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ABSTRACT

Traditional classification models are typically optimized solely for their specific
training task without considering the properties of the underlying probability dis-
tribution of their output space. As the use of these models for downstream tasks
becomes more prevalent, it becomes advantageous to have a framework that can
transform the output space of such models to a more convenient space without
sacrificing performance. In this paper, we introduce DeepKDE, a novel method
which enables the transformation of arbitrary output spaces to match more de-
sirable distributions, such as Normal and Gaussian Mixture Models. We explore
the properties of the new method and test its effectiveness on ResNet-18 and vi-
sion transformers trained on CIFAR-10 and Fashion MNIST datasets. We show
that DeepKDE models succeed in transforming the output spaces of the original
models while outperforming them in terms of accuracy.

1 INTRODUCTION

Leveraging pre-trained models to enhance performance in downstream tasks is a widely used tech-
nique. In this framework, a large model is trained on abundance of data, and the resulting output
can then serve as a starting point for a new task such as classification (Plested & Gedeon, 2022),
anomaly detection (Chalapathy & Chawla, 2019), clustering (Ren et al., 2022) and more. However,
the optimization of the primary model focuses on refining its architecture, hyperparameters, and
training process to best suit the primary task. These optimizations are not designed to match any
underlying probability distribution thus resulting with an arbitrary and intractable probability distri-
bution. It would be advantageous to reshape the output space of such models to align with a more
convenient underlying probability function. This can enable downstream algorithms to benefit from
the knowledge of the feature space distribution.
Reshaping a feature space to match a specific distribution is commonly done in various learning
tasks. However, the current approach is usually task-specific and not a generic solution to transform
the output of any arbitrary model.
In image generation tasks, deep generative models such as Variational Auto Encoders (VAE)
(Kingma & Welling, 2014), Normalizing Flows (Rezende & Mohamed, 2015) and Diffusion Models
(Ho et al., 2020), link between the input space and a feature space with a known underlying proba-
bility density function, so new data points could be easily sampled during inference. In the context
of clustering tasks, the process of combining representation learning using deep neural networks
(DNN) together with a clustering method is referred to as deep clustering. Some deep clustering
methods aim to generate a feature space that follows a multimodal distribution such as Gaussian
Mixture Model (GMM). Notable methods in this category include Xie et al. (2016) and Yang et al.
(2017) who proposed methods to construct deep clustering using autoencoder networks. Mukherjee
et al. (2018) proposed a methodology to train clustering Generative Adversarial Networks and Jiang
et al. (2017) used VAE with GMM as a prior. In unsupervised anomaly detection tasks, optimiza-
tion was done for deep representation learning along with one class objective such as a hyperplane
(Chalapathy et al., 2018) or a hypersphere (Ruff et al., 2018).
Looking at the aforementioned methods, we can identify two modes of operations: the first involves
a joint optimization of DNN parameters and reshaping the feature space to meet a target distribution
(Yang et al., 2017; Jiang et al., 2017; Chalapathy et al., 2018; Ruff et al., 2018). The second involves
a two-step procedure starting with optimizing DNN parameters, followed by refining the feature
space to best suit the task (Xie et al., 2016). Given the growing size of the state-of-the-art models
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and the increasing complexity of the tuning methods, it is more practical to adopt the two-step mode
of operation.
In this paper we introduce the DeepKDE a novel deep method. We take state-of-the-art classification
models and use DeepKDE networks to reshape their output space to match underlying probability
density functions such as Normal distributions or GMMs while also improving their classification
performance. The workflow begins with taking a primary tuned model and projecting the input data
to a predefined layer within the model that captures meaningful features. The projected data is then
fed as an input to a DeepKDE network. The DeepKDE network is trained with a loss function op-
timized to match a desired probability density function while incorporating constraints to preserve
the information contained in the input data (Figure 1). Our work focuses on classification models
but can be extended to other tasks.

Figure 1: DeepKDE learns a neural network transformation Θ(·|ϕ) to minimize the statistical dis-
tance between qϕ and the target function p, while enforcing the clustering of specific data points
within the latent space and encouraging adjacent data points in the input space to remain adjacent in
the latent space. The model takes as input the extracted features from a pretrained model.

2 DEEPKDE

2.1 MODEL BASICS

Consider a typical autoencoder architecture with input and output space X , X̂ ⊆ RD and latent
space Z ⊆ Rd. Let Θ(·|ϕ) be the autoencoder function with a set of adjustable parameters ϕ. The
latent variable zq ∈ Z can be interpreted as a random variable with sample space Z and probability
density function qϕ, where ϕ denotes the dependency on model parameters. Additionally, suppose
we have a source that generates samples zp ∼ p where p is a known and tractable probability density
function on the same sample space Z . Our objective is to optimize the model parameters to minimize
the statistical distance between qϕ and the target function p. In this work we measure the statistical
distance using the Jensen-Shannon divergence:

DJS(qϕ||p) =
1

2

(
Eqϕ [log(qϕ)]− Eqϕ [log(mϕ)]

)
+
1

2
(Ep[log(p)]− Ep[log(mϕ)])

where mϕ =
1

2
(qϕ + p)

(1)

By utilizing (1) and considering only the terms dependent on ϕ, we can define a loss term:

Lpdf :=Eqϕ [log(qϕ)]− Eqϕ [log(mϕ)]− Ep[log(mϕ)] (2)

Looking at (2) we see that we need to calculate terms in the form of:
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Eg[log(f)] (3)

where f and g are probability density functions. Let z be a continuous random variable with finite
expected value, finite variance, and probability density function g. For a set of n samples Dn =
z1, ..., zn, for a large n, the expected value Eg can be approximated by taking the sample mean.
Hence we can rewrite (3) as:

Eg[log(f)] ≈ log(f)
(g)

(4)

We use the bar symbol to denote the mean of a sample and we add (g) to emphasize that the mean
is taken from a sample with probability density function g. For each data point in Dn we estimate f
using kernel density estimator (KDE):

f̂ =
1

lh

l∑
i=1

Kh (z − zi) (5)

where l is the number of observations, h is the bandwidth parameter and K is a scaled multivariate

Gaussian kernel Kh(u) = (2π)
−d/2 exp

{
−1

2
u⊤u

}
. Choosing an estimator with a differentiable

kernel is an essential property for constructing a differentiable loss function to be optimized later by
a gradient descent algorithm.

Combining (4) and (5) we get:

Eg[log(f)] ≈ log(f̂)
(g)

(6)

Note that Dn is sampled with probability density function g but for each data point, the value is
estimated using KDE based on observations with underlying probability density function f

Inserting (6) into (2) we get:

Lpdf = log(q̂ϕ)
(qϕ)

− log(m̂ϕ)
(qϕ)

− log(m̂ϕ)
(p) (7)

In practice, during the training process, for each batch Ln = zq1, ..., zqnof samples in the latent
space, we generate a corresponding batch of Tn = zp1, ..., zpn target points with a known probability
density function. To calculate each term in (7), we implement a routine:

kd out = kde fn(obs, loc, bw) (8)

Where obs denotes the observations for density estimation for each data point, loc denotes the loca-
tions of the data points, and bw is a scalar that denotes the kernel bandwidth. The routine returns the

average probability density function over all locations. To calculate the term log(q̂ϕ)
(qϕ)

, both the

locations and the observations are taken from Ln. To calculate the term log(m̂ϕ)
(qϕ)

the locations
are taken from Ln, while n

2 observations are randomly sampled from Ln, and n
2 observations are

randomly sampled from Tn. To calculate the term log(m̂ϕ)
(p)

the locations are taken from Tn while
the observations are sampled from Ln and Tn as in the previous term. In all our experiments we
select bw using Scott’s rule of thumb (Scott, 1992).
Intuitively, while KDE is known to be a poor estimator for multidimensional densities, we mitigate
this issue by selecting a target function that is easier to estimate (e.g. Normal, GMM). Consequently,
the initial estimation during the training process may be suboptimal, but it is still sufficient for the
netwrok to converge. As training continues, the estimation gradually becomes more accurate.
While Lpdf reshapes the statistical characteristics of the latent space, the system still has many de-
grees of freedom. For better control of the transformation of data points to the latent space, we add
two additional terms. The first term, Lcl, enforces the clustering of specific data points within the
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latent space. Equations (9) and (10) are two examples of such a term. The term in (9) penalizes data
points that are located more than a distance T from the center of their target cluster.

Lcl =
1

n

n∑
i=1

Relu

 k∑
j=1

yi,j · ∥zi − cj∥2 − T

 (9)

In this equation, k represents the number of predefined clusters in Z , Cj and cj represents the jth
cluster and it’s corresponding centroid, and T is a hyperparameter of the model that indicates the
distance threshold. Additionally, yi,j is a boolean function that takes a value of 1 when data point i
belongs to cluster j, and 0 otherwise.

The term in (10) is aimed to enforce a separating hyperplane zi,j,0 = 0 where the indexes indicate
the data-point, cluster and dimension respectively in a scenario of binary classification.

Lcl =
1

n

n∑
i=1

Relu

 2∑
j=1

gi,j · zi

 (10)

In this equation, gi,j is a function that takes a value of 1 when data point i belongs to cluster 1, and
-1 when it belongs to cluster 2.

The last term is a reconstruction term, which encourages adjacent data points in the input space to
remain adjacent in the latent space.

Lrec =
1

n

n∑
i=1

∥xi − x̂i∥2 (11)

The total loss Ltot is then expressed as:

Ltot = αLpdf + βLcl + (1− α− β)Lrec (12)

where α ≥ 0 and β ≥ 0 are hyperparameters of the model. Examples for the interplay between the
three terms are discussed in details in the experimental results section.

2.2 ARCHITECTURE

A DeepKDE basic block consists of three consecutive layers: A linear layer followed by batch
normalization (Ioffe & Szegedy, 2015) and Parametric Rectified Linear Unit (PReLU) (He et al.,
2015b). The DeepKDE net architecture is constructed as an autoencoder and can be formally ex-
pressed by:

Block(x) = PReLU(BatchNorm(Linear(x)))
Latent(x) = Linear(Block(...Block(x)))

DeepKDE(x) = Linear(Latent(x))
(13)

3 EXPERIMENTS

In all experimental setups, a paired input dataset and target dataset of equal size are employed,
generated either from a Normal or GMM distribution, depending on the specific experiment. The
network architectures of the DeepKDE models utilized in all experiments are outlined in Table 1.
For all conducted experiments, the training of DeepKDE models was performed using the Adam
optimizer (Kingma & Ba, 2015). The batch size was set to 10000, and the learning rate was initially
set to 0.01 for the first 500 epochs and subsequently reduced to 0.001 for the remaining training
iterations.
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Table 1: DeepKDE architectures implemented in the experimental setups. The DeepKDE architec-
ture utilized in the second setup remained consistent across all primary networks and datasets, with
the only variation being the input size.

Synthetic ResNet-18 | ViT (CIFAR-10) | ViT (FMNIST)

Input 1× 2 1× 512 | 1× 768 | 1× 128

Encoder


Block(2, 8)
Block(8, 32)
Block(32, 8)
Linear(8, 2)




Block(512, 1024)
Block(1024, 512)
Block(512, 256)
Block(256, 128)
Linear(128, 10)


Latent 1× 2 1× 10

Decoder


Block(2, 8)
Block(8, 32)
Block(32, 8)
Linear(8, 2)




Block(10, 128)
Block(128, 256)
Block(256, 512)
Block(512, 1024)
Linear(1024, 512)


Output 1× 2 1× 10

3.1 SYNTHETIC DATA

In this experiment we explore the basic properties of DeepKDE models by employing different target
probability density functions, loss weights and Lcl terms. The input data utilized in this study is a
two-dimensional synthetic dataset, generated using the make moons dataset from the scikit-learn
1.4.2 Python library (Pedregosa et al., 2011), with a noise parameter set to 0.05. A total of 10K data
points are used for training, 10K for validation and 10K for testing. Figure 2(a) illustrates the input
data points, with colors assigned to facilitate tracking in the latent space. Specifically, data points
belonging to class 1 and class 2 are colored using the ”cool” and ”autumn” color maps from the
matplotlib library (Hunter, 2007), respectively.

Figure 2(b) depicts the latent space in a scenario where the target dataset is generated from a normal

distribution, specifically zp ∼ N(z|µ, I) where µ =

(
0

0

)
and I is the identity matrix. The super-

vision term Lcl follows equation (10), and the weights assigned to Lpdf , Lcl, and Lrec are set to
{0.8, 0.2, 0} respectively. Figure 2(c) shows the latent space where the target data points are gener-
ated from a distribution that is a mixture of two Gaussians, specifically zp ∼ 1

2

∑2
i=1 N(z|6 · ui, I)

where ui is a unit vector and I is the identity matrix. The weights in this setup were set to
{0.5, 0.2, 0.3}. Figures 2(d)-2(f) provide some intuition on the significance of each term of the
loss function. The target functions in these experiments remain the same as in Figure 2(c) but with
different loss weights. Figure 2(d) depicts a model trained with weights {0, 0.9, 1} emphasizing the
role of Lpdf in shaping the latent space to match the probability of the target data points. Figure 2(e)
depicts a model trained with weights {0.9, 0, 0.1} emphasizing the role of Lcl in clustering points
from the same class together in the latent space. Additional complementary experiments showed
that omitting this term destabilizes the training process, resulting in mode collapse where all data
points are concentrated within a single Gaussian in the latent space. Figure 2(f) depicts a model that
was trained using weights {0.8, 0.2, 0}, emphasizing the role of Lrec in encouraging adjacent data
points in the input space to remain adjacent in the latent space.

3.2 CIFAR-10 & FASHION MNIST

In this experiment we test the effectiveness of our solution using well-known benchmark datasets -
CIFAR-10 (Krizhevsky et al.) and Fashion MNIST (Xiao et al., 2017). Since the DeepKDE model
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(a) (b) (c)

(d) (e) (f)

Figure 2: Analysis of DeepKDE models applied to two-dimensional input data. In 2(a), the input
data points are displayed, with colors assigned to facilitate tracking in the latent space. 2(b) and 2(c)
showcase scatter plots of DeepKDE latent spaces. 2(b) depicts a model trained to match a Normal
distribution, while 2(c) presents a model trained to match a mixture of two Gaussians. Furthermore,
2(d)-2(f) depict the latent space of DeepKDE models that were trained using the same target function
as in 2(c), but with varying loss weights. In 2(d), the assigned weights for Lpdf , Lcl, and Lrec are
{0, 0.9, 1}. In 2(e), the weights are {0.9, 0, 0.1}, and in 2(f), the weights are {0.8, 0.2, 0}.

should be independent of the source of its input, we evaluate its performance on inputs generated
from two distinct primary classification models: ResNet-18 (He et al., 2015a), and a vision trans-
former (ViT) (Dosovitskiy et al., 2020). The output space’s size of all models is 1 × 10 since both
datastes have 10 different classes. The flow of this experiment starts with training the primary model
and extracting features from a meaningful layer. These features are then provided as an input to a
DeepKDE model with latent space of size 1 × 10. The target data points for the DeepKDE models
in the experiment, are generated by mixture of 10 Gaussians located on the unit vectors:

zp ∼ 1

10

10∑
i=1

N(z|6 · ui, I) (14)

where ui is a unit vector and I is the identity matrix. The loss weights in this experiment are set to
{0.7, 0.1, 0.2}, and the classification is performed by assigning each data point to the cluster with
the center positioned at the minimum Euclidean distance. The exact configurations of all primary
models, training and feature extraction procedures can be found in Appendix A.

Figure 3 presents the accuracy scores of the DeepKDE models compared to the primary models
for both data sets. The results show that DeepKDE outperforms the original models in terms of
accuracy.

Figure 4 depicts scatter plots displaying two-dimensional projections of the ten-dimensional GMM
shaped latent space. Figure 4(a) showcases the projections of the DeepKDE with ResNet-18 as the
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Figure 3: Accuracy scores of DeepKDE models compared to the original models for both data sets.
The bars and error bars represent the mean scores and standard deviation over 10 repetitions. The
Wilcoxon signed-rank test results for all experiments indicate statistically significant (α = 0.05)
differences in performance.

(a) (b)

Figure 4: Scatter plots of two dimensional projections of the DeepKDE latent space for different
models and datasets. Figure 4(a) showcases the projections on the axes corresponding to the plane
and car classes of the CIFAR-10 dataset for the ResNet-18. Figure 4(b) showcases the projections
on the axes corresponding to the Trouser and Sandal classes from the Fashion MNIST dataset
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primary model, on the axes corresponding to the plane and car classes from the CIFAR-10 dataset.
Figure 4(b) showcases the projections of the DeepKDE with ViT as a primary model, on the axes
corresponding to the trousers and sandals classes from the Fashion MNIST dataset. In all figures,
data points that have labels corresponding to one of the axes are colored in pink or red, while all
other data points are colored in green. Specifically, there are 1K data points colored pink, 1K data
points colored red, and 8K data points colored green in each figure.
Figure 5 illustrate further analysis of the results using our understanding of the latent space. The
figure depicts the two-dimensional projection on the axes corresponding to cars and trucks classes
from the CIFAR-10 dataset. We selected 6 data points from the center of each cluster (groups 1 and
5 in the figure), as well as 3 pairs of adjacent car-truck data points located in different areas (groups
2, 3, and 4). The images of the trucks are framed in cyan, while the images of the cars are framed
in orange. By examining groups 1 and 5, we can observe that data points taken from the center of
the cars or trucks distributions share similar characteristics and can be easily classified correctly.
Group 2 demonstrates a case where a car is positioned within the trucks cluster. Upon observing
the image of this car, we can see that it has a small trailer and its overall shape can be mistaken for
a truck. Group 4 demonstrates the opposite scenario, where a truck is positioned within the cars
cluster. Looking at the shape of the truck, it shares a closer resemblance with the neighboring car in
comparison to the trucks. Group 3 comprises data points located far from the center of the clusters
and provides examples of outliers.

Figure 5: Cars and trucks classes from the CIFAR-10 dataset projected onto the corresponding axes
in the DeepKDE latent space. Groups 1 and 6 consist of 6 data points sampled from the center of
the trucks and cars clusters, respectively. Groups 2,3 and 4 consist of pairs of adjacent car-truck data
points situated in different regions of the latent space. The images of trucks are highlighted with a
cyan frame, while the images of cars are framed in orange.

4 CONCLUSIONS AND FUTURE WORK

In this paper we introduced the DeepKDE, a method for transforming the output space of classifica-
tion models to match more desirable distributions, such as Normal and Gaussian Mixture Models.
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We formulated the theoretical foundations of our method, explored its properties, and tested its ef-
fectiveness on ResNet-18 and ViT classification models trained on CIFAR-10 and Fashion MNIST
datasets. Our results demonstrate that DeepKDE models succeed in transforming the data while
enhancing the classification performance compared to the original models. Furthermore, the results
can be further explained by using the knowledge about the underlying probability of the new space.
Our aim in introducing this method is to establish a new application flow in downstream tasks such
as anomaly detection and clustering.
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A PRIMARY MODELS TRAINING AND FEATURE EXTRACTION

All models employed a consistent train-validation-test splitting method. Specifically, for the CIFAR-
10 dataset, the official training data was split to 40K and 10K training and validation data respec-
tively, while the 10K testing data remained consistent with the official dataset. Similarly, for the
Fashion MNIST dataset, 50K and 10K images were divided from the official training data for train-
ing and validation, respectively, while the testing data remained consistent with the official dataset.
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Feature extraction procedures in all models involved obtaining 300 instances of training and valida-
tion data features. This was done to enhance the DeepKDE training set. Additionally, one instance
of testing data was extracted for DeepKDE evaluation.

A.1 RESNET-18

Train
ResNet-18 was trained with the PyTorch 2.4 implementations of SGD optimizer with lr = 0.01,
and CyclicLR scheduler (Smith, 2017) with step size up = 10000 and step size down = 10000.
Batch size was set to 128 and number of epochs to 30. Augmentations were done using PyTorch’s
compose and transforms modules.

For the CIFAR-10 dataset, the following train, validation and test transformations were applied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( ( 2 2 4 , 2 2 4 ) ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( ( 0 . 4 9 1 4 , 0 . 4 8 2 2 , 0 . 4 4 6 5 ) , ( 0 . 2 0 2 3 , 0 . 1 9 9 4 , 0 . 2 0 1 0 ) ) ,

] )

v a l t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( ( 2 2 4 , 2 2 4 ) ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( ( 0 . 4 9 1 4 , 0 . 4 8 2 2 , 0 . 4 4 6 5 ) , ( 0 . 2 0 2 3 , 0 . 1 9 9 4 , 0 . 2 0 1 0 ) ) ,

] )

t e s t t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( ( 2 2 4 , 2 2 4 ) ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( ( 0 . 4 9 1 4 , 0 . 4 8 2 2 , 0 . 4 4 6 5 ) , ( 0 . 2 0 2 3 , 0 . 1 9 9 4 , 0 . 2 0 1 0 ) ) ,

] )

For the Fashion MNIST dataset, the following train, validation and test transformations were ap-
plied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( ( 2 2 4 , 2 2 4 ) ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( ( 0 . 5 , ) , ( 0 . 5 , ) ) ,

] )

v a l t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( ( 2 2 4 , 2 2 4 ) ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( ( 0 . 5 , ) , ( 0 . 5 , ) ) ,

] )

t e s t t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( ( 2 2 4 , 2 2 4 ) ) ,
t r a n s f o r m s . ToTensor ( ) ,
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t r a n s f o r m s . Normal i ze ( ( 0 . 5 , ) , ( 0 . 5 , ) ) ,
] )

Feature extraction
For ResNet-18, feature extraction was performed by removing the last layer before the fully con-
nected layer, yielding a feature vector with a size of 1× 512.

A.2 VISION TRANSFORMERS

Train
For CIFAR-10 dataset, we used the following implementation of the original ViT (Jeon, 2020). For
Fashion MNIST dataset, we used a scaled-down version of the original ViT (schh, 2024). The
training included fine-tuning of the pre-trained VIT-B16 network. Batch size was set to 64, number
of epochs to 3000, warmup setup to 500, and learning rate to 3e-2. Augmentations were done using
PyTorch’s compose and transforms modules.

For the CIFAR-10 dataset, the following train, validation and test transformations were applied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . RandomResizedCrop ( ( 2 2 4 , 2 2 4 ) , s c a l e = ( 0 . 0 5 , 1 . 0 ) ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( mean = [ 0 . 5 , 0 . 5 , 0 . 5 ] , s t d = [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ,

] )
v a l t r a n s f o r m = t r a n s f o r m s . Compose ( [

t r a n s f o r m s . RandomResizedCrop ( ( 2 2 4 , 2 2 4 ) , s c a l e = ( 0 . 0 5 , 1 . 0 ) ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( mean = [ 0 . 5 , 0 . 5 , 0 . 5 ] , s t d = [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ,

] )
t e s t t r a n s f o r m = t r a n s f o r m s . Compose ( [

t r a n s f o r m s . R e s i z e ( ( 2 2 4 , 2 2 4 ) ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( mean = [ 0 . 5 , 0 . 5 , 0 . 5 ] , s t d = [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ,

] )

For the Fashion MNIST dataset, the following train, validation and test transformations were ap-
plied:

t r a i n t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( [ 2 2 4 , 2 2 4 ] ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 2) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( [ 0 . 5 ] , [ 0 . 5 ] ) ] )

v a l t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( [ 2 2 4 , 2 2 4 ] ) ,
t r a n s f o r m s . RandomCrop ( 2 2 4 , padd ing = 2) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( [ 0 . 5 ] , [ 0 . 5 ] ) ] )

t e s t t r a n s f o r m = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( [ 2 2 4 , 2 2 4 ] ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze ( [ 0 . 5 ] , [ 0 . 5 ] ) ] )
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Feature extraction
For CIFAR-10 dataset, feature extraction was performed by extracting the first transformer vector,
yielding a feature vector with a size of 1× 768. Similarly, for the Fashion MNIST dataset, the same
extraction process was applied, resulting in a feature vector of 1× 128
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