Pg′ is the matrix representation of a group element g′ ∈ G from the symmetry group of translations. QED.

A.3.3. COMPOSITION OF EQUIVARIANT FUNCTIONS

In section 2.1, we conduct a comprehensive analysis of Vision Transformers (ViT) and their derivatives, focusing on the
aspect of shift-equivariance. We identify specific modules within these models that do not preserve shift-equivariance,
which is integral to maintaining spatial coherence in vision tasks. In response to this discovery, we propose and implement a
series of corrective measures, facilitating the design of fully shift-equivariant Vision Transformer architectures. Importantly,
our approach capitalizes on the property that a composite function constructed from shift-equivariant functions retains
shift-equivariance. This results in models that preserve spatial information across the entire network architecture.
Lemma A.6. Composition of two equivariant functions with respect to transformations in symmetry group is equivariant.

Proof: Let G be a symmetry group and let f : X → Y and h : Y → Z be equivariant functions, i.e., for all x ∈ X and
g ∈ G, we have:

f(g · x) = g · f(x)
and

h(g′ · y) = g′ · h(y)
where · denotes the group action of G on X , Y and Z. We want to show that h ◦ f : X → Z is also equivariant, i.e., for all
x ∈ X and g ∈ G, we have:

(h ◦ f)(g · x) = g · (h ◦ f)(x)

We start with the left-hand side:

(h ◦ f)(g · x) = h(f(g · x)) (definition of composition)
= h(g · f(x)) (by equivariance of f )
= g · h(f(x)) (by equivariance of h)
= g · (h ◦ f)(x) (definition of composition)

where we used g′ · h(y) = h(g′ · y), the associative property of group action, and the equivariance of f and h.

Therefore, we have shown that (h◦ f)(g ·x) = g · (h◦ f)(x) for all x ∈ X and g ∈ G, which means that h◦ f is equivariant
with respect to the group action of G.

A.4. Experiment

Figure 3 demonstrates that ViT S/16-poly and Twins B-poly both pass all shift-equivariance tests and their output logits
variance concerning small shift perturbations are almost zero. On the other hand, ViT S/16 and Twins B fail all shift-
equivariance tests and demonstrate unstable output probabilities with respect to small input shift.


