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ABSTRACT

Recent progress in Meta-Black-Box-Optimization (MetaBBO) has demonstrated
that meta-training a neural network based meta-level control policy over an op-
timization task distribution could significantly enhance the optimization perfor-
mance of the low-level black-box optimizers. However, achieving such perfor-
mance enhancement requires effective policy optimization/search method to lo-
cate optimal control policy within a massive joint-action space. The online learn-
ing fashion of existing works further makes the efficiency of MetaBBO problem-
atic. To address these technical challenges, we propose an offline learning frame-
work in this paper, termed Q-Mamba. Concretely, our method uses a Mamba
neural network architecture to meta-learn decomposed Q-functions for each con-
figurable component in the low-level optimizer. By decomposing the Q-function
of the configuration decisions of all components in an optimizer, we can apply
effective sequence modelling to avoid searching the control policy in the massive
joint-action space. Furthermore, by leveraging the long-sequence modelling ad-
vantage of Mamba and moderate offline trajectory samples, Q-Mamba can be effi-
ciently trained through a synergy of offline Temporal-Difference update and Con-
servative Q-Learning regularization to achieve competitive performance against
the online learning paradigms. Through extensive benchmarking, we observe
that Q-Mamba achieves competitive or even superior optimization performance
to prior online/offline learning baselines, while significantly improving the train-
ing efficiency of existing online learning baselines. Additional ablation studies
show that each of the proposed key designs contributes to this good performance.

1 INTRODUCTION

Optimization is everywhere. When it comes to the Black-Box Optimization (BBO), where neither
the problem formulation nor the gradient information is accessible, global optimization algorithms
in Evolutionary Computation (EC) show superiority for addressing these through better exploration
and exploitation tradeoff (Zhan et al., 2022). For decades, a broad family of evolutionary algorithms
and swarm intelligence algorithms have been extensively studied and the corresponding application
scenarios range from basic engineering problems (Slowik & Kwasnicka, 2020) to advanced scien-
tific discovery (Chen et al., 2023; Guo et al., 2024b). Despite the good performance observed in
various BBO problems, one particular technical bottleneck shared by these BBO optimizers is the
generalization across different problems (Eiben & Smit, 2011). Typically, to solve a particular op-
timization problem, deep expertise is required to configure an existing optimizer or redesign a new
one. This impedes the further spread of EC towards wider application range.

Recent research efforts in Meta-Black-Box-Optimization (MetaBBO) address the aforementioned
generalization gap by introducing a bi-level learning to optimize paradigm (Ma et al., 2023), where
a neural network-based control policy is maintained at the meta level and meta-trained to serve as
experts for tuning the low-level BBO optimizers (as shown in the top left of Figure 1). However,
achieving such generalization performance through meta-learning comes with certain challenges.
On the one hand, controlling/configuring all components within the low-level optimizer requires ef-
fective policy optimization paradigm such as Reinforcement Learning (RL) (Sutton, 2018) to search
for the optimal control policy in a massive joint-action space. On the other hand, to ensure the effec-
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Figure 1: Top left: The workflow of existing MetaBBO methods, online learning fashion. Bottom
left: The workflow of our offline Q-Mamba. Right: The normalized performance and training wall
time comparison between our offline learning Q-Mamba and online learning MetaBBO.

tiveness of the learning, existing MetaBBO methods primarily facilitate online learning to meta-train
their meta-level policies, which is inefficient particularly for the black-box optimization process
which typically involves at least hundreds of optimization iterations.

Given a such dilemma in-between the effectiveness and efficiency, we in this paper propose an of-
fline learning MetaBBO framework (as shown in the bottom left of Figure 1), termed Q-Mamba,
to break the tie and hence ensure both the learning effectiveness and efficiency (as shown in the
right of Figure 1). Concretely, to reduce the difficulty of learning optimal control policy from the
entire configuration space of a black-box optimizer, we introduce a Decomposed Q-function Repre-
sentation (DQR) which allows sequence modelling-based representation for each component’s Q-
function. Such decomposition has been studied in some pioneer offline RL researches (Janner et al.,
2021; Chebotar et al., 2023) and demonstrated effectiveness in control problems. With the DQR, we
further design a Mamba (Gu & Dao, 2023) neural network-based RL agent (Q-Learner), which treats
the configuration of each component in the optimizer as a separate time step and auto-regressively
predicts the corresponding decomposed Q-function by conditioning on the current optimization sta-
tus and configurations of components selected before. To improve the efficiency of training the
Q-Learner, we refer to offline RL (Levine et al., 2020), which learns the optimal control policy from
demonstration. However, the offline RL training is vulnerable due to the endemic distributional shift
issue (Wang et al., 2021) and demonstration quality issue (Ball et al., 2023). To succeed the train-
ing, we additionally integrate a Conservative Q-Learning (Kumar et al., 2020) regularization (CQL)
into the original Bellman backup to relieve the potential distribution shift. Besides, we construct an
Exploration&Exploitation Trajectory Collection (E&E Dataset) from a mix of randomly generated
trajectories and well-performing MetaBBO trajectories. Such a combination enables better offline
learning effectiveness. Accordingly, we summarize our contributions in this paper as follows:

• Novel Framework. Our main contribution in this paper is Q-Mamba, a novel offline RL
MetaBBO framework which shows better learning effectiveness and efficiency than prior
online/offline learning baselines.

• Key Designs. From the perspective of deep learning, we have defined the problem formu-
lation (Section 4.1) as optimizing the Decomposed Q-function (DQR) for each components
in a black-box optimizer to reduce the difficulty hence improve the effectiveness of learning
from joint-action space, and proposed the model (Section 4.2) as a Mamba-based Q-Learner
to enhance long-sequence modelling and learning efficiency for configuring the optimizer
within the optimization process. To further stabilize the offline training, we have introduced
a CQL regularization into the original training objective (Section 4.3) and constructed an
E&E Dataset as the offline training data (Section 4.4), to relieve the distributional shift and
reinforce the data quality during the training respectively.

• Superior Performance. Experimental results show that our Q-Mamba effectively achieves
at least competitive optimization performance against prior online/offline learning base-
lines, while consuming at most half training budget of the online baselines. The learned
meta-level policy can also be readily applied to enhance the performance of the low-level
optimizer on unseen BBO tasks, e.g., Neuroevolution (Such et al., 2017) tasks.
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2 RELATED WORKS

2.1 META-BLACK-BOX-OPTIMIZATION

Meta-Black-Box-Optimization (MetaBBO) aims to learning the optimal policy that boosts the opti-
mization performances of the low-level optimizer over a group of optimization problems (Ma et al.,
2023). Although several works facilitate supervised learning (Chen et al., 2017; Song et al., 2024;
Li et al., 2024b), Neuroevolution (Lange et al., 2023b;a; Ma et al., 2024a) or even LLMs (Ma et al.,
2024c; Liu et al., 2024) to meta-learn the control policy, the majority of current MetaBBO methods
adopt rather reinforcement learning for the policy optimization to strike a balance between effec-
tiveness and efficiency (Li et al., 2024a). Specifically, the dynamic algorithm configuration during
the low-level optimization can be regarded as a Markov Decision Process (MDP), where the state
reflects the status of the low-level optimization process, action denotes the configuration space of
the low-level optimizer and a reward function is designed to provide feedback to the meta-level
control policy. Existing MetaBBO methods differ with each other in the action space. In gen-
eral, the configuration space of the low-level optimizer involves the operator selection and/or the
hyper-parameter tuning. For the operator selection, initial works such as DE-DDQN (Sharma et al.,
2019) and DE-DQN (Tan & Li, 2021) facilitate Deep Q-network (DQN) (Mnih, 2013) as the meta-
level policy and dynamically suggest one of the prepared mutation operators at each optimization
step for the low-level Differential Evolution (DE) (Storn & Price, 1997) optimizer. Following such
paradigm, PG-DE (Zhang et al., 2024) and RL-DAS (Guo et al., 2024a) further explore the possi-
bility of using Policy Gradient (PG) (Schulman et al., 2017) methods to train probability model for
the operator selection and demonstrate PG methods are more effective than DQN methods. Besides,
RLEMMO (Lian et al., 2024) and MRL-MOEA (Wang et al., 2024) extend the target optimization
problem domain from single-objective optimization to multi-modal optimization and multi-objective
optimization respectively. Unlike the operator selection, the action space in hyper-parameter tuning
is not merely discrete since typically the hyper-parameters of an optimizer are continuous with fea-
sible ranges. In such continuous setting, the action space is infinite and can be handled either by
discretizing the continuous value range to reduce this space (Liu et al., 2019; Xu & Pi, 2020; Hong
et al., 2024; Yu et al., 2024) or directly using PG methods for continuous control (Yin et al., 2021;
Sun et al., 2021; Wu & Wang, 2022; Ma et al., 2024b).

While simply doing operator selection or hyper-parameter tuning for part of an optimizer has shown
certain performance boost, recent MetaBBO researches such as MADAC (Xue et al., 2022) and
ALDes (Zhao et al., 2024) indicate that controlling both sides gains more. However, the massive
action space in such setting and the online RL process in these MetaBBO methods make it challeng-
ing to balance the training effectiveness and the efficiency. In this paper, we propose Q-Mamba as
a novel MetaBBO method to control both the operator selection and hyper-parameter tuning with
competitive optimization performance against previous baselines, while reducing training efficiency
owing to the proposed sequential Q-function representation and offline learning strategy.

2.2 OFFLINE REINFORCEMENT LEARNING

Offline RL (Levine et al., 2020) aims at learning the optimal control policy from a pre-collected
demonstration set, without the direct interaction with the environment. This is appealing for real-
world complex control tasks, where on-policy data collection is extremely time-consuming (i.e.,
the dynamic algorithm configuration for black-box optimization discussed in this paper). A critical
challenge in offline RL is the distribution shift (Fujimoto et al., 2019): learning from offline data
distribution might mislead the policy optimization for out-of-distribution transitions hence degrades
the overall performance. Common practices in offline RL to relieve the distribution shift include a)
learning policy model (e.g., Q-value function) by sufficiently exploiting the Bellman backups of the
transition data in the demonstration set and constraining the value functions for out-of-distribution
ones (Haarnoja et al., 2018; Kumar et al., 2020). b) conditional imitation learning (Chen et al.,
2021; Janner et al., 2021; Dai et al., 2024) which turns the MDP into sequence modelling prob-
lem and uses sequence models (e.g., recurrent neural network, Transformer or Mamba) to imitate
state-action-reward sequences in the demonstration data. Although the conditional imitation learn-
ing methods have been used successfully in control domain, they do not provide any mechanism to
improve the demonstrated behaviour as those policy model learning methods. A recent offline RL
method, termed Q-Transformer (Chebotar et al., 2023), combines the strength of both lines of works
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by first decomposing the Q-value function for the entire high-dimensional action space into separate
one-dimension Q-value functions, and then leveraging transformer architecture for sequential Bell-
man backups learning. Q-Transformer allows policy improvement during the sequence-to-sequence
learning hence achieves superior performance to the prior works. Following Q-Transformer, in this
paper, we propose a novel Mamba-based architecture to further enhance the long sequence process-
ing and learning ability under MetaBBO setting.

3 PRELIMINARIES

3.1 DECOMPOSED Q-FUNCTION REPRESENTATION

Suppose we have an MDP {S,A = (A1, A2, ...., AK), R, T , γ}, where the action space is asso-
ciated by a series of K action dimensions, S, R(S,A), T (S′|S,A), γ denote the state, reward
function, transition dynamic and discount factor, respectively. Value-based RL methods such as
Q-learning (Watkins & Dayan, 1992) learn a Q-function Q(st, at1:K) as the prediction of the ac-
cumulated return from the time step t by applying at1:K at st. The Q-function can be iteratively
approximated by Bellman backup:

Q(at1:K |st)← R(st, at1:K) + γmax
at+1
1:K

Q(at+1
1:K |s

t+1). (1)

However, suppose there are at least M action bins for each of the K action dimensions, the Bellman
backup above would be problematic since the associated action space contains MK feasible actions.
Such dimensional curse challenges the learning effectiveness of the value-based RL methods. Re-
cent works such as SDQN (Metz et al., 2017) and Q-Transformer (Chebotar et al., 2023) propose
decomposing the associated Q-function into a series of time-dependent Q-function representations
for each action dimension to escape the curse of dimensionality. For the i-th action dimension, the
decomposed Q-function is rewritten as:

Q(ati|st)←


max
at
i+1

Q(ati+1|st, at1:i), if i < K

R(st, at1:K) + γmax
at+1
1

Q(at+1
1 |st+1). if i = K

(2)

Such a decomposition allows using sequence modelling techniques to learn the optimal policy ef-
fectively, while holding the learning consistency with the Bellman backup in Eq. (1). We provide a
brief proof in Appendix A.

3.2 STATE SPACE MODEL AND MAMBA

For an input sequence x ∈ RL×D with time horizon L and D-dimensional signal channels at each
time step, State Space Model (SSM) (Gu et al., 2022) processes it by the following first-order dif-
ferential equation, which maps the input signal x(t) ∈ RD to the time-dependent output y(t) ∈ RD

through implicit latent state h(t) as follows:
h(t) = Ah(t− 1) +Bx(t), y(t) = Ch(t). (3)

Here, A, B and C are learnable parameters, A and B are obtained by applying zero-order
hold (ZOH) discretization rule. An important property of SSM is linear time invariance. That is, the
dynamic parameters (e.g., A, B and C) are fixed for all time steps. Such models hold limitations
for sequence modelling problem where the dynamic is time-dependent. To address this bottleneck,
Mamba (Gu & Dao, 2023) lets the parameters B and C be functions of the input x(t). There-
fore, the system now supports time-varying sequence modelling. In the rest of this paper, we use
mamba block() to denote a Mamba computation block described in Eq. (3).

4 Q-MAMBA

In this section, we introduce Q-Mamba, an offline learning-based MetaBBO framework, which
enables effective control policy search for black-box optimizers with massive configuration space,
through efficient offline reinforcement learning. First, we describe the definition of the settings and
formulation of MetaBBO tasks. Next, we elaborate how we apply Q-function decomposition and
customized Q-Mamba neural network for sequence modelling of a MetaBBO task. Lastly, we derive
the training objective of Q-Mamba and introduce how we collect the offline data for the training.
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4.1 PROBLEM FORMULATION

A MetaBBO task typically involves three key ingredients: a neural network-based meta-level policy
πθ, a black-box optimizer A and a BBO problem distribution P to be solved.

Optimizer A. Black-box optimizers such as Evolutionary Algorithms (EAs) have been discussed
and developed over decades. Initial EAs such as Differential Evolution (DE) (Storn & Price, 1997)
holds few hyper-parameters (only two, F and Cr for balancing the mutation and crossover strength).
Modern variants of DE integrate various algorithmic components to enhance the optimization per-
formance. Taking the recent winner DE optimizer in IEEE CEC Numerical Optimization Compe-
tition (Mohamed et al., 2021), MadDE (Biswas et al., 2021) as an example, it has more than ten
hyper-parameters, which take either continuous or discrete values. Hence, the configuration space
of MadDE is exponentially larger than original DE. In this paper, we use A : {A1, A2, ..., AK} to
represent an optimizer with K parameters. We use additional ai to represent the taken value of Ai.

Problem distribution P . By leveraging the generalization advantage of meta-learning, MetaBBO
trains πθ over a problem distribution P . A common choice of P in existing MetaBBO works is
the CoCo BBOB Testsuites (Hansen et al., 2021), which contains 24 basic synthetic functions, each
can be extended to numerous problem instances by randomly rotating and shifting the decision
variables. Training on all problem instances in P is impractical. We instead sample a collection
of N instances {f1, f2, ..., fN} from P as the training set. For the j-th problem fj , we use f∗

j to
represent its optimal objective value, and fj(x) as the objective value at solution point x.

For an optimizer A and a problem instance fj , suppose we have a control policy πθ at hand and
we use A to optimize fj for T time steps (generations). At the t-th generation, we denote the
solution population as Xt. An optimization state st is first computed to reflect the optimization
status information of the current solution population Xt and the corresponding objective values
fj(X

t). Then the control policy dictates a desired configuration for A: at1:K = πθ(s
t). A optimizes

Xt by at1:K and obtains an offspring population Xt+1. A feedback reward R(st, at1:K) can then be
computed as a measurement of the performance improvement between fj(X

t) and fj(X
t+1). The

meta-objective of MetaBBO is to search the optimal policy πθ∗ that maximizes the expectation of
accumulated performance improvement over all problem instances in the training set:

θ∗ = argmax
θ

1

N

N∑
j=1

T∑
t=1

R(st, at1:K |πθ), (4)

where such a meta-objective can be regarded as MDP. An effective policy search technique for
solving MDP is RL, which is widely adopted in existing MetaBBO methods. In this paper, we focus
on a particular type of RL: Q-learning, which performs prediction on the Q-function in a dynamic
programming way, as described in Eq. (1).

4.2 MAMBA-BASED Q-LEARNER

Existing MetaBBO works primarily struggle in learning meta-level policy with massive joint-action
space, which is the configuration space A : {A1, A2, ..., AK} associated by K hyper-parameters of
the low-level optimizer A. To relieve this learning difficulty, we introduce Q-function decomposition
strategy as described in Section 3.1. For each hyper-parameter Ai in A, we represent its Q-function
as a discretized value function Qi = {Qi,1, Qi,2, ..., Qi,M}, where M is a pre-defined number of
action bins for all Ai in A (M = 16 in this paper). For any Ai which takes values from a contin-
uous range, we uniformly discretize the value range into M bins to make universal representation
across all Ai. By doing this, we turn the MDP in MetaBBO into a sequence prediction problem:
we regard predicting each Qi as a single decision step, then at time step t of the low-level opti-
mization, the complex associated configuration at1:K of A can be sequentially decided. We further
design a Mamba-based Q-Learner model to assist sequence modelling of decomposed Q-functions.
The overall workflow of the Mamba-based Q-Learner is illustrated in Figure 2. We next elaborate
technical elements in the figure with their design motivation.

Optimization state st. In MetaBBO, optimization state st profiles two types of information: the
properties of the optimization problem to be solved and the low-level optimization progress. In
Q-Mamba, we construct the optimization state st similar with latest MetaBBO methods (Ma et al.,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Mamba Block

MLP Q-value Head

Linear Embedding

�� ,

�1,1
� �1,2

� �1,�
�

+
Sk

ip
 C

on
ne

ct
io

n

Mamba Block

MLP Q-value Head

Linear Embedding

�� , �1
�

�2,1
� �2,2

� �2,�
�

+

ℎ�
�−1 ℎ1

�
Mamba Block

Linear Embedding

�� , ��
�

ℎ2
� ℎ�−1

�

start

Mamba Block

MLP Q-value Head

Linear Embedding

��+1 ,

�1,1
�+1 �1,2

�+1 �1,�
�+1

+

start

Environment Transition
��

�� = (            . . .            )�1
� ��

�
execute

��+1

ℎ�
�

Time Step t Time Step t+1

Figure 2: The workflow of the Mamba-based Q-Learner. The forward process of the neural network
is similar with the Recurrent Neural Network. At each time step, the Q-function of each decomposed
action dimension is output by conditioning the current state and selected action bin of the previous
action dimension. The environment transition is executed once all action dimensions are output.

2024b; Chen et al., 2024; Li et al., 2024b). Concretely, at each time step t in the low-level opti-
mization, an optimization state st ∈ R9 is obtained by calling a function cal state(). The first
6 dimensions are statistical features about the population distribution, objective value distribution,
etc., which provide the problem property information. The last 3 dimensions are temporal features
describing the low-level optimization progress. We leave the calculation detail of st in Appendix B.

Tokenization of action bins. We represent the M = 16 action bins of each hyper-parameters Ai in
A by 5-bit binary coding: 00000 ∼ 01111. Besides, since we sequentially predict the Q-function
for A1 to AK , we additionally use 11111 as a start token to activate the sequence prediction. We
have to note that for an optimizer A, some of its discrete hyper-parameters might hold less than M
action bins. For this case, we only use the first several tokens to represent the action bins in these
hyper-parameters. In the rest of this paper, we use token(ati) to denote the binary coding of the
action bin selected for Ai at time step t of the low-level optimization.

The Mamba-based Q-learner auto-regressively outputs the Q-function values Qt
i for each Ai in A.

Linear embedding. To obtain Qt
i, the first step is to prepare the input as the concatenation of the

optimization state st and the previously selected action bin token token(ati−1). Then we apply a
linear embedding layer on the input and obtain the embedding feature as follows:

Et
i = Linear([st, token(ati−1)]|Wemb, bemb), (5)

where Wemb ∈ R14×16 and bemb ∈ R16 are weights and bias, respectively. For Et
1, start token is

used to concat st, since there is no action bin before at1.

Mamba block. The computation of the mamba block is described in Section 3.2. It receives the
hidden state ht

i−1 and the embedding feature Et
i and outputs the decision information Ot

i and hidden
state ht

i. Ot
i is used to parse Q-function Qt

i and ht
i is used for next decision step as follows:

Ot
i, h

t
i = mamba block(Et

1, h
t
i−1|Wmamba), (6)

where Wmamba denotes all learnable parameters in Mamba, which includes the state transition pa-
rameters A, B and C, the parameters of discretization step matrix, and time-varying mapping param-
eters for the state transition parameters. In this paper we use the mamba-block in Mamba repo1, with
default settings. To obtain Ot

1, the last hidden state of time step t− 1, ht−1
K is used. The motivation

of using Mamba is that: a) For a MetaBBO task, the sequence length involves thousands of deci-
sion steps since there are hundreds of optimization steps and K hyper-parameters to be decided per
optimization step. We hence adopt Mamba rather than Transformer due to the the inefficiency and
performance downside of Transformer for very lone sequence (Ota, 2024), which is addressed by
Mamba using data-dependent embedding and hardware-aware design. b) Mamba allows selectively
extracting essential information and filter out irrelevant noise according to the input sequence (Gu
& Dao, 2023), which would enhance the sequence-to-sequence learning effectively.

1https://github.com/state-spaces/mamba
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Q-value head. The Q-value head parses the decision information Ot
i into the decomposed Q-

function Qt
i through a linear mapping layer. Before the linear mapping, we add the input

[st, token(ati−1)] to Ot
i as a skip connection as follows:

Qt
i = Norm(σ(Sti)), Sti = Linear(Ot

i + [st, token(ati−1)]|Whead, bhead)). (7)

Here, σ is Leaky ReLU activation function, Norm is the min-max normalization over M bins of
Qt

i. Whead ∈ R16×16 and bhead ∈ R16 are weights and bias. When we obtain Qt
i, we select the

action bin with the maximum value for hyper-parameter Ai: ati = argmax
j

Qt
i,j , and use token(ati)

for inferring the decomposed Q-function Qt
i+1 of next decision step. Once the action bins of all

hyper-parameters A1 ∼ AK have been decided, the optimizer A optimizes the problem for one step
and obtains the optimization state st+1 from the updated solution population. To summarize, in Q-
Mamba, the meta-level policy πθ is the Mamba-based Q-Learner, of which the learnable parameters
θ includes {Wemb, bemb,Wmamba,Whead, bhead}.

4.3 TRAINING OBJECTIVE

Online learning is widely adopted in existing works, which is especially inefficient under MetaBBO
setting, where the low-level optimization typically involves hundreds of optimization steps hence ex-
tremely time-consuming. In this paper we propose learning the decomposed sequential Q-function
through offline RL to improve the training efficiency of MetaBBO. Concretely, we consider a trajec-
tory τ = {s1, (a11, ..., a1K), r1, ..., sT , (aT1 , ..., a

T
K), rT }, which is previously sampled by an offline

policy π̂. Here, ati denotes the action bin selected for Ai at time step t. The training objective of
Q-Mamba is a synergy of Bellman backup update (Eq. (2)) and conservative regularization as

J(τ |θ) =
T∑

t=1

K∑
i=1

M∑
j=1

J(Qt
i,j |θ) =


1
2 (Q

t
i,j −max

j
Qt

i+1,j)
2, if i < K, j = ati

β
2

[
Qt

i,j − (rt + γmax
j

Qt+1
1,j )

]2
, if i = K, j = ati

λ
2 (Q

t
i,j − 0)2, if j ̸= ati

(8)

where Qt
i,j is the Q-value of the j-th bin in Qt

i, which is output by our Mamba-based Q-Learner πθ,
with [st, token(ati−1)] as input. The first two branches in Eq. (8) are TD error following the Bellman
backup for decomposed Q-function (as described in Eq. (2)). We additionally add a weight β (we
set β = 10 in this paper) on the last action dimension to reinforce the learning on this dimension. As
described in Eq. (2), the other action dimension is updated by the inverse maximization operation,
so ensuring the accuracy of the Q-value in the last action dimension helps secure the accuracy of
the other dimensions. The last branch in Eq. (8) is the conservative regularization introduced in
representative offline RL method CQL (Kumar et al., 2020), which is used to relieve the over-
estimation due to the distribution shift. Here, the Q-values of action bins which are not selected in
the trajectory τ (j ̸= ati) is regularized to 0. This would accelerate the learning of the TD error. We
set the weight of the conservative regularization λ = 1 in this paper.

4.4 E&E DATASET

The trajectory samples play a key role in offline RL applications (Ball et al., 2023). On the one
hand, good quality data helps the training converges. On the other hand, randomly generated data
help RL explores and learns more robust model. In Q-Mamba, we collect a trajectory dataset C of
size D = 10K which combines the good quality data and randomly generated data. Concretely, for
a low-level black-box optimizer A with K hyper-parameters and a problem distribution P , we pre-
train a series of up-to-date MetaBBO methods (e.g., RLPSO (Wu & Wang, 2022), LDE (Sun et al.,
2021), GLEET Ma et al. (2024b)) which control hyper-parameters of A to optimize the problems in
P . Then we rollout the pre-trained MetaBBO methods on problem instances in P to collect µ · D
complete trajectories. We then use the random strategy to randomly control the hyper-parameters of
A to optimize the problems in P and collect (1− µ) ·D trajectories. By combining the exploitation
experience in the trajectories of MetaBBO methods and the exploration experience in the random
trajectories, our Q-Mamba learns robust and high-performance meta-level policy. In this paper,
we set µ = 0.5 to strike a good balance. To meta-train a Q-Mamba agent for controlling A to
optimize problems in P , we use AdamW with a learning rate 5e − 3 to minimize the expectation
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training objective Eτ∈CJ(τ |θ). The training lasts for 300 epochs with a batch size of 64. After the
training, the learned Q-Learner model πθ can be directly used to control A for unseen problems.
These unseen problems can be either those within the same problem distribution P , or totally out-
of-distribution ones. We validate both generalization aspects of our Q-Mamba in the following
experimental section.

5 EXPERIMENTAL RESULTS

In the experiments, we aim to answer the following questions: a) How Q-Mamba performs compared
with the other online/offline baselines? b) Can Q-Mamba be zero-shot to more challenging realistic
optimization scenario? c) How important are the key designs in Q-Mamba?

5.1 EXPERIMENT SETUP

Training dataset. We have prepared 10 different low-level black-box optimizer Alg0 ∼ Alg9,
which cover several types of algorithms such as DE, PSO and GA. Due to the different algorithm
structure inside, the number of hyper-parameters (action dimensions) in these optimizers range from
3 ∼ 16, hence showing different difficulty-levels for MetaBBO methods. We introduce how we
construct these optimizer and their algorithm structures in Appendix D.1. The problem distribu-
tion selected for the training is the CoCo BBOB Testsuites (Hansen et al., 2021), which contains 24
basic synthetic functions with diverse properties such as uni-modal, multi-modal, (non-)separable,
(a)symmetrical, flattened areas, and continuity features. We denote it as Pbbob. We further facili-
tate train-test split on Pbbob, dividing it into 16 problem instances for the training, and 8 problem
instances for the testing. These problem instances range from 5 ∼ 50-dimensional, we randomly
apply shift and rotation on their solution spaces to make the optimization landscapes more challeng-
ing. Details of Pbbob and its train-test split is provided in Appendix D.2. By using Alg0 ∼ Alg9
and the 16 training problem instances, we create 10 E&E Datasets by the procedure described in
Section 4.4. For online baselines, we train them on each low-level optimizer to optimize the train-
ing problem instances. For offline baselines including our Q-Mamba, we train them on each E&E
Dataset. We note that the total optimization steps for the low-level optimization is set as T = 500.

Baselines. We compare a wide range of baselines to obtain comprehensive and significant experi-
mental observations. Concretely, we compare four online baselines: RLPSO (Wu & Wang, 2022)
that uses simple MLP architecture for controlling low-level optimizers. LDE (Sun et al., 2021) that
facilitates LSTM architecture for sequential controlling low-level optimizers using temporal opti-
mization information. GLEET (Ma et al., 2024b) that uses Transformer architecture for mining
the exploration-exploitation tradeoff during the low-level optimization. These three baselines are
all trained to output associated configuration without decomposition as our Q-Mamba. We also pro-
vide an online baseline of our Q-Mamba, which learns by interacting with the environments. We also
compare two offline baselines: Decision Transformer (Chen et al., 2021) and Q-Transformer (Cheb-
otar et al., 2023). The former tokenizes the state, action and return-to-go signal and uses Transformer
for sequence-to-sequence fitting, which is an offline RL method through conditional imitation learn-
ing. The latter applies Q-function decomposition as our Q-Mamba and facilitates offline Q-learning.
However it has to split the trajectory sequence into short context windows for Transformer to pro-
cess and hence is claimed relatively weak in super long sequence modelling such as the decomposed
Q-value sequence in this paper. The settings of these baselines primarily follows their original pa-
pers, with a little fix up to make it compatible with the tasks in this paper. We elaborate them in
Appendix D.3. To ensure the fairness of the comparison, all baselines go through the same order of
training data, which is 10K trajectories.

Performance metric. We adopt the accumulated performance improvement Perf(A, f |πθ) for
measuring the optimization performance of the compared baselines and our Q-Mamba. Given a
MetaBBO baseline πθ, the corresponding low-level optimizer A and an optimization problem in-
stance f , the accumulated performance improvement is calculated as the sum of reward feedback
at each optimization step t: Perf(A, f |πθ) =

∑T
t=1 r

t. The reward feedback is calculated as the
relative performance improvement between two consecutive optimization steps: rt = f∗,t−1−f∗,t

f∗,0−f∗ ,
where f∗,t is the objective value of the best found solution until time step t, f∗ is the optimum of f .
The maximal accumulated performance improvement is 1 when the optimum of f is found.
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Table 1: Performance comparison between Q-Mamba and other online/offline baselines. All base-
lines are tested on unseen problem instances within the training distribution Pbbob. We additionally
present the averaged training/inferring time of all baselines in the last row.

Online Offline
RLPSO
(MLP)

LDE
(LSTM)

GLEET
(Transformer)

Online
Q-Mamba

Decision-
Transformer Q-Transformer Q-Mamba

Alg0
9.855E-01
±9.038E-03

9.563E-01
±1.830E-02

9.616E-01
±3.110E-03

9.873E-01
±2.096E-01

9.325E-01
±2.680E-02

9.646E-01
±3.975E-02

9.889E-01
±7.779E-03

Alg1
9.833E-01
±6.924E-03

9.597E-01
±1.882E-02

9.793E-01
±6.555E-03

9.719E-01
±2.841E-02

5.699E-01
±1.054E-01

9.847E-01
±6.167E-03

9.779E-01
±3.602E-02

Alg2
9.542E-01
±4.945E-02

9.747E-01
±1.748E-02

8.913E-01
±2.192E-02

9.347E-01
±1.050E-01

9.297E-01
±2.899E-02

8.290E-01
±7.413E-02

9.325E-01
±9.763E-02

Alg3
9.894E-01
±7.337E-03

9.866E-01
±2.054E-02

9.887E-01
±3.853E-03

9.910E-01
±6.400E-03

7.852E-01
±5.396E-02

9.895E-01
±9.949E-03

9.915E-01
±1.962E-02

Alg4
9.953E-01
±3.322E-03

9.877E-01
±1.118E-02

9.938E-01
±2.834E-03

9.951E-01
±4.103E-03

6.764E-01
±1.193E-01

9.951E-01
±3.487E-03

9.963E-01
±7.592E-03

Alg5
9.740E-01
±2.250E-02

9.857E-01
±8.725E-03

9.795E-01
±1.501E-02

9.841E-01
±9.374E-02

7.265E-01
±1.011E-01

9.474E-01
±2.329E-02

9.865E-01
±2.508E-02

Alg6
9.725E-01
±1.581E-02

9.769E-01
±1.596E-03

9.525E-01
±2.431E-02

9.704E-01
±3.878E-02

9.233E-01
±3.921E-02

8.837E-01
±5.120E-02

9.842E-01
±3.285E-02

Alg7
9.450E-01
±2.050E-02

9.735E-01
±1.117E-02

9.678E-01
±1.225E-02

9.611E-01
±2.182E-02

8.426E-01
±4.855E-02

9.598E-01
±3.276E-02

9.665E-01
±6.986E-02

Alg8
9.924E-01
±4.745E-03

9.867E-01
±9.023E-03

9.898E-01
±5.875E-03

9.9294E-01
±1.421E-02

9.734E-01
±1.463E-02

9.509E-01
±1.903E-02

9.933E-01
±2.633E-02

Alg9
9.914E-01
±4.497E-03

9.904E-01
±6.306E-03

9.910E-01
±5.846E-03

9.920E-01
±9.485E-03

8.706E-01
±3.951E-02

9.895E-01
±6.754E-03

9.950E-01
±9.981E-03

Avg
Time 28h / 11s 28h / 12s 25h / 13s 63h / 10s 13h / 10s 50h / 11s 13h / 10s

5.2 IN-DISTRIBUTION GENERALIZATION

After the training, we compare the generalization performance of our Q-Mamba and other baselines
on the 8 problem instances in Pbbob which are not used for the training of all baselines. Concretely,
for each baseline and each low-level optimizer, we report in Table 1 the average value and error bar
of the accumulated performance improvement across the 8 tested problems and 19 independent runs.
We additionally present the average training time and inferring time (time consumed to complete a
trajectory) for each baseline in the last row. The results in Table 1 show that: a) Q-Mamba v.s. On-
line baselines. Q-Mamba significantly outperforms the online baselines RLPSO, LDE and GLEET,
which control the low-level optimizer in the massive associated configuration spaces. This evidences
the effectiveness of using the decomposed Q-function representation, which could significantly re-
duce the configuration hence eases the learning difficulty. Meanwhile, due to the offline learning
paradigm, Q-Mamba consumes only half of the training time the online baselines require. This is
especially appealing for BBO scenarios where the simulation is expensive and time-consuming. b)
Q-Mamba v.s. Decision Transformer. We observe that Decision-Transformer holds similar train-
ing efficiency with our Q-Mamba. The difference between it and Q-Mamba is that DT generally
imitates the trajectory by predicting the tokens in the transitions. Results in the table show the per-
formance of DT is quite unstable. In opposite, our Q-Mamba allows policy improvement during
the sequence learning, which shows better learning convergence and effectiveness than the condi-
tional imitation-learning based offline RL such as DT. c) Q-Mamba v.s. Q-Transformer. While
our Q-Mamba shares the Q-function decomposition as a core design, a major novelty we introduced
is the Mamba architecture and the corresponding weighted Q-function representation learning. The
superior performance of Q-Mamba to the Q-Transformer possibly roots from the inability of Trans-
former architecture for extremely long Q-function sequence in MetaBBO setting. In Q-transformer,
the entire sequence is divided into numerous context windows and learned respectively. Such forced
truncation not only influences the long-term temporal dependency but also increases the training
time. d) Q-Mamba v.s. Online Q-Mamba. We observe a performance degradation when training
Q-Mamba under the online learning setting. It might reveal that the offline data provided by the
other policies could enrich the experience of the meta-level policy, while online data sorely comes
from the meta-level policy itself. The generalization performance is hence degraded.

5.3 OUT-OF-DISTRIBUTION GENERALIZATION

We further validate the generalization performance of Q-Mamba and other baselines on more chal-
lenging scenario, e.g., neuroevolution (Such et al., 2017) tasks. In a neuroevolution task, a black-box
optimizer is used to evolve a population of neural networks according to their performance on a spe-
cific machine learning task, i.e., classification, robotic control (Galván & Mooney, 2021). Specif-
ically, we consider four continuous control tasks in Mujoco (Todorov et al., 2012). We optimize a
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Figure 3: Zero shot performance of
Q-Mamba and the other baselines
on neuroevolution tasks.

Table 2: Performance analysis on the importance of loss ra-
tio λ and β.

λ = 0 λ = 1 λ = 10

β = 1
9.756E-01
±1.570E-02

9.828E-01
±1.203E-02

9.855E-01
±1.192E-02

β = 10
9.833E-01
±1.424E-02

9.889E-01
±7.780E-03

9.857E-01
±1.134E-02

Table 3: Performance of Q-Mamba under different propor-
tion of good quality data.

µ 0 0.25 0.5 0.75 1

Perf. 9.832E-01
±1.264E-02

9.874E-01
±6.489E-03

9.889E-01
±7.780E-03

9.793E-01
±1.614E-02

9.834E-01
±9.692E-03

2-layer MLP policy for each task by Q-Mamba and other baselines trained for controlling Alg0 on
Pbbob. To align with the challenging condition in realistic BBO tasks, we only allow the low-level
optimization involves a small network population (10 solutions) and T = 50 optimization steps.
We present the average optimization curves across 10 independent runs in Figure 3. The results
underscore the superior generalization performance of Q-Mamba to all other baselines: while only
trained on synthetic problems with at most 50 dimensions, our Q-Mamba is capable of optimizing
the MLP polices which hold thousands of parameters in these neuroevolution tasks.

5.4 ABLATION STUDY

We perform two ablation experiments on our Q-Mamba to validate the effectiveness of the key
designs. First, we demonstrate the effectiveness over the proposed training objective in Eq. (8). As
shown in Table 2, when λ = 0, the training objective in Eq. (8) turns into the Bellman backup
without conservative regularization. The performance degradation under this setting reveals the
importance of the conservative term for relieving the distribution shift caused by offline leaning.
When β = 1, the training objective would not focus on the Q-value prediction of the last action
dimension, which in turn interferes the prediction of other action dimensions through the inverse
maximization operation in Eq. (2). A setting with λ = 1 and β = 10 ensures the overall learning
effectiveness. Next, we analyse the data mixing ratio µ in the E&E dataset (Section 4.4). When
µ = 0, all trajectories come from a random configuration strategy. When µ = 1, all trajectories
come from the well-performing MetaBBO baselines. The results in Table 3 reveal that mixing these
two types of data equally (µ = 0.5) might enhance Q-Mamba’s learning effectiveness by leveraging
the rich historical experiences from both exploration and exploitation.

6 CONCLUSION

In this paper, we propose Q-Mamba as a novel offline learning-based MetaBBO framework
which improves both the effectiveness and the training efficiency of existing online leaning-based
MetaBBO methods. To achieve this, Q-Mamba decomposes the associated Q-function for the mas-
sive configuration space into sequential Q-functions for each configuration. We further propose a
Mamba-based Q-Learner for effective sequence learning tailored for such Q-function decomposition
mechanism. By incorporating with a large scale offline dataset which includes both the exploration
and exploitation trajectories, Q-Mamba consumes less than half training time of existing online
baselines, while achieving strong control power across various black-box optimizers and diverse
BBO problems. Our framework does have certain limitations. First the number of the action bins M
cannot be too large under the Q-learning paradigm, this might become cumbersome if fine-grained
control is required for some optimizers. Second, Q-Mamba is trained for a given optimizer and
requires re-training for other optimizers. An effective optimizer feature extraction mechanism may
enhance Q-Mamba’s co-training on various optimizers. We mark this as an important future work.
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Haotian Zhang, Jianyong Sun, Thomas Bäck, and Zongben Xu. Learning to select the recombination
operator for derivative-free optimization. Science China Mathematics, 2024.

Qi Zhao, Tengfei Liu, Bai Yan, Qiqi Duan, Jian Yang, and Yuhui Shi. Automated metaheuristic
algorithm design with autoregressive learning. arXiv preprint arXiv:2405.03419, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOF OF Q-FUNCTION DECOMPOSITION

To show that transforming MDP into a per-action-dimension form still ensures optimization of the
original MDP, we show that optimizing the Q-function for each action dimension is equivalent to
optimizing the Q-function for the full action. We omit the time step superscript t for the ease of
presentation.

If we consider apply full action a1:K at the current state s to transit to the next step state s′. The
Bellman update of the optimal Q-function could be written as:

max
a1:K

Q(a1:k|s) = max
a1:K

[
R(s, a1:K) + γmax

a1:K

Q(a1:K |s′)
]

= R(s, a∗1:K) + γmax
a1:K

Q(a1:K |s′) (9)

where R(·) is the reward we get after executing the full action a1:K . Under the Q-function decom-
postion, the Bellman update of the optimal Q-function for each action dimension ai is:

max
ai

Q(ai|s, a∗1:i−1) = max
ai

[
max
ai+1

Q(ai+1|s, a∗1:i)
]

= max
ai

[
max
ai+1

(
max
ai+2

Q(ai+2|s, a∗1:i+1)

)]
= · · ·
= R(s, a∗1:K) + γmax

a1

Q(a1|s′)

= R(s, a∗1:K) + γmax
a1

[
max
a2

Q(a2|s′, a1)
]

= · · ·
= R(s, a∗1:K) + γmax

a1:K

Q(a1:K |s′) (10)

Here the first two lines are the inverse maximization operation as described in Section 3.1, the
fourth line is the Bellman update for the last action dimension. The last three lines also follow the
inverse maximization operation. By comparing Eq. (9) and Eq. (10) we prove that optimizing the
decomposed Q-function consistently optimizes the original full MDP.

B OPTIMIZATION STATE DESIGN

The formulation of the optimization state features is described in Table 4. States s{1∼6} are opti-
mization problem property features which collectively represent the distributional features and the
statistics of the objective values of the current candidate population. Specifically, state s1 represents
the average distance between each pair of candidate solutions, indicating the overall dispersion level.
State s2 represents the average distance between the best candidate solution in the current population
and the remaining solutions, providing insights into the convergence situation. State s3 represents
the average distance between the best solution found so far and the remaining solutions, indicat-
ing the exploration-exploitation stage. State s4 represents the average difference between the best
objective value found in the current population and the remaining solutions, and s5 represents the
average difference when compared with the best objective value found so far. State s6 represents
the standard deviation of the objective values of the current candidates. Then, states s{7,8,9} col-
lectively represent the time-stamp features of the current optimization progress. Among them, state
s7 denotes the current process, which can inform the framework about when to adopt appropriate
strategies. States s8 and s9 are measures for the stagnation situation.

C ACTION DISCRETIZATION AND RECONSTRUCTION

Given the M = 16 bins of Q values Qt
i for the i-th action, if the i-th hyper-parameter Ai of the

low-level optimizer is in continuous space, we first uniformly discretize the space into M bins:
Âi = {Ai,1, Ai,2, · · · , Ai,M} where Ai,1 and Ai,M are the lower and upper bounds of the space.
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Table 4: Formulations of state features.

States Notes

Pr
ob

le
m

Pr
op

er
ty

st1 mean
xi,xj∈Xt

||xi − xj ||2
Average distance between any pair of
individuals in current population.

st2 mean
xi∈Xt

||xi − x∗,t||2
Average distance between each individual
and the best individual in t-th generation.

st3 mean
xi∈Xt

||xi − x∗||2
Average distance between each individual
and the best-so-far solution.

st4 mean
xi∈Xt

(f(xi)− f(x∗))
Average objective value gap between each
individual and the best-so-far solution.

st5 mean
xi∈Xt

(f(xi)− f(x∗,t))
Average objective value gap between each
individual and the best individual in t-th
generation.

st6 std
xi∈Xt

(f(xi))
Standard deviation of the objective values
of population in t-th generation, a value
equals 0 denotes converged.

O
pt

im
iz

at
io

n
Pr

og
re

ss

st7 (T − t)/T
The potion of remaining generations, T
denotes maximum generations for one run.

st8 st/T
st denotes how many generations the
optimizer stagnates improving.

st9

{
1 if f(x∗,t) < f(x∗)

0 otherwise

Whether the optimizer finds better
individual than the best-so-far solution.

Then we use the action ati obtained by ati = argmax
j

Qt
i,j as an index and assign the value of the i-th

hyper-parameter Ai with Ai = Âi[a
t
i]. If the hyper-parameter is in discrete space Â with mi ≤ M

candidate choices, the action ati is obtained by ati = argmax
j∈[1,mi]

Qt
i,j and the value of the i-th hyper-

parameter is Â[ati]. After the value of all hyper-parameters are decided, the optimizer A takes a step
of optimization with the hyper-parameters and return the next state from the updated population.

D EXPERIMENT SETUP

D.1 BACKEND ALGORITHM GENERALIZATION

In this paper, we randomly construct 10 optimizers with action space dimensions
{3, 5, 7, 8, 10, 12, 13, 14, 15, 16}. To do so, we first collect a optimization operator space
containing operators with controllable parameters such as the mutation and crossover operators
from DE (Storn & Price, 1997), PSO update rules (Kennedy & Eberhart, 1995), crossover and
mutation operators from GA (Holland, 1992). Operators without controllable parameters such as
selection and population reduction operators are also included. Then, to get an optimizer with n
hyper-parameters, we randomly sample a batch of operators to construct an optimizer, if the total
number of controllable parameters in all operators of the optimizer is not match n, we eliminate it
and resample until the wanted optimizer is constructed. The hyper-parameters of the optimizer such
as the initial population sizes are randomly determined. Below we present the structure of Alg0 (3
actions) and Alg9 (16 actions) as examples.

Alg0 (as shown in Algorithm 1) is DE/current-to-rand/1/exponential (Storn & Price, 1997) with
Linear Population Size Reduction (LPSR) (Tanabe & Fukunaga, 2014). The mutation operator
DE/current-to-rand/1 is formulated as:

x′
i = xi + F1(xr1 − xi) + F2(xr2 − xr3) (11)
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Algorithm 1 Pseudo code of Alg0

1: Input: Optimization problem f , optimization horizon T , Meta-level agent π.
2: Output: Optimal solution x∗ = argmin

x∈X
f(x).

3: Uniformly initialize a population X1 with shape NP1 = 100 and evaluate it with problem f ;
4: for t = 1 to T do
5: Receive the 3 action values at = {F1, F2, Cr} from the agent π;
6: Generate X ′

t by using DE/current-to-rand/1 (Eq. (11)) on Xt;
7: Apply Exponential crossover (Eq. (12)) on Xt and X ′

t to get X ′′
t ;

8: Clip the values beyond the search range in X ′′
t ;

9: Calculate f(X ′′
t );

10: Compare f(Xt) and f(X ′′
t ), select the better solutions to generate Xt+1;

11: end for

where xr· are randomly chosen solutions and F1, F2 ∈ [0, 1] are two controllable parameters. The
Exponential crossover operator is formulated as:

x′′
i =

{
x′
i,j , if randk:j < Cr and k ≤ j ≤ L+ k

xi,j , otherwise
, j = 1, · · · , Dim (12)

where Dim is the solution dimension, L ∈ {1, · · · , Dim} is a random length, rand ∈ [0, 1]Dim is
a random vector, x′

i is the trail solution generated by mutation operator and Cr ∈ [0, 1] is a control-
lable parameter. At the beginning, a population X with size 100 is uniformly sampled and evaluated.
In each optimization generation, given the parameters F1, F2, Cr from the meta-level agent, algo-
rithm applies DE/current-to-rand/1 mutation and Exponential crossover operator on the population
to generate the trail solution population X ′′

t . An comparison is conducted between population Xt

and X ′′
t where the better solutions are selected for the next generation population Xt+1. Finally the

worst solutions are removed from Xt+1 in the LPSR process.

For Alg9 (as shown in Algorithm 2), the population sampled in Halton sampling (Halton, 1960)
is divided into four sub-populations. The first sub-population uses GA operators MPX (Holland,
1992) crossover and Polynomial mutation (Dobnikar et al., 1999) accompanying with the Roulette
selection (Holland, 1992). MPX crossover is formulated as:

x′
i =

{
x′
r1,j , if randj < Cr1

x′
i,j , otherwise

, j = 1, · · · , Dim (13)

where randj ∈ [0, 1] are random numbers, Cr1 is a controllable parameter and xr1 is a random
solution. The sample method of xr1 is also a controllable action Xrmpx which can be uniform
sampling or sampling with fitness based ranking. The Polynomial mutation is as follow:

x′′
i =

{
x′
i + ((2u)

1
1+ηm − 1)(x′

i − lb), if u ≤ 0.5;

x′
i + (1− (2− 2u)

1
1+ηm )(ub− x′

i), if u > 0.5.
(14)

where ηm ∈ {1, 2, 3} is a controllable parameter, u ∈ [0, 1] is a random number, ub and lb are the
upper and lower bound of the search range.

The second sub-population uses SBX crossover (Deb et al., 1995), Gaussian mutation (Holland,
1992) and Tournament selection Goldberg & Deb (1991):

x′
i = 0.5 · [(1∓ β)xi + (1± β)xr1], where β =

{
(2u)

1
1+ηc − 1, if u ≤ 0.5;

( 1
2−2u )

1
1+ηc , if u > 0.5.

(15)

where ηc ∈ {1, 2, 3} is controllable parameter and u ∈ [0, 1] is random number. Similar to MPX,
SBX also uses an action Xrsbx to select parent solutions xr1. The Gaussian mutation operator
applies Gaussian noise with controllable parameter σ ∈ [0, 1] on the solution:

x′′
i = N (x′

i, σ · (ub− lb)) (16)

The third sub-population is DE/rand/2/exponential (Storn & Price, 1997) where the DE/rand/2 mu-
tation operator is:

x′
i = xr1 + F13(xr2 − xr3) + F23(xr4 − xr5) (17)
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Algorithm 2 Pseudo code of Alg9

1: Input: Optimization problem f , optimization horizon T , Meta-level agent π.
2: Output: Optimal solution x∗ = argmin

x∈X
f(x).

3: Initialize 4 sub-populations {Xi,1}i=1,2,3,4 using Halton sampling with sizes {200, 100, 100, 100}.
4: Evaluate the sub-populations with problem f ;
5: for t = 1 to T do
6: Receive the 16 action values at from the agent π;
7: Generate X1,t+1 using MPX (Eq. (13)), Polynomial mutation (Eq. (14)) and Roulette selection on X1,t;

8: Generate X2,t+1 using SBX (Eq. (15)), Gaussian mutation (Eq. (16)) and Tournament selection on X2,t;

9: Generate X3,t+1 using DE/rand/2 mutation (Eq. (17)), Exponential crossover (Eq. (12)) on X3,t;
10: Generate X4,t+1 using DE/current-to-best/1 mutation (Eq. (18)), Binomial crossover (Eq. (19)) on X4,t;

11: for i = 1 to 4 do
12: Replace the worst solution in Xi,t+1 by the best solution in Xcmi,t+1

13: end for
14: end for

where xr· are randomly selected solutions and F13, F23 ∈ [0, 1] are controllable parameters for
the third sub-population. The Exponential crossover formulated as Eq. (12) is used in this sub-
population with parameter Cr3 ∈ [0, 1].

The last sub-population is DE/current-to-best/1/binomial (Storn & Price, 1997). The mutation oper-
ator with parameter F14, F24 ∈ [0, 1] is formulated as:

x′
i = xi + F14(x

∗ − xi) + F24(xr1 − xr2) (18)

where x∗ is the best performing solution in the sub-population. The Binomial crossover uses a
similar process as MPX but introduces a randomly selected index jrand ∈ {1, · · · , Dim} to ensure
the difference between the generated solution and the parent solution:

x′′
i =

{
x′
i,j , if randj < Cr4 or j = jrand

x′
i,j , otherwise

, j = 1, · · · , Dim (19)

where randj are random numbers and Cr4 ∈ [0, 1] is the controllable parameter.

Besides, Alg9 conducts the controllable information sharing among the sub-populations where the
worst solution in current sub-population Xi,g is replaced by the best solution from the target sub-
population Xcmi,g , cm{1,2,3,4} ∈ {1, 2, 3, 4} are four actions indicating the target sub-population.

Given the 16 actions {Cr1, Xrmpx, ηm, ηc, Xrsbx, σ, F13, F23, Cr3, F14, F24, Cr4, cm1, cm2,
cm3, cm4}, Alg9 uses these parameters to configure the mutation and crossover operators and ap-
plies them on the 4 sub-populations. Then the information sharing is activated for better exploration.
Finally, the next generation population is obtained through the population reduction processes.

D.2 TRAIN-TEST SPLIT OF BBOB PROBLEMS

As shown in Table 5, the BBOB testsuite (Hansen et al., 2021) contains 24 different optimization
problems with diverse characteristics such as unimodal or multi-modal, separable or non-separable,
high conditioning or low conditioning. To maximize the problem diversity of the training problem
set and hence empower the agent better generalization ability, we choose the most diverse 16 prob-
lem instance for training, whose fitness landscapes in 2D scenario are shown in Figure 4. The rest
8 instances are used as testing set whose 2D landscapes are shown in Figure 5. The dimensions of
each problem instances in both training and testing set are randomly chosen from {5, 10, 20, 50}.

D.3 BASELINE IMPLEMENTATION

RLPSO (Wu & Wang, 2022) uses two MLP policy networks to configure the algorithm parameters.
For each solution in each optimization generation, given the solution and the best so far solution,
RLPSO generates the a pair of µ and σ of the target parameter using the two networks respectively.
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Table 5: Overview of the BBOB testsuites.

Problem Functions Dimensions

Separable functions

f1 Sphere Function 50
f2 Ellipsoidal Function 5
f3 Rastrigin Function 5
f4 Buche-Rastrigin Function 10
f5 Linear Slope 50

Functions
with low or moderate

conditioning

f6 Attractive Sector Function 5
f7 Step Ellipsoidal Function 20
f8 Rosenbrock Function, original 10
f9 Rosenbrock Function, rotated 10

Functions with
high conditioning

and unimodal

f10 Ellipsoidal Function 10
f11 Discus Function 5
f12 Bent Cigar Function 50
f13 Sharp Ridge Function 10
f14 Different Powers Function 20

Multi-modal
functions

with adequate
global structure

f15 Rastrigin Function (non-separable counterpart of F3) 5
f16 Weierstrass Function 20
f17 Schaffers F7 Function 50
f18 Schaffers F7 Function, moderately ill-conditioned 50
f19 Composite Griewank-Rosenbrock Function F8F2 10

Multi-modal
functions
with weak

global structure

f20 Schwefel Function 20
f21 Gallagher’s Gaussian 101-me Peaks Function 20
f22 Gallagher’s Gaussian 21-hi Peaks Function 10
f23 Katsuura Function 20
f24 Lunacek bi-Rastrigin Function 20

Default search range: [-5, 5]Dim

Then the parameter value is sampled from N (µ, σ) and the two policy networks are updated by
policy gradient. The original design of using the solution and best solution as network input hinders
the generalization ability of the RLPSO policy across problems with different dimensions, therefore
in the experiment we replace the network input by the same 9-dimensional state representation as
Q-Mamba. To control the algorithms with up to 16 actions in our experiment, we set the output
dimension of the two networks to 16 and use the first few values if the number of actions of the
algorithm is lower than 16. In summary, for RLPSO baseline we use the MLP with structure (9 ×
64× 32× 16) for both networks and retain their original Policy Gradient training process.

LDE (Sun et al., 2021) adopts a Long Short-Term Memory (LSTM) network to integrate the opti-
mization information from previous optimization generations and the fitness of solutions in current
population. Then two MLP networks predict the µ and σ for the target parameters of each solution
based on the integrated optimization status. REINFORCE is used to update the policy at the end of
an optimization trajectory. LDE configure the individual-level parameters for each solution there-
fore its state representation and action design are related to the population size. To adapt the network
to our generated algorithms where population sizes may reduce, we conduct the modification simi-
lar to that on RLPSO: we use our 9-dimensional state instead of its original population size related
state. The output dimensions of the networks are also set to 16 to perform the population-level pa-
rameter configuration. In this paper, we use an one-layer LSTM with input dimension 9 and hidden
dimension 32. The MLP network for µ and σ are both (32× 16).

GLEET (Ma et al., 2024b) designs a feature embedding module for feature extraction, a
Transformer-based fully informed encoder for information processing amongst individuals and an
exploration-exploitation decoder for individual-level parameter configuration in which the encoded
individual features are decoded in a Transformer block and generate the individual-wise µs and
σs for action sampling. The problem dimension-free state representation and Transformer-based
network structure make GLEET compatible to our generated algorithms and problems. Therefore
we retain its network designs except the output dimension: a meanpooling is conducted on the de-
coded features in the exploration-exploitation decoder to transform the individual-level features into
a population feature, then 16-dimensional µ and σ are predicted by two MLPs.

The Decision Transformer adopts a trajectory-based learning approach, utilizing a Transformer
architecture to model the decision-making process from sequential data. It consists primarily of
three components: a trajectory embedding module for embedding state-action-return sequences, a
Transformer-based decision module for processing sequential information, and a policy decoder for
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Figure 4: Fitness landscapes of functions in BBOB train set when dimension is set to 2.
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Figure 5: Fitness landscapes of functions in BBOB test set when dimension is set to 2.

action generation. The trajectory embedding module encodes states, actions, and returns into token
sequences. These tokens are processed through standard Transformer encoder blocks, leveraging
self-attention mechanisms to capture long-range dependencies within the trajectory. The encoded se-
quences are then passed to the policy decoder, which generates predictions for the next action based
on the observed past states, actions, and expected returns. The Transformer-based structure enables
the Decision Transformer to handle sequences of varying lengths and complex state-action dynam-
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ics. In our task, each action space dimension of the original Decision Transformer is treated as an in-
dependent token, changing the input sequence format from the original DT’s (R1, s1, a1, R2, s2, . . .)
to (R1, s1, a11 , a12 , . . . , a1n , R2, s2, . . .) to avoid the exponential growth of the action space.

Q-Transformer is a scalable offline reinforcement learning approach that employs a Transformer-
based architecture to model Q-functions for multi-task policies. This method discretizes each di-
mension of the action space, treating each as a separate token, which facilitates auto-regressive Q-
learning through effective sequence modelling techniques. By adopting this strategy, Q-Transformer
effectively mitigates the exponential growth of the action space, making it well-suited for large-scale
offline reinforcement learning tasks. A notable feature of Q-Transformer is its implementation of
conservative Q-function regularization, which addresses distributional shifts in conjunction with n-
step returns to improve learning efficiency. In our implementation, we utilize a linear action encoder,
a single-layer Transformer encoder combined with an MLP as a Q-value head to maintain a compact
model size with Q-Mamba.
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