
Fishy: Layerwise Fisher Approximation
for Higher-order Neural Network Optimization

Abel L. Peirson∗
Google Brain & Stanford University

alpv95@stanford.edu

Ehsan Amid∗
Google Brain

eamid@google.com

Yatong Chen
Google Brain & UC Santa Cruz

ychen592@ucsc.edu

Vlad Feinberg
Google Brain

vladf@google.com

Manfred Warmuth
Google Research

manfred@google.com

Rohan Anil
Google Brain

rohananil@google.com

Abstract

We introduce Fishy, a local approximation of the Fisher information matrix at
each layer for natural gradient descent training of deep neural networks. The true
Fisher approximation for deep networks involves sampling labels from the model’s
predictive distribution at the output layer and performing a full backward pass –
Fishy defines a Bregman exponential family distribution at each layer, performing
the sampling locally. Local sampling allows for model parallelism when forming
the preconditioner, removing the need for the extra backward pass. We demonstrate
our approach through the Shampoo optimizer, replacing its preconditioner gradients
with our locally sampled gradients. Our training results on deep autoencoder and
VGG16 image classification models indicate the efficacy of our construction.

1 Introduction

Natural gradient descent (NGD) [1] is a second-order update rule that preconditions the gradient
direction with the inverse of the model’s Fisher information matrix (FIM). NGD corresponds to the
steepest descent direction in the Riemannian space associated with the FIM and is equivariant to
any differentiable reparameterization of the model weights. However, this property only holds in
the small step limit and whether the benefits extend to finite steps remains an open question [16].
Nevertheless, NGD has proven to be remarkably effective in training deep neural networks, and many
standard optimizers in deep learning can be seen as approximations of NGD [17, 11].

NGD is challenging to implement for training deep neural networks. Firstly, the FIM requires
samples from the model’s predictive distribution, with an additional backward pass to calculate
the gradients. Secondly, NGD requires calculating the inverse FIM of the whole network, which
immediately becomes infeasible even for medium-sized models. K-FAC [17] uses a block diagonal
Kronecker factor approximation to address the latter obstacle, considering the FIM for each layer
as a Kronecker product of two matrices which can more easily be stored and inverted. However,
the Kronecker approximation used in K-FAC becomes challenging to generalize for layers other
than fully-connected layers. Moreover, the sampling and additional backward passes keep K-FAC
expensive. The Shampoo optimizer [8, 5] approximates the full-matrix AdaGrad preconditioner using
the same minibatch gradients of the training examples. Shampoo preconditioning avoids additional
sampling or extra backward passes but is no longer related to true Fisher [14, 16] and, as we show
experimentally, is outperformed when replaced with a true Fisher approximation. Using a Shampoo
approximation of the true Fisher is related to [19]; primary differences are the choice of exponents and

∗Equal Contribution

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

dampening term used for per-dimension preconditioners. Our work follows Shampoo’s Kronecker
product approximation of the preconditioner, which has the advantage of being agnostic to the type
of layers. Sun and Nielsen [22] recently proposed a layerwise relative FIM, but do not consider the
full form of layers’ predictive distributions nor demonstrate scaling to practical architectures.

This paper presents a new layerwise FIM approximation approach, extending the popular Shampoo
optimizer to NGD. First, we update Shampoo to an approximate NGD method, sampling from the
output layer distribution to construct the preconditioners. Second, inspired by the matching loss
[9, 4] construction for LocoProp and layerwise representation learning [3, 2], we define Bregman
exponential family distributions for the outputs of each layer based on their activation functions.
Sampling locally from these distributions allows preconditioner calculation to be performed in parallel
across layers. Third, we compare our approach to standard Shampoo and its Fisher counterpart on a
benchmark MNIST deep autoencoder problem and CIFAR100 classification with a VGG16 [20].

2 Methodology

Fisher Information Matrix and Natural Gradient Descent Given a probabilistic model
P (x,y|θ) with input random variable x and target random variable y, the Fisher Information
Metric (FIM) is defined in terms of a local Riemannian metric as an approximation to the KL
divergence [18],

DKL

(
P (x,y|θ), P (x,y|θ + dθ)

)
=

∫
x,y

p(x,y|θ) log p(x,y|θ)
p(x,y|θ + dθ)

dx dy

≈ 1/2dθ> Ex,y|θ[∇θ log p(x,y|θ)∇θ log p(x,y|θ)>]︸ ︷︷ ︸
:=F (θ) Fisher Information matrix

dθ ,

where the expectation is with respect to the model distribution P (x,y|θ). The result is identical
when flipping the order of the arguments in the KL divergence. The FIM corresponds to the Rieman-
nian metric that locally explains the model in the parameter space [15]. This probabilistic model
approximates an underlying joint data distribution Pd(x,y) from which the data is sampled. Thus,
training the model corresponds to finding optimal parameters θ∗ that minimize the KL divergence
between the data and model distributions. For a discriminative model that generates P (y|x,θ), the
marginal distribution P (x|θ) is assumed to be the same as the underlying input data distribution
Pd(x). Thus, the loss can be written as

L(θ) =

∫
x,y

pd(x,y) log
pd(x,y)

p(x,y|θ)
dx dy = Ex,y[log pd(y|x)]︸ ︷︷ ︸

constant

−Ex,y[log p(y|x,θ)] , (1)

where the expectations are applied with respect to Pd(x,y). In practice, the empirical loss is formed
by a Monte Carlo approximation of the expectation,

L(θ|X) = − 1

n

∑
i

logP (y(i)|x(i),θ) ,

using training examples X = {(x(i),y(i))}ni=1 that are sampled from Pd(x,y).

Given the loss L(θ|X) on the batch of examples X , the natural gradient step [1] is defined as the
minimizer of the following linearized objective,

dθNGD = arg min
dθ

{L(θ|X) + dθ>∇L(θ|X) + 1/2γ dθ> F (θ) dθ}

= −γF (θ)−1∇L(θ|X) ,
(2)

in which the loss at L(θ + dθ|X) is approximated by its first-order Taylor expansion. The non-
negative multiplier γ > 0 in the regularizer term controls the step size. Specifically, Equation (2)
corresponds to minimizing a linear approximation of the loss at the current parameter θ while the
amount of deviation is measured in terms of the local Mahalanobis distance induced by the FIM.

Fishy: Layerwise Fisher Construction Let â` denote the pre-activation at layer ` ∈ [L] of an
L-layer network. For a fully-connected layer with weights W`, we can write â` = W` ŷ`−1 and

2

1.0 0.5 0.0 0.5 1.0
yl

0.0

0.2

0.4

0.6

0.8

1.0

p(
y l

|y
l)

Tanh

al = 0.5
al = 0.3

2.5 0.0 2.5 5.0 7.5 10.0
yl

0.0

0.2

0.4

0.6

0.8

1.0

Leaky Relu 0.1

al = 0.5
al = 2

Figure 1: Example of layerwise predictive distributions for tanh (left) and leaky ReLU (right)
activation functions.

the post-activation ŷ` = f`(â`). Here, f` denotes the (elementwise) strictly-increasing activation
function in layer ` ∈ [L]. (Note that using this notation, ŷ0 = x.) Fishy aims to approximate the
Fisher F for each layer independently by defining a predictive distribution for y`, the layer’s output
random variable, as

p`(y`|ŷ`) =
exp(−DF∗

`
(y`, ŷ`))

Z(ŷ`)
, (3)

where ŷ` is the post-activation of the layer given the input ŷ`−1. The term Z(ŷ`) is the normalizing
partition function that ensures the distribution sums to one. The distribution in Equation (3) belongs
to a Bregman exponential family [6] in which the Bregman divergence is induced by the convex
function F ∗` . We apply the layerwise loss construction in [3] to obtain DF∗

`
, which corresponds to

the matching loss [9, 13, 4] of the activation function f` induced by its integral function. Intuitively,
DF∗

`
encodes the layer’s local geometry; thus, correcting for the gradient direction using a local

Fisher approximation can stabilize training and improve convergence [22]. For the linear, sigmoid,
and softmax activations, Equation (3) yields the standard Gaussian, Bernoulli, and categorical
distributions, respectively. Figure 1 gives some example distributions for tanh and leaky ReLU
activations.

To calculate the layer’s FIM, we need to calculate the gradient of the score function log p`(y`|ŷ`).
Taking the gradient with respect to the pre-activation â`, we have

∇â`
log p`(y`|ŷ`) = y` − ŷ` −∇a`

logZ(θ) = y` − ŷ` − E
P`(y`|ŷ`)

[y` − ŷ`] . (4)

The last term in Equation (4) is non-zero in general for asymmetric distributions induced by activation
functions such as tanh and leaky ReLU (see Figure 1). Nevertheless, in our approximation, we
discard the last term in Equation (4) to form an upper bound of the local FIM approximation. For a
fully-connected layer with θ` = vec(W`), we can write

F (θ`) 4 E
P (x,y`)

[(
(y` − ŷ`)⊗ ŷ`−1

)(
(y` − ŷ`)⊗ ŷ`−1

)T]
, (5)

where P (x,y`) = Pd(x)P`(y`|ŷ`(x|θ`)). The FIM approximation in Equation (5) corresponds
to a block-diagonal approximation of the full FIM as the layers are treated independently. This
is a common procedure for calculating FIM for large neural networks [17, 22]. With Fishy, we
have the flexibility of sampling at every layer or dividing the network into multiple disjoint sections
and performing the sampling at the output layer of each section. The sampled gradients are then
backpropagated through the corresponding section. In the extreme case where the entire network
is treated as a single section, Equation (5) reduces to a block diagonal approximation of the true
Fisher by sampling from the model’s output predictive distribution [17]. Next, we discuss using the
Shampoo approximation to apply the inverse of Equation (5) as the preconditioner at each layer.

3

5 × 101

6 × 101

tra
in

 lo
ss

MNIST LeakyRelu

30 40 50 60 70 80 90 100
epoch

5 × 101

6 × 101

tra
in

 lo
ss

MNIST Tanh

Adam
Shampoo
Fishy
True Fisher

2 × 100

3 × 100

4 × 100

ev
al

 lo
ss

CIFAR100 LeakyRelu

20 40 60 80 100 120 140
epoch

2 × 100

3 × 100

4 × 100

ev
al

 lo
ss

CIFAR100 Tanh Adam
Shampoo
Fishy
True Fisher
Fishy Classifier

3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

ev
al

 a
cc

ur
ac

y

CIFAR100 LeakyRelu

40 60 80 100 120 140
epoch

3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

ev
al

 a
cc

ur
ac

y

CIFAR100 Tanh

Adam
Shampoo
Fishy
True Fisher
Fishy Classifier

Figure 2: Experimental results on deep autoencoder for MNIST (left column) and VGG16 convolu-
tional network on CIFAR100 for image classification (middle and right columns).

Fishy via Shampoo Approximation For a fully-connected layer with gradient G ∈ Rdi×do ,
Shampoo approximates the outer-product of the vectorized gradients g = vec(G) ∈ Rdido as a
Kronecker product of two factors

ε Idido +
1

r
gg> 4 L

1
2 ⊗R 1

2 = (εIdi +GG
>)

1
2 ⊗ (εIdo +G

>G)
1
2 , (6)

where r is an upper-bound on the rank of the gradients (see [8] for further details), and L and R
correspond to the left and right preconditioners. The construction in Equation (6) is more general and
can be applied to many types of layers. However, notice that g in Equation (6) corresponds to the
average gradient of a batch (and not the per example gradient).

To approximate Equation (5) via Shampoo, we first sample y(i)
` from the predictive distribution

in Equation (3) given the input sample x(i) in the batch {x(i)}ni=1 and the corresponding post-
activations ŷ`−1 and ŷ` at layer `− 1 and `, respectively. Next, instead of the per example sampled
gradient g(i)s = (y

(i)
` − ŷ

(i)
`)⊗ ŷ(i)

`−1, we pass the average sampled gradient gs = 1/n
∑
i g

(i)
s into

Shampoo to form the preconditioners. A similar averaging is performed in K-FAC [17] on the
sampled gradients before forming the preconditioners. Shampoo then applies the (EMA of the) left
Ls and rightRs Fishy preconditioners on the gradient of the training examplesG,

GFishy-NGD = L
− 1

2
s GR

− 1
2

s . (7)

Notice that the exponents in Equation (7) are different than the original Shampoo formulation (−1/4)
as we are interested in the inverse of the local FIM (and not its inverse square root). In practice, the
exponent in Shampoo is treated as a tunable hyperparameter.

3 Experiments

We perform experiments on two architectures, and datasets, a deep MNIST autoencoder [10] with
fully connected hidden layers [1000, 500 × 8, 250, 30, 250, 500 × 8, 1000], a standard benchmark
for second-order methods, and a VGG16 CNN architecture [20] applied to CIFAR100. We compare
Adam [12], standard Shampoo [5], FIM Shampoo (true Fisher), and our method Fishy. For VGG16,
we include a variant of Fishy that only approximates the local FIM for the final fully-connected

4

layers (called Fishy classifier), letting earlier convolutional layers inherit gradients from the first
fully-connected layer’s predictive distribution. Hyperparameters for each method are tuned over
400 trials with the Vizier Bayesian optimization toolbox [21, 7], and the trial with the best final
objective value is displayed. All Shampoo and Fishy variants share the same tunable hyperparameter
ranges. We find significant improvements over standard Shampoo with Fishy or its variants on
most of the tasks. Fishy even outperforms FIM Shampoo on some problems. FIM Shampoo can be
considered Fishy applied to the output layer only. We plan to open-source the code to reproduce these
experiments.

4 Conclusion

We introduce Fishy, a layerwise Fisher construction method that allows model parallelism for approx-
imating the FIM. We apply our construction to Shampoo, which only requires simple adjustments
but can improve performance on several problems. In the future, we would like to perform more
extensive experiments comparing K-FAC, derive a full expectation version of Fishy without requiring
sampling, and develop Fishy for the K-FAC approximation. Further treatment of layerwise predictive
distributions on their own can also yield interesting research directions.

References
[1] Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation,

10(2):251–276, February 1998.

[2] Ehsan Amid, Rohan Anil, Christopher Fifty, and Manfred K. Warmuth. Layerwise Breg-
man Representation Learning with Applications to Knowledge Distillation, September 2022.
arXiv:2209.07080 [cs].

[3] Ehsan Amid, Rohan Anil, and Manfred Warmuth. LocoProp: Enhancing BackProp via Lo-
cal Loss Optimization. In Proceedings of The 25th International Conference on Artificial
Intelligence and Statistics, pages 9626–9642. PMLR, May 2022. ISSN: 2640-3498.

[4] Ehsan Amid, Manfred K. K Warmuth, Rohan Anil, and Tomer Koren. Robust Bi-Tempered
Logistic Loss Based on Bregman Divergences. In Advances in Neural Information Processing
Systems, volume 32, 2019.

[5] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second
order optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

[6] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with
Bregman divergences. Journal of machine learning research, 6(Oct):1705–1749, 2005.

[7] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D. Sculley. Google vizier: A service for black-box optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, August 13 - 17, 2017, pages 1487–1495. ACM, 2017.

[8] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned Stochastic Tensor
Optimization. In Proceedings of the 35th International Conference on Machine Learning, pages
1842–1850. PMLR, July 2018.

[9] D.P. Helmbold, J. Kivinen, and M.K. Warmuth. Relative loss bounds for single neurons. IEEE
Transactions on Neural Networks, 10(6):1291–1304, November 1999.

[10] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[11] Mohammad Emtiyaz Khan and Håvard Rue. The Bayesian learning rule. arXiv preprint
arXiv:2107.04562, 2021.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

5

[13] J. Kivinen and M. K. Warmuth. Relative Loss Bounds for Multidimensional Regression
Problems. Machine Learning, 45(3):301–329, December 2001.

[14] Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical Fisher
approximation for natural gradient descent. Advances in neural information processing systems,
32, 2019.

[15] John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer
Science & Business Media, 2006.

[16] James Martens. New Insights and Perspectives on the Natural Gradient Method. Journal of
Machine Learning Research, 21(146):1–76, 2020.

[17] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored
approximate curvature. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pages 2408–2417, Lille, France, July
2015. JMLR.org.

[18] Frank Nielsen. An elementary introduction to information geometry. Entropy, 22(10):1100,
2020.

[19] Yi Ren and Donald Goldfarb. Tensor normal training for deep learning models. Advances in
Neural Information Processing Systems, 34:26040–26052, 2021.

[20] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition, April 2015. arXiv:1409.1556 [cs].

[21] Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski, and Daniel Golovin. Open source
vizier: Distributed infrastructure and API for reliable and flexible blackbox optimization. In
Automated Machine Learning Conference, Systems Track (AutoML-Conf Systems), 2022.

[22] Ke Sun and Frank Nielsen. Relative Fisher Information and Natural Gradient for Learning Large
Modular Models. In Proceedings of the 34th International Conference on Machine Learning,
pages 3289–3298. PMLR, July 2017.

6

	Introduction
	Methodology
	Experiments
	Conclusion

