
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RESHAPING MODEL OUTPUT SPACE VIA DEEP KER-
NEL DENSITY ESTIMATION NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional classification models are typically optimized solely for their specific
training task without considering the properties of the underlying probability dis-
tribution of their output space. As the use of these models for downstream tasks
becomes more prevalent, it becomes advantageous to have a framework that can
transform the output space of such models to a more convenient space without
sacrificing performance. In this paper, we introduce DeepKDE, a novel method
which enables the transformation of arbitrary output spaces to match more de-
sirable distributions, such as Normal and Gaussian Mixture Models. We explore
the properties of the new method and test its effectiveness on ResNet-18 and vi-
sion transformers trained on CIFAR-10 and Fashion MNIST datasets. We show
that DeepKDE models succeed in transforming the output spaces of the original
models while outperforming them in terms of accuracy.

1 INTRODUCTION

Leveraging pre-trained models to enhance performance in downstream tasks is a widely used tech-
nique. In this framework, a large model is trained on abundance of data, and the resulting output
can then serve as a starting point for a new task such as classification (Plested & Gedeon, 2022),
anomaly detection (Chalapathy & Chawla, 2019), clustering (Ren et al., 2022) and more. However,
the optimization of the primary model focuses on refining its architecture, hyperparameters, and
training process to best suit the primary task. These optimizations are not designed to match any
underlying probability distribution thus resulting with an arbitrary and intractable probability distri-
bution. It would be advantageous to reshape the output space of such models to align with a more
convenient underlying probability function. This can enable downstream algorithms to benefit from
the knowledge of the feature space distribution.
Reshaping a feature space to match a specific distribution is commonly done in various learning
tasks. However, the current approach is usually task-specific and not a generic solution to transform
the output of any arbitrary model.
In image generation tasks, deep generative models such as Variational Auto Encoders (VAE)
(Kingma & Welling, 2014), Normalizing Flows (Rezende & Mohamed, 2015) and Diffusion Models
(Ho et al., 2020), link between the input space and a feature space with a known underlying proba-
bility density function, so new data points could be easily sampled during inference. In the context
of clustering tasks, the process of combining representation learning using deep neural networks
(DNN) together with a clustering method is referred to as deep clustering. Some deep clustering
methods aim to generate a feature space that follows a multimodal distribution such as Gaussian
Mixture Model (GMM). Notable methods in this category include Xie et al. (2016) and Yang et al.
(2017) who proposed methods to construct deep clustering using autoencoder networks. Mukherjee
et al. (2018) proposed a methodology to train clustering Generative Adversarial Networks and Jiang
et al. (2017) used VAE with GMM as a prior. In unsupervised anomaly detection tasks, optimiza-
tion was done for deep representation learning along with one class objective such as a hyperplane
(Chalapathy et al., 2018) or a hypersphere (Ruff et al., 2018).
Looking at the aforementioned methods, we can identify two modes of operations: the first involves
a joint optimization of DNN parameters and reshaping the feature space to meet a target distribution
(Yang et al., 2017; Jiang et al., 2017; Chalapathy et al., 2018; Ruff et al., 2018). The second involves
a two-step procedure starting with optimizing DNN parameters, followed by refining the feature
space to best suit the task (Xie et al., 2016). Given the growing size of the state-of-the-art models

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and the increasing complexity of the tuning methods, it is more practical to adopt the two-step mode
of operation.
In this paper we introduce the DeepKDE a novel deep method. We take state-of-the-art classification
models and use DeepKDE networks to reshape their output space to match underlying probability
density functions such as Normal distributions or GMMs while also improving their classification
performance. The workflow begins with taking a primary tuned model and projecting the input data
to a predefined layer within the model that captures meaningful features. The projected data is then
fed as an input to a DeepKDE network. The DeepKDE network is trained with a loss function op-
timized to match a desired probability density function while incorporating constraints to preserve
the information contained in the input data (Figure 1). Our work focuses on classification models
but can be extended to other tasks.

Figure 1: DeepKDE learns a neural network transformation Θ(·|ϕ) to minimize the statistical dis-
tance between qϕ and the target function p, while enforcing the clustering of specific data points
within the latent space and encouraging adjacent data points in the input space to remain adjacent in
the latent space. The model takes as input the extracted features from a pretrained model.

2 DEEPKDE

2.1 MODEL BASICS

Consider a typical autoencoder architecture with input and output space X , X̂ ⊆ RD and latent
space Z ⊆ Rd. Let Θ(·|ϕ) be the autoencoder function with a set of adjustable parameters ϕ. The
latent variable zq ∈ Z can be interpreted as a random variable with sample space Z and probability
density function qϕ, where ϕ denotes the dependency on model parameters. Additionally, suppose
we have a source that generates samples zp ∼ p where p is a known and tractable probability density
function on the same sample space Z . Our objective is to optimize the model parameters to minimize
the statistical distance between qϕ and the target function p. In this work we measure the statistical
distance using the Jensen-Shannon divergence:

DJS(qϕ||p) =
1

2

(
Eqϕ [log(qϕ)]− Eqϕ [log(mϕ)]

)
+
1

2
(Ep[log(p)]− Ep[log(mϕ)])

where mϕ =
1

2
(qϕ + p)

(1)

By utilizing (1) and considering only the terms dependent on ϕ, we can define a loss term:

Lpdf :=Eqϕ [log(qϕ)]− Eqϕ [log(mϕ)]− Ep[log(mϕ)] (2)

Looking at (2) we see that we need to calculate terms in the form of:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Eg[log(f)] (3)

where f and g are probability density functions. Let z be a continuous random variable with finite
expected value, finite variance, and probability density function g. For a set of n samples Dn =
z1, ..., zn, for a large n, the expected value Eg can be approximated by taking the sample mean.
Hence we can rewrite (3) as:

Eg[log(f)] ≈ log(f)
(g)

(4)

We use the bar symbol to denote the mean of a sample and we add (g) to emphasize that the mean
is taken from a sample with probability density function g. For each data point in Dn we estimate f
using kernel density estimator (KDE):

f̂ =
1

lh

l∑
i=1

Kh (z − zi) (5)

where l is the number of observations, h is the bandwidth parameter and K is a scaled multivariate

Gaussian kernel Kh(u) = (2π)
−d/2 exp

{
−1

2
u⊤u

}
. Choosing an estimator with a differentiable

kernel is an essential property for constructing a differentiable loss function to be optimized later by
a gradient descent algorithm.

Combining (4) and (5) we get:

Eg[log(f)] ≈ log(f̂)
(g)

(6)

Note that Dn is sampled with probability density function g but for each data point, the value is
estimated using KDE based on observations with underlying probability density function f

Inserting (6) into (2) we get:

Lpdf = log(q̂ϕ)
(qϕ)

− log(m̂ϕ)
(qϕ)

− log(m̂ϕ)
(p) (7)

In practice, during the training process, for each batch Ln = zq1, ..., zqnof samples in the latent
space, we generate a corresponding batch of Tn = zp1, ..., zpn target points with a known probability
density function. To calculate each term in (7), we implement a routine:

kd out = kde fn(obs, loc, bw) (8)

Where obs denotes the observations for density estimation for each data point, loc denotes the loca-
tions of the data points, and bw is a scalar that denotes the kernel bandwidth. The routine returns the

average probability density function over all locations. To calculate the term log(q̂ϕ)
(qϕ)

, both the

locations and the observations are taken from Ln. To calculate the term log(m̂ϕ)
(qϕ)

the locations
are taken from Ln, while n

2 observations are randomly sampled from Ln, and n
2 observations are

randomly sampled from Tn. To calculate the term log(m̂ϕ)
(p)

the locations are taken from Tn while
the observations are sampled from Ln and Tn as in the previous term. In all our experiments we
select bw using Scott’s rule of thumb (Scott, 1992).
Intuitively, while KDE is known to be a poor estimator for multidimensional densities, we mitigate
this issue by selecting a target function that is easier to estimate (e.g. Normal, GMM). Consequently,
the initial estimation during the training process may be suboptimal, but it is still sufficient for the
netwrok to converge. As training continues, the estimation gradually becomes more accurate.
While Lpdf reshapes the statistical characteristics of the latent space, the system still has many de-
grees of freedom. For better control of the transformation of data points to the latent space, we add
two additional terms. The first term, Lcl, enforces the clustering of specific data points within the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

latent space. Equations (9) and (10) are two examples of such a term. The term in (9) penalizes data
points that are located more than a distance T from the center of their target cluster.

Lcl =
1

n

n∑
i=1

Relu

 k∑
j=1

yi,j · ∥zi − cj∥2 − T

 (9)

In this equation, k represents the number of predefined clusters in Z , Cj and cj represents the jth
cluster and it’s corresponding centroid, and T is a hyperparameter of the model that indicates the
distance threshold. Additionally, yi,j is a boolean function that takes a value of 1 when data point i
belongs to cluster j, and 0 otherwise.

The term in (10) is aimed to enforce a separating hyperplane zi,j,0 = 0 where the indexes indicate
the data-point, cluster and dimension respectively in a scenario of binary classification.

Lcl =
1

n

n∑
i=1

Relu

 2∑
j=1

gi,j · zi

 (10)

In this equation, gi,j is a function that takes a value of 1 when data point i belongs to cluster 1, and
-1 when it belongs to cluster 2.

The last term is a reconstruction term, which encourages adjacent data points in the input space to
remain adjacent in the latent space.

Lrec =
1

n

n∑
i=1

∥xi − x̂i∥2 (11)

The total loss Ltot is then expressed as:

Ltot = αLpdf + βLcl + (1− α− β)Lrec (12)

where α ≥ 0 and β ≥ 0 are hyperparameters of the model. Examples for the interplay between the
three terms are discussed in details in the experimental results section.

2.2 ARCHITECTURE

A DeepKDE basic block consists of three consecutive layers: A linear layer followed by batch
normalization (Ioffe & Szegedy, 2015) and Parametric Rectified Linear Unit (PReLU) (He et al.,
2015b). The DeepKDE net architecture is constructed as an autoencoder and can be formally ex-
pressed by:

Block(x) = PReLU(BatchNorm(Linear(x)))
Latent(x) = Linear(Block(...Block(x)))

DeepKDE(x) = Linear(Latent(x))
(13)

3 EXPERIMENTS

In all experimental setups, a paired input dataset and target dataset of equal size are employed,
generated either from a Normal or GMM distribution, depending on the specific experiment. The
network architectures of the DeepKDE models utilized in all experiments are outlined in Table 1.
For all conducted experiments, the training of DeepKDE models was performed using the Adam
optimizer (Kingma & Ba, 2015). The batch size was set to 10000, and the learning rate was initially
set to 0.01 for the first 500 epochs and subsequently reduced to 0.001 for the remaining training
iterations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: DeepKDE architectures implemented in the experimental setups. The DeepKDE architec-
ture utilized in the second setup remained consistent across all primary networks and datasets, with
the only variation being the input size.

Synthetic ResNet-18 | ViT (CIFAR-10) | ViT (FMNIST)

Input 1× 2 1× 512 | 1× 768 | 1× 128

Encoder

Block(2, 8)
Block(8, 32)
Block(32, 8)
Linear(8, 2)

Block(512, 1024)
Block(1024, 512)
Block(512, 256)
Block(256, 128)
Linear(128, 10)

Latent 1× 2 1× 10

Decoder

Block(2, 8)
Block(8, 32)
Block(32, 8)
Linear(8, 2)

Block(10, 128)
Block(128, 256)
Block(256, 512)
Block(512, 1024)
Linear(1024, 512)

Output 1× 2 1× 10

3.1 SYNTHETIC DATA

In this experiment we explore the basic properties of DeepKDE models by employing different target
probability density functions, loss weights and Lcl terms. The input data utilized in this study is a
two-dimensional synthetic dataset, generated using the make moons dataset from the scikit-learn
1.4.2 Python library (Pedregosa et al., 2011), with a noise parameter set to 0.05. A total of 10K data
points are used for training, 10K for validation and 10K for testing. Figure 2(a) illustrates the input
data points, with colors assigned to facilitate tracking in the latent space. Specifically, data points
belonging to class 1 and class 2 are colored using the ”cool” and ”autumn” color maps from the
matplotlib library (Hunter, 2007), respectively.

Figure 2(b) depicts the latent space in a scenario where the target dataset is generated from a normal

distribution, specifically zp ∼ N(z|µ, I) where µ =

(
0

0

)
and I is the identity matrix. The super-

vision term Lcl follows equation (10), and the weights assigned to Lpdf , Lcl, and Lrec are set to
{0.8, 0.2, 0} respectively. Figure 2(c) shows the latent space where the target data points are gener-
ated from a distribution that is a mixture of two Gaussians, specifically zp ∼ 1

2

∑2
i=1 N(z|6 · ui, I)

where ui is a unit vector and I is the identity matrix. The weights in this setup were set to
{0.5, 0.2, 0.3}. Figures 2(d)-2(f) provide some intuition on the significance of each term of the
loss function. The target functions in these experiments remain the same as in Figure 2(c) but with
different loss weights. Figure 2(d) depicts a model trained with weights {0, 0.9, 1} emphasizing the
role of Lpdf in shaping the latent space to match the probability of the target data points. Figure 2(e)
depicts a model trained with weights {0.9, 0, 0.1} emphasizing the role of Lcl in clustering points
from the same class together in the latent space. Additional complementary experiments showed
that omitting this term destabilizes the training process, resulting in mode collapse where all data
points are concentrated within a single Gaussian in the latent space. Figure 2(f) depicts a model that
was trained using weights {0.8, 0.2, 0}, emphasizing the role of Lrec in encouraging adjacent data
points in the input space to remain adjacent in the latent space.

3.2 CIFAR-10 & FASHION MNIST

In this experiment we test the effectiveness of our solution using well-known benchmark datasets -
CIFAR-10 (Krizhevsky et al.) and Fashion MNIST (Xiao et al., 2017). Since the DeepKDE model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

Figure 2: Analysis of DeepKDE models applied to two-dimensional input data. In 2(a), the input
data points are displayed, with colors assigned to facilitate tracking in the latent space. 2(b) and 2(c)
showcase scatter plots of DeepKDE latent spaces. 2(b) depicts a model trained to match a Normal
distribution, while 2(c) presents a model trained to match a mixture of two Gaussians. Furthermore,
2(d)-2(f) depict the latent space of DeepKDE models that were trained using the same target function
as in 2(c), but with varying loss weights. In 2(d), the assigned weights for Lpdf , Lcl, and Lrec are
{0, 0.9, 1}. In 2(e), the weights are {0.9, 0, 0.1}, and in 2(f), the weights are {0.8, 0.2, 0}.

should be independent of the source of its input, we evaluate its performance on inputs generated
from two distinct primary classification models: ResNet-18 (He et al., 2015a), and a vision trans-
former (ViT) (Dosovitskiy et al., 2020). The output space’s size of all models is 1 × 10 since both
datastes have 10 different classes. The flow of this experiment starts with training the primary model
and extracting features from a meaningful layer. These features are then provided as an input to a
DeepKDE model with latent space of size 1 × 10. The target data points for the DeepKDE models
in the experiment, are generated by mixture of 10 Gaussians located on the unit vectors:

zp ∼ 1

10

10∑
i=1

N(z|6 · ui, I) (14)

where ui is a unit vector and I is the identity matrix. The loss weights in this experiment are set to
{0.7, 0.1, 0.2}, and the classification is performed by assigning each data point to the cluster with
the center positioned at the minimum Euclidean distance. The exact configurations of all primary
models, training and feature extraction procedures can be found in Appendix A.

Figure 3 presents the accuracy scores of the DeepKDE models compared to the primary models
for both data sets. The results show that DeepKDE outperforms the original models in terms of
accuracy.

Figure 4 depicts scatter plots displaying two-dimensional projections of the ten-dimensional GMM
shaped latent space. Figure 4(a) showcases the projections of the DeepKDE with ResNet-18 as the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Accuracy scores of DeepKDE models compared to the original models for both data sets.
The bars and error bars represent the mean scores and standard deviation over 10 repetitions. The
Wilcoxon signed-rank test results for all experiments indicate statistically significant (α = 0.05)
differences in performance.

(a) (b)

Figure 4: Scatter plots of two dimensional projections of the DeepKDE latent space for different
models and datasets. Figure 4(a) showcases the projections on the axes corresponding to the plane
and car classes of the CIFAR-10 dataset for the ResNet-18. Figure 4(b) showcases the projections
on the axes corresponding to the Trouser and Sandal classes from the Fashion MNIST dataset

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

primary model, on the axes corresponding to the plane and car classes from the CIFAR-10 dataset.
Figure 4(b) showcases the projections of the DeepKDE with ViT as a primary model, on the axes
corresponding to the trousers and sandals classes from the Fashion MNIST dataset. In all figures,
data points that have labels corresponding to one of the axes are colored in pink or red, while all
other data points are colored in green. Specifically, there are 1K data points colored pink, 1K data
points colored red, and 8K data points colored green in each figure.
Figure 5 illustrate further analysis of the results using our understanding of the latent space. The
figure depicts the two-dimensional projection on the axes corresponding to cars and trucks classes
from the CIFAR-10 dataset. We selected 6 data points from the center of each cluster (groups 1 and
5 in the figure), as well as 3 pairs of adjacent car-truck data points located in different areas (groups
2, 3, and 4). The images of the trucks are framed in cyan, while the images of the cars are framed
in orange. By examining groups 1 and 5, we can observe that data points taken from the center of
the cars or trucks distributions share similar characteristics and can be easily classified correctly.
Group 2 demonstrates a case where a car is positioned within the trucks cluster. Upon observing
the image of this car, we can see that it has a small trailer and its overall shape can be mistaken for
a truck. Group 4 demonstrates the opposite scenario, where a truck is positioned within the cars
cluster. Looking at the shape of the truck, it shares a closer resemblance with the neighboring car in
comparison to the trucks. Group 3 comprises data points located far from the center of the clusters
and provides examples of outliers.

Figure 5: Cars and trucks classes from the CIFAR-10 dataset projected onto the corresponding axes
in the DeepKDE latent space. Groups 1 and 6 consist of 6 data points sampled from the center of
the trucks and cars clusters, respectively. Groups 2,3 and 4 consist of pairs of adjacent car-truck data
points situated in different regions of the latent space. The images of trucks are highlighted with a
cyan frame, while the images of cars are framed in orange.

4 CONCLUSIONS AND FUTURE WORK

In this paper we introduced the DeepKDE, a method for transforming the output space of classifica-
tion models to match more desirable distributions, such as Normal and Gaussian Mixture Models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We formulated the theoretical foundations of our method, explored its properties, and tested its ef-
fectiveness on ResNet-18 and ViT classification models trained on CIFAR-10 and Fashion MNIST
datasets. Our results demonstrate that DeepKDE models succeed in transforming the data while
enhancing the classification performance compared to the original models. Furthermore, the results
can be further explained by using the knowledge about the underlying probability of the new space.
Our aim in introducing this method is to establish a new application flow in downstream tasks such
as anomaly detection and clustering.

REFERENCES

Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection: A survey.
CoRR, abs/1901.03407, 2019. URL http://arxiv.org/abs/1901.03407.

Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly detection using
one-class neural networks. CoRR, abs/1802.06360, 2018. URL http://arxiv.org/abs/
1802.06360.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015a. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015b. URL
http://arxiv.org/abs/1502.01852.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. CoRR,
abs/2006.11239, 2020. URL https://arxiv.org/abs/2006.11239.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Eunkwang Jeon. Vision transformer. https://github.com/jeonsworld/
ViT-pytorch/tree/main?tab=readme-ov-file, 2020.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep
embedding: An unsupervised and generative approach to clustering. In Carles Sierra (ed.),
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJ-
CAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 1965–1972. ijcai.org, 2017. doi:
10.24963/IJCAI.2017/273. URL https://doi.org/10.24963/ijcai.2017/273.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

9

http://arxiv.org/abs/1901.03407
http://arxiv.org/abs/1802.06360
http://arxiv.org/abs/1802.06360
https://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.01852
https://arxiv.org/abs/2006.11239
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://github.com/jeonsworld/ViT-pytorch/tree/main?tab=readme-ov-file
https://github.com/jeonsworld/ViT-pytorch/tree/main?tab=readme-ov-file
https://doi.org/10.24963/ijcai.2017/273
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://www.cs.toronto.edu/~kriz/cifar.html

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. Clustergan : Latent
space clustering in generative adversarial networks. CoRR, abs/1809.03627, 2018. URL http:
//arxiv.org/abs/1809.03627.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Jo Plested and Tom Gedeon. Deep transfer learning for image classification: a survey. CoRR,
abs/2205.09904, 2022. doi: 10.48550/ARXIV.2205.09904. URL https://doi.org/10.
48550/arXiv.2205.09904.

Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, Philip S. Yu, and Lifang
He. Deep clustering: A comprehensive survey. CoRR, abs/2210.04142, 2022. doi: 10.48550/
ARXIV.2210.04142. URL https://doi.org/10.48550/arXiv.2210.04142.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. CoRR,
abs/1505.05770, 2015. URL http://arxiv.org/abs/1505.05770.

Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert A. Vandermeulen,
Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 4390–4399. PMLR, 2018. URL
http://proceedings.mlr.press/v80/ruff18a.html.

schh. Vision transformer from scratch in pytorch. https://github.com/s-chh/
PyTorch-Scratch-Vision-Transformer-ViT, 2024.

David W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley
Series in Probability and Statistics. Wiley, 1992. ISBN 978-0-47154770-9. doi: 10.1002/
9780470316849. URL https://doi.org/10.1002/9780470316849.

Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Con-
ference on Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA, March 24-
31, 2017, pp. 464–472. IEEE Computer Society, 2017. doi: 10.1109/WACV.2017.58. URL
https://doi.org/10.1109/WACV.2017.58.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering
analysis. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 478–487. JMLR.org,
2016. URL http://proceedings.mlr.press/v48/xieb16.html.

Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. Towards k-means-friendly spaces:
Simultaneous deep learning and clustering. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 3861–
3870. PMLR, 2017. URL http://proceedings.mlr.press/v70/yang17b.html.

A PRIMARY MODELS TRAINING AND FEATURE EXTRACTION

All models employed a consistent train-validation-test splitting method. Specifically, for the CIFAR-
10 dataset, the official training data was split to 40K and 10K training and validation data respec-
tively, while the 10K testing data remained consistent with the official dataset. Similarly, for the
Fashion MNIST dataset, 50K and 10K images were divided from the official training data for train-
ing and validation, respectively, while the testing data remained consistent with the official dataset.

10

http://arxiv.org/abs/1809.03627
http://arxiv.org/abs/1809.03627
https://doi.org/10.48550/arXiv.2205.09904
https://doi.org/10.48550/arXiv.2205.09904
https://doi.org/10.48550/arXiv.2210.04142
http://arxiv.org/abs/1505.05770
http://proceedings.mlr.press/v80/ruff18a.html
https://github.com/s-chh/PyTorch-Scratch-Vision-Transformer-ViT
https://github.com/s-chh/PyTorch-Scratch-Vision-Transformer-ViT
https://doi.org/10.1002/9780470316849
https://doi.org/10.1109/WACV.2017.58
http://proceedings.mlr.press/v48/xieb16.html
http://proceedings.mlr.press/v70/yang17b.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Feature extraction procedures in all models involved obtaining 300 instances of training and valida-
tion data features. This was done to enhance the DeepKDE training set. Additionally, one instance
of testing data was extracted for DeepKDE evaluation.

A.1 RESNET-18

Train
ResNet-18 was trained with the PyTorch 2.4 implementations of SGD optimizer with lr = 0.01,
and CyclicLR scheduler (Smith, 2017) with step size up = 10000 and step size down = 10000.
Batch size was set to 128 and number of epochs to 30. Augmentations were done using PyTorch’s
compose and transforms modules.

For the CIFAR-10 dataset, the following train, validation and test transformations were applied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ((2 2 4 , 2 2 4)) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ((0 . 4 9 1 4 , 0 . 4 8 2 2 , 0 . 4 4 6 5) , (0 . 2 0 2 3 , 0 . 1 9 9 4 , 0 . 2 0 1 0)) ,

])

v a l t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ((2 2 4 , 2 2 4)) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ((0 . 4 9 1 4 , 0 . 4 8 2 2 , 0 . 4 4 6 5) , (0 . 2 0 2 3 , 0 . 1 9 9 4 , 0 . 2 0 1 0)) ,

])

t e s t t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ((2 2 4 , 2 2 4)) ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ((0 . 4 9 1 4 , 0 . 4 8 2 2 , 0 . 4 4 6 5) , (0 . 2 0 2 3 , 0 . 1 9 9 4 , 0 . 2 0 1 0)) ,

])

For the Fashion MNIST dataset, the following train, validation and test transformations were ap-
plied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ((2 2 4 , 2 2 4)) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ((0 . 5 ,) , (0 . 5 ,)) ,

])

v a l t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ((2 2 4 , 2 2 4)) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ((0 . 5 ,) , (0 . 5 ,)) ,

])

t e s t t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ((2 2 4 , 2 2 4)) ,
t r a n s f o r m s . ToTensor () ,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

t r a n s f o r m s . Normal i ze ((0 . 5 ,) , (0 . 5 ,)) ,
])

Feature extraction
For ResNet-18, feature extraction was performed by removing the last layer before the fully con-
nected layer, yielding a feature vector with a size of 1× 512.

A.2 VISION TRANSFORMERS

Train
For CIFAR-10 dataset, we used the following implementation of the original ViT (Jeon, 2020). For
Fashion MNIST dataset, we used a scaled-down version of the original ViT (schh, 2024). The
training included fine-tuning of the pre-trained VIT-B16 network. Batch size was set to 64, number
of epochs to 3000, warmup setup to 500, and learning rate to 3e-2. Augmentations were done using
PyTorch’s compose and transforms modules.

For the CIFAR-10 dataset, the following train, validation and test transformations were applied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . RandomResizedCrop ((2 2 4 , 2 2 4) , s c a l e = (0 . 0 5 , 1 . 0)) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze (mean = [0 . 5 , 0 . 5 , 0 . 5] , s t d = [0 . 5 , 0 . 5 , 0 . 5]) ,

])
v a l t r a n s f o r m = t r a n s f o r m s . Compose ([

t r a n s f o r m s . RandomResizedCrop ((2 2 4 , 2 2 4) , s c a l e = (0 . 0 5 , 1 . 0)) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze (mean = [0 . 5 , 0 . 5 , 0 . 5] , s t d = [0 . 5 , 0 . 5 , 0 . 5]) ,

])
t e s t t r a n s f o r m = t r a n s f o r m s . Compose ([

t r a n s f o r m s . R e s i z e ((2 2 4 , 2 2 4)) ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze (mean = [0 . 5 , 0 . 5 , 0 . 5] , s t d = [0 . 5 , 0 . 5 , 0 . 5]) ,

])

For the Fashion MNIST dataset, the following train, validation and test transformations were ap-
plied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ([2 2 4 , 2 2 4]) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 2) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ([0 . 5] , [0 . 5])])

v a l t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ([2 2 4 , 2 2 4]) ,
t r a n s f o r m s . RandomCrop (2 2 4 , padd ing = 2) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p () ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ([0 . 5] , [0 . 5])])

t e s t t r a n s f o r m = t r a n s f o r m s . Compose ([
t r a n s f o r m s . R e s i z e ([2 2 4 , 2 2 4]) ,
t r a n s f o r m s . ToTensor () ,
t r a n s f o r m s . Normal i ze ([0 . 5] , [0 . 5])])

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Feature extraction
For CIFAR-10 dataset, feature extraction was performed by extracting the first transformer vector,
yielding a feature vector with a size of 1× 768. Similarly, for the Fashion MNIST dataset, the same
extraction process was applied, resulting in a feature vector of 1× 128

13

	Introduction
	DeepKDE
	Model basics
	Architecture

	Experiments
	Synthetic data
	CIFAR-10 & Fashion MNIST

	Conclusions and Future Work
	Primary models training and feature extraction
	ResNet-18
	Vision transformers

