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Abstract

Many methods for Model-based Reinforcement learning (MBRL) in Markov decision pro-
cesses (MDPs) provide guarantees for both the accuracy of the model they can deliver and
the learning efficiency. At the same time, state abstraction techniques allow for a reduction
of the size of an MDP while maintaining a bounded loss with respect to the original problem.
Therefore, it may come as a surprise that no such guarantees are available when combining
both techniques, i.e., where MBRL merely observes abstract states. Our theoretical analysis
shows that abstraction can introduce a dependence between samples collected online (e.g.,
in the real world). That means that, without taking this dependence into account, results
for MBRL do not directly extend to this setting. Our result shows that we can use concen-
tration inequalities for martingales to overcome this problem. This result makes it possible
to extend the guarantees of existing MBRL algorithms to the setting with abstraction. We
illustrate this by combining R-MAX, a prototypical MBRL algorithm, with abstraction, thus
producing the first performance guarantees for ‘Abstracted RL’: model-based reinforcement
learning with an abstract model.

1 Introduction

Tabular Model-based Reinforcement Learning (MBRL) methods provide guarantees that show they can
learn efficiently in Markov decision processs (MDPs) (Brafman & Tennenholtz, 2002; Strehl & Littman,
2008; Jaksch et al., 2010; Fruit et al., 2018; Talebi & Maillard, 2018; Zhang & Ji, 2019; Bourel et al.,
2020). They do this by finding solutions to a fundamental problem for Reinforcement Learning (RL), the
exploration-exploitation dilemma: when to take actions to obtain more information (explore) and when to
take actions that maximize reward based on the current knowledge (exploit). However, MDPs can be huge,
which can be problematic for tabular methods. One way to deal with large problems is by using abstractions,
such as state abstractions (Li, 2009; Abel et al., 2016). State abstractions reduce the size of the problem by
aggregating together states according to different criteria, depending on the specific type of abstraction. We
can view state abstraction as a special case of function approximation, where every state maps to its abstract
state (Mahadevan, 2010), and we can roughly divide them into exact and approximate abstractions (Li, 2009;
Abel et al., 2016). Approximate abstractions relax the criteria of exact abstractions, and therefore allow for
a larger reduction in the state space. In our setting, we assume that the environment returns states s, but
the agent only observes abstract states ϕ(s) (see Figure 1). This setting, which has been considered before
(Ortner et al., 2014a; Abel et al., 2018),1 is what we call Abstracted RL.

Figure 1: Abstracted RL, the agent receives the
abstract state s̄ = ϕ(s) as an observation instead
of the state s. Image based on Abel et al. (2018).

Abstracted RL corresponds to RL in a Partially Observ-
able MDP (POMDP) (Kaelbling et al., 1998), as pre-
viously described (Bai et al., 2016). Specifically, the
abstraction function serves as an observation function.
Rather than observing its true state s, the agent observes
the abstract state ϕ(s) and its policy chooses an action
based on this abstract state. It is well known that poli-
cies for POMDPs that only base their action on the last

1We refer to Section 4 for a comparison with the related work.

1



Under review as submission to TMLR

observation can be arbitrarily bad (Singh et al., 1994). However, this worst-case does not apply when ϕ is
an exact model similarity abstraction 2 (Li, 2009), because the resulting problem can be considered an MDP;
this abstraction maps states to the same abstract state only when their reward and transition functions in
the abstract space are the same (Li et al., 2006). We focus on the related approximate model similarity
abstraction (Abel et al., 2016), which maps states to the same abstract state only when their reward and
transition functions in the abstract space are close. Intuitively, because of its connection to the exact model
similarity, one could expect that for this abstraction the worst-case also does not apply. However, MBRL
methods typically (e.g., (Strehl & Littman, 2008; Jaksch et al., 2010; Fruit et al., 2018; Bourel et al., 2020))
use results that rely on the assumption of independent and identically distributed (i.i.d.) samples to prove
efficient learning. With abstraction, the transitions between abstract states need not be Markov, and the
samples may depend on the history.

We analyze collecting samples in Abstracted RL and prove that, with abstraction, samples are not guaranteed
to be independent. This means that most guarantees of existing MBRL methods do not hold in the online
Abstracted RL setting. 3 The primary technical result in this work shows that we can still learn an accurate
model in Abstracted RL by replacing concentration inequalities that rely on independent samples with a
concentration inequality for martingales. For approximate model similarity abstraction, this allows us to
extend the guarantees of MBRL methods to Abstracted RL, which we illustrate for the prototypical R-MAX
algorithm (Brafman & Tennenholtz, 2002).

The outline is as follows: Sections 2.1 and 2.2 introduce MBRL and state abstraction, respectively. Section 3.1
analyzes sample collection in Abstracted RL and shows that samples are not necessarily independent in this
setting. Then Section 3.2 gives the main result that inequalities for martingales can be used to guarantee
accurate model learning in Abstracted RL. Finally, Section 4 covers related work, Section 5 provides a
discussion, and Section 6 closes with conclusions.

2 Background

Section 3 will cover the combination of MBRL and abstraction in MDPs, in this section we introduce the
required background. In Section 2.1, we first briefly introduce the MDP and MBRL. Then, in Section 2.2, we
cover state abstraction for MDPs when the model is known and give the definition of the approximate model
similarity abstraction. We need state abstraction in general to show in Section 3.1 that the combination of
MBRL and abstraction leads to a dependence of samples. Later, in Section 3.2, we use results for approximate
state abstraction with known models to establish bounds for Abstracted RL.

2.1 Model-Based RL

As is typical for RL problems, we assume the environment the agent is acting in can be represented by
an infinite horizon MDP M ≜ ⟨S, A, T, R, γ⟩ (Puterman, 2014). Here S is a finite set of states s ∈ S, A
a finite set of actions a ∈ A, T a transition function T (s′|s, a) = Pr(s′|s, a), R a reward function R(s, a)
which gives the reward received when the agent executes action a in state s, and γ is a discount factor
with 0 ≤ γ ≤ 1 that determines the importance of future rewards. The agent’s goal is to find an optimal
policy π∗ : S → A, i.e., a policy that maximizes the expectation of the cumulative reward in the MDP.
V π(s) denotes the expected value of the cumulative reward under policy π starting from state s. Similarly,
Qπ(s, a) denotes the expected value of the cumulative reward when first taking action a from state s and
then following policy π afterward.

MBRL methods learn a model from the experience that the agent gains by taking actions and observing the
rewards it gets and the states it reaches. For a fixed state-action pair (s, a), we let τ1, τ2, · · · , τN(s,a) be the
first N(s, a) time steps at which the agent took action a in state s. The first N(s, a) states s′ that the agent
reached after taking action a in state s are stored as the sequence Ys,a ≜ (s′(τ1+1), s′(τ2+1), · · · , s′(τN(s,a)+1)).

2Also known as stochastic bisimulation (Givan et al., 2003).
3Of course, certain guarantees on the combination of abstraction and RL are known. However, in most related work in

abstraction settings (e.g., abstraction selection), the complication of samples not being independent does not occur due to
particular assumptions (Paduraru et al., 2008; Hallak et al., 2013; Maillard et al., 2013; Majeed & Hutter, 2018; Ortner et al.,
2019; Du et al., 2019). Section 4 gives details for individual papers.
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We use Y to refer to the collection of all Ys,a. Typically, in MBRL, the obtained experience is used to
construct the empirical model TY (Brafman & Tennenholtz, 2002; Strehl & Littman, 2008; Jaksch et al.,
2010; Fruit et al., 2018; Talebi & Maillard, 2018; Zhang & Ji, 2019; Bourel et al., 2020). This model is
constructed simply by counting how often the agent reached a particular next state s′ and normalizing the
obtained quantity by the total count:

∀s′ ∈ S : TY (s′|s, a) ≜ 1
N(s, a)

N(s,a)∑
i=1

1{Y (τi+1)
s,a = s′}. (1)

Here 1{·} denotes the indicator function of the specified event, i.e., 1{Y
(τi+1)

s,a = s′} is 1 if Y
(τi+1)

s,a = s′ and
0 otherwise.

The quality of the empirical model TY is crucial for performance guarantees, irrespective of the form of
the guarantee, e.g., PAC-MDP (Strehl & Littman, 2008) or regret (Jaksch et al., 2010). The quality of the
empirical model is high when the distance between TY (·|s, a) and T (·|s, a) is small. We can, for instance,
measure this distance with the L1 norm, defined as follows:

||TY (·|s, a) − T (·|s, a)||1 ≜
∑
s′∈S

|TY (s′|s, a) − T (s′|s, a)|. (2)

Concentration inequalities are often used to guarantee that, with enough samples, this distance will be small,
e.g.:
Lemma 1 (L1 inequality (Weissman et al., 2003)). Let Ys,a = Y

(1)
s,a , Y

(2)
s,a , · · · , Y

(N(s,a))
s,a be i.i.d. random

variables distributed according to T (·|s, a). Then, for all ϵ > 0,

Pr(||TY (·|s, a) − T (·|s, a)||1 ≥ ϵ) ≤ (2|S| − 2)e− 1
2 N(s,a)ϵ2

. (3)

These inequalities typically make use of the fact that samples are i.i.d. In most MBRL settings (without
abstraction), this is not a problem under some assumptions, e.g., when the MDP is communicating. 4 Due
to the Markov property, the obtained samples are i.i.d. in this case. In this way, MBRL can upper bound
the probability that the empirical model TY (·|s, a) will be far away (≥ ϵ) from the actual model T (·|s, a).
When the empirical model is accurate, a policy based on this model leads to near-optimal performance in the
MDP M (Brafman & Tennenholtz, 2002; Strehl & Littman, 2008; Jaksch et al., 2010; Bourel et al., 2020).

2.2 State Abstraction for Known Models

We can formulate state abstraction as a mapping from states to abstract states (Li et al., 2006). This
mapping is done with an abstraction function ϕ, a surjective function that maps from states s ∈ S to
abstract states s̄ ∈ S̄: ϕ(s) : S → S̄. We use the ¯ notation to refer to the abstract space and define S̄ as
S̄ = {ϕ(s)|s ∈ S}. We slightly overload the definition of s̄ to be able to write s ∈ s̄. In this case, s̄ is the set
of states that map to s̄, i.e., s̄ = {s ∈ S | ϕ(s) = s̄}. This form of state abstraction is general, and clusters
states with different dynamics into abstract states. We assume that the state abstraction deterministically
maps states to an abstract state. Since each state maps to precisely one abstract state and multiple states
can map to the same abstract state, the abstract state space is typically (much) smaller than the original
state space, |S̄| ≤ |S|.

We focus on a type of abstraction approximate model similarity abstraction (Abel et al., 2016), also known
as approximate stochastic bisimulation (Dean et al., 1997; Givan et al., 2003). In this abstraction, two states
can map to the same abstract state only if their behavior is similar in the abstract space, i.e., when the
reward function and the transitions to abstract states are close. We can determine the transition probability
to an abstract state P (s̄′|s, a) as:

Pr(s̄′|s, a) =
∑
s′∈s̄′

T (s′|s, a). (4)

4An MDP is communicating if, for all s1, s2 ∈ S, a deterministic policy exists that eventually leads from s1 to s2 (Puterman,
2014).

3



Under review as submission to TMLR

Then, we can use equation 4 to define approximate model similarity abstraction:
Definition 1. An approximate model similarity abstraction, ϕmodel,ηR,ηT

, for fixed ηR, ηT , satisfies

ϕmodel,η(s1) = ϕmodel,η(s2) =⇒ ∀a ∈ A : |R(s1, a) − R(s2, a)| ≤ ηR,

∀s̄′ ∈ S̄, a ∈ A : | Pr(s̄′|s1, a) − Pr(s̄′|s2, a)| ≤ ηT . (5)

From now on, we will refer to ϕmodel,ηR,ηT
as ϕ. We note that this abstraction is still quite generic. It can

cluster together states that have different transition and reward functions.

In the planning setting, where the model is known a priori, we can use the abstraction function ϕ to construct
an abstract MDP. An abstract MDP can be helpful because it is smaller, making it easier to find a solution,
and a solution for the abstract MDP can work well in the original MDP (Li et al., 2006; Abel et al., 2016).
We construct an abstract MDP M̄ω from the model of an MDP M , an abstraction function ϕ, and an
action-specific weighting function ω. 5 The weighting function ω gives a weight to every state-action pair:
∀s ∈ S, a ∈ A : 0 ≤ ω(s, a) ≤ 1. The weights of the state-action pairs associated with an abstract state s̄
sum up to 1:

∑
s′∈ϕ(s) ω(s′, a) = 1. We can use the weighting function to create an abstract transition and

reward function, which are weighted averages of the original transition and reward functions. In this way,
from M , ϕ, and any ω, we can construct an abstract MDP M̄ω:
Definition 2. Given an MDP M , ϕ, and ω, M̄ω = ⟨S̄, A, T̄ω, R̄ω⟩ is constructed as: S̄ = {ϕ(s) | s ∈
S}, A = A,

∀s̄ ∈ S̄, a ∈ A : R̄ω(s̄, a) =
∑
s∈s̄

ω(s, a)R(s, a), (6)

∀s̄, s̄′ ∈ S̄, a ∈ A : T̄ω(s̄′|s̄, a) =
∑
s∈s̄

∑
s′∈s̄′

ω(s, a)T (s′|s, a). (7)

Note that the abstract MDP M̄ω itself is an MDP. So we can use planning methods for MDPs to find an
optimal policy π̄∗ for M̄ω. A desirable property of the approximate model similarity abstraction is that
we can upper bound the difference between the optimal value V ∗ in M and the value V π̄∗ obtained when
following the policy π̄∗ in M . These bounds exists in different forms (Dearden & Boutilier, 1997; Abel et al.,
2016; Taïga et al., 2018). For completeness, we give these bounds for both the undiscounted finite horizon
and the discounted infinite horizon:
Theorem 1. Let M = ⟨S, A, T, R⟩ be an MDP and M̄ = ⟨S̄, A, T̄ , R̄⟩ an abstract MDP, for some defined
abstract transitions and rewards. We assume that

∀s̄, s̄′ ∈ S̄, s ∈ s̄, a ∈ A : |T̄ (s̄′|s̄, a) − Pr(s̄′|s, a)| ≤ ηT (8)
and |R̄(s̄, a) − R(s, a)| ≤ ηR. (9)

Then, for a finite horizon problem with horizon h we have:

V ∗(s) − V π̄∗
(s) ≤ 2hηR + (h + 1)hηT |S̄|Rmax. (10)

And for a discounted infinite horizon problem with discount γ we have:

V ∗(s) − V π̄∗
(s) ≤ 2ηR

1 − γ
+ 2γηT |S̄|Rmax

(1 − γ)2 . (11)

The proof of Theorem 1 is in Appendix A.3.

5The action-specific weighting function is more general than the typically used weighting function, which is not action-specific
and only depends on the state s (Li et al., 2006). More formally, it is the case where ∀a, a′ ∈ A, s ∈ S : ω(s, a) = ω(s, a′).
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3 Abstracted MBRL

In Abstracted RL, we have an abstraction function ϕ and, in contrast to the planning setting in Section 2.2,
act in an MDP M of which we do not know the transition and reward functions. We want to extend the
results of MBRL to Abstracted RL. Section 3.1 first analyzes how abstraction leads to dependence between
samples. Then, in Section 3.2, we show how concentration inequalities for martingales can be used to still
learn an accurate model in Abstracted RL. To illustrate how this result can be used to extend the results of
MBRL methods to Abstracted RL, we extend the results of the R-MAX algorithm (Brafman & Tennenholtz,
2002). R-MAX is a well-known and straightforward method that guarantees sample efficient learning.

In Abstracted RL, the agent collects data for every abstract state-action pair (s̄, a), stored as sequences Ȳs̄,a:

Ȳs̄,a : {s̄′(τ1+1), s̄′(τ2+1), · · · , s̄′(τN(s̄,a)+1)}. (12)

Like in equation 1, we construct an empirical model T̄Y , now looking at the abstract next-states that the
agent reached:

T̄Y (s̄′|s̄, a) ≜ 1
N(s̄, a)

N(s̄,a)∑
i=1

1{Ȳ
(i)

s̄,a = s̄′}. (13)

Suppose we could guarantee that the empirical model T̄Y was equal, or close, to the transition function T̄ω

of an abstract MDP M̄ω constructed from the true MDP with ϕ and a valid ω. In that case, we could bound
the loss in performance due to applying the learned policy π̄∗ to M instead of the optimal policy π∗ (Abel
et al., 2016; Taïga et al., 2018). Our main question is: do the finite-sample model learning guarantees of
MBRL algorithms still hold in the Abstracted RL setting?

3.1 Abstracted RL Can Lead to Dependent Samples

We want to guarantee that the empirical model T̄Y is close to the transition model of an abstract MDP M̄ω.
Before defining this transition model of M̄ω, we examine the data collection. In the online data collection,
the agent obtains a sample for Ȳs̄,a when it is in a state s ∈ s̄ and takes action a. Specifically, the agent
obtains the i-th sample Ȳ

(i)
s̄,a = s̄′τ1+1 from state X

(i)
s̄,a = sτi ∈ s̄:

Ȳ
(i)

s̄,a ∼ Pr(·|X(i)
s̄,a = sτi , a). (14)

Let Xs̄,a = (X(i)
s̄,a)N(s̄,a)

i=1 denote the sequence of states s ∈ s̄ from which the agent took action a. Each state s
gets a weight according to how often it appears in Xs̄,a, which we formalize with the weighting function ωX :
∀s ∈ s̄, a ∈ A : ωX(s, a) ≜ 1

N(s̄,a)
∑N(s̄,a)

i=1 1{X
(i)
s̄,a = s}. We use ωX to define T̄ωX

analogous to equation 7:

∀s̄, s̄′ ∈ S̄, a ∈ A : T̄ωX
(s̄′|s̄, a) ≜

∑
s∈s̄

ωX(s, a)
∑
s′∈s̄′

T (s′|s, a). (15)

We want a concentration inequality to provide bounds on the deviation of the empirical model T̄Y from T̄ωX
;

we refer to this inequality as the abstract L1 inequality, similar in form to equation 3:

P (|T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)|1 ≥ ϵ) ≤ δ, (16)

where T̄Y (·|s̄, a) is defined according to equation 13 and T̄ωX
according to equation 15.

Suppose we could directly obtain i.i.d. samples from T̄ωX
and base our empirical model T̄Y on the obtained

samples. In that case, we could show that the abstract L1 inequality holds by applying Lemma 1. This
lemma would be applicable because we could obtain a number N(s̄, a) of i.i.d. samples per abstract state-
action pair, distributed according to T̄ωX

(·|s̄, a). However, the samples are not guaranteed to be i.i.d. in
Abstracted RL. The samples may neither be identically distributed nor independent. We will first cover the
distribution of the samples and show that samples not being identically distributed is not a problem. Then
we prove that samples are not guaranteed to be independent. Afterward, Section 3.2 shows that we can still
learn when the samples are dependent.
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Non-Identically Distributed The samples are not necessarily identically distributed in Abstracted RL
since the agent obtains a sample Ȳ (i) when taking action a from state X

(i)
s̄,a = s ∈ s̄, as in equation 14.

If X
(i)
s̄,a ̸= X

(j)
s̄,a, these states can have different transition distributions. This implies that in general we

might not be able to apply Lemma 1, because it assumes identically distributed random variables. However,
different distributions by themselves need not be a problem; we show that the result also holds when the
random variables are not identically distributed:
Lemma 2. Let Xs̄,a = s1, · · · , sm be a sequence of states s ∈ s̄ and let Ȳs̄,a = Ȳ (1), Ȳ (2), · · · , Ȳ (m) be
independent random variables distributed according to Pr(·|s1, a), · · · , Pr(·|sm, a) (equation 4). Then, for all
ϵ > 0,

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ) ≤ (2|S̄| − 2)e− 1

2 mϵ2
. (17)

The proof can be found in Appendix B. Therefore, if the samples in Abstracted RL were independent, then
we could apply Lemma 2 to guarantee an accurate model.

Independence One could be tempted to assume the samples are independent, i.e.,

∀s̄′
1, · · · , s̄′

m ∈ (S̄)m : Pr(Ȳ (1)
s̄,a = s̄′

1, · · · , Ȳ
(m)

s̄,a = s̄′
m) = Pr(Ȳ (1)

s̄,a = s̄′
1) · · · P (Ȳ (m)

s̄,a = s̄′
m). (18)

However, this is not true in general in Abstracted RL:
Observation 1. When collecting samples online using an abstraction function, such samples are not nec-
essarily independent.

Samples can be dependent when 1) samples are collected online in the real environment, of which we do not
know the transitions, and 2) the samples are collected for abstract states s̄. Observation 1 can be understood
from the perspective that the abstracted RL problem corresponds to RL in a POMDP (Bai et al., 2016).
The corresponding POMDP uses the abstraction function as the observation function and the abstract states
as observations. Since the transitions between observations need not be Markov in POMDPs, the samples
from abstract states can depend on the history. While this observation may be clear from the POMDP
perspective, work in Abstracted RL regularly assumes (explicity or implicitly) that independent samples can
somehow be obtained (Paduraru et al., 2008; Ortner et al., 2014a; Jiang et al., 2015; Ortner et al., 2019).

Figure 2: Simple MDP, with
only 1 action, and abstrac-
tion. The small circles are states
(1,2,3,4). A, B and C are the ab-
stract states. The arrows show
the transition probabilities, e.g.
P (3|1) = 0.6.

In the following counterexample, we rigorously show that samples are not
necessarily independent.

Counterexample We use the example MDP and abstraction in Fig-
ure 2, where we have four states, three abstract states, and only one
action. Since the example MDP has only one action, we omit the action
from the notation. We examine the transition function of abstract state
A, T̄Y (·|A) and consider the first two times we transition from A. These
two transition samples, s̄′

1 and s̄′
2, are the first two entries in ȲA. We show

that the samples are not independent for at least one combination of s̄′
1

and s̄′
2.

Let s̄′
1 = s̄′

2 = B, i.e., the first two times we experience a transition from
the abstract state A, we end up in B. We denote the i-th experienced
transition from abstract state A as Ȳ

(i)
A . Let state 1 be the starting state.

We start with the product of the probabilities:

Pr(Ȳ (1)
A = B) Pr(Ȳ (2)

A = B). (19)

We have Pr(Ȳ (1)
A = B) = Pr(B|1) = 0.6 for the first term since state 1

is the starting state. The second term is more complex than the first since it includes the probability of
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starting the transition from state 1 and state 2. We have:

Pr(Ȳ (2)
A = B) =

∑
s̄∈S̄

Pr(Ȳ (2)
A = B|Ȳ (1)

A = s̄) Pr(Ȳ (1)
A = s̄) (20)

= Pr(Ȳ (2)
A = B|Ȳ (1)

A = A) Pr(Ȳ (1)
A = A) + Pr(Ȳ (2)

A = B|Ȳ (1)
A = B) Pr(Ȳ (1)

A = B)

+ Pr(Ȳ (2)
A = B|Ȳ (1)

A = C) Pr(Ȳ (1)
A = C). (21)

= Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) Pr(Ȳ (1)
A = B) + Pr(Ȳ (2)

A = B|Ȳ (1)
A = C) Pr(Ȳ (1)

A = C). (22)

= Pr(Y (2)
A = 3|Ȳ (1)

A = 3) Pr(Y (1)
A = 3) + Pr(Y (2)

A = 3|Y (1)
A = 4) Pr(Y (1)

A = 4) (23)
= 0.6 · 0.6 + 0.4 · 0.4 = 0.52. (24)

For the step from equation 21 to equation 22, Pr(Ȳ (1)
A = A) is 0 because there is no transition from a state

in A to a state in A. Then, from equation 22 to equation 23, we use that both abstract states B and C

consist of exactly 1 state. So, e.g., Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) = Pr(Y (2)
A = 3|Ȳ (1)

A = 3). So, for the product of
the probabilities, we end up with: Pr(Ȳ (1)

A = B) Pr(Ȳ (2)
A = B) = 0.6 · 0.52 = 0.321.

For the joint probability, we have:

Pr(Ȳ (1)
A = B, Ȳ

(2)
A = B) = Pr(Ȳ (1)

A = B) Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) (25)
= Pr(B|1)(Pr(B|1) Pr(1|B)) (26)
= 0.6 · (0.6 · 1) (27)
= 0.6 · 0.6 (28)
= 0.36. (29)

Here, Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) = Pr(B|1) Pr(1|B) because the first transition ends in state B and we always
transition to state 1 from state B. Hence, Pr(Ȳ (2)

A = B|Ȳ (1)
A = B) = Pr(B|1) Pr(1|B) = 0.6 · 1.

Combining the joint probability and the product of probabilities, we end up with:

0.36 = Pr(Ȳ (1)
A = B, Ȳ

(2)
A = B) ̸= Pr(Ȳ (1)

A = B) Pr(Ȳ (2)
A = B) = 0.6 · 0.52. (30)

Thus, the samples are not independent. Leading us to the second observation.
Observation 2. As independence cannot be guaranteed, Lemmas 1 and 2 cannot be readily applied to show
that the abstract L1 inequality holds.

This claim follows from the fact that Lemmas 1 and 2 both use the assumption of independence in their
proofs. It would still be possible to obtain independent samples if we could, for example, have access to a
simulator of the problem. In that case, it is still possible to give guarantees on the accuracy of the model,
which we show in Appendix E. However, we consider the setting where a simulator is not available.

3.2 Guarantees for Abstract Model Learning Using Martingales

Now we want to give a guarantee in the form of the abstract L1 inequality from equation 16. In Section 3.1, we
found this was not possible with concentration inequalities such as Hoeffding’s inequality because the samples
are not guaranteed to be independent. Here we consider a related bound for weakly dependent samples, the
Azuma-Hoeffding inequality. This inequality makes use of the properties of a martingale difference sequence,
which are slightly weaker than independence:
Definition 3 (Martingale difference sequence (Azuma, 1967)). The sequence Z1, Z2, · · · is a martingale
difference sequence if, ∀i, it satisfies the following conditions:

E[Zi|Z1, Z2, · · · , Zi−1] = 0,

|Zi| < ∞.
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The properties of the martingale difference sequence can be used to obtain the following concentration
inequality:
Lemma 3 (Azuma-Hoeffding Inequality (Hoeffding, 1963; Azuma, 1967)). If the random variables Z1, Z2, · · ·
form a martingale difference sequence (Def. 3), with |Zi| ≤ b, then

Pr(
n∑

i=1
Zi > ϵ) ≤ e− ϵ2

2b2n . (31)

Our main result, Theorem 2, shows that we can use Lemma 3 to obtain a concentration inequality for the
abstract transition function in Abstracted RL. Specifically, we show that, with high probability, the empirical
abstract transition function T̄Y will be close to the abstract transition function T̄ωX

:
Theorem 2 (Abstract L1 inequality). If an agent has access to a state abstraction function ϕ and uses
this to collect data for any abstract state-action pair (s̄, a) by acting in an MDP M according to a policy π̄,
we have that the following holds with a probability of at least 1 − δ for a fixed value of N(s̄, a):

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ, (32)

where δ = 2|S̄|e− 1
8 N(s̄,a)ϵ2 .

Here we use the definitions of T̄Y (·|s̄, a) (equation 13) and T̄ωX
(·|s̄, a) (equation 15). To apply Lemma 3, we

define a suitable Zi in the proof. The proof can be found in Appendix C.

3.3 Abstracted R-MAX

Finally, we show how we can use Theorem 2 to provide guarantees for MBRL methods in Abstracted RL
with an approximate model similarity abstraction. We illustrate this using the R-MAX algorithm (Brafman
& Tennenholtz, 2002). We start with a short description of R-MAX and how it operates with abstraction.

The R-MAX algorithm maintains a model of the environment. It uses this model to compute a policy
periodically and then follows this policy for several steps. Initially, all the state-action pairs are unknown
and the algorithm optimistically initializes their reward and transition functions: R(s, a) = Rmax (the
maximum reward), T (s|s, a) = 1, and ∀s′ ̸= s : T (s′|s, a) = 0. This initialization means that, in the model
the algorithm maintains, these unknown (s, a) lead to the maximum reward, hence the name R-MAX. A
state-action pair’s transition and reward function are only updated once they have been visited sufficiently
often, at which point the state-action pair is considered known. Together, this ensures that the algorithm
explores sufficiently. During execution, the algorithm operates in episodes of n-steps. At the start of every
episode it calculates an optimal n-step policy and follows this for n timesteps, or untill a state-action pair
becomes known. Once all the state-action pairs are known it calculates the optimal policy for the final model
and then runs this indefinitely. The algorithm has the following guarantee:
Theorem 3 (R-MAX in MDPs (Brafman & Tennenholtz, 2002)). Given an MDP M, with |S| states and |A|
actions, and inputs ϵ and δ. With probability of at least 1 − δ the R-MAX algorithm will attain an expected
average return of Opt(

∏
M (ϵ, Tϵ)) − 2ϵ within a number of steps polynomial in |S|, |A|, 1

ϵ
1
δ , Tϵ. Where Tϵ

is the ϵ-return mixing time of the optimal policy, the policies for M whose ϵ-return mixing time is Tϵ are
denoted by

∏
M (ϵ, Tϵ), the optimal expected Tϵ-step undiscounted average return achievable by such policies

are denoted by Opt(
∏

M (ϵ, Tϵ)).

Here Tϵ is the ϵ-return mixing time of a policy π, it is the minimum number of steps needed to guarantee
that the expected average return is within ϵ of the optimal expected average return (Kearns & Singh, 2002).

For R-MAX with abstraction, We make the following assumptions that stem from the original analysis: we
assume that the MDP is ergodic (Puterman, 2014), 6 that we know S and A, that the reward function
is deterministic, and that we know the minimum and maximum reward. W.l.o.g., we assume the rewards
are between 0 and Rmax, with 0 < Rmax < ∞. We add the assumption that the agent has access to an
approximate model similarity abstraction function ϕ.

6An ergodic, or recurrent, MDP is an MDP where every state is recurrent under every stationary policy, i.e., asymptotically,
every state will be visited infinitely often (Puterman, 2014).
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Algorithm 1 Procedure: Abstracted R-MAX
Input: ϕ, δ, ϵ, Tϵ

for all (s̄, a) ∈ S̄ × A do
T̄Y (s̄|s̄, a) = 1
R̄Y (s̄, a) = 1
Ȳs̄,a = [ ]

end for
M̄Y = ⟨S̄, A, T̄Y , R̄Y ⟩
Select m, the number of samples required per (abstract) state-action pair to make them known.
// While there is still an unknown state-action pair.
while min(s̄,a) |Ys̄,a| < m do

Compute optimal Tϵ-step policy π̄ in M̄Y for the current abstract state.
for Tϵ timesteps do

s̄ = ϕ(s)
a = π̄(s̄)
s′, r = Step(s, a)
s = s′

if |Ȳs̄,a| < m then
Ȳs̄,a.append(ϕ(s′))
if |Ȳs̄,a| = m then

// State-action pair has become known.
for all s̄′ ∈ S̄ do

T̄Y (s̄′|s̄, a) = 1
m

∑m
i=1 1{Ȳ

(i)
s̄,a = s̄′}

end for
R̄Y (s̄, a) = r
break

end if
end if

end for
end while
Compute optimal policy π̄∗ for M̄ and run indefinitely.

Algorithm 1 shows the procedure for Abstracted R-MAX. It follows the same steps as the orignal algorithm,
except that it makes use of an abstraction function ϕ and maintains an abstract model. As in the original,
the input to the algorithm is the allowed failure probability δ, the error bound ϵ, and the ϵ-return mixing
time Tϵ of an optimal policy. We add the abstraction function ϕ as a new input. The algorithm uses this
function to observe ϕ(s), as in Figure 1, and it builds an empirical (abstract) model from the observations
it obtains.

Because the algorithm uses an abstraction function ϕ, we cannot guarantee the ϵ error bound. However, with
Theorem 5 we can still guarantee an error bound that is a function of ϵ and the error η of the abstraction,
thus providing the first finite-sample guarantees for Abstracted RL:
Theorem 4. Given an MDP M, an approximate model similarity abstraction ϕ, with ηR and ηT , and inputs
|S̄|, |A|, ϵ, δ, Tϵ. With probability of at least 1 − δ the R-MAX algorithm adapted to abstraction (Algorithm 1)
will attain an expected average return of Opt(

∏
M (ϵ, Tϵ))−3g(ηT , ηR)−2ϵ within a number of steps polynomial

in |S̄|, |A|, 1
ϵ

1
δ , Tϵ. Where Tϵ is the ϵ-return mixing time of the optimal policy, the policies for M whose ϵ-

return mixing time is Tϵ are denoted by
∏

M (ϵ, Tϵ), the optimal expected Tϵ-step undiscounted average return
achievable by such policies are denoted by Opt(

∏
M (ϵ, Tϵ)), and

g(ηT , ηR) = TϵηR + (Tϵ − 1)Tϵ

2 ηT |S̄|.

The proof can be found in Appendix D.2 and follows the line of the original R-MAX proof, using the
assumptions mentioned at the start of Section 3. To translate the results to the Abstracted RL setting, we

9
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use the Abstract L1 inequality (Theorem 2) to show that the empirical abstract model is accurate with high
probability.

As is typical with abstraction, there is a trade-off between the performance and the required number of steps.
Without abstraction, Theorem 3 shows that the algorithm will attain an expected return of Opt(

∏
M (ϵ, Tϵ))−

2ϵ within a number of steps polynomial in |S|, |A|, 1
ϵ

1
δ , Tϵ. With the abstraction, the additional penalty of

3g(ηT , ηR) appears because we use an approximate model similarity abstraction. The advantage is that the
number of steps within which this is achieved is polynomial in the size of the abstract space |S̄| rather than
the (larger) original state space |S|.

We can consider the martingale property an approximate version of independence (Chow & Teicher, 2003).
This martingale property allowed us to give a guarantee on the quality of the learned model (Theorem 2),
and we used this result to give finite-sample guarantees for Abstracted RL (Theorem 4). These results show
that the performance is not arbitrarily bad with approximate model similarity abstraction but can be close
to optimal when ηT and ηR are small.

4 Related Work

The problem we resolved in this paper may seem intuitive, but as we will make clear here, it is a funda-
mental problem in rich literature. Many studies have considered the combination of abstraction with either
planning or RL. Some studies avoid, or ignore, the issue of dependency by simply assuming that samples are
independent (Paduraru et al., 2008; Ortner et al., 2014b; Jiang et al., 2015; Badings et al., 2022). Others
avoid it by looking at convergence in the limit (Singh et al., 1995; Hutter, 2016; Majeed & Hutter, 2018) or
by assuming access to an MDP model (Hallak et al., 2013; Maillard et al., 2013; Ortner et al., 2019).

A negative result has been provided in the Abstracted RL setting, showing that R-MAX (Brafman & Ten-
nenholtz, 2002) no longer maintains its guarantees when paired with any state abstraction function (Abel
et al., 2018). For this negative result, they give an example that uses approximate Q∗ similarity abstrac-
tions (Abel et al., 2016). Our counterexample is more powerful: indicating problems with the analysis even
for approximate model similarity abstractions. Nevertheless, our second result shows that it is still possi-
ble to give guarantees in Abstracted RL for R-MAX-like algorithms when we use an approximate model
similarity abstraction and take the ηR and ηT inaccuracies into account.

Another study considered a setting related to abstraction, where the transition and reward functions can
change over time, either abruptly or gradually (Ortner et al., 2020). The reward and transition probabilities
depend on the timestep t, so T (s′|s, a, t) instead of T (s′|s, a). They bound the variation in the reward and
transition functions over time. By taking the variation over time into account they are able to give results.
In their setting, the MDP is fixed given the timestep. However, in Abstracted RL this is not fixed. Each
time the transition function at a timestep t could be different.

Recently regret guarantees have been found for the episodic (continuous) RL setting (Sinclair et al., 2022).
Their abstraction method learns an abstraction adaptively. The model-based version of their algorithm
requires that the state and actions spaces are embedded in compact metric spaces. In this way, they can
define a measure of the difference between state-action pairs in these metric spaces. However, they require
oracle access to this metric. In our setting this would require knowing the transition and reward functions,
which we assume we do not.

There are quite a few studies in the area of abstraction selection, where the agent has access to a set of
abstraction functions (state representations)(Hallak et al., 2013; Maillard et al., 2013; Lattimore et al., 2013;
Ortner et al., 2014a; 2019). Several studies assume that the given set of state representations contains a
Markov model (Hallak et al., 2013; Maillard et al., 2013; Ortner et al., 2019). One study gives asymptotic
guarantees for selecting the correct model and building an exact MDP model (Hallak et al., 2013). The
assumption that an MDP model exists in the given set of representations is crucial in their analysis since
the samples are i.i.d. for this MDP model. Similarly, other studies also assume that the given set of
state representations contains a Markov model (Maillard et al., 2013; Ortner et al., 2019). They create an
algorithm for which they obtain regret bounds, and their analysis also uses the Markov representation.

10
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Some studies in abstraction selection do not assume the given abstraction functions contain a Markov
model (Lattimore et al., 2013; Ortner et al., 2014a). One study assumes access to a set of environments,
including the true environment, rather than a set of abstractions (Lattimore et al., 2013). Because they have
access to environments, they do not need to learn a transition model, making it different from our setting.
The other study uses Theorem 2.1 from Weissman et al. (2003), which requires i.i.d. samples (Ortner et al.,
2014a). We have shown that independent samples cannot be guaranteed in Abstracted RL.

Other related work is in MDPs with rich observations or block structure (Azizzadenesheli et al., 2016; Du
et al., 2019; Allen et al., 2021). In that setting, each observation can be generated only from a single hidden
state, which means that the issue of non-i.i.d. data due to abstraction does not arise. We can view the
rich observation setting as an aggregation problem, where the observations can be aggregated to form a
small (latent) MDP (Azizzadenesheli et al., 2016). Their setting is related to exact model similarity (or
bisimulation) (Du et al., 2019). In contrast, in Abstracted RL, each observation can be generated from
multiple hidden states, and we do not try to learn the MDP, as it is not small. Furthermore, we focus on
approximate model similarity, which introduces the problems as described in Section 3.1.

One way to avoid the issue of dependent samples is by assuming that samples are obtained indepen-
dently (Paduraru et al., 2008; Ortner et al., 2014b; Jiang et al., 2015; Badings et al., 2022). One study
considers the setting with a continuous domain where we are given a data set with i.i.d. samples (Paduraru
et al., 2008). They use discretization to aggregate states into abstract states and give a guarantee that, with
a high probability, the model will be ϵ-accurate given a fixed data set. While they assume that the data has
been gathered i.i.d., our results show that martingale concentration inequalities could be used to extend their
results to the online data collection in the Abstracted RL setting. Discretization has been used in another
study in a continuous space (Badings et al., 2022). They search for a solution for a linear dynamical system,
where the transitions are deterministic, except for a noise component. They assume this noise is distributed
i.i.d. and try to learn the resulting abstract transition functions by iteratively sampling N samples per
abstract-state action pair until a threshold is reached. They assume that samples can be obtained cheaply,
e.g., through a simulator, whereas we focus on the exploration problem where data has to be collected online
and is expensive. Another study operates in the abstraction selection setting (Jiang et al., 2015). While they
do not assume that a Markov model exists in the given set of abstraction functions, they assume a given
data set, with i.i.d. data. They give a bound on how accurate the Q-values based on the (implicitly) learned
model will be rather than on the accuracy of the model itself. As we showed, the assumption that the data
is i.i.d. is not trivial since it means the data cannot just be collected online. Another study’s primary focus
is on bandits but also gives results for MDPs with a coloring function (Ortner et al., 2014b). We can view
state aggregation as a special case of this coloring. They extend the results from UCRL2 (Jaksch et al.,
2010) to the setting with a coloring function. They use the Azuma-Hoeffding inequality for the transition
function, which holds for weakly dependent samples. However, they assume the samples are independent
and do not show the martingale difference sequence property for the (actually dependent) samples.

Another way to deal with dependence between samples is by looking at convergence in the limit (Singh
et al., 1995; Hutter, 2016; Majeed & Hutter, 2018). One study gives an asymptotic result for convergence of
Q-learning and TD(0) in MDPs with soft state aggregation (Singh et al., 1995). In soft state aggregation,
a state s belongs to a cluster x with some probability P (x|s), which means a state s can belong to several
clusters. Their result requires an ergodic MDP and a stationary policy that assigns a non-zero probability
to every action. Together these imply a limiting state distribution, and they use this to show convergence
asymptotically. Another study gives multiple results focusing on approximate and exact abstractions in
environments without MDP assumptions (Hutter, 2016). Several of these results are in the planning setting,
similar to other planning results for approximate abstractions (Abel et al., 2016). Most relevant for us is their
Theorem 12, which for online RL shows convergence in the limit of the empirical transition function under
weak conditions, e.g., when the abstract process is an MDP. Under this condition, however, the problem
reduces to RL in an (abstract) MDP rather than Abstracted RL. Follow-up work builds on some of these
results and focuses on the combination of model-free RL and exact abstraction (Majeed & Hutter, 2018).
They show that, under state uniformity, Q-learning converges in the limit to the optimal solution. State
uniformity means that aggregated histories have the same optimal Q-values. In contrast to our setting, they
used an exact abstraction and left extending the results to approximate abstraction as an open question.
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For planning in abstract MDPs, there are results for exact state abstractions (Li et al., 2006) and approximate
state abstractions (Abel et al., 2016). The results for approximate state abstractions allow for quantifying
an upper bound on performance for the optimal policy of an abstract MDP, e.g., as in Theorem 1 for
approximate model similarity in Section 2.2. A study built on these results by giving a result for performing
RL interacting with an explicitly constructed abstract MDP (Taïga et al., 2018); since the abstract MDP is
still an MDP, this is different from Abstracted RL.

In certain cases, dependence can also arise for RL in MDPs. For instance, a study shows that dependence
can occur in a non-communicating MDP (Strehl & Littman, 2008). They show that this specific case of
dependence is not a problem because it is still possible to use a concentration inequality for independent
samples, e.g., Hoeffding’s inequality, as an upper bound. However, their proof uses that transitions and
rewards are identically distributed, which is not guaranteed in Abstracted RL.

5 Discussion and Future Work

Some assumptions we made, i.e., that the reward function is deterministic and each state in an abstract
state has the same reward function, can be relaxed. To accurately learn an abstract reward function, one
should define a suitable martingale difference sequence, after which Lemma 3 can be used. We considered
approximate model similarity abstraction and used the properties of this abstraction to establish an upper
bound on the difference in value between the original MDP and an abstract MDP under any abstract policy.
This bound was imperative for our results. We established this bound by proof of induction on the difference
in value for a horizon n. This technique could be used to establish similar bounds and extend our results for
other abstractions, e.g., approximate Q∗ similarity abstractions (Abel et al., 2016).

Our analysis showed how to extend the results of R-MAX (Brafman & Tennenholtz, 2002) to Abstracted
RL. Extending results of other algorithms, e.g., MBIE (Strehl & Littman, 2008) and UCRL2 (Jaksch et al.,
2010), requires adapting to slightly different assumptions. For instance, R-MAX assumes ergodicity, while
UCRL2 and MBIE assume the problem is communicating and non-communicating, respectively. Other
algorithms sometimes use concentration inequalities other than Hoeffding’s Inequality, e.g., the empirical
Bernstein inequality (Audibert et al., 2007; Maurer & Pontil, 2009) or the Chernoff bound. To adapt these,
we could, for instance, use Bernstein-type inequalities for martingales (Dzhaparidze & Van Zanten, 2001).

Theorem 4 shows that, despite problems with dependence, we can give finite-sample guarantees when com-
bining approximate model similarity abstractions with model-based RL. For good abstraction functions, i.e.,
when ηR and ηT are small and |S| ≫ |S̄|, this leads to near-optimal solutions while needing fewer sam-
ples, compared to learning without abstraction. In deep model-based RL, several recent empirical works
have shown promising results by focusing on learning exact abstractions (van der Pol et al., 2020; Biza &
Platt, 2019). An interesting direction is adapting these methods to learn approximate abstractions instead
of exact abstractions. Since, compared to exact model similarity abstractions, approximate model similarity
abstraction generally results in a smaller (abstract) state space; this could lead to faster learning.

6 Conclusion

We analyzed Abstracted RL: online MBRL combined with state abstraction when the model of the MDP
is unavailable. Via a counterexample, we showed that it cannot be guaranteed that samples obtained
online in Abstracted RL are independent. Many current guarantees from MBRL methods use concentration
results that assume i.i.d. samples, e.g., Theorem 2.1 from Weissman et al. (2003), the empirical Bernstein
inequality (Audibert et al., 2007; Maurer & Pontil, 2009), or the Chernoff bound. Because they use these
concentration inequalities, their guarantees do not hold in Abstracted RL. In fact, none of the existing
analyses of MBRL apply to Abstracted RL. We showed that samples in Abstracted RL are only weakly
dependent and that concentration inequalities for (weakly) dependent variables, such as Lemma 3, are a
viable alternative through which we can come to guarantees on the empirical model. We used this result to
present the first sample efficient learning results for Abstracted RL, thus showing it is possible to combine
the benefits of abstraction and MBRL.
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A Well Known Results

We restate some well-known results that we use in the proofs in the other sections.

A.1 Hoeffding’s Inequality

Hoeffding’s inequality can tell us the probability that the average of m random independent (but not neces-
sarily identically distributed) samples deviates more than ϵ from its expectation.

Let Z(1), Z(2), · · · , Z(m) be bounded independent random variables, and let Z̄ and µ be defined as

Z̄ ≜
Z(1) + · · · + Z(m)

m
, (33)

µ ≜ E[Z̄] = E[Z(1) + · · · + Z(m)]
m

. (34)

Then Hoeffding’s inequality states:
Lemma 4 (Hoeffding’s inequality (Hoeffding, 1963)). If Z(1), Z(2), · · · , Z(m) are independent and 0 ≤ Z(i) ≤
1 for i = 1, · · · , m, then for 0 < ϵ < 1 − µ we have the following inequalities

Pr(Z̄ − µ ≥ ϵ) ≤ e−2mϵ2
, (35)

Pr(|Z̄ − µ| ≥ ϵ) ≤ 2e−2mϵ2
, (36)

Pr(
m∑

i=1
(Z(i) − µ) ≥ ϵ) ≤ e−2 ϵ2

m , (37)

Pr(|
m∑

i=1
(Z(i) − µ)| ≥ ϵ) ≤ 2e−2 ϵ2

m . (38)

A.2 Union Bound

Given that we have a set of events, the union bound allows us to upper bound the probability that at least
one of the events happens, even when these events are not independent.
Lemma 5 (Union Bound (Boole, 1854)). For a countable set of events A1, A2, A3, · · · , we have

Pr(∪iAi) ≤
∑

i

Pr(Ai). (39)

I.e., the probability that at least one of the events happens is, at most, the sum of the probabilities of the
individual events.

A.3 Value Bounds for Abstract and True Models

Here we give upper bounds on the difference in value between the real MDP and an abstract MDP under
various policies. We will use these bounds in Appendix D to adapt the results of R-MAX (Brafman &
Tennenholtz, 2002) to Abstracted RL. These bounds and proofs are very similar to existing bounds (Brafman
& Tennenholtz, 2002; Strehl & Littman, 2008; Abel et al., 2016; Taïga et al., 2018). Here we repeat these
for abstract models in the undiscounted finite horizon and in the discounted infinite horizon.

We define the finite horizon value function ∀s ∈ S:

V π,n(s) = R(s, π(s)) +
∑
s′∈S

T (s′|s, π(s))V π,n−1(s), (40)

V π,1(s) = R(s, π(s)). (41)

We use V π̄,n to denote the value in M under policy π̄ and V̄ π̄,n to denote the value in M̄ under policy π̄.
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Theorem 1. Let M = ⟨S, A, T, R⟩ be an MDP and M̄ = ⟨S̄, A, T̄ , R̄⟩ an abstract MDP, for some defined
abstract transitions and rewards. We assume that

∀s̄, s̄′ ∈ S̄, s ∈ s̄, a ∈ A : |T̄ (s̄′|s̄, a) − Pr(s̄′|s, a)| ≤ ηT

and |R̄(s̄, a) − R(s, a)| ≤ ηR.
(42)

Then, for a finite horizon problem with horizon h we have:

V ∗(s) − V π̄∗
(s) ≤ 2hηR + (h + 1)hηT |S̄|Rmax. (43)

And for a discounted infinite horizon problem with discount γ we have:

V ∗(s) − V π̄∗
(s) ≤ 2ηR

1 − γ
+ 2γηT |S̄|Rmax

(1 − γ)2 . (44)

We will use the following two Lemmas to proof the Theorem.
Lemma 6. Under the assumption of equation 42 and for every abstract policy π̄ and for every state s ∈ s̄,
we have: for a finite horizon problem with horizon h:

|V π̄,h(s) − V̄ π̄,h(s)| ≤ hηR + (h − 1)h
2 ηT |S̄|Rmax, (45)

and for a discounted infinite horizon problem with discount γ:

|V π̄(s) − V̄ π̄(s)| ≤ ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 . (46)

Proof. The proof follows the same steps for both the discounted infinite horizon and the undiscounted finite
horizon. For completeness, we show them both here.

First, for the undiscounted finite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s) − V̄ π̄,n(s)| ≤ nηR + (n − 1)n
2 ηT |S̄|Rmax. (47)

For n = 1, we have

|V π̄,1(s) − V̄ π̄,1(s)| = |R(s, π(s̄)) − R̄(s̄, π̄(s̄))| ≤ ηR. (48)

Now assume that the induction hypothesis, equation 47, holds for n − 1, then

|V π̄,n(s) − V̄ π̄,n(s)| = |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄)) +
∑
s′∈S

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)|

(49)

≤ |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄))| + |
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (50)

≤ ηR + |
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄))|

+ |
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄)) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (51)

≤ ηR + |
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))
[
V π̄,n−1(s′) − V̄ π̄,n−1(s̄′)

]
| + |

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, π̄(s̄)) −

∑
s′∈s̄′

T (s′|s, π̄(s̄))
]
V̄ π̄,n−1(s̄′)|

(52)

≤ ηR + (n − 1)ηR + (n − 1 − 1)(n − 1)
2 ηT |S̄|Rmax + ηT |S̄|(n − 1)Rmax (53)

= nηR + (n − 2)(n − 1)
2 ηT |S̄|Rmax + ηT |S̄|(n − 1)Rmax (54)

= nηR + (n − 1)n
2 ηT |S̄|Rmax. (55)
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For the step from equation 50 to equation 51, we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),
and from equation 52 to equation 53, we use the inductive hypothesis and the fact that (n − 1)Rmax is an
upper bound on V̄ π̄,n−1(s̄′) since the maximum reward per timestep is Rmax.

Now, for the discounted infinite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s) − V̄ π̄,n(s)| ≤ ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (56)

For n = 1, we have

|V π̄,1(s) − V̄ π̄,1(s)| = |R(s, π(s̄)) − R̄(s̄, π̄(s̄))| ≤ ηR. (57)

Now assume that the induction hypothesis, equation 56, holds for n − 1, then

|V π̄,n(s) − V̄ π̄,n(s)| = |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄)) + γ(
∑
s′∈S

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′))|

(58)

≤ |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄))| + γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (59)

≤ ηR + γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄))|

+ γ|
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄)) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (60)

≤ ηR + γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))
[
V π̄,n−1(s′) − V̄ π̄,n−1(s̄′)

]
| + γ|

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, π̄(s̄)) −

∑
s′∈s̄′

T (s′|s, π̄(s̄))
]
V̄ π̄,n−1(s̄′)|

(61)

≤ ηR + γ(ηRγn−2 +
n−3∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
)) + γηT |S̄|Rmax

1 − γ
(62)

= ηR + ηRγn−1 +
n−2∑
i=1

γi(ηR + γηT |S̄|Rmax

1 − γ
) + γηT |S̄|Rmax

1 − γ
(63)

= ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (64)

For the step from equation 59 to equation 60, we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),
and from equation 61 to equation 62, we use the inductive hypothesis and the fact that Rmax

1−γ is an upper
bound on V̄ π̄,n−1(s̄′).

Finally, taking the limit for n → ∞, we get:

|V π̄(s) − V̄ π̄(s)| ≤ ηR × 0 + 1
1 − γ

(ηR + γηT |S̄|Rmax

1 − γ
)

= ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 .

Lemma 7. Under the assumption of equation 42 and for every state s ∈ s̄, we have: for a finite horizon
problem with horizon h:

|V ∗,h(s) − V̄ ∗,h(s)| ≤ hηR + (h − 1)h
2 ηT |S̄|Rmax, (65)
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and for a discounted infinite horizon problem with discount γ:

|V ∗(s) − V̄ ∗(s)| ≤ ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 . (66)

Proof. First, we define

∀s̄ ∈ S̄, s ∈ S : V ∗,n(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)V ∗,n−1(s′)
]
, (67)

V̄ ∗,n(s̄) = max
a∈A

[
R̄(s̄, a) + γ

∑
s̄′∈S̄

T̄ (s̄′|s, a)V̄ ∗,n−1(s̄′)
]
. (68)

For the undiscounted case γ = 1, so we can drop γ from the notation.

The proof follows the same steps as the proof of Lemma 6. We start again with the undiscounted finite
horizon.

By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V ∗,n(s) − V̄ ∗,n(s̄)| ≤ nηR + (n − 1)n
2 ηT |S̄|Rmax. (69)

Making use of the fact that | max f − max g| ≤ max |f − g|, we have for n = 1

|V ∗,1(s) − V̄ ∗,1(s)| = | max
a∈A

R(s, a) − max
a∈A

R̄(s̄, a)| ≤ max
a∈A

|R(s, a) − R̄(s̄, a)| ≤ ηR. (70)

Now assume that the induction hypothesis, equation 69, holds for n − 1, then

|V ∗,n(s) − V̄ ∗,n(s̄)| = max
a∈A

|R(s, a) − R̄(s̄, a) +
∑
s′∈S

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (71)

≤ max
a∈A

|R(s, a) − R̄(s̄, a)| + max
a∈A

|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (72)

≤ ηR + max
a∈A

|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a)|

+ max
a∈A

|
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (73)

≤ ηR + max
a∈A

|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)
[
V ∗,n−1(s′) − V̄ ∗,n−1(s̄′)

]
| + max

a∈A
|

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, a) −

∑
s′∈s̄′

T (s′|s, a)
]
V̄ ∗,n−1(s̄′)|

(74)

≤ ηR + (n − 1)ηR + (n − 1 − 1)(n − 1)
2 ηT |S̄|Rmax + ηT (n − 1)|S̄|Rmax (75)

= nηR + (n − 1)n
2 ηT |S̄|Rmax. (76)

For the step from equation 72 to equation 73, we subtract and add
∑

s̄′∈S̄ V̄ ∗,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, a), and
from equation 74 to equation 75, we use the inductive hypothesis and again the fact that (n − 1)Rmax is an
upper bound on V̄ ∗,n−1(s̄′) since the maximum reward per timestep is Rmax.

Now, for the discounted infinite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s) − V̄ π̄,n(s)| ≤ ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (77)

For n = 1, we have

|V π̄,1(s) − V̄ π̄,1(s)| = | max
a∈A

R(s, a) − max
a∈A

R̄(s̄, a)| ≤ max
a∈A

|R(s, a) − R̄(s̄, a)| ≤ ηR. (78)
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Now assume that the induction hypothesis, equation 77, holds for n − 1, then

|V ∗,n(s) − V̄ ∗,n(s̄)| = max
a∈A

|R(s, a) − R̄(s̄, a) + γ
∑
s′∈S

T (s′|s, a)V ∗,n−1(s′) − γ
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (79)

≤ max
a∈A

|R(s, a) − R̄(s̄, a)| + max
a∈A

γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (80)

≤ ηR + max
a∈A

γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a)|

+ max
a∈A

γ|
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (81)

≤ ηR + max
a∈A

γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)
[
V ∗,n−1(s′) − V̄ ∗,n−1(s̄′)

]
| + max

a∈A
γ|

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, a) −

∑
s′∈s̄′

T (s′|s, a)
]
V̄ ∗,n−1(s̄′)|

(82)

≤ ηR + γ(ηRγn−2 +
n−3∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
)) + γηT |S̄|Rmax

1 − γ
(83)

= ηR + ηRγn−1 +
n−2∑
i=1

γi(ηR + γηT |S̄|Rmax

1 − γ
) + γηT |S̄|Rmax

1 − γ
(84)

= ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (85)

For the step from equation 80 to equation 81, we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),
and from equation 82 to equation 83, we use the inductive hypothesis and the fact that Rmax

1−γ is an upper
bound on V̄ ∗,n−1(s̄′).

Finally, taking the limit for n → ∞, we get:

|V ∗(s) − V̄ ∗(s)| ≤ ηR × 0 + 1
1 − γ

(ηR + γηT |S̄|Rmax

1 − γ
)

= ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 .

Proof of Theorem 1. We can now proof Theorem 1, by using the triangle inequality and the results of
Lemmas 6 and 7. For the undiscounted finite horizon:

|V ∗,h(s) − V π̄∗,h(s)| ≤ |V ∗,h(s) − V̄ ∗,h(s)| + |V̄ ∗,h(s) − V π̄∗,h(s)|
= |V ∗,h(s) − V̄ ∗,h(s)| + |V̄ π̄∗,h(s) − V π̄∗,h(s)|

≤ hηR + (h − 1)h
2 ηT |S̄|Rmax + hηR + (h − 1)h

2 ηT |S̄|Rmax

= 2hηR + (h − 1)hηT |S̄|Rmax.

For the discounted infinite horizon:
|V ∗(s) − V π̄∗

(s)| ≤ |V ∗(s) − V̄ ∗(s)| + |V̄ ∗(s) − V π̄∗
(s)|

= |V ∗(s) − V̄ ∗(s)| + |V̄ π̄∗
(s) − V π̄∗

(s)|

≤ ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 + ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2

= 2ηR

1 − γ
+ 2γηT |S̄|Rmax

(1 − γ)2 .
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A.3.1 Value difference for similar MDPs

Finally, we give a simulation lemma for two MDP on the same state-action space.
Lemma 8. Let M and M ′ be two MDP on the same state-action space, with

∀s, a ∈ S × A : |RM (s, a) − RM ′(s, a)| ≤ ηR, (86)
∀s, a, s′ ∈ S × A × S : |TM (s′|s, a) − TM ′(s′|s, a)| ≤ ηT . (87)

Then, for every policy π and for every state s ∈ S we have:

|V π,n
M (s) − V π,n

M ′ (s)| ≤ nηR + (n − 1)n
2 ηT |S|Rmax. (88)

Proof. By induction, we will show that for n ≥ 1

∀s ∈ S : |V π,n
M (s) − V π,n

M ′ (s)| ≤ nηR + (n − 1)n
2 ηT |S|Rmax. (89)

For n = 1, we have

|V π,1
M (s) − V π,1

M ′ (s)| = |RM (s, π(s)) − RM ′(s, π(s))| ≤ ηR. (90)

Now assume that the induction hypothesis, equation 89, holds for n − 1, then

|V π,n
M (s) − V π,n

M ′ (s)| = |RM (s, π(s̄)) − RM ′(s, π(s)) +
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M (s′) −

∑
s′∈S

TM ′(s′|s, π(s)))V π,n−1
M ′ (s′)|

(91)

≤ |RM (s, π(s)) − RM ′(s, π(s))| + |
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M (s′) −

∑
s′∈S

TM ′(s′|s, π(s))V π,n−1
M ′ (s′)| (92)

≤ ηR + |
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M (s′) −

∑
s′∈S

TM (s′|s, π(s))V π,n−1
M ′ (s′)|

+ |
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M ′ (s′) −

∑
s′∈S

TM ′(s′|s, π(s))V π,n−1
M ′ (s′)| (93)

≤ ηR + |
∑
s′∈S

TM (s′|s, π(s))
[
V π,n−1

M (s′) − V π,n−1
M ′ (s′)

]
| + |

∑
s′∈S

[
TM (s′|s, π(s)) − TM ′(s′|s, π(s))

]
V π,n−1

M ′ (s′)|

(94)

≤ ηR + (n − 1)ηR + (n − 1 − 1)(n − 1)
2 ηT |S|Rmax + ηT (n − 1)|S|Rmax (95)

= nηR + (n − 2)(n − 1)
2 ηT |S|Rmax + ηT (n − 1)|S|Rmax (96)

= nηR + (n − 1)n
2 ηT |S|Rmax. (97)

For the step from equation 92 to equation 93, we add and subtract
∑

s̄′∈S TM (s′|s, π(s))V π,n−1
M ′ (s′), and

from equation 94 to equation 95, we use the inductive hypothesis and the fact that (n − 1)Rmax is an upper
bound on V π,n−1

M ′ (s′) since the maximum reward per timestep is Rmax.

This shows that the values under any policy are similar for similar MDPs.

B L1 Inequality for Independent but not Identically Distributed Variables

We show that we can adapt the proof of Weissman et al. (2003) for independent, but not identically dis-
tributed, samples to obtain the following result:

Lemma 2. Let Xs̄,a = s1, · · · , sm be a sequence of states s ∈ s̄ and let Ȳs̄,a = Ȳ (1), Ȳ (2), · · · , Ȳ (m) be
independent random variables distributed according to Pr(·|s1, a), · · · , Pr(·|sm, a). Then, ∀ϵ > 0,

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ) ≤ (2|S̄| − 2)e− 1

2 mϵ2
. (98)
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Proof of Lemma 2. The proof mostly follows the steps by Weissman et al. (2003).

To shorten the notation, we define PY ≜ T̄Y (·|s̄, a) and PωX
≜ T̄ωX

(·|s̄, a).

We will make use of the following result (Proposition 4.2 in (Levin & Peres, 2017)), that for any distribution
Q on S̄

||Q − PωX
||1 = 2 max

S̄⊆S̄
(Q(S̄) − PωX

(S̄)),

where S̄ is a subset of S̄, and PωX
(S̄) =

∑
s̄′∈S̄ PωX

(s̄′). Thus, we have that

||PY − PωX
||1 = 2 max

S̄⊆S̄
(PY (S̄) − PωX

(S̄)). (99)

Using this, we can write

Pr(||PY − PωX
||1 ≥ ϵ) = Pr

[
2 max

S̄⊆S̄

[
PY (S̄) − PωX

(S̄)
]

≥ ϵ
]

(100)

= Pr
[

max
S̄⊆S̄

[
PY (S̄) − PωX

(S̄)
]

≥ ϵ

2

]
(101)

= Pr
[

∪S̄⊆S̄

[
PY (S̄) − PωX

(S̄) ≥ ϵ

2
]]

(102)

≤
∑
S̄⊆S̄

Pr
[
PY (S̄) − PωX

(S̄) ≥ ϵ

2

]
, (103)

where the last step follows from the union bound (Lemma 5).

Assuming ϵ > 0, we have that Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2 ) = 0 when S̄ = S̄ or S̄ = ∅. For every other subset
S̄, we can define a random binary variable that is 1 when Y (i) ∈ S̄ and 0 otherwise. Here PωX

(S̄) acts as
µ (equation 34) from Lemma 4 and PY (S̄) as Z̄ (equation 33). Thus, by applying Lemma 4 to this random
variable, we have

Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2) ≤ e−2m ϵ
2

2
= e− 1

2 mϵ2
. (104)

Then it follows that

Pr(||PY − PωX
||1 ≥ ϵ) ≤

∑
S̄⊆S̄

Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2) (105)

≤
∑

S̄⊂S̄:S̄≠S̄,∅

Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2) (106)

≤ (2|S̄| − 2)e− 1
2 mϵ2

, (107)

where S̄ ⊂ S̄ : S̄ ̸= S̄, ∅ denotes that the empty set ∅ and the complete set S̄ are excluded.

C Proof of Main Result

Here we show how we can use a concentration inequality for martingales to learn an accurate transition
model in Abstracted RL. Specifically, the following result shows that, with a high probability, the empirical
abstract transition function T̄Y will be close to the abstract transition function T̄ωX

. In the proof, follows
the general approach of Ortner et al. (2020), we define a suitable martingale difference sequence for the
abstract transition function and use this to obtain the following result for learning a transition function in
Abstracted RL:

Theorem 2 (Abstract L1 inequality). If an agent has access to a state abstraction function ϕ and uses this
to collect data for any abstract state-action pair (s̄, a) by acting in an MDP M according to a policy π̄, we
have that the following holds with a probability of at least 1 − δ for a fixed value of N(s̄, a):

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ, (108)

where δ = 2|S̄|e− 1
8 N(s̄,a)ϵ2 .
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Proof of Theorem 2. We first define an abstract transition function based on Xs̄,a as

∀(s̄, a), s̄′ : T̄ωX
(s̄′|s̄, a) ≜ 1

N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a), (109)

where T (s̄′|X(i)
s̄,a, a) ≜

∑
s′∈s̄′ T (s′|X(i)

s̄,a, a, a). We write T̄ωX
because this definition is equivalent to using a

weighting function as in equation 15:

∀(s̄, a), s̄′ : T̄ωX
(s̄′|s̄, a) ≜

∑
s∈s̄

ωX(s, a)
∑
s′∈s̄′

T (s′|s, a) (Eq. 15) (110)

=
∑
s∈s̄

1
N(s̄, a)

N(s̄,a)∑
i=1

1{X
(i)
s̄,a = s}

∑
s′∈s̄′

T (s′|s, a) (111)

= 1
N(s̄, a)

N(s̄,a)∑
i=1

∑
s∈s̄

1{X
(i)
s̄,a = s}

∑
s′∈s̄′

T (s′|s, a) (112)

= 1
N(s̄, a)

N(s̄,a)∑
i=1

∑
s′∈s̄′

T (s′|X(i)
s̄,a, a) (113)

= 1
N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a). (Eq. 109) (114)

Now we use z to denote a vector of size |S̄| with entries ±1, and we write z(s̄) for the entry in z with index
s̄. Then we have

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 =

∑
s̄′

|T̄Y (s̄′|s̄, a) − T̄ωX
(s̄′|s̄, a)| (115)

= max
z∈{−1,1}S̄

∑
s̄′

(
T̄Y (s̄′|s̄, a) − T̄ωX

(s̄′|s̄, a)
)

z(s̄′) (116)

= max
z∈{−1,1}S̄

∑
s̄′

( 1
N(s̄, a)

N(s̄,a)∑
i=1

1{Ȳ
(i)

s̄,a = s̄′} − 1
N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a)

)
z(s̄′)

(117)

= max
z∈{−1,1}S̄

∑
s̄′

1
N(s̄, a)

N(s̄,a)∑
i=1

1{Ȳ
(i)

s̄,a = s̄′}z(s̄′) −
∑

s̄′

1
N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a)z(s̄′)

(118)

= max
z∈{−1,1}S̄

1
N(s̄, a)

N(s̄,a)∑
i=1

z(Ȳ (i)
s̄,a ) − 1

N(s̄, a)

N(s̄,a)∑
i=1

∑
s̄′

T (s̄′|X(i)
s̄,a, a)z(s̄′) (119)

= max
z∈{−1,1}S̄

1
N(s̄, a)

N(s̄,a)∑
i=1

(
z(Ȳ (i)

s̄,a ) −
∑

s̄′

T (s̄′|X(i)
s̄,a, a)z(s̄′)

)
(120)

= max
z∈{−1,1}S̄

1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi
(z, X

(i)
s̄,a, a, Ȳ

(i)
s̄,a ), (121)

where we set

Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) ≜ z(Ȳ (i)
s̄,a ) −

∑
s̄′

T (s̄′|X(i)
s̄,a, aτi

)z(s̄′).

To show that
∑N(s̄,a)

i Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a ) is a martingale difference sequence, we should follow Definition

3 and show that ∀i : E[Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] = 0 and |Zi| < ∞. For the second part, we
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have that ∀i : |Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )| ≤ 2, since |z(Ȳ (i)
s̄,a )| ≤ 1 and |

∑
s̄′ T (s̄′|X(i)

s̄,a, aτi
)z(s̄′)| ≤ 1. For the first

part, we use the following Lemma, the proof of which follows after the current proof.

Lemma 9. Let π be a policy, and suppose the sequence s1, a1 · · · , st−1, at−1, st is to be generated by π. If
1 ≤ τ1 < τ2 < · · · < τi−1 < τi ≤ t, then E[Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] = 0.

Lemma 9 shows that
∑N(s̄,a)

i Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) is a martingale difference sequence with ∀i :
|Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )| ≤ 2 for any fixed z and fixed N(s̄, a) = n so that by the Azuma-Hoeffding inequality
(Lemma 3):

Pr(
N(s̄,a)∑

i=1
Zτi > ϵ) ≤ e− ϵ2

8N(s̄,a) . (122)

Similarly,
∑N(s̄,a)

i
1

N(s̄,a) Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) is a martingale difference sequence with ∀i :
| 1

N(s̄,a) Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a )| ≤ 2

N(s̄,a) for any fixed z and N(s̄, a) = n so that, by the Azuma-Hoeffding
inequality (Lemma 3), the following holds:

Pr( 1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi
> ϵ) ≤ e

− ϵ2

2 4
N(s̄,a)2 N(s̄,a) (123)

= e
− ϵ2

8
N(s̄,a) (124)

= e− 1
8 N(s̄,a)ϵ2

. (125)

From equation 115 and equation 121, we then obtain

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 > ϵ) = Pr( max

z∈{−1,1}S

1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi > ϵ). (126)

A union bound (Lemma 5) over all 2|S̄| vectors z for a fixed value of N(s, a) shows

Pr( max
z∈{−1,1}S

1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi > ϵ) ≤
∑

z∈{−1,1}S

Pr( 1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi > ϵ). (127)

So, using equation 125, we have that the following holds with probability 1 − 2|S̄|e− 1
8 N(s̄,a)ϵ2 :

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ. (128)

Now we give the proof of Lemma 9:

Proof of Lemma 9. We follow the general structure of the proof of Lemma 8 by Strehl & Littman (2008).
We have

E[Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )] =
∑

cτi+1

Pr(cτi+1)Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) (129)

=
∑
cτi

Pr(cτi
)

∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |cτi

, aτi
)Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) (130)

=
∑
cτi

Pr(cτi)
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a ). (131)
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The sum
∑

cτi+1
is over all possible sequences cτi+1 that end in a state s̄τi+1, resulting from τi actions chosen

by an agent following policy π. Conditioning on the sequence of random variables Zτ1 , Zτ2 , · · · , Zτi−1 can
make some sequences cτi

more likely and others less likely, that is

E[Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] (132)

=
∑
cτi

Pr(cτi
|Zτ1 , Zτ2 , · · · , Zτi−1)

∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi
)Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ). (133)

Significantly, since P (Ȳ (i)
s̄,a |s̄τi

, aτi
, Zτ1 , · · · , Zτi−1) = P (Ȳ (i)

s̄,a |s̄τi
, aτi

), fixed values of Zτ1 , Zτ2 , · · · , Zτi−1 do
not influence the innermost sum of equation 133. For this innermost sum, we have∑

Ȳ
(i)

s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi
)Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) (134)

=
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi
)
[

z(Ȳ (i)
s̄,a ) −

∑
s̄′

T (s̄′|X(i)
s̄,a, aτi

)z(s̄′)
]

(135)

=
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)z(Ȳ (i)
s̄,a ) −

∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)
∑

s̄′

T (s̄′|X(i)
s̄,a, aτi)z(s̄′) (136)

=
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)z(Ȳ (i)
s̄,a ) −

∑
s̄′

T (s̄′|X(i)
s̄,a, aτi)z(s̄′) (137)

= 0. (138)

So we conclude

E[Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] (139)

=
∑
cτi

Pr(cτi |Zτ1 , Zτ2 , · · · , Zτi−1)
∑

s̄τi+1

Pr(s̄τi+1|X(i)
s̄,a, aτi)Zτi(z, X

(i)
s̄,a, aτi , Ȳ

(i)
s̄,a ) (140)

=
∑
cτi

Pr(cτi
|Zτ1 , Zτ2 , · · · , Zτi−1) × 0 (141)

= 0. (142)

D R-MAX Adapted to Abstracted RL

Here we use the result of Theorem 2 to show that we can provide efficient learning guarantees for R-
MAX (Brafman & Tennenholtz, 2002) in Abstracted RL. In Appendix D.1, we use Theorem 2 and the value
bounds in Appendix A.3 to establish two supporting Lemmas. Then, in Appendix D.2, we adapt one lemma
and the guarantees of R-MAX to Abstracted RL.

D.1 Supporting Lemmas

We can use Theorem 2 to determine the number of samples required to guarantee that the distance
||T̄Y (·|s̄, a) − T̄ωx

(·|s̄, a)||1 will be smaller than ϵ with probability 1 − δ:
Lemma 10. For inputs κ and ϵ (0 < κ < 1, 0 < ϵ < 2), the following holds for a number of samples
m ≥ 2[ln(2|S̄|−2)−ln(κ)]

ϵ2 :

Pr(||T̄Y (·|s̄, a) − T̄ωx(·|s̄, a)||1 ≥ ϵ) ≤ κ. (143)
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Proof. To shorten the notation, we use the definitions PY ≜ T̄Y (·|s̄, a) and Pωx
≜ T̄ωx

(·|s̄, a). It follows from
Theorem 2 that

Pr(||PY − Pωx ||1 ≥ ϵ) ≤ 2|S̄|e− 1
8 mϵ2

. (144)

We need to select m such that κ ≥ 2|S̄|e− 1
8 mϵ2 :

κ ≥ 2|S̄|e− 1
8 mϵ2

(145)
κ

2|S̄|
≥ e− 1

8 mϵ2
(146)

ln(κ) − ln(2|S̄|) ≥ −mϵ2

8 (147)

mϵ2

8 ≥ ln(2|S̄|) − ln(κ) (148)

m ≥ 8[ln(2|S̄|) − ln(κ)]
ϵ2 . (149)

Thus if m ≥ 8[ln(2|S̄|)−ln(κ)]
ϵ2 , we have

Pr(||PY − Pωx ||1 ≥ ϵ) ≤ κ.

We want to give results for an empirical abstract model ˆ̄M in the abstract space from ϕ, whose transition
probabilities and rewards are within ηT and ηR, respectively, from those of an abstract MDP M̄ . We use
V ∗,n to denote the value in M under the n-step optimal policy and V ˆ̄π∗,n to denote the value in M under
the n-step optimal policy ˆ̄π∗ for ˆ̄M . The following lemma shows that we can upper bound the loss in value
when applying ˆ̄π∗ to M :
Lemma 11. Let M be an MDP, M̄ an abstract MDP constructed using an approximate model similarity
abstraction ϕ, with ηR and ηT , and ˆ̄M an MDP in the abstract space from ϕ with

|T̄ (s̄′|s̄, a) − ˆ̄T (s̄′|s̄, a)| ≤ ϵ, |R̄(s̄, a) − ˆ̄R(s̄, a)| = 0. (150)

Then

V ∗,n(s) − V
ˆ̄π∗,n(s) ≤ 2nηR + (n − 1)n(ηT + ϵ)|S̄|Rmax. (151)

Proof. Note that we assume that |R̄(s̄, a) − ˆ̄R(s̄, a)| = 0 because we assume a deterministic reward. Then,
we have

∀s̄, a ∈ S̄ × A, s ∈ s̄ : |R(s, a) − ˆ̄R(s̄, a)| ≤ ηR, (152)

∀s̄, a, s̄′ ∈ S̄ × A × S̄, s ∈ s̄ : |
∑
s′∈s̄′

T (s′|s, a) − ˆ̄T (s̄′|s̄, a)| ≤ ηT + ϵ. (153)

We use ˆ̄V ˆ̄π∗,n(s̄) to denote the n-step value under the n-step optimal policy ˆ̄π∗,n for the empirical abstract
MDP ˆ̄M . Then, by Theorem 1, we have ∀s ∈ s̄, s̄ ∈ S̄:

V ∗,n(s) − V
ˆ̄π∗,n(s) = 2nηR + (n − 1)n(ηT + ϵ)|S̄|Rmax. (154)

D.2 Proof of Theorem 4

First, we restate an Implicit Explore or Exploit Lemma that is used in the proof of R-MAX. We are interested
in the event AM , the event that we encounter an unknown state-action pair during an n-step trail in M . For
two MDPs with different dynamics only in the unknown state-action pairs, the probability that we encounter
an unknown state-action pair in an n-step trial is tiny if the difference in the n-step value between the two
MDPs is slight. The proof follows the steps the proof of Lemma 3 from Strehl & Littman (2008).
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Lemma 12 (Implicit Explore or Exploit). Let M be an MDP. Let L be the set of known abstract state-action
pairs, and let ML be an MDP that is the same as M on the known pairs (s̄, a) ∈ L, but different on the
unknown pairs (s̄, a) /∈ L. Let s be some state, and AM the event that an unknown abstract state-action pair
is encountered in a trial generated by starting from state s1 and following π for n steps in M . Then,

V π,n
M (s1) ≥ V π,n

ML
(s1) − nRmax Pr(AM ). (155)

Proof. For a fixed path pt = s1, a1, r1, · · · , st, at, rt, we define PrM (pt) as the probability that pt occurs when
running policy π in M starting from state s1. We let Lt be the set of paths pt such that there is at least one
unknown state si in pt ((ϕ(si), a) /∈ L). We further let rM (t) be the reward received at time t and rM (pt, t)
the reward at time t in the path pt. We have the following:

E
[
rML

(t)
]

− E
[
rM (t)

]
=

∑
pt∈Lt

(
Pr
ML

(pt)rML
(pt, t) − Pr

M
(pt)rM (pt, t)

)
(156)

+
∑

pt /∈Lt

(
Pr
ML

(pt)rML
(pt, t) − Pr

M
(pt)rM (pt, t)

)
(157)

=
∑

pt /∈Lt

(
Pr
ML

(pt)rML
(pt, t) − Pr

M
(pt)rM (pt, t)

)
(158)

≤
∑

pt /∈Lt

Pr
ML

(pt)rML
(pt, t) ≤ Rmax Pr(AM ). (159)

Here
∑

pt∈Lt

(
PrML

(pt)rML
(pt, t) − PrM (pt)rM (pt, t)

)
= 0 because, by definition, M and ML behave iden-

tically on the known state-action pairs, and
∑

pt /∈Lt
PrML

(pt)rML
(pt, t) ≤ Rmax Pr(AM ) is true because

rML
(pt, t) is at most Rmax. Finally we can write

V π,n
ML

(s1) − V π,n
M (s1) =

n∑
t=0

(E
[
rML

(t)
]

− E
[
rM (t)

]
) (160)

≤ nRmax Pr(AM ). (161)

Thus, V π,n
M (s1) ≥ V π,n

ML
(s1) − nRmax Pr(AM ).

Now we are ready to prove the theorem.

Theorem 4. Given an MDP M, an approximate model similarity abstraction ϕ, with ηR and ηT , and inputs
|S̄|, |A|, ϵ, δ, Tϵ. With probability of at least 1 − δ the R-MAX algorithm adapted to abstraction (Algorithm
1) will attain an expected return of Opt(

∏
M (ϵ, Tϵ)) − 3 g(ηT ,ηR)

Tϵ
− 2ϵ within a number of steps polynomial

in |S̄|, |A|, 1
ϵ

1
δ , Tϵ. Here Tϵ is the ϵ-return mixing time of the optimal policy, the policies for M whose ϵ-

return mixing time is Tϵ are denoted by
∏

M (ϵ, Tϵ), the optimal expected Tϵ-step undiscounted average return
achievable by such policies are denoted by Opt(

∏
M (ϵ, Tϵ)), and

g(ηT , ηR) = TϵηR + (Tϵ − 1)Tϵ

2 ηT |S̄|Rmax.

Proof of Theorem 4. The proof uses elements of the Theorem from Brafman & Tennenholtz (2002). The
proof follows the following steps:

1. We show that the expected average reward of the algorithm is at least as stated if the algorithm
does not fail.

2. The probability of failing is at most δ. We can decompose this probability into three elements.

(a) Probability that the transition function estimates are not within the desired bounds.
(b) The probability that we do not attain the number of required visits in polynomial time.
(c) The probability that the actual return is lower than the expected return.
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Now we first assume the algorithm does not fail. We define an abstract MDP M̄ωX
constructed from ϕ

with ηT and ηR. Similar to ML, M̄ωX ,L is the same as M̄ωX
on the known abstract state-action pairs,

but with a self-loop and the maximum reward (Rmax) on the unknown abstract state-action pairs, i.e.,
∀(s̄, a) /∈ L : T̄ωX ,L(s̄|s̄, a) = 1, R̄ωX ,L(s̄, a) = Rmax. We also define an empirical abstract MDP M̄Y , of
which the transition probabilities T̄Y (s̄′|s̄, a) are within some ϵ2 (defined later) of those in M̄ωX

and with
R̄ωX

(s̄, a) = R̄Y (s̄, a) because of the assumption that the rewards are deterministic. Then, M̄Y,L is the
abstract MDP that is the same as M̄Y on the known abstract state-action pairs and the same as M̄ωX ,L on
the unknown abstract state-action pairs. We denote the R-MAX policy with π̄.

Let AM be the event that, following π̄, we encounter an unknown abstract state-action pair (ϕ(s), a) /∈ L in
Tϵ steps. From Lemma 12, we have that:

∀s ∈ S : V π̄,n
M (s) ≥ V π̄,n

ML
(s) − TϵRmax Pr(AM ). (162)

Now suppose that Rmax Pr(AM ) < ϵ1, for some ϵ1 (defined later), then we have

V π̄,Tϵ

M (s) ≥ V π̄,Tϵ

ML
(s) − TϵRmax Pr(AM ) (163)

≥ V π̄,Tϵ

ML
(s) − Tϵϵ1 (164)

≥ V π̄,Tϵ

M̄ωX ,L
(s) − Tϵϵ1 − g(ηT , ηR) (165)

≥ V π̄,Tϵ

M̄Y,L
(s) − Tϵϵ1 − g(ϵ2) − g(ηT , ηR) (166)

≥ V ∗,Tϵ

M̄Y
(s) − Tϵϵ1 − g(ϵ2) − g(ηT , ηR) (167)

≥ V ∗,Tϵ

M (s) − Tϵϵ1 − g(ϵ2) − g(ηT , ηR) − 2g(ηT + ϵ2, ηR). (168)

Here the step from equation 163 to equation 164 follows because of the assumption that Rmax Pr(AM ) <
ϵ1. The step from equation 164 to equation 165 follows from Lemma 6, where g(ηT , ηR) = TϵηR +
(Tϵ−1)Tϵ

2 ηT |S̄|Rmax. The step from equation 165 to equation 166 follows from Lemma 8, where g(ϵ2) =
(Tϵ−1)Tϵ

2 ϵ2|S̄|Rmax. The step from equation 166 to equation 167 follows because the R-MAX policy π̄ is the
optimal policy for M̄Y,L, and M̄Y,L is the same as M̄Y on the known state-action pairs and overestimates
the value of the unknown state-action pairs (to the maximum value). Finally, the step from equation 167 to
equation 168 follows from Lemma 11.
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In equation 168 the results are for the undiscounted Tϵ-step sum of rewards, so to obtain the result for the
average reward per step, we have to divide equation 168 by Tϵ. We get

Opt(
∏
M

(ϵ, Tϵ)) − Tϵϵ1/Tϵ − g(ϵ2)/Tϵ − g(ηT , ηR)/Tϵ − 2g(ηT + ϵ2, ηR)/Tϵ (169)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − (Tϵ − 1)Tϵ

2 ϵ2|S̄|Rmax/Tϵ

− (TϵηR + (Tϵ − 1)Tϵ

2 ηT |S̄|Rmax)/Tϵ − 2(TϵηR + (Tϵ − 1)Tϵ

2 (ηT + ϵ2)|S̄|Rmax)/Tϵ (170)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − (Tϵ − 1)
2 ϵ2|S̄|Rmax

− ηR − (Tϵ − 1)
2 ηT |S̄|Rmax − 2ηR − (Tϵ − 1)(ηT + ϵ2)|S̄|Rmax (171)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − (Tϵ − 1)
2 ϵ2|S̄|Rmax

− 3ηR − (Tϵ − 1)
2 ηT |S̄|Rmax − (Tϵ − 1)ϵ2|S̄|Rmax − (Tϵ − 1)ηT |S̄|Rmax (172)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − 3(Tϵ − 1)
2 ϵ2|S̄|Rmax − 3ηR − 3(Tϵ − 1)

2 ηT |S̄|Rmax (173)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − 3(Tϵ − 1)
2 ϵ2|S̄|Rmax − 3g(ηT , ηR)

Tϵ
(174)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
8ϵ − 3(Tϵ − 1)

2 ϵ2|S̄|Rmax − 3g(ηT , ηR)
Tϵ

(175)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
8ϵ − 3(Tϵ − 1)

2
3ϵ

4|S̄|Rmax(Tϵ − 1)
|S̄|Rmax − 3g(ηT , ηR)

Tϵ
. (176)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
8ϵ − 9

8ϵ − 3g(ηT , ηR)
Tϵ

. (177)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
2ϵ − 3g(ηT , ηR)

Tϵ
. (178)

In the step from equation 173 to equation 174 we use that g(ηT , ηR) = TϵηR + (Tϵ−1)Tϵ

2 ηT |S̄|Rmax. Then, in
the last steps, we define ϵ1 and ϵ2. In the step from equation 174 to equation 175 we set ϵ1 = 3

8 ϵ. And in
the step from equation 175 to equation 176 we set ϵ2 = 3ϵ/(4|S̄|Rmax(Tϵ − 1)).

The above assumed that the algorithm did not fail, but we cannot guarantee this with probability 1 within
a number of steps that is polynomial in the input. We will show that we can upper bound the probability
of failure by δ. There are three reasons why the algorithm could fail.

1. First, we need to show that the transition functions of M̄Y are within ηT + ϵ2 of the transition func-
tions of M̄ωX

, with high probability. This is to ensure that, once all the abstract state-action
pairs are known, the loss of value because of an inaccurate transition model, V ∗,Tϵ

M̄Y
− V ∗,Tϵ

M is
within 2g(ηT + ϵ2, ηR) = 2TϵηR + (Tϵ − 1)Tϵ(ηT + ϵ2)|S̄|Rmax by Lemma 11. We can use the
martingale concentration inequality to choose a number of samples K1 so that the probability that
our transition estimate is outside the desired bound is less than δ

3|S̄||A| for every abstract state-
action pair if we sample each pair K1 times. By Lemma 10, we can guarantee this by using
K1 ≥ 2[ln(2|S̄|−2)−ln(δ/(3|S̄||A|))]

( 3ϵ
4|S̄|Rmax(Tϵ−1) )2 = 32|S̄|2R2

max(Tϵ−1)2[ln(2|S̄|−2)−ln(δ/(3|S̄||A|))]
9ϵ2 . Then, by applying the

Union Bound on all |S̄|A pairs, we have that the total probability that any transition function is
outisde of the desired bound is less than δ/3.
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2. Before we assumed that Rmax Pr(AM ) < ϵ1(= 3ϵ
8 ). Here we can show that after K2 Tϵ-step trials

where Rmax Pr(AM ) ≥ 3ϵ
8 , all the abstract state-action pairs are visited at least K1 times (become

known) with a probability of at least 1−δ/3 by using Hoeffding’s Inequality. Let Xi be the indicator
variable that is 1 if we visit an unknown abstract state-action pair in a trial, and 0 otherwise. For
the trials where

Rmax Pr(Xi = 1) ≥ 3ϵ

8
Pr(Xi = 1) ≥ 3ϵ

8 /Rmax,

we can use Hoeffding’s Inequality to establish an upper bound, we have:

Pr(
K2∑
i=1

((3ϵ

8 /Rmax) − Xi) ≥ K
2/3
2 ) = (179)

Pr(3ϵ

8
K2

Rmax
−

K2∑
i=1

Xi ≥ K
2/3
2 ) ≤ e−

2(K
2/3
2 )2

K2 ≤ e−
2(K

2/3
2 )2

K2 = e−2K
1/3
2 , (180)

Pr(3ϵ

8
K2

Rmax
− K

2/3
2 ≥

K2∑
i=1

Xi) ≤ e−2K
1/3
2 . (181)

After K2 exploring episodes we want
∑K2

i=1 Xi, the number of visits to unknown state-action pairs,
to be K1|S̄||A|. So we can choose K2 such that 3ϵ

8
K2

Rmax
− K

2/3
2 ≥ K1|S̄||A|, and e−2K

1/3
2 ≤ δ/3 to

guarantee that the probability of failing to explore enough is at most δ/3.

3. Finally, the actual return may be lower than the expected return when we perform a Tϵ-step trial
where we do not explore. We use Hoeffding’s Inequality to determine the number of steps K3 needed
to ensure that the actual average return is within ϵ/2 of Opt(

∏
M (ϵ, Tϵ)) − 3

2 ϵ − 3 g(ηT ,ηR)
Tϵ

. We need
to choose K3 so that the probability of obtaining an actual return that is smaller than the desired
Opt(

∏
M (ϵ, Tϵ)) − 2ϵ − 3 g(ηT ,ηR)

Tϵ
is at most δ/3 within K3 = Z|S̄|Tϵ exploitation steps, with some

number Z > 0. Let Xi denote the average return in the i-th exploitation step and µ the average
expected return in an exploitation step so that µ is at least Opt(

∏
M (ϵ, Tϵ)) − 3

2 ϵ − 3 g(ηT ,ηR)
Tϵ

. Then

Pr(
K3∑
i=1

(µ − Xi

Rmax
) ≥ K

2/3
3 ) ≤ e−2

(K
2/3
3 )2

K3 = e−2K
1/3
3 . (182)

This means that, with a probability of at most e−2K
1/3
3 , the average return for K3 exploitation steps

is more than Rmax
K

1/3
3

lower than µ:

Pr(
K3∑
i=1

(µ − Xi

Rmax
) ≥ K

2/3
3 ) ≤ e−2K

1/3
3 , (183)

Pr(K3
µ

Rmax
−

K3∑
i=1

Xi

Rmax
≥ K

2/3
3 ) ≤ e−2K

1/3
3 , (184)

Pr(K3µ −
K3∑
i=1

Xi ≥ RmaxK
2/3
3 ) ≤ e−2K

1/3
3 , (185)

Pr(µ −
K3∑
i=1

Xi

K3
≥ Rmax

K
1/3
3

) ≤ e−2K
1/3
3 . (186)

We can now choose Z, so that ϵ/2 ≤ Rmax

(Z|S̄|Tϵ)
1
3

and e−2(Z|S̄|Tϵ)1/3 ≤ δ/3, to get the desired result:
with probability at most δ/3 the obtained value will be more than ϵ/2 lower than the expected value.
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The probability of failure is thus at most 3 ∗ δ/3 = δ, and an average return at most 2ϵ + 3 g(ηT ,ηR)
Tϵ

lower
than Opt(

∏
M (ϵ, Tϵ)) will be obtained with a probability of at least 1 − δ.

E Simulator Data Collection

Here we assume that we have access to a simulator and use this in our procedure to give a guarantee in the
form of the abstract L1 inequality from equation 16. To some extent, this is not surprising, but to the best
of our knowledge, this is the first work that explicitly shows how to combine MBRL and abstraction using a
simulator. We assume that the simulator allows us to select (or move to) any state and draw a sample from
its transition function, which we call the independent samples assumption:
Assumption 1 (Independent samples). We assume we can obtain independent samples, e.g., for any state-
action pair (s, a), we can draw samples directly from its transition function T (·|s, a).

Algorithm 2 Procedure: Abstracted MBRL
Input: M, ϕ, δ, ϵ, π
Ȳ = CollectSamples(M, ϕ, δ, ϵ, π)
The sampling results in sequences Ȳs̄,a, one for every
pair (s̄, a):
Ȳs̄,a = ϕ(s′(1)), · · · , ϕ(s′(m))
= s̄′(1), · · · , s̄′(m)

for all (s̄, a, s̄′) ∈ S̄ × A × S̄ do
T̄Y (s̄′|s̄, a) = 1

m

∑m
i=1 1{Ȳ

(i)
s̄,a = s̄′}

end for
M̄Y ≜ ⟨S̄, A, T̄Y , R̄, γ⟩
π̄∗

Y = Value Iteration(M̄Y )
Apply π̄∗

Y to M

Algorithm 3 CollectSamples with Simulator
Input: M, ϕ, δ, ϵ
κ = δ

|S̄||A|

m = ⌈ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 ⌉

for all (s̄, a) ∈ S̄ × A do
Ȳs̄,a = [ ]
xs̄,a = select a prototype state s ∈ s̄
for i = 1 : m do

s′ = Sample(T (·|xs̄,a, a))
Ȳs̄,a.append(ϕ(s′))

end for
end for
Return: all Ȳs̄,a

If a simulator of the MDP is available, this is a reasonable assumption. For every pair (s̄, a), the simulator
sampling procedure (Algorithm 3) selects a prototype xs̄,a ∈ s̄ from which to sample. We define a weighting
function ωx(s, a) that has a weight of 1 if s is the prototype xs̄,a and 0 otherwise:

∀(s̄,a),s∈s̄ ωx(s, a) ≜ 1{s = xs̄,a}. (187)

Then we use this ωx to define the abstract transition function T̄ωX
according to equation 7. T̄ωx(s̄′|s̄, a) =∑

s′∈s̄′ T (s′|s = xs̄,a, a). This way, the samples we collect for one pair (s̄, a) are i.i.d. They are independent
because of Assumption 1 and identically distributed because we sample from the prototype. Because the
samples are i.i.d., we can use Lemma 1. We show that, with the simulator we can combine MBRL with
abstraction and still learn an accurate model. We can guarantee that T̄Y will be close to T̄ωx

, with a high
probability:
Theorem 5. Under assumption 1, following the procedure in Algorithm 1, with the data collection from
Algorithm 3 and inputs |S̄|, A, ϵ, and δ. For T̄Y constructed by the algorithm, we have that with probability
1 − δ, the following holds:

∀(s̄,a) ||T̄Y (·|s̄, a) − T̄ωx(·|s̄, a)||1 ≤ ϵ. (188)

E.1 Proof of Theorem 5

Before starting with the actual proof, we first go over Algorithm 3 and give two lemmas the proof uses.

The agent will draw samples using the simulator as described in Algorithm 3. Since we assume we can sample
directly from the transition functions T (·|s, a), this algorithm loops over all pairs (s̄, a) and samples m times7

7The value of m in Algorithm 3 is chosen based on the results further along in this section.
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from each transition function. More formally, for every pair (s̄, a), the algorithm selects one prototype state
xs̄,a = s ∈ s̄. Then, it loops over every pair (s̄, a) and samples m transitions from T (·|xs̄,a, a). The set of
collected experiences for each abstract state-action pair (s̄, a) is represented by Ȳs̄,a, as defined by equation 12.

Given Ȳs̄,a, we define the learned model T̄Y (·|s̄, a) according to equation 13, T̄ωx according to equation 15,
and ωx according to equation 187. It follows from Lemma 1 that we can derive a number of samples that
we require to guarantee that Pr(||T̄Y (·|s̄, a) − T̄ωx

(·|s̄, a)||1 ≥ ϵ) ≤ κ is true for inputs κ and ϵ:
Lemma 4. For inputs κ and ϵ (0 < κ < 1, 0 < ϵ < 2), we have that the following holds for
m ≥ 2[ln(2|S̄|−2)−ln(κ)]

ϵ2 :

Pr(||T̄Y (·|s̄, a) − T̄ωx
(·|s̄, a)||1 ≥ ϵ) ≤ κ. (189)

Proof. To shorten the notation, we use the definitions PY ≜ T̄Y (·|s̄, a) and Pωx
≜ T̄ωx

(·|s̄, a). From Lemma 1,
we have that

Pr(||PY − Pωx ||1 ≥ ϵ) ≤ (2|S̄| − 2)e− 1
2 mϵ2

. (190)

We need to select m such that κ ≥ (2|S̄| − 2)e− 1
2 mϵ2 :

κ ≥ (2|S̄| − 2)e− 1
2 mϵ2

(191)
κ

2|S̄| − 2
≥ e− 1

2 mϵ2
(192)

ln(κ) − ln(2|S̄| − 2) ≥ −mϵ2

2 (193)

mϵ2

2 ≥ ln(2|S̄| − 2) − ln(κ) (194)

m ≥ 2[ln(2|S̄| − 2) − ln(κ)]
ϵ2 (195)

Thus, if m ≥ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 we have

Pr(||PY − Pωx
||1 ≥ ϵ) ≤ κ.

Using the Union bound, we can give a lower bound on the probability that T̄Y (·|s̄, a) and T̄ωx(·|s̄, a) are ϵ
close for every (s̄, a):
Lemma 5. If

∀(s̄,a)
[

Pr(||T̄Y (·|s̄, a) − T̄ωx(·|s̄, a)||1 ≥ ϵ)
]

≤ δ

|S̄||A|
(196)

then the following holds with a probability of at least 1 − δ:

max
(s̄,a)

[
||T̄Y (·|s̄, a) − T̄ωx(·|s̄, a)||1

]
≤ ϵ. (197)

Proof. We define

∆s̄,a ≜ ||T̄Y (·|s̄, a) − T̄ωx(·|s̄, a)||1. (198)

Then Pr(max(s̄,a){∆s̄,a ≥ ϵ}) is the probability that ∆s̄,a ≥ ϵ for at least one abstract state-action pair.
From the union bound, it follows that Pr(max(s̄,a){∆s̄,a ≥ ϵ}) ≤ δ:

Pr(max
(s̄,a)

{∆s̄,a ≥ ϵ}) ≤
∑
s̄,a

Pr(∆s̄,a ≥ ϵ) (199)

≤
∑
s̄,a

δ

|S̄||A|
(200)

= δ. (201)
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It follows that Pr(max(s̄,a){∆s̄,a ≤ ϵ}) ≥ 1 − δ since Pr(max(s̄,a){∆s̄,a ≤ ϵ}) = 1 − Pr(max(s̄,a){∆s̄,a ≥ ϵ}).
Thus the probability that equation 197 holds is at least 1 − δ.

Now we are ready to proof Theorem 5:

Proof of Theorem 5. By Assumption 1, and the earlier assumption that |S| and |A| are finite, we have that
we can obtain m samples in finite time for every abstract state-action pair and any m > 0. Given the
inputs |S̄|, A, ϵ, and δ, Algorithm 3 sets m = ⌈ 2[ln(2|S̄|−2)−ln(κ)]

ϵ2 ⌉, where κ = δ
|S̄||A| . Then, for every (s̄, a), a

prototype state xs̄,a = s ∈ s̄ is selected. We use equation 187 to define ωx and equation 15 to define T̄ωx
.

For all (s̄, a), Algorithm 3 obtains a sequence Ȳs̄,a by sampling from the transition function from the prototype
state xs̄,a and Algorithm 2 constructs the empirical transition functions as in equation 13.

Given our choice of m and the inputs κ = δ
|S̄||A| and ϵ, it follows from Lemma 10 that

∀(s̄,a) Pr(||T̄Y (·|s̄, a) − T̄ωx
(·|s̄, a)||1 ≥ ϵ) ≤ δ

|S̄||A|
. (202)

By the union bound, we have that the following holds with a probability of at least 1 − δ:

∀(s̄,a) ||T̄Y (·|s̄, a) − T̄ωx
(·|s̄, a)||1 ≤ ϵ. (203)
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