
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

META-BLACK-BOX-OPTIMIZATION THROUGH OF-
FLINE Q-FUNCTION LEARNING WITH MAMBA ARCHI-
TECTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in Meta-Black-Box-Optimization (MetaBBO) has demonstrated
that meta-training a neural network based meta-level control policy over an op-
timization task distribution could significantly enhance the optimization perfor-
mance of the low-level black-box optimizers. However, achieving such perfor-
mance enhancement requires effective policy optimization/search method to lo-
cate optimal control policy within a massive joint-action space. The online learn-
ing fashion of existing works further makes the efficiency of MetaBBO problem-
atic. To address these technical challenges, we propose an offline learning frame-
work in this paper, termed Q-Mamba. Concretely, our method uses a Mamba
neural network architecture to meta-learn decomposed Q-functions for each con-
figurable component in the low-level optimizer. By decomposing the Q-function
of the configuration decisions of all components in an optimizer, we can apply
effective sequence modelling to avoid searching the control policy in the massive
joint-action space. Furthermore, by leveraging the long-sequence modelling ad-
vantage of Mamba and moderate offline trajectory samples, Q-Mamba can be effi-
ciently trained through a synergy of offline Temporal-Difference update and Con-
servative Q-Learning regularization to achieve competitive performance against
the online learning paradigms. Through extensive benchmarking, we observe
that Q-Mamba achieves competitive or even superior optimization performance
to prior online/offline learning baselines, while significantly improving the train-
ing efficiency of existing online learning baselines. Additional ablation studies
show that each of the proposed key designs contributes to this good performance.

1 INTRODUCTION

Optimization is everywhere. When it comes to the Black-Box Optimization (BBO), where neither
the problem formulation nor the gradient information is accessible, global optimization algorithms
in Evolutionary Computation (EC) show superiority for addressing these through better exploration
and exploitation tradeoff (Zhan et al., 2022). For decades, a broad family of evolutionary algorithms
and swarm intelligence algorithms have been extensively studied and the corresponding application
scenarios range from basic engineering problems (Slowik & Kwasnicka, 2020) to advanced scien-
tific discovery (Chen et al., 2023; Guo et al., 2024b). Despite the good performance observed in
various BBO problems, one particular technical bottleneck shared by these BBO optimizers is the
generalization across different problems (Eiben & Smit, 2011). Typically, to solve a particular op-
timization problem, deep expertise is required to configure an existing optimizer or redesign a new
one. This impedes the further spread of EC towards wider application range.

Recent research efforts in Meta-Black-Box-Optimization (MetaBBO) address the aforementioned
generalization gap by introducing a bi-level learning to optimize paradigm (Ma et al., 2023), where
a neural network-based control policy is maintained at the meta level and meta-trained to serve as
experts for tuning the low-level BBO optimizers (as shown in the top left of Figure 1). However,
achieving such generalization performance through meta-learning comes with certain challenges.
On the one hand, controlling/configuring all components within the low-level optimizer requires ef-
fective policy optimization paradigm such as Reinforcement Learning (RL) (Sutton, 2018) to search
for the optimal control policy in a massive joint-action space. On the other hand, to ensure the effec-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prior Online MetaBBO

Our Offline Q-Mamba

Meta-level
Policy

Low-level
Optimizer

Optimization
Problem

Meta-level
Policy

Low-level
Optimizer

Optimization
Problem

Historical
Trajectory

Online Learning Online Sampling

Offline Sampling Offline Learning

Figure 1: Top left: The workflow of existing MetaBBO methods, online learning fashion. Bottom
left: The workflow of our offline Q-Mamba. Right: The normalized performance and training wall
time comparison between our offline learning Q-Mamba and online learning MetaBBO.

tiveness of the learning, existing MetaBBO methods primarily facilitate online learning to meta-train
their meta-level policies, which is inefficient particularly for the black-box optimization process
which typically involves at least hundreds of optimization iterations.

Given a such dilemma in-between the effectiveness and efficiency, we in this paper propose an of-
fline learning MetaBBO framework (as shown in the bottom left of Figure 1), termed Q-Mamba,
to break the tie and hence ensure both the learning effectiveness and efficiency (as shown in the
right of Figure 1). Concretely, to reduce the difficulty of learning optimal control policy from the
entire configuration space of a black-box optimizer, we introduce a Decomposed Q-function Repre-
sentation (DQR) which allows sequence modelling-based representation for each component’s Q-
function. Such decomposition has been studied in some pioneer offline RL researches (Janner et al.,
2021; Chebotar et al., 2023) and demonstrated effectiveness in control problems. With the DQR, we
further design a Mamba (Gu & Dao, 2023) neural network-based RL agent (Q-Learner), which treats
the configuration of each component in the optimizer as a separate time step and auto-regressively
predicts the corresponding decomposed Q-function by conditioning on the current optimization sta-
tus and configurations of components selected before. To improve the efficiency of training the
Q-Learner, we refer to offline RL (Levine et al., 2020), which learns the optimal control policy from
demonstration. However, the offline RL training is vulnerable due to the endemic distributional shift
issue (Wang et al., 2021) and demonstration quality issue (Ball et al., 2023). To succeed the train-
ing, we additionally integrate a Conservative Q-Learning (Kumar et al., 2020) regularization (CQL)
into the original Bellman backup to relieve the potential distribution shift. Besides, we construct an
Exploration&Exploitation Trajectory Collection (E&E Dataset) from a mix of randomly generated
trajectories and well-performing MetaBBO trajectories. Such a combination enables better offline
learning effectiveness. Accordingly, we summarize our contributions in this paper as follows:

• Novel Framework. Our main contribution in this paper is Q-Mamba, a novel offline RL
MetaBBO framework which shows better learning effectiveness and efficiency than prior
online/offline learning baselines.

• Key Designs. From the perspective of deep learning, we have defined the problem formu-
lation (Section 4.1) as optimizing the Decomposed Q-function (DQR) for each components
in a black-box optimizer to reduce the difficulty hence improve the effectiveness of learning
from joint-action space, and proposed the model (Section 4.2) as a Mamba-based Q-Learner
to enhance long-sequence modelling and learning efficiency for configuring the optimizer
within the optimization process. To further stabilize the offline training, we have introduced
a CQL regularization into the original training objective (Section 4.3) and constructed an
E&E Dataset as the offline training data (Section 4.4), to relieve the distributional shift and
reinforce the data quality during the training respectively.

• Superior Performance. Experimental results show that our Q-Mamba effectively achieves
at least competitive optimization performance against prior online/offline learning base-
lines, while consuming at most half training budget of the online baselines. The learned
meta-level policy can also be readily applied to enhance the performance of the low-level
optimizer on unseen BBO tasks, e.g., Neuroevolution (Such et al., 2017) tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

2.1 META-BLACK-BOX-OPTIMIZATION

Meta-Black-Box-Optimization (MetaBBO) aims to learning the optimal policy that boosts the opti-
mization performances of the low-level optimizer over a group of optimization problems (Ma et al.,
2023). Although several works facilitate supervised learning (Chen et al., 2017; Song et al., 2024;
Li et al., 2024b), Neuroevolution (Lange et al., 2023b;a; Ma et al., 2024a) or even LLMs (Ma et al.,
2024c; Liu et al., 2024) to meta-learn the control policy, the majority of current MetaBBO methods
adopt rather reinforcement learning for the policy optimization to strike a balance between effec-
tiveness and efficiency (Li et al., 2024a). Specifically, the dynamic algorithm configuration during
the low-level optimization can be regarded as a Markov Decision Process (MDP), where the state
reflects the status of the low-level optimization process, action denotes the configuration space of
the low-level optimizer and a reward function is designed to provide feedback to the meta-level
control policy. Existing MetaBBO methods differ with each other in the action space. In gen-
eral, the configuration space of the low-level optimizer involves the operator selection and/or the
hyper-parameter tuning. For the operator selection, initial works such as DE-DDQN (Sharma et al.,
2019) and DE-DQN (Tan & Li, 2021) facilitate Deep Q-network (DQN) (Mnih, 2013) as the meta-
level policy and dynamically suggest one of the prepared mutation operators at each optimization
step for the low-level Differential Evolution (DE) (Storn & Price, 1997) optimizer. Following such
paradigm, PG-DE (Zhang et al., 2024) and RL-DAS (Guo et al., 2024a) further explore the possi-
bility of using Policy Gradient (PG) (Schulman et al., 2017) methods to train probability model for
the operator selection and demonstrate PG methods are more effective than DQN methods. Besides,
RLEMMO (Lian et al., 2024) and MRL-MOEA (Wang et al., 2024) extend the target optimization
problem domain from single-objective optimization to multi-modal optimization and multi-objective
optimization respectively. Unlike the operator selection, the action space in hyper-parameter tuning
is not merely discrete since typically the hyper-parameters of an optimizer are continuous with fea-
sible ranges. In such continuous setting, the action space is infinite and can be handled either by
discretizing the continuous value range to reduce this space (Liu et al., 2019; Xu & Pi, 2020; Hong
et al., 2024; Yu et al., 2024) or directly using PG methods for continuous control (Yin et al., 2021;
Sun et al., 2021; Wu & Wang, 2022; Ma et al., 2024b).

While simply doing operator selection or hyper-parameter tuning for part of an optimizer has shown
certain performance boost, recent MetaBBO researches such as MADAC (Xue et al., 2022) and
ALDes (Zhao et al., 2024) indicate that controlling both sides gains more. However, the massive
action space in such setting and the online RL process in these MetaBBO methods make it challeng-
ing to balance the training effectiveness and the efficiency. In this paper, we propose Q-Mamba as
a novel MetaBBO method to control both the operator selection and hyper-parameter tuning with
competitive optimization performance against previous baselines, while reducing training efficiency
owing to the proposed sequential Q-function representation and offline learning strategy.

2.2 OFFLINE REINFORCEMENT LEARNING

Offline RL (Levine et al., 2020) aims at learning the optimal control policy from a pre-collected
demonstration set, without the direct interaction with the environment. This is appealing for real-
world complex control tasks, where on-policy data collection is extremely time-consuming (i.e.,
the dynamic algorithm configuration for black-box optimization discussed in this paper). A critical
challenge in offline RL is the distribution shift (Fujimoto et al., 2019): learning from offline data
distribution might mislead the policy optimization for out-of-distribution transitions hence degrades
the overall performance. Common practices in offline RL to relieve the distribution shift include a)
learning policy model (e.g., Q-value function) by sufficiently exploiting the Bellman backups of the
transition data in the demonstration set and constraining the value functions for out-of-distribution
ones (Haarnoja et al., 2018; Kumar et al., 2020). b) conditional imitation learning (Chen et al.,
2021; Janner et al., 2021; Dai et al., 2024) which turns the MDP into sequence modelling prob-
lem and uses sequence models (e.g., recurrent neural network, Transformer or Mamba) to imitate
state-action-reward sequences in the demonstration data. Although the conditional imitation learn-
ing methods have been used successfully in control domain, they do not provide any mechanism to
improve the demonstrated behaviour as those policy model learning methods. A recent offline RL
method, termed Q-Transformer (Chebotar et al., 2023), combines the strength of both lines of works

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

by first decomposing the Q-value function for the entire high-dimensional action space into separate
one-dimension Q-value functions, and then leveraging transformer architecture for sequential Bell-
man backups learning. Q-Transformer allows policy improvement during the sequence-to-sequence
learning hence achieves superior performance to the prior works. Following Q-Transformer, in this
paper, we propose a novel Mamba-based architecture to further enhance the long sequence process-
ing and learning ability under MetaBBO setting.

3 PRELIMINARIES

3.1 DECOMPOSED Q-FUNCTION REPRESENTATION

Suppose we have an MDP {S,A = (A1, A2,, AK), R, T , γ}, where the action space is asso-
ciated by a series of K action dimensions, S, R(S,A), T (S′|S,A), γ denote the state, reward
function, transition dynamic and discount factor, respectively. Value-based RL methods such as
Q-learning (Watkins & Dayan, 1992) learn a Q-function Q(st, at1:K) as the prediction of the ac-
cumulated return from the time step t by applying at1:K at st. The Q-function can be iteratively
approximated by Bellman backup:

Q(at1:K |st)← R(st, at1:K) + γmax
at+1
1:K

Q(at+1
1:K |s

t+1). (1)

However, suppose there are at least M action bins for each of the K action dimensions, the Bellman
backup above would be problematic since the associated action space contains MK feasible actions.
Such dimensional curse challenges the learning effectiveness of the value-based RL methods. Re-
cent works such as SDQN (Metz et al., 2017) and Q-Transformer (Chebotar et al., 2023) propose
decomposing the associated Q-function into a series of time-dependent Q-function representations
for each action dimension to escape the curse of dimensionality. For the i-th action dimension, the
decomposed Q-function is rewritten as:

Q(ati|st)←


max
at
i+1

Q(ati+1|st, at1:i), if i < K

R(st, at1:K) + γmax
at+1
1

Q(at+1
1 |st+1). if i = K

(2)

Such a decomposition allows using sequence modelling techniques to learn the optimal policy ef-
fectively, while holding the learning consistency with the Bellman backup in Eq. (1). We provide a
brief proof in Appendix A.

3.2 STATE SPACE MODEL AND MAMBA

For an input sequence x ∈ RL×D with time horizon L and D-dimensional signal channels at each
time step, State Space Model (SSM) (Gu et al., 2022) processes it by the following first-order dif-
ferential equation, which maps the input signal x(t) ∈ RD to the time-dependent output y(t) ∈ RD

through implicit latent state h(t) as follows:
h(t) = Ah(t− 1) +Bx(t), y(t) = Ch(t). (3)

Here, A, B and C are learnable parameters, A and B are obtained by applying zero-order
hold (ZOH) discretization rule. An important property of SSM is linear time invariance. That is, the
dynamic parameters (e.g., A, B and C) are fixed for all time steps. Such models hold limitations
for sequence modelling problem where the dynamic is time-dependent. To address this bottleneck,
Mamba (Gu & Dao, 2023) lets the parameters B and C be functions of the input x(t). There-
fore, the system now supports time-varying sequence modelling. In the rest of this paper, we use
mamba block() to denote a Mamba computation block described in Eq. (3).

4 Q-MAMBA

In this section, we introduce Q-Mamba, an offline learning-based MetaBBO framework, which
enables effective control policy search for black-box optimizers with massive configuration space,
through efficient offline reinforcement learning. First, we describe the definition of the settings and
formulation of MetaBBO tasks. Next, we elaborate how we apply Q-function decomposition and
customized Q-Mamba neural network for sequence modelling of a MetaBBO task. Lastly, we derive
the training objective of Q-Mamba and introduce how we collect the offline data for the training.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 PROBLEM FORMULATION

A MetaBBO task typically involves three key ingredients: a neural network-based meta-level policy
πθ, a black-box optimizer A and a BBO problem distribution P to be solved.

Optimizer A. Black-box optimizers such as Evolutionary Algorithms (EAs) have been discussed
and developed over decades. Initial EAs such as Differential Evolution (DE) (Storn & Price, 1997)
holds few hyper-parameters (only two, F and Cr for balancing the mutation and crossover strength).
Modern variants of DE integrate various algorithmic components to enhance the optimization per-
formance. Taking the recent winner DE optimizer in IEEE CEC Numerical Optimization Compe-
tition (Mohamed et al., 2021), MadDE (Biswas et al., 2021) as an example, it has more than ten
hyper-parameters, which take either continuous or discrete values. Hence, the configuration space
of MadDE is exponentially larger than original DE. In this paper, we use A : {A1, A2, ..., AK} to
represent an optimizer with K parameters. We use additional ai to represent the taken value of Ai.

Problem distribution P . By leveraging the generalization advantage of meta-learning, MetaBBO
trains πθ over a problem distribution P . A common choice of P in existing MetaBBO works is
the CoCo BBOB Testsuites (Hansen et al., 2021), which contains 24 basic synthetic functions, each
can be extended to numerous problem instances by randomly rotating and shifting the decision
variables. Training on all problem instances in P is impractical. We instead sample a collection
of N instances {f1, f2, ..., fN} from P as the training set. For the j-th problem fj , we use f∗

j to
represent its optimal objective value, and fj(x) as the objective value at solution point x.

For an optimizer A and a problem instance fj , suppose we have a control policy πθ at hand and
we use A to optimize fj for T time steps (generations). At the t-th generation, we denote the
solution population as Xt. An optimization state st is first computed to reflect the optimization
status information of the current solution population Xt and the corresponding objective values
fj(X

t). Then the control policy dictates a desired configuration for A: at1:K = πθ(s
t). A optimizes

Xt by at1:K and obtains an offspring population Xt+1. A feedback reward R(st, at1:K) can then be
computed as a measurement of the performance improvement between fj(X

t) and fj(X
t+1). The

meta-objective of MetaBBO is to search the optimal policy πθ∗ that maximizes the expectation of
accumulated performance improvement over all problem instances in the training set:

θ∗ = argmax
θ

1

N

N∑
j=1

T∑
t=1

R(st, at1:K |πθ), (4)

where such a meta-objective can be regarded as MDP. An effective policy search technique for
solving MDP is RL, which is widely adopted in existing MetaBBO methods. In this paper, we focus
on a particular type of RL: Q-learning, which performs prediction on the Q-function in a dynamic
programming way, as described in Eq. (1).

4.2 MAMBA-BASED Q-LEARNER

Existing MetaBBO works primarily struggle in learning meta-level policy with massive joint-action
space, which is the configuration space A : {A1, A2, ..., AK} associated by K hyper-parameters of
the low-level optimizer A. To relieve this learning difficulty, we introduce Q-function decomposition
strategy as described in Section 3.1. For each hyper-parameter Ai in A, we represent its Q-function
as a discretized value function Qi = {Qi,1, Qi,2, ..., Qi,M}, where M is a pre-defined number of
action bins for all Ai in A (M = 16 in this paper). For any Ai which takes values from a contin-
uous range, we uniformly discretize the value range into M bins to make universal representation
across all Ai. By doing this, we turn the MDP in MetaBBO into a sequence prediction problem:
we regard predicting each Qi as a single decision step, then at time step t of the low-level opti-
mization, the complex associated configuration at1:K of A can be sequentially decided. We further
design a Mamba-based Q-Learner model to assist sequence modelling of decomposed Q-functions.
The overall workflow of the Mamba-based Q-Learner is illustrated in Figure 2. We next elaborate
technical elements in the figure with their design motivation.

Optimization state st. In MetaBBO, optimization state st profiles two types of information: the
properties of the optimization problem to be solved and the low-level optimization progress. In
Q-Mamba, we construct the optimization state st similar with latest MetaBBO methods (Ma et al.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Mamba Block

MLP Q-value Head

Linear Embedding

�� ,

�1,1
� �1,2

� �1,�
�

+
Sk

ip
 C

on
ne

ct
io

n

Mamba Block

MLP Q-value Head

Linear Embedding

�� , �1
�

�2,1
� �2,2

� �2,�
�

+

ℎ�
�−1 ℎ1

�
Mamba Block

Linear Embedding

�� , ��
�

ℎ2
� ℎ�−1

�

start

Mamba Block

MLP Q-value Head

Linear Embedding

��+1 ,

�1,1
�+1 �1,2

�+1 �1,�
�+1

+

start

Environment Transition
��

�� = (. . .)�1
� ��

�
execute

��+1

ℎ�
�

Time Step t Time Step t+1

Figure 2: The workflow of the Mamba-based Q-Learner. The forward process of the neural network
is similar with the Recurrent Neural Network. At each time step, the Q-function of each decomposed
action dimension is output by conditioning the current state and selected action bin of the previous
action dimension. The environment transition is executed once all action dimensions are output.

2024b; Chen et al., 2024; Li et al., 2024b). Concretely, at each time step t in the low-level opti-
mization, an optimization state st ∈ R9 is obtained by calling a function cal state(). The first
6 dimensions are statistical features about the population distribution, objective value distribution,
etc., which provide the problem property information. The last 3 dimensions are temporal features
describing the low-level optimization progress. We leave the calculation detail of st in Appendix B.

Tokenization of action bins. We represent the M = 16 action bins of each hyper-parameters Ai in
A by 5-bit binary coding: 00000 ∼ 01111. Besides, since we sequentially predict the Q-function
for A1 to AK , we additionally use 11111 as a start token to activate the sequence prediction. We
have to note that for an optimizer A, some of its discrete hyper-parameters might hold less than M
action bins. For this case, we only use the first several tokens to represent the action bins in these
hyper-parameters. In the rest of this paper, we use token(ati) to denote the binary coding of the
action bin selected for Ai at time step t of the low-level optimization.

The Mamba-based Q-learner auto-regressively outputs the Q-function values Qt
i for each Ai in A.

Linear embedding. To obtain Qt
i, the first step is to prepare the input as the concatenation of the

optimization state st and the previously selected action bin token token(ati−1). Then we apply a
linear embedding layer on the input and obtain the embedding feature as follows:

Et
i = Linear([st, token(ati−1)]|Wemb, bemb), (5)

where Wemb ∈ R14×16 and bemb ∈ R16 are weights and bias, respectively. For Et
1, start token is

used to concat st, since there is no action bin before at1.

Mamba block. The computation of the mamba block is described in Section 3.2. It receives the
hidden state ht

i−1 and the embedding feature Et
i and outputs the decision information Ot

i and hidden
state ht

i. Ot
i is used to parse Q-function Qt

i and ht
i is used for next decision step as follows:

Ot
i, h

t
i = mamba block(Et

1, h
t
i−1|Wmamba), (6)

where Wmamba denotes all learnable parameters in Mamba, which includes the state transition pa-
rameters A, B and C, the parameters of discretization step matrix, and time-varying mapping param-
eters for the state transition parameters. In this paper we use the mamba-block in Mamba repo1, with
default settings. To obtain Ot

1, the last hidden state of time step t− 1, ht−1
K is used. The motivation

of using Mamba is that: a) For a MetaBBO task, the sequence length involves thousands of deci-
sion steps since there are hundreds of optimization steps and K hyper-parameters to be decided per
optimization step. We hence adopt Mamba rather than Transformer due to the the inefficiency and
performance downside of Transformer for very lone sequence (Ota, 2024), which is addressed by
Mamba using data-dependent embedding and hardware-aware design. b) Mamba allows selectively
extracting essential information and filter out irrelevant noise according to the input sequence (Gu
& Dao, 2023), which would enhance the sequence-to-sequence learning effectively.

1https://github.com/state-spaces/mamba

6

https://github.com/state-spaces/mamba

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Q-value head. The Q-value head parses the decision information Ot
i into the decomposed Q-

function Qt
i through a linear mapping layer. Before the linear mapping, we add the input

[st, token(ati−1)] to Ot
i as a skip connection as follows:

Qt
i = Norm(σ(Sti)), Sti = Linear(Ot

i + [st, token(ati−1)]|Whead, bhead)). (7)

Here, σ is Leaky ReLU activation function, Norm is the min-max normalization over M bins of
Qt

i. Whead ∈ R16×16 and bhead ∈ R16 are weights and bias. When we obtain Qt
i, we select the

action bin with the maximum value for hyper-parameter Ai: ati = argmax
j

Qt
i,j , and use token(ati)

for inferring the decomposed Q-function Qt
i+1 of next decision step. Once the action bins of all

hyper-parameters A1 ∼ AK have been decided, the optimizer A optimizes the problem for one step
and obtains the optimization state st+1 from the updated solution population. To summarize, in Q-
Mamba, the meta-level policy πθ is the Mamba-based Q-Learner, of which the learnable parameters
θ includes {Wemb, bemb,Wmamba,Whead, bhead}.

4.3 TRAINING OBJECTIVE

Online learning is widely adopted in existing works, which is especially inefficient under MetaBBO
setting, where the low-level optimization typically involves hundreds of optimization steps hence ex-
tremely time-consuming. In this paper we propose learning the decomposed sequential Q-function
through offline RL to improve the training efficiency of MetaBBO. Concretely, we consider a trajec-
tory τ = {s1, (a11, ..., a1K), r1, ..., sT , (aT1 , ..., a

T
K), rT }, which is previously sampled by an offline

policy π̂. Here, ati denotes the action bin selected for Ai at time step t. The training objective of
Q-Mamba is a synergy of Bellman backup update (Eq. (2)) and conservative regularization as

J(τ |θ) =
T∑

t=1

K∑
i=1

M∑
j=1

J(Qt
i,j |θ) =


1
2 (Q

t
i,j −max

j
Qt

i+1,j)
2, if i < K, j = ati

β
2

[
Qt

i,j − (rt + γmax
j

Qt+1
1,j)

]2
, if i = K, j = ati

λ
2 (Q

t
i,j − 0)2, if j ̸= ati

(8)

where Qt
i,j is the Q-value of the j-th bin in Qt

i, which is output by our Mamba-based Q-Learner πθ,
with [st, token(ati−1)] as input. The first two branches in Eq. (8) are TD error following the Bellman
backup for decomposed Q-function (as described in Eq. (2)). We additionally add a weight β (we
set β = 10 in this paper) on the last action dimension to reinforce the learning on this dimension. As
described in Eq. (2), the other action dimension is updated by the inverse maximization operation,
so ensuring the accuracy of the Q-value in the last action dimension helps secure the accuracy of
the other dimensions. The last branch in Eq. (8) is the conservative regularization introduced in
representative offline RL method CQL (Kumar et al., 2020), which is used to relieve the over-
estimation due to the distribution shift. Here, the Q-values of action bins which are not selected in
the trajectory τ (j ̸= ati) is regularized to 0. This would accelerate the learning of the TD error. We
set the weight of the conservative regularization λ = 1 in this paper.

4.4 E&E DATASET

The trajectory samples play a key role in offline RL applications (Ball et al., 2023). On the one
hand, good quality data helps the training converges. On the other hand, randomly generated data
help RL explores and learns more robust model. In Q-Mamba, we collect a trajectory dataset C of
size D = 10K which combines the good quality data and randomly generated data. Concretely, for
a low-level black-box optimizer A with K hyper-parameters and a problem distribution P , we pre-
train a series of up-to-date MetaBBO methods (e.g., RLPSO (Wu & Wang, 2022), LDE (Sun et al.,
2021), GLEET Ma et al. (2024b)) which control hyper-parameters of A to optimize the problems in
P . Then we rollout the pre-trained MetaBBO methods on problem instances in P to collect µ · D
complete trajectories. We then use the random strategy to randomly control the hyper-parameters of
A to optimize the problems in P and collect (1− µ) ·D trajectories. By combining the exploitation
experience in the trajectories of MetaBBO methods and the exploration experience in the random
trajectories, our Q-Mamba learns robust and high-performance meta-level policy. In this paper,
we set µ = 0.5 to strike a good balance. To meta-train a Q-Mamba agent for controlling A to
optimize problems in P , we use AdamW with a learning rate 5e − 3 to minimize the expectation

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

training objective Eτ∈CJ(τ |θ). The training lasts for 300 epochs with a batch size of 64. After the
training, the learned Q-Learner model πθ can be directly used to control A for unseen problems.
These unseen problems can be either those within the same problem distribution P , or totally out-
of-distribution ones. We validate both generalization aspects of our Q-Mamba in the following
experimental section.

5 EXPERIMENTAL RESULTS

In the experiments, we aim to answer the following questions: a) How Q-Mamba performs compared
with the other online/offline baselines? b) Can Q-Mamba be zero-shot to more challenging realistic
optimization scenario? c) How important are the key designs in Q-Mamba?

5.1 EXPERIMENT SETUP

Training dataset. We have prepared 10 different low-level black-box optimizer Alg0 ∼ Alg9,
which cover several types of algorithms such as DE, PSO and GA. Due to the different algorithm
structure inside, the number of hyper-parameters (action dimensions) in these optimizers range from
3 ∼ 16, hence showing different difficulty-levels for MetaBBO methods. We introduce how we
construct these optimizer and their algorithm structures in Appendix D.1. The problem distribu-
tion selected for the training is the CoCo BBOB Testsuites (Hansen et al., 2021), which contains 24
basic synthetic functions with diverse properties such as uni-modal, multi-modal, (non-)separable,
(a)symmetrical, flattened areas, and continuity features. We denote it as Pbbob. We further facili-
tate train-test split on Pbbob, dividing it into 16 problem instances for the training, and 8 problem
instances for the testing. These problem instances range from 5 ∼ 50-dimensional, we randomly
apply shift and rotation on their solution spaces to make the optimization landscapes more challeng-
ing. Details of Pbbob and its train-test split is provided in Appendix D.2. By using Alg0 ∼ Alg9
and the 16 training problem instances, we create 10 E&E Datasets by the procedure described in
Section 4.4. For online baselines, we train them on each low-level optimizer to optimize the train-
ing problem instances. For offline baselines including our Q-Mamba, we train them on each E&E
Dataset. We note that the total optimization steps for the low-level optimization is set as T = 500.

Baselines. We compare a wide range of baselines to obtain comprehensive and significant experi-
mental observations. Concretely, we compare four online baselines: RLPSO (Wu & Wang, 2022)
that uses simple MLP architecture for controlling low-level optimizers. LDE (Sun et al., 2021) that
facilitates LSTM architecture for sequential controlling low-level optimizers using temporal opti-
mization information. GLEET (Ma et al., 2024b) that uses Transformer architecture for mining
the exploration-exploitation tradeoff during the low-level optimization. These three baselines are
all trained to output associated configuration without decomposition as our Q-Mamba. We also pro-
vide an online baseline of our Q-Mamba, which learns by interacting with the environments. We also
compare two offline baselines: Decision Transformer (Chen et al., 2021) and Q-Transformer (Cheb-
otar et al., 2023). The former tokenizes the state, action and return-to-go signal and uses Transformer
for sequence-to-sequence fitting, which is an offline RL method through conditional imitation learn-
ing. The latter applies Q-function decomposition as our Q-Mamba and facilitates offline Q-learning.
However it has to split the trajectory sequence into short context windows for Transformer to pro-
cess and hence is claimed relatively weak in super long sequence modelling such as the decomposed
Q-value sequence in this paper. The settings of these baselines primarily follows their original pa-
pers, with a little fix up to make it compatible with the tasks in this paper. We elaborate them in
Appendix D.3. To ensure the fairness of the comparison, all baselines go through the same order of
training data, which is 10K trajectories.

Performance metric. We adopt the accumulated performance improvement Perf(A, f |πθ) for
measuring the optimization performance of the compared baselines and our Q-Mamba. Given a
MetaBBO baseline πθ, the corresponding low-level optimizer A and an optimization problem in-
stance f , the accumulated performance improvement is calculated as the sum of reward feedback
at each optimization step t: Perf(A, f |πθ) =

∑T
t=1 r

t. The reward feedback is calculated as the
relative performance improvement between two consecutive optimization steps: rt = f∗,t−1−f∗,t

f∗,0−f∗ ,
where f∗,t is the objective value of the best found solution until time step t, f∗ is the optimum of f .
The maximal accumulated performance improvement is 1 when the optimum of f is found.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison between Q-Mamba and other online/offline baselines. All base-
lines are tested on unseen problem instances within the training distribution Pbbob. We additionally
present the averaged training/inferring time of all baselines in the last row.

Online Offline
RLPSO
(MLP)

LDE
(LSTM)

GLEET
(Transformer)

Online
Q-Mamba

Decision-
Transformer Q-Transformer Q-Mamba

Alg0
9.855E-01
±9.038E-03

9.563E-01
±1.830E-02

9.616E-01
±3.110E-03

9.873E-01
±2.096E-01

9.325E-01
±2.680E-02

9.646E-01
±3.975E-02

9.889E-01
±7.779E-03

Alg1
9.833E-01
±6.924E-03

9.597E-01
±1.882E-02

9.793E-01
±6.555E-03

9.719E-01
±2.841E-02

5.699E-01
±1.054E-01

9.847E-01
±6.167E-03

9.779E-01
±3.602E-02

Alg2
9.542E-01
±4.945E-02

9.747E-01
±1.748E-02

8.913E-01
±2.192E-02

9.347E-01
±1.050E-01

9.297E-01
±2.899E-02

8.290E-01
±7.413E-02

9.325E-01
±9.763E-02

Alg3
9.894E-01
±7.337E-03

9.866E-01
±2.054E-02

9.887E-01
±3.853E-03

9.910E-01
±6.400E-03

7.852E-01
±5.396E-02

9.895E-01
±9.949E-03

9.915E-01
±1.962E-02

Alg4
9.953E-01
±3.322E-03

9.877E-01
±1.118E-02

9.938E-01
±2.834E-03

9.951E-01
±4.103E-03

6.764E-01
±1.193E-01

9.951E-01
±3.487E-03

9.963E-01
±7.592E-03

Alg5
9.740E-01
±2.250E-02

9.857E-01
±8.725E-03

9.795E-01
±1.501E-02

9.841E-01
±9.374E-02

7.265E-01
±1.011E-01

9.474E-01
±2.329E-02

9.865E-01
±2.508E-02

Alg6
9.725E-01
±1.581E-02

9.769E-01
±1.596E-03

9.525E-01
±2.431E-02

9.704E-01
±3.878E-02

9.233E-01
±3.921E-02

8.837E-01
±5.120E-02

9.842E-01
±3.285E-02

Alg7
9.450E-01
±2.050E-02

9.735E-01
±1.117E-02

9.678E-01
±1.225E-02

9.611E-01
±2.182E-02

8.426E-01
±4.855E-02

9.598E-01
±3.276E-02

9.665E-01
±6.986E-02

Alg8
9.924E-01
±4.745E-03

9.867E-01
±9.023E-03

9.898E-01
±5.875E-03

9.9294E-01
±1.421E-02

9.734E-01
±1.463E-02

9.509E-01
±1.903E-02

9.933E-01
±2.633E-02

Alg9
9.914E-01
±4.497E-03

9.904E-01
±6.306E-03

9.910E-01
±5.846E-03

9.920E-01
±9.485E-03

8.706E-01
±3.951E-02

9.895E-01
±6.754E-03

9.950E-01
±9.981E-03

Avg
Time 28h / 11s 28h / 12s 25h / 13s 63h / 10s 13h / 10s 50h / 11s 13h / 10s

5.2 IN-DISTRIBUTION GENERALIZATION

After the training, we compare the generalization performance of our Q-Mamba and other baselines
on the 8 problem instances in Pbbob which are not used for the training of all baselines. Concretely,
for each baseline and each low-level optimizer, we report in Table 1 the average value and error bar
of the accumulated performance improvement across the 8 tested problems and 19 independent runs.
We additionally present the average training time and inferring time (time consumed to complete a
trajectory) for each baseline in the last row. The results in Table 1 show that: a) Q-Mamba v.s. On-
line baselines. Q-Mamba significantly outperforms the online baselines RLPSO, LDE and GLEET,
which control the low-level optimizer in the massive associated configuration spaces. This evidences
the effectiveness of using the decomposed Q-function representation, which could significantly re-
duce the configuration hence eases the learning difficulty. Meanwhile, due to the offline learning
paradigm, Q-Mamba consumes only half of the training time the online baselines require. This is
especially appealing for BBO scenarios where the simulation is expensive and time-consuming. b)
Q-Mamba v.s. Decision Transformer. We observe that Decision-Transformer holds similar train-
ing efficiency with our Q-Mamba. The difference between it and Q-Mamba is that DT generally
imitates the trajectory by predicting the tokens in the transitions. Results in the table show the per-
formance of DT is quite unstable. In opposite, our Q-Mamba allows policy improvement during
the sequence learning, which shows better learning convergence and effectiveness than the condi-
tional imitation-learning based offline RL such as DT. c) Q-Mamba v.s. Q-Transformer. While
our Q-Mamba shares the Q-function decomposition as a core design, a major novelty we introduced
is the Mamba architecture and the corresponding weighted Q-function representation learning. The
superior performance of Q-Mamba to the Q-Transformer possibly roots from the inability of Trans-
former architecture for extremely long Q-function sequence in MetaBBO setting. In Q-transformer,
the entire sequence is divided into numerous context windows and learned respectively. Such forced
truncation not only influences the long-term temporal dependency but also increases the training
time. d) Q-Mamba v.s. Online Q-Mamba. We observe a performance degradation when training
Q-Mamba under the online learning setting. It might reveal that the offline data provided by the
other policies could enrich the experience of the meta-level policy, while online data sorely comes
from the meta-level policy itself. The generalization performance is hence degraded.

5.3 OUT-OF-DISTRIBUTION GENERALIZATION

We further validate the generalization performance of Q-Mamba and other baselines on more chal-
lenging scenario, e.g., neuroevolution (Such et al., 2017) tasks. In a neuroevolution task, a black-box
optimizer is used to evolve a population of neural networks according to their performance on a spe-
cific machine learning task, i.e., classification, robotic control (Galván & Mooney, 2021). Specif-
ically, we consider four continuous control tasks in Mujoco (Todorov et al., 2012). We optimize a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10 20 30 40 503500

4000

4500

5000

5500

Pe
rf

or
m

an
ce

InvertedDoublePendulum-v4

0 10 20 30 40 50
100

80

60

40 Reacher-v4

0 10 20 30 40 50
Optimization Steps

0

500

1000

Pe
rf

or
m

an
ce

HalfCheetah-v4

RLPSO
LDE

GLEET
DT

Q-Transformer
Q-Mamba

0 10 20 30 40 50
Optimization Steps

1000

1050

1100

Ant-v4

Figure 3: Zero shot performance of
Q-Mamba and the other baselines
on neuroevolution tasks.

Table 2: Performance analysis on the importance of loss ra-
tio λ and β.

λ = 0 λ = 1 λ = 10

β = 1
9.756E-01
±1.570E-02

9.828E-01
±1.203E-02

9.855E-01
±1.192E-02

β = 10
9.833E-01
±1.424E-02

9.889E-01
±7.780E-03

9.857E-01
±1.134E-02

Table 3: Performance of Q-Mamba under different propor-
tion of good quality data.

µ 0 0.25 0.5 0.75 1

Perf. 9.832E-01
±1.264E-02

9.874E-01
±6.489E-03

9.889E-01
±7.780E-03

9.793E-01
±1.614E-02

9.834E-01
±9.692E-03

2-layer MLP policy for each task by Q-Mamba and other baselines trained for controlling Alg0 on
Pbbob. To align with the challenging condition in realistic BBO tasks, we only allow the low-level
optimization involves a small network population (10 solutions) and T = 50 optimization steps.
We present the average optimization curves across 10 independent runs in Figure 3. The results
underscore the superior generalization performance of Q-Mamba to all other baselines: while only
trained on synthetic problems with at most 50 dimensions, our Q-Mamba is capable of optimizing
the MLP polices which hold thousands of parameters in these neuroevolution tasks.

5.4 ABLATION STUDY

We perform two ablation experiments on our Q-Mamba to validate the effectiveness of the key
designs. First, we demonstrate the effectiveness over the proposed training objective in Eq. (8). As
shown in Table 2, when λ = 0, the training objective in Eq. (8) turns into the Bellman backup
without conservative regularization. The performance degradation under this setting reveals the
importance of the conservative term for relieving the distribution shift caused by offline leaning.
When β = 1, the training objective would not focus on the Q-value prediction of the last action
dimension, which in turn interferes the prediction of other action dimensions through the inverse
maximization operation in Eq. (2). A setting with λ = 1 and β = 10 ensures the overall learning
effectiveness. Next, we analyse the data mixing ratio µ in the E&E dataset (Section 4.4). When
µ = 0, all trajectories come from a random configuration strategy. When µ = 1, all trajectories
come from the well-performing MetaBBO baselines. The results in Table 3 reveal that mixing these
two types of data equally (µ = 0.5) might enhance Q-Mamba’s learning effectiveness by leveraging
the rich historical experiences from both exploration and exploitation.

6 CONCLUSION

In this paper, we propose Q-Mamba as a novel offline learning-based MetaBBO framework
which improves both the effectiveness and the training efficiency of existing online leaning-based
MetaBBO methods. To achieve this, Q-Mamba decomposes the associated Q-function for the mas-
sive configuration space into sequential Q-functions for each configuration. We further propose a
Mamba-based Q-Learner for effective sequence learning tailored for such Q-function decomposition
mechanism. By incorporating with a large scale offline dataset which includes both the exploration
and exploitation trajectories, Q-Mamba consumes less than half training time of existing online
baselines, while achieving strong control power across various black-box optimizers and diverse
BBO problems. Our framework does have certain limitations. First the number of the action bins M
cannot be too large under the Q-learning paradigm, this might become cumbersome if fine-grained
control is required for some optimizers. Second, Q-Mamba is trained for a given optimizer and
requires re-training for other optimizers. An effective optimizer feature extraction mechanism may
enhance Q-Mamba’s co-training on various optimizers. We mark this as an important future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, 2023.

Subhodip Biswas, Debanjan Saha, Shuvodeep De, Adam D Cobb, Swagatam Das, and Brian A
Jalaian. Improving differential evolution through bayesian hyperparameter optimization. In Pro-
ceedings of the IEEE Congress of Evolutionary Computation, 2021.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, 2023.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
architecture search. In Advances in Neural Information Processing Systems, 2023.

Jiacheng Chen, Zeyuan Ma, Hongshu Guo, Yining Ma, Jie Zhang, and Yue-Jiao Gong. SYMBOL:
Generating flexible black-box optimizers through symbolic equation learning. In International
Conference on Learning Representations, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 2021.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lilli-
crap, Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by gradient
descent. In International Conference on Machine Learning, 2017.

Yang Dai, Oubo Ma, Longfei Zhang, Xingxing Liang, Shengchao Hu, Mengzhu Wang, Shouling
Ji, Jincai Huang, and Li Shen. Is mamba compatible with trajectory optimization in offline rein-
forcement learning? arXiv preprint arXiv:2405.12094, 2024.

Kalyanmoy Deb, Ram Bhushan Agrawal, et al. Simulated binary crossover for continuous search
space. Complex systems, 9(2):115–148, 1995.

Andrej Dobnikar, Nigel C Steele, David W Pearson, Rudolf F Albrecht, Kalyanmoy Deb, and Samir
Agrawal. A niched-penalty approach for constraint handling in genetic algorithms. In Artificial
Neural Nets and Genetic Algorithms: Proceedings of the International Conference in Portorož,
Slovenia, 1999, pp. 235–243. Springer, 1999.

Agoston E Eiben and Selmar K Smit. Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm and Evolutionary Computation, 2011.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Edgar Galván and Peter Mooney. Neuroevolution in deep neural networks: Current trends and future
challenges. IEEE Transactions on Artificial Intelligence, 2021.

David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic
algorithms. In Foundations of genetic algorithms, volume 1, pp. 69–93. Elsevier, 1991.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

Hongshu Guo, Yining Ma, Zeyuan Ma, Jiacheng Chen, Xinglin Zhang, Zhiguang Cao, Jun Zhang,
and Yue-Jiao Gong. Deep reinforcement learning for dynamic algorithm selection: A proof-of-
principle study on differential evolution. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In International Conference on Learning Representations, 2024b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

John H Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals. Numerische Mathematik, 2:84–90, 1960.

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software, 2021.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT press, 1992.

Jiale Hong, Bo Shen, and Anqi Pan. A reinforcement learning-based neighborhood search operator
for multi-modal optimization and its applications. Expert Systems with Applications, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
International Conference on Neural Networks, volume 4, pp. 1942–1948. IEEE, 1995.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Robert Lange, Tom Schaul, Yutian Chen, Chris Lu, Tom Zahavy, Valentin Dalibard, and Sebastian
Flennerhag. Discovering attention-based genetic algorithms via meta-black-box optimization. In
Proceedings of the Genetic and Evolutionary Computation Conference, 2023a.

Robert Tjarko Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder
Singh, and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box optimiza-
tion. In International Conference on Learning Representations, 2023b.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Pengyi Li, Jianye Hao, Hongyao Tang, Xian Fu, Yan Zhen, and Ke Tang. Bridging evolutionary
algorithms and reinforcement learning: A comprehensive survey on hybrid algorithms. IEEE
Transactions on Evolutionary Computation, 2024a.

Xiaobin Li, Kai Wu, Yujian Betterest Li, Xiaoyu Zhang, Handing Wang, and Jing Liu. Glhf: General
learned evolutionary algorithm via hyper functions. arXiv preprint arXiv:2405.03728, 2024b.

Hongqiao Lian, Zeyuan Ma, Hongshu Guo, Ting Huang, and Yue-Jiao Gong. Rlemmo: Evolutionary
multimodal optimization assisted by deep reinforcement learning. In Proceedings of the Genetic
and Evolutionary Computation Conference, 2024.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024.

Yaxian Liu, Hui Lu, Shi Cheng, and Yuhui Shi. An adaptive online parameter control algorithm for
particle swarm optimization based on reinforcement learning. In IEEE Congress on Evolutionary
Computation, 2019.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining Ma,
and Zhiguang Cao. Metabox: A benchmark platform for meta-black-box optimization with rein-
forcement learning. In Advances in Neural Information Processing Systems, 2023.

Zeyuan Ma, Jiacheng Chen, Hongshu Guo, and Yue-Jiao Gong. Neural exploratory landscape anal-
ysis. arXiv preprint arXiv:2408.10672, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zeyuan Ma, Jiacheng Chen, Hongshu Guo, Yining Ma, and Yue-Jiao Gong. Auto-configuring
exploration-exploitation tradeoff in evolutionary computation via deep reinforcement learning.
In Proceedings of the Genetic and Evolutionary Computation Conference, 2024b.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue-Jiao
Gong. Llamoco: Instruction tuning of large language models for optimization code generation.
arXiv preprint arXiv:2403.01131, 2024c.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep rl. arXiv preprint arXiv:1705.05035, 2017.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Ali Wagdy Mohamed, Anas A Hadi, Ali Khater Mohamed, Prachi Agrawal, Abhishek Kumar, and
P. N. Suganthan. Problem definitions and evaluation criteria for the cec 2021 on single objective
bound constrained numerical optimization. In Proceedings of the IEEE Congress of Evolutionary
Computation, 2021.

Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
spaces. arXiv preprint arXiv:2403.19925, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mudita Sharma, Alexandros Komninos, Manuel López-Ibáñez, and Dimitar Kazakov. Deep re-
inforcement learning based parameter control in differential evolution. In Proceedings of the
Genetic and Evolutionary Computation Conference, 2019.

Adam Slowik and Halina Kwasnicka. Evolutionary algorithms and their applications to engineering
problems. Neural Computing and Applications, 2020.

Lei Song, Chenxiao Gao, Ke Xue, Chenyang Wu, Dong Li, Jianye Hao, Zongzhang Zhang, and
Chao Qian. Reinforced in-context black-box optimization. arXiv preprint arXiv:2402.17423,
2024.

Rainer Storn and Kenneth Price. Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11:341, 1997.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Jianyong Sun, Xin Liu, Thomas Bäck, and Zongben Xu. Learning adaptive differential evolution
algorithm from optimization experiences by policy gradient. IEEE Transactions on Evolutionary
Computation, 2021.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Zhiping Tan and Kangshun Li. Differential evolution with mixed mutation strategy based on deep
reinforcement learning. Applied Soft Computing, 2021.

Ryoji Tanabe and Alex S Fukunaga. Improving the search performance of shade using linear popula-
tion size reduction. In 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665.
IEEE, 2014.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, 2012.

Jing Wang, Yuxin Zheng, Ziyun Zhang, Hu Peng, and Hui Wang. A novel multi-state reinforcement
learning-based multi-objective evolutionary algorithm. Information Sciences, 2024.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham Kakade. Instabilities of offline rl with
pre-trained neural representation. In International Conference on Machine Learning, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

Di Wu and G Gary Wang. Employing reinforcement learning to enhance particle swarm optimization
methods. Engineering Optimization, 2022.

Yue Xu and Dechang Pi. A reinforcement learning-based communication topology in particle swarm
optimization. Neural Computing and Applications, 2020.

Ke Xue, Jiacheng Xu, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, and Yang Yu. Multi-
agent dynamic algorithm configuration. In Advances in Neural Information Processing Systems,
2022.

Shiyuan Yin, Yi Liu, GuoLiang Gong, Huaxiang Lu, and Wenchang Li. Rlepso: Reinforcement
learning based ensemble particle swarm optimizer. In International Conference on Algorithms,
Computing and Artificial Intelligence, 2021.

Xiaobing Yu, Pingping Xu, Feng Wang, and Xuming Wang. Reinforcement learning-based differ-
ential evolution algorithm for constrained multi-objective optimization problems. Engineering
Applications of Artificial Intelligence, 2024.

Zhi-Hui Zhan, Lin Shi, Kay Chen Tan, and Jun Zhang. A survey on evolutionary computation for
complex continuous optimization. Artificial Intelligence Review, 2022.

Haotian Zhang, Jianyong Sun, Thomas Bäck, and Zongben Xu. Learning to select the recombination
operator for derivative-free optimization. Science China Mathematics, 2024.

Qi Zhao, Tengfei Liu, Bai Yan, Qiqi Duan, Jian Yang, and Yuhui Shi. Automated metaheuristic
algorithm design with autoregressive learning. arXiv preprint arXiv:2405.03419, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOF OF Q-FUNCTION DECOMPOSITION

To show that transforming MDP into a per-action-dimension form still ensures optimization of the
original MDP, we show that optimizing the Q-function for each action dimension is equivalent to
optimizing the Q-function for the full action. We omit the time step superscript t for the ease of
presentation.

If we consider apply full action a1:K at the current state s to transit to the next step state s′. The
Bellman update of the optimal Q-function could be written as:

max
a1:K

Q(a1:k|s) = max
a1:K

[
R(s, a1:K) + γmax

a1:K

Q(a1:K |s′)
]

= R(s, a∗1:K) + γmax
a1:K

Q(a1:K |s′) (9)

where R(·) is the reward we get after executing the full action a1:K . Under the Q-function decom-
postion, the Bellman update of the optimal Q-function for each action dimension ai is:

max
ai

Q(ai|s, a∗1:i−1) = max
ai

[
max
ai+1

Q(ai+1|s, a∗1:i)
]

= max
ai

[
max
ai+1

(
max
ai+2

Q(ai+2|s, a∗1:i+1)

)]
= · · ·
= R(s, a∗1:K) + γmax

a1

Q(a1|s′)

= R(s, a∗1:K) + γmax
a1

[
max
a2

Q(a2|s′, a1)
]

= · · ·
= R(s, a∗1:K) + γmax

a1:K

Q(a1:K |s′) (10)

Here the first two lines are the inverse maximization operation as described in Section 3.1, the
fourth line is the Bellman update for the last action dimension. The last three lines also follow the
inverse maximization operation. By comparing Eq. (9) and Eq. (10) we prove that optimizing the
decomposed Q-function consistently optimizes the original full MDP.

B OPTIMIZATION STATE DESIGN

The formulation of the optimization state features is described in Table 4. States s{1∼6} are opti-
mization problem property features which collectively represent the distributional features and the
statistics of the objective values of the current candidate population. Specifically, state s1 represents
the average distance between each pair of candidate solutions, indicating the overall dispersion level.
State s2 represents the average distance between the best candidate solution in the current population
and the remaining solutions, providing insights into the convergence situation. State s3 represents
the average distance between the best solution found so far and the remaining solutions, indicat-
ing the exploration-exploitation stage. State s4 represents the average difference between the best
objective value found in the current population and the remaining solutions, and s5 represents the
average difference when compared with the best objective value found so far. State s6 represents
the standard deviation of the objective values of the current candidates. Then, states s{7,8,9} col-
lectively represent the time-stamp features of the current optimization progress. Among them, state
s7 denotes the current process, which can inform the framework about when to adopt appropriate
strategies. States s8 and s9 are measures for the stagnation situation.

C ACTION DISCRETIZATION AND RECONSTRUCTION

Given the M = 16 bins of Q values Qt
i for the i-th action, if the i-th hyper-parameter Ai of the

low-level optimizer is in continuous space, we first uniformly discretize the space into M bins:
Âi = {Ai,1, Ai,2, · · · , Ai,M} where Ai,1 and Ai,M are the lower and upper bounds of the space.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Formulations of state features.

States Notes

Pr
ob

le
m

Pr
op

er
ty

st1 mean
xi,xj∈Xt

||xi − xj ||2
Average distance between any pair of
individuals in current population.

st2 mean
xi∈Xt

||xi − x∗,t||2
Average distance between each individual
and the best individual in t-th generation.

st3 mean
xi∈Xt

||xi − x∗||2
Average distance between each individual
and the best-so-far solution.

st4 mean
xi∈Xt

(f(xi)− f(x∗))
Average objective value gap between each
individual and the best-so-far solution.

st5 mean
xi∈Xt

(f(xi)− f(x∗,t))
Average objective value gap between each
individual and the best individual in t-th
generation.

st6 std
xi∈Xt

(f(xi))
Standard deviation of the objective values
of population in t-th generation, a value
equals 0 denotes converged.

O
pt

im
iz

at
io

n
Pr

og
re

ss

st7 (T − t)/T
The potion of remaining generations, T
denotes maximum generations for one run.

st8 st/T
st denotes how many generations the
optimizer stagnates improving.

st9

{
1 if f(x∗,t) < f(x∗)

0 otherwise

Whether the optimizer finds better
individual than the best-so-far solution.

Then we use the action ati obtained by ati = argmax
j

Qt
i,j as an index and assign the value of the i-th

hyper-parameter Ai with Ai = Âi[a
t
i]. If the hyper-parameter is in discrete space Â with mi ≤ M

candidate choices, the action ati is obtained by ati = argmax
j∈[1,mi]

Qt
i,j and the value of the i-th hyper-

parameter is Â[ati]. After the value of all hyper-parameters are decided, the optimizer A takes a step
of optimization with the hyper-parameters and return the next state from the updated population.

D EXPERIMENT SETUP

D.1 BACKEND ALGORITHM GENERALIZATION

In this paper, we randomly construct 10 optimizers with action space dimensions
{3, 5, 7, 8, 10, 12, 13, 14, 15, 16}. To do so, we first collect a optimization operator space
containing operators with controllable parameters such as the mutation and crossover operators
from DE (Storn & Price, 1997), PSO update rules (Kennedy & Eberhart, 1995), crossover and
mutation operators from GA (Holland, 1992). Operators without controllable parameters such as
selection and population reduction operators are also included. Then, to get an optimizer with n
hyper-parameters, we randomly sample a batch of operators to construct an optimizer, if the total
number of controllable parameters in all operators of the optimizer is not match n, we eliminate it
and resample until the wanted optimizer is constructed. The hyper-parameters of the optimizer such
as the initial population sizes are randomly determined. Below we present the structure of Alg0 (3
actions) and Alg9 (16 actions) as examples.

Alg0 (as shown in Algorithm 1) is DE/current-to-rand/1/exponential (Storn & Price, 1997) with
Linear Population Size Reduction (LPSR) (Tanabe & Fukunaga, 2014). The mutation operator
DE/current-to-rand/1 is formulated as:

x′
i = xi + F1(xr1 − xi) + F2(xr2 − xr3) (11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Pseudo code of Alg0

1: Input: Optimization problem f , optimization horizon T , Meta-level agent π.
2: Output: Optimal solution x∗ = argmin

x∈X
f(x).

3: Uniformly initialize a population X1 with shape NP1 = 100 and evaluate it with problem f ;
4: for t = 1 to T do
5: Receive the 3 action values at = {F1, F2, Cr} from the agent π;
6: Generate X ′

t by using DE/current-to-rand/1 (Eq. (11)) on Xt;
7: Apply Exponential crossover (Eq. (12)) on Xt and X ′

t to get X ′′
t ;

8: Clip the values beyond the search range in X ′′
t ;

9: Calculate f(X ′′
t);

10: Compare f(Xt) and f(X ′′
t), select the better solutions to generate Xt+1;

11: end for

where xr· are randomly chosen solutions and F1, F2 ∈ [0, 1] are two controllable parameters. The
Exponential crossover operator is formulated as:

x′′
i =

{
x′
i,j , if randk:j < Cr and k ≤ j ≤ L+ k

xi,j , otherwise
, j = 1, · · · , Dim (12)

where Dim is the solution dimension, L ∈ {1, · · · , Dim} is a random length, rand ∈ [0, 1]Dim is
a random vector, x′

i is the trail solution generated by mutation operator and Cr ∈ [0, 1] is a control-
lable parameter. At the beginning, a population X with size 100 is uniformly sampled and evaluated.
In each optimization generation, given the parameters F1, F2, Cr from the meta-level agent, algo-
rithm applies DE/current-to-rand/1 mutation and Exponential crossover operator on the population
to generate the trail solution population X ′′

t . An comparison is conducted between population Xt

and X ′′
t where the better solutions are selected for the next generation population Xt+1. Finally the

worst solutions are removed from Xt+1 in the LPSR process.

For Alg9 (as shown in Algorithm 2), the population sampled in Halton sampling (Halton, 1960)
is divided into four sub-populations. The first sub-population uses GA operators MPX (Holland,
1992) crossover and Polynomial mutation (Dobnikar et al., 1999) accompanying with the Roulette
selection (Holland, 1992). MPX crossover is formulated as:

x′
i =

{
x′
r1,j , if randj < Cr1

x′
i,j , otherwise

, j = 1, · · · , Dim (13)

where randj ∈ [0, 1] are random numbers, Cr1 is a controllable parameter and xr1 is a random
solution. The sample method of xr1 is also a controllable action Xrmpx which can be uniform
sampling or sampling with fitness based ranking. The Polynomial mutation is as follow:

x′′
i =

{
x′
i + ((2u)

1
1+ηm − 1)(x′

i − lb), if u ≤ 0.5;

x′
i + (1− (2− 2u)

1
1+ηm)(ub− x′

i), if u > 0.5.
(14)

where ηm ∈ {1, 2, 3} is a controllable parameter, u ∈ [0, 1] is a random number, ub and lb are the
upper and lower bound of the search range.

The second sub-population uses SBX crossover (Deb et al., 1995), Gaussian mutation (Holland,
1992) and Tournament selection Goldberg & Deb (1991):

x′
i = 0.5 · [(1∓ β)xi + (1± β)xr1], where β =

{
(2u)

1
1+ηc − 1, if u ≤ 0.5;

(1
2−2u)

1
1+ηc , if u > 0.5.

(15)

where ηc ∈ {1, 2, 3} is controllable parameter and u ∈ [0, 1] is random number. Similar to MPX,
SBX also uses an action Xrsbx to select parent solutions xr1. The Gaussian mutation operator
applies Gaussian noise with controllable parameter σ ∈ [0, 1] on the solution:

x′′
i = N (x′

i, σ · (ub− lb)) (16)

The third sub-population is DE/rand/2/exponential (Storn & Price, 1997) where the DE/rand/2 mu-
tation operator is:

x′
i = xr1 + F13(xr2 − xr3) + F23(xr4 − xr5) (17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2 Pseudo code of Alg9

1: Input: Optimization problem f , optimization horizon T , Meta-level agent π.
2: Output: Optimal solution x∗ = argmin

x∈X
f(x).

3: Initialize 4 sub-populations {Xi,1}i=1,2,3,4 using Halton sampling with sizes {200, 100, 100, 100}.
4: Evaluate the sub-populations with problem f ;
5: for t = 1 to T do
6: Receive the 16 action values at from the agent π;
7: Generate X1,t+1 using MPX (Eq. (13)), Polynomial mutation (Eq. (14)) and Roulette selection on X1,t;

8: Generate X2,t+1 using SBX (Eq. (15)), Gaussian mutation (Eq. (16)) and Tournament selection on X2,t;

9: Generate X3,t+1 using DE/rand/2 mutation (Eq. (17)), Exponential crossover (Eq. (12)) on X3,t;
10: Generate X4,t+1 using DE/current-to-best/1 mutation (Eq. (18)), Binomial crossover (Eq. (19)) on X4,t;

11: for i = 1 to 4 do
12: Replace the worst solution in Xi,t+1 by the best solution in Xcmi,t+1

13: end for
14: end for

where xr· are randomly selected solutions and F13, F23 ∈ [0, 1] are controllable parameters for
the third sub-population. The Exponential crossover formulated as Eq. (12) is used in this sub-
population with parameter Cr3 ∈ [0, 1].

The last sub-population is DE/current-to-best/1/binomial (Storn & Price, 1997). The mutation oper-
ator with parameter F14, F24 ∈ [0, 1] is formulated as:

x′
i = xi + F14(x

∗ − xi) + F24(xr1 − xr2) (18)

where x∗ is the best performing solution in the sub-population. The Binomial crossover uses a
similar process as MPX but introduces a randomly selected index jrand ∈ {1, · · · , Dim} to ensure
the difference between the generated solution and the parent solution:

x′′
i =

{
x′
i,j , if randj < Cr4 or j = jrand

x′
i,j , otherwise

, j = 1, · · · , Dim (19)

where randj are random numbers and Cr4 ∈ [0, 1] is the controllable parameter.

Besides, Alg9 conducts the controllable information sharing among the sub-populations where the
worst solution in current sub-population Xi,g is replaced by the best solution from the target sub-
population Xcmi,g , cm{1,2,3,4} ∈ {1, 2, 3, 4} are four actions indicating the target sub-population.

Given the 16 actions {Cr1, Xrmpx, ηm, ηc, Xrsbx, σ, F13, F23, Cr3, F14, F24, Cr4, cm1, cm2,
cm3, cm4}, Alg9 uses these parameters to configure the mutation and crossover operators and ap-
plies them on the 4 sub-populations. Then the information sharing is activated for better exploration.
Finally, the next generation population is obtained through the population reduction processes.

D.2 TRAIN-TEST SPLIT OF BBOB PROBLEMS

As shown in Table 5, the BBOB testsuite (Hansen et al., 2021) contains 24 different optimization
problems with diverse characteristics such as unimodal or multi-modal, separable or non-separable,
high conditioning or low conditioning. To maximize the problem diversity of the training problem
set and hence empower the agent better generalization ability, we choose the most diverse 16 prob-
lem instance for training, whose fitness landscapes in 2D scenario are shown in Figure 4. The rest
8 instances are used as testing set whose 2D landscapes are shown in Figure 5. The dimensions of
each problem instances in both training and testing set are randomly chosen from {5, 10, 20, 50}.

D.3 BASELINE IMPLEMENTATION

RLPSO (Wu & Wang, 2022) uses two MLP policy networks to configure the algorithm parameters.
For each solution in each optimization generation, given the solution and the best so far solution,
RLPSO generates the a pair of µ and σ of the target parameter using the two networks respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Overview of the BBOB testsuites.

Problem Functions Dimensions

Separable functions

f1 Sphere Function 50
f2 Ellipsoidal Function 5
f3 Rastrigin Function 5
f4 Buche-Rastrigin Function 10
f5 Linear Slope 50

Functions
with low or moderate

conditioning

f6 Attractive Sector Function 5
f7 Step Ellipsoidal Function 20
f8 Rosenbrock Function, original 10
f9 Rosenbrock Function, rotated 10

Functions with
high conditioning

and unimodal

f10 Ellipsoidal Function 10
f11 Discus Function 5
f12 Bent Cigar Function 50
f13 Sharp Ridge Function 10
f14 Different Powers Function 20

Multi-modal
functions

with adequate
global structure

f15 Rastrigin Function (non-separable counterpart of F3) 5
f16 Weierstrass Function 20
f17 Schaffers F7 Function 50
f18 Schaffers F7 Function, moderately ill-conditioned 50
f19 Composite Griewank-Rosenbrock Function F8F2 10

Multi-modal
functions
with weak

global structure

f20 Schwefel Function 20
f21 Gallagher’s Gaussian 101-me Peaks Function 20
f22 Gallagher’s Gaussian 21-hi Peaks Function 10
f23 Katsuura Function 20
f24 Lunacek bi-Rastrigin Function 20

Default search range: [-5, 5]Dim

Then the parameter value is sampled from N (µ, σ) and the two policy networks are updated by
policy gradient. The original design of using the solution and best solution as network input hinders
the generalization ability of the RLPSO policy across problems with different dimensions, therefore
in the experiment we replace the network input by the same 9-dimensional state representation as
Q-Mamba. To control the algorithms with up to 16 actions in our experiment, we set the output
dimension of the two networks to 16 and use the first few values if the number of actions of the
algorithm is lower than 16. In summary, for RLPSO baseline we use the MLP with structure (9 ×
64× 32× 16) for both networks and retain their original Policy Gradient training process.

LDE (Sun et al., 2021) adopts a Long Short-Term Memory (LSTM) network to integrate the opti-
mization information from previous optimization generations and the fitness of solutions in current
population. Then two MLP networks predict the µ and σ for the target parameters of each solution
based on the integrated optimization status. REINFORCE is used to update the policy at the end of
an optimization trajectory. LDE configure the individual-level parameters for each solution there-
fore its state representation and action design are related to the population size. To adapt the network
to our generated algorithms where population sizes may reduce, we conduct the modification simi-
lar to that on RLPSO: we use our 9-dimensional state instead of its original population size related
state. The output dimensions of the networks are also set to 16 to perform the population-level pa-
rameter configuration. In this paper, we use an one-layer LSTM with input dimension 9 and hidden
dimension 32. The MLP network for µ and σ are both (32× 16).

GLEET (Ma et al., 2024b) designs a feature embedding module for feature extraction, a
Transformer-based fully informed encoder for information processing amongst individuals and an
exploration-exploitation decoder for individual-level parameter configuration in which the encoded
individual features are decoded in a Transformer block and generate the individual-wise µs and
σs for action sampling. The problem dimension-free state representation and Transformer-based
network structure make GLEET compatible to our generated algorithms and problems. Therefore
we retain its network designs except the output dimension: a meanpooling is conducted on the de-
coded features in the exploration-exploitation decoder to transform the individual-level features into
a population feature, then 16-dimensional µ and σ are predicted by two MLPs.

The Decision Transformer adopts a trajectory-based learning approach, utilizing a Transformer
architecture to model the decision-making process from sequential data. It consists primarily of
three components: a trajectory embedding module for embedding state-action-return sequences, a
Transformer-based decision module for processing sequential information, and a policy decoder for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

4
2

0
2

4
4

2
0

2
4

10

20

30

40

50

(a) f1

4
2

0
2

4
4

2
0

2
4

1000

2000

3000

4000

(b) f4

4
2

0
2

4
4

2
0

2
4

1

2

3

4

5 1e
7

(c) f11

4
2

0
2

4
4

2
0

2
4

1

2

3

4

5 1e
9

(d) f12

4
2

0
2

4
4

2
0

2
4

200
400
600
800
1000
1200
1400

(e) f13

4
2

0
2

4
4

2
0

2
4

50
100
150
200
250
300

(f) f14

4
2

0
2

4
4

2
0

2
4

100

200

300

400

500

(g) f15

4
2

0
2

4
4

2
0

2
4

100

200

300

400

500

(h) f16

4
2

0
2

4
4

2
0

2
4

100
200
300
400
500
600
700

(i) f17

4
2

0
2

4
4

2
0

2
4

1000
2000
3000

4000

5000

6000

(j) f18

4
2

0
2

4
4

2
0

2
4

50
100
150
200
250
300
350

(k) f19

4
2

0
2

4
4

2
0

2
4

25000
50000
75000
100000
125000
150000
175000
200000

(l) f20

4
2

0
2

4
4

2
0

2
4

10
20
30
40
50
60

(m) f21

4
2

0
2

4
4

2
0

2
4

10
20
30
40
50
60
70
80

(n) f22

4
2

0
2

4
4

2
0

2
4

10
20
30
40
50
60
70

(o) f23

4
2

0
2

4
4

2
0

2
4

20

40

60

80

100

(p) f24

Figure 4: Fitness landscapes of functions in BBOB train set when dimension is set to 2.

4
2

0
2

4
4

2
0

2
4

1

2

3

4

1e
7

(a) f2

4
2

0
2

4
4

2
0

2
4

500
1000

1500

2000

2500

3000

(b) f3

4
2

0
2

4
4

2
0

2
4

0

20

40

60

80

100

(c) f5

4
2

0
2

4
4

2
0

2
4

50

100

150

200

(d) f6

4
2

0
2

4
4

2
0

2
4

500
1000
1500
2000
2500
3000
3500

(e) f7

4
2

0
2

4
4

2
0

2
4

20000
40000
60000
80000
100000
120000
140000
160000

(f) f8

4
2

0
2

4
4

2
0

2
4

20000

40000

60000

80000

100000

120000

(g) f9

4
2

0
2

4
4

2
0

2
4

1

2

3

4

5 1e
7

(h) f10

Figure 5: Fitness landscapes of functions in BBOB test set when dimension is set to 2.

action generation. The trajectory embedding module encodes states, actions, and returns into token
sequences. These tokens are processed through standard Transformer encoder blocks, leveraging
self-attention mechanisms to capture long-range dependencies within the trajectory. The encoded se-
quences are then passed to the policy decoder, which generates predictions for the next action based
on the observed past states, actions, and expected returns. The Transformer-based structure enables
the Decision Transformer to handle sequences of varying lengths and complex state-action dynam-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ics. In our task, each action space dimension of the original Decision Transformer is treated as an in-
dependent token, changing the input sequence format from the original DT’s (R1, s1, a1, R2, s2, . . .)
to (R1, s1, a11 , a12 , . . . , a1n , R2, s2, . . .) to avoid the exponential growth of the action space.

Q-Transformer is a scalable offline reinforcement learning approach that employs a Transformer-
based architecture to model Q-functions for multi-task policies. This method discretizes each di-
mension of the action space, treating each as a separate token, which facilitates auto-regressive Q-
learning through effective sequence modelling techniques. By adopting this strategy, Q-Transformer
effectively mitigates the exponential growth of the action space, making it well-suited for large-scale
offline reinforcement learning tasks. A notable feature of Q-Transformer is its implementation of
conservative Q-function regularization, which addresses distributional shifts in conjunction with n-
step returns to improve learning efficiency. In our implementation, we utilize a linear action encoder,
a single-layer Transformer encoder combined with an MLP as a Q-value head to maintain a compact
model size with Q-Mamba.

21

	Introduction
	Related Works
	Meta-Black-Box-Optimization
	Offline Reinforcement Learning

	Preliminaries
	Decomposed Q-function Representation
	State Space Model and Mamba

	Q-Mamba
	Problem Formulation
	Mamba-based Q-Learner
	Training Objective
	E&E Dataset

	Experimental Results
	Experiment Setup
	In-distribution Generalization
	Out-of-distribution Generalization
	Ablation Study

	Conclusion
	Proof of Q-function Decomposition
	Optimization State Design
	Action Discretization and Reconstruction
	Experiment Setup
	Backend Algorithm Generalization
	Train-test split of BBOB Problems
	Baseline Implementation

