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ABSTRACT

By pretraining to synthesize coherent images from perturbed inputs, generative
models inherently learn to understand object boundaries and scene compositions.
How can we repurpose these generative representations for general-purpose per-
ceptual organization? We finetune Stable Diffusion and MAE (encoder+decoder)
for category-agnostic instance segmentation using our instance coloring loss ex-
clusively on a narrow set of object types (indoor furnishings and cars). Surpris-
ingly, our models exhibit strong zero-shot generalization, accurately segmenting
objects of types and styles unseen in finetuning. This holds even for MAE, which
is pretrained on unlabeled ImageNet-1K only. When evaluated on unseen object
types and styles, our best-performing models closely approach the heavily super-
vised SAM, and outperform it when segmenting fine structures and ambiguous
boundaries. In contrast, existing promptable segmentation architectures or dis-
criminatively pretrained models fail to generalize. This suggests that generative
models learn an inherent grouping mechanism that transfers across categories and
domains, even without internet-scale pretraining. Please see our anonymized web-
site: https://gen2seg-anon.github.io/

Figure 1: The model that generated the segmentation maps above has never seen masks of
humans, animals, or anything remotely similar. We fine-tune generative models for instance
segmentation using a synthetic dataset that contains only labeled masks of indoor furnishings and
cars. Despite never seeing masks for many object types and image styles present in the visual world,
our models are able to generalize effectively. They also learn to accurately segment fine details,
occluded objects, and ambiguous boundaries.

1 INTRODUCTION

Humans learn to carve the visual world into discrete, persistent objects from limited experience. A
toddler who has mostly handled cups, chairs, and toys at home can still recognize the zebra, giraffe,

1

https://gen2seg-anon.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and lion on their first trip to the zoo as distinct objects, even without knowing what they are called.
This ability extends to abstract depictions: people can understand line drawings and artworks even
without prior exposure to them (Hochberg & Brooks, 1962). These observations suggest human
vision acquires general, transferable mechanisms for grouping pixels into objects.

Modern vision systems often show ”zero-shot” transfer to new datasets without domain-specific
fine-tuning, but typically rely on broad labeled datasets that attempt to cover many object categories
and styles. We ask a different question through the lens of instance segmentation: can a model learn
from only a very narrow slice of the visual world and still generalize to unseen object types and
image styles? We focus on a stricter “zero-shot” setting, where we explore how the model performs
on object types it has never seen a mask for.

We hypothesize that generative models are particularly well posed to succeed at this task. Because
they learn to synthesize scenes from minimal cues (e.g., a text prompt or a corrupted image), they
must learn to implicitly represent the parts that make up the image. This allows generative models
to produce scene compositions unlike anything seen in pretraining data, such as “a Van-Gogh style
painting of a panda driving a car.”

We introduce a simple finetuning method that taps into these generative priors. We first experiment
with a Masked Autoencoder (MAE; encoder+decoder) pretrained on ImageNet-1K only end-to-end
using only mask supervision from two narrow synthetic domains (indoor furnishings and cars) to
generate object instance groupings. Despite this limited supervision, our model is able to generalize
to new object types unseen in finetuning, such as people and animals, or novel image styles, such as
impressionist art and x-rays. When we experiment with limiting the diversity or complexity of our
finetuning dataset, this generalization persists, suggesting it is due to the generative prior.

To explore the effects of internet-scale pretraining, we apply our finetuning method to Stable Diffu-
sion 2. Without seeing any labeled masks from the evaluation categories, our finetuned Stable Dif-
fusion achieves performance comparable to SAM across five datasets of distinct domains. Beyond
generalization, our models consistently produce crisper boundaries than SAM (e.g., on BSDS500),
a behavior that persists even when finetuned on datasets with polygonal edges (e.g., COCO). They
also excel at segmenting fine structures (e.g., on iShape) and exhibit object-part compositionality,
despite never receiving part-level supervision. We hypothesize these behaviors arise directly from
generative pretraining, which must model fine edges, delicate structures, and part–whole relation-
ships to synthesize detailed scenes.

Together, our findings argue that generative pretraining encodes an inherent grouping mechanism
that extends beyond both the object types and the image styles seen during finetuning. We hope
utilizing the generative representations learned from image synthesis can pave the way for more
generalizable and human-like perception, enabling advances in fields where detailed scene under-
standing is critical, such as robotics, medical imaging, and autonomous systems.

2 RELATED WORK

2.1 GENERATIVE MODELS FOR PERCEPTION

Generative models, originally developed for image synthesis, have increasingly been adapted for
perception tasks in computer vision. A longstanding viewpoint in the field (dating back to Hinton’s
early work) (Hinton, 2007) posits that learning to generate data can aid in recognizing it. Early work
on GANs (Goodfellow et al., 2014) evaluated whether representations learned by generating images
(Radford et al., 2015) or videos (Vondrick et al., 2016) transferred well to image classification or
action recognition, respectively, but performance was always far below discriminatively pretrained
models. Some works utilized inpainting (Pathak et al., 2016) and colorization (Larsson et al., 2017;
Zhang et al., 2016; 2017) as pretext tasks for representation learning, but these were subsequently
surpassed by discriminative pretraining (Noroozi et al., 2017; Gidaris et al., 2018; He et al., 2020).

Recent advancements have demonstrated the efficacy of diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020) in various visual tasks. A key advantage of recent diffusion models is the
sheer scale of their pretraining; learning from over 2 billion images (Schuhmann et al., 2022) has
the potential to outscale existing discriminatively trained models. Their large-scale generative pre-
training has since been transferred to many perceptual tasks, such as 3D reconstruction (Liu et al.,
2023b; Poole et al., 2022; Wang et al., 2023a), semantic (Baranchuk et al., 2021; Li et al., 2023b;
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Figure 2: To showcase the potential of generative models for instance segmentation, we highlight
an example from each evaluation dataset where most or all of our models outperform SAM, despite
never having seen masks of these object types. SAM often fails on fine structures (wires) or ambigu-
ous boundaries (horses & carriage), leaving black regions where no object was detected. DINO-B
also performs poorly, suggesting that generative pretraining (e.g., MAE, Stable Diffusion) learns
strong priors for perceptual grouping.

Kawano & Aoki, 2024; Tian et al., 2024) and amodal segmentation (Ozguroglu et al., 2024; Chen
et al., 2024), monocular depth (Ke et al., 2024; Zhao et al., 2023), surface normals (Fu et al., 2024),
optical flow (Ravishankar et al., 2024), correspondence (Tang et al., 2023), and classification (Li
et al., 2023a). Other works have shown that depth, normals, albedo, and segmentation can emerge
(albeit with low quality) from generative models (Bhattad et al., 2023; Namekata et al., 2024; Kar-
mann & Urfalioglu, 2024) without finetuning, suggesting similar representations may emerge from
the data alone (Dravid et al., 2023; Huh et al., 2024). While there are some prior works that finetune
diffusion models for instance segmentation (Fan et al., 2024; Zhao et al., 2025), these works focus
on building competitive instance segmenters using large scale data, while we explore generalization
through the lens of instance segmentation.

A parallel line of work explores representation learning through Masked Autoencoders (MAE) (He
et al., 2022), which achieve state-of-the-art performance across many visual tasks by pretraining
to reconstruct masked image tokens before fine-tuning on discriminative objectives. A common
practice, however, is to discard the decoder despite it containing rich pixel-level generative features
prior to fine-tuning. Recent work (Bar et al., 2022) has demonstrated the encoder and decoder’s
joint capacity to generalize through visual prompting, generating masks without explicit supervi-
sion. In contrast, our approach end-to-end fine-tunes the encoder and decoder and shows that it can
generalize to objects whose masks were not observed during fine-tuning.

2.2 INSTANCE SEGMENTATION

Recent advancements have introduced category-agnostic instance segmentation, enabling models to
segment objects without prior knowledge of their classes. The most well known of these is SAM
(Kirillov et al., 2023), which learns zero-shot promptable segmentation by finetuning an MAE back-
bone and mask decoder on the massive SA-1B dataset. SAM and its recent successor SAM2 (Ravi
et al., 2024) represent a breakthrough in obtaining general, category-agnostic masks without per-
dataset training. However, unlike SAM, which was trained on a massive supervised dataset, our
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Image MAE-H SD

Figure 3: Our models assign similar colors to compositionally related parts of a scene. Vader’s
mask and body (top), or the bowties and shirts (bottom) are separated by subtly different hues,
while distinct colors partition unrelated parts such as his leg and the poles (top), or the dogs and
text (bottom). This emerges without any part-level supervision, suggesting generative models learn
hierarchical scene representations. More samples are provided in Figures 13 to 19.

approach aims to leverage generative knowledge to achieve broad instance segmentation. Further-
more, our strongest model is trained for only 29 hours on four RTX6000 Ada (48GB) GPUs on less
than 87,000 images and 3.7 million masks of only select categories, while SAM was trained for 68
hours on 256 A100 (80GB) GPUs on 11 million images and 1.1 billion masks of many aspects of
the visual world.

Recent works (Wang et al., 2024; 2023b; 2022) train instance segmenters from pseudo-masks auto-
matically derived from contrastive self-supervised features via normalized cuts (Shi & Malik, 2000),
or similarity and thresholding. While both our work and theirs use less labelled data compared to
prior works (Kirillov et al., 2023), our goals differ. they leverage vast, diverse unlabeled images to
synthesize pseudo-labels for downstream finetuning, to reduce reliance on manually annotated la-
bels. In contrast, we use manually annotated labels, but deliberately restrict annotation diversity, to
build models that generalize to many novel object types when finetuned on very few. Additionally,
the noisy pseudo-labels require iterative retraining, which takes 2–15x longer than our single-pass
fine-tuning. Many of the findings from our work, such as our zero-shot generalization and our
robustness to noisy labels, provide a path to eventually combine these two directions in future work.

3 METHOD

We aim to adapt pretrained generative models, such as Stable Diffusion or MAE, to perform category
agnostic instance segmentation. Instance segmentation, in particular, is a pixel level task, at which
generative models are naturally primed to excel. Specifically, we hypothesize they inherently learn to
understand object boundaries and groupings because they must synthesize the objects’ core structure
and boundaries themselves. In contrast, most SOTA models, such as SAM (Kirillov et al., 2023),
extract features using an encoder that discards low-level details. As a result, they must learn mask
predictors or feature pyramid networks from scratch to gradually upsample these features to higher
resolutions (Lin et al., 2017; Li et al., 2022).

3.1 INSTANCE SEGMENTATION AS IMAGE TO IMAGE TRANSLATION

Recent instance segmentation models predict sets of binary masks, each representing an object in-
stance (Carion et al., 2020; Cheng et al., 2022). However, it is not obvious how to enable generative
models, designed to map from RW×H×3 → RW×H×3, to easily decode to this style. Drawing in-
spiration from work on image-to-image translation (Isola et al., 2017; Zhu et al., 2017), we encode
our ground truth as an RGB image with a unique color for each instance and black color for the
background. We find that both the Stable Diffusion VAE and MAE models can decode these masks
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with effectively no loss in quality. Thus, we finetune our model by forwarding our RGB image (or
its latent) without adding noise or masking, decoding the output, and optimizing in pixel space with
respect to the RGB ground truth.

Unfortunately, one cannot simply assign each ground truth mask to a color and train the model to
regress it since there are many possible accurate color assignments. Thus, we propose our instance
coloring loss based on two key properties of an RGB segmentation mask. First, the color of all
pixels within a mask should have low variance. Second, the color of a mask should not be predicted
anywhere outside the mask. By emphasizing these two properties, we can learn a model of instance
segmentation without needing to enforce specific colors for object masks. Simply, our finetuned
model should ensure each instance is assigned a unique color that is consistent across its pixels.
Our finetuning strategy is inspired by prior works (De Brabandere et al., 2017; Kong & Fowlkes,
2018) and thus we claim no novelty on it. We designed it to enable a training strategy that is simple,
intuitive, and agnostic to model architecture with fast inference time.

More formally, assuming an image with n instances, let Ω be the set of all pixels in the image, and
i ∈ {0, . . . , n} the instance index where i = 0 is always the background. We define the set of pixels
for instance i as:

Si = {j ∈ Ω | pixel j belongs to instance i}. (1)

For each instance, we define the mean embedding (or representative color) as

µi,c =
1

|Si|
∑
j∈Si

pj,c and µ0,c = 0;∀i ∈ {1 . . . n},∀c ∈ {0, 1, 2} (2)

where pj,c is channel c of the predicted color at pixel j. We force the background mask’s mean to
be black (µ0,c = 0) to follow standard convention and distinguish it from objects.

Our loss is composed of three components:

1. Intra-Instance Variance Loss: To ensure that the predictions within an instance are consistent,
we use a smooth ℓ1 loss that encourages each pixel’s prediction to be close to the instance mean.
This is defined as

Lvar =

n∑
i=0

1

|Si|
∑
j∈Si

2∑
c=0

Ls(pj,c, µi,c) (3)

where Ls denotes the smooth ℓ1 loss. We find that using smooth ℓ1 loss over the standard ℓ2 loss
converges better as it does not sharply penalize outliers.

2. Inter-Instance Separation Loss: We define the following loss to encourage the color of pixels
outside the instance to be pushed away from the instance’s mean color, ensuring that distinct regions
do not converge to similar colors:

Lsep =

n∑
i=0

1√
|Si| |Ti|

∑
j∈Ti

1

1 +
∑2

c=0

(
pj,c − µi,c

)2 (4)

where Ti = Ω \ Si denote the set of pixels outside instance i. The loss is designed to saturate as
the distance increases so that pixels far away from µi in color value do not dominate the loss. We
include

√
|Si| in the denominator to emphasize smaller objects.

3. Mean-Level Separation Loss: To further separate instances, we design the following loss similar
to the above one, but for mask centroids:

Lmean =
1

n(n+ 1)

∑
0≤i<j≤n

1

1 +
∑2

c=0(µi,c − µj,c)2
(5)

where the first fraction simply normalizes by the total number of comparisons.

Finally, we finetune a pretrained diffusion model by minimizing our instance coloring loss LIC:
LIC = Lvar + λsepLsep + λmeanLmean (6)

where λsep and λmean are hyperparameters controlling the importance of each loss term.

5
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Input MAE-B Features & Mask SimpleClick SD Features & Mask SAM

Figure 4: For qualitative comparison, we showcase several results for promptable segmentation
using our features. Our finetuned MAE-B and SimpleClick are trained on the same data, using the
same backbone, yet our MAE-B strongly outperforms SimpleClick due to its generative prior. Our
finetuned Stable Diffusion has never seen a mask of the object type it is segmenting, but performs
similar to SAM, which has been heavily supervised on over a billion masks of all types. Prompt
points are shown in green on the input.

3.2 POINT-PROMPTABLE INSTANCE SEGMENTATION

So far, our finetuned model assigns a color F (x, y) = pj to each pixel where (x, y) is the location
of pixel j. Since pixels belonging to the same object instance are encouraged to have similar colors,
we develop a simple method to “point-prompt” the feature map F for binary masks (similar to
SAM (Kirillov et al., 2023)). We intentionally opt not to train a separate mask decoder to showcase
that our model’s output features truly represent object instance shapes. Additionally, existing mask
decoders use specialized architectures designed to upsample from low resolutions to the original
image size, while our features are at the same resolution as the original image. Our simple prompting
method can be viewed as analogous to similar evaluation methods in representation learning used to
show that features truly represent the desired task, such as nearest-neighbor classification, semantic
segmentation, or tracking (Caron et al., 2021). One can potentially improve our results by training a
promptable high-resolution mask decoder on top of our features, which we leave for future work.

For each prompt point p ∈ R2 which contains the x and y location of the prompt pixel, we calculate
the query vector qp ∈ R3 as a Gaussian weighted average of the predicted color at the neighborhood

of p by qp =
∑

x,y w(x,y)F (x,y)∑
x,y w(x,y) where w(x, y) is a Gaussian function with mean p and standard

deviation 0.01(W,H) and W and H are the width and height of F .

We then compute a query-feature similarity map:

Sp(x, y) = min(1,
1

∥F (x, y)− qp∥2
), (7)

normalize it between [0, 1], and smooth it with a joint bilateral filter (Petschnigg et al., 2004) (using
F as guidance), thus averaging the similarities close in both pixel location (x, y) and feature value
F (x, y). Finally, assuming a set of k point prompts, we take the per-pixel maximum across k
similarity maps, and threshold the merged similarity map to produce the binary mask.

4 EXPERIMENTS

4.1 DATASETS

Training: Inspired by previous work (Ke et al., 2024), we train our model exclusively on synthetic
data. We combine two datasets: Hypersim (Roberts et al., 2021) and Virtual Kitti 2 (Cabon et al.,
2020). Hypersim provides a rich variety of indoor scenes (i.e. bathrooms, bedrooms, libraries,
and kitchens), while Virtual Kitti 2 focuses on outdoor driving scenes, with annotations limited to
cars. Both datasets are realistic and do not contain other styles. After removing images with too few
masks, our dataset comprises of 86,000 images (66,000 from Hypersim and 20,000 from Virtual Kitti
2), with a sampling strategy that selects Hypersim images 90% of the time. Neither dataset includes
annotations of people, animals, and several other categories. Additionally, while the number of
images is comparable to existing instance segmentation datasets, the diversity is substantially lower.
Our subset of Hypersim contains multiple views sampled from just 457 scenes, while Virtual Kitti 2
contains just 5 videos (each ∼15 seconds long), repeated from different viewing angles and weather
conditions. A list of labeled object types in Hypersim is available in Appendix D.
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Method COCOL
exc COCOM

exc COCOS
exc DRAM EgoHOS iShape PIDRay

SAM 57.0 59.5 56.9 50.2 56.4 16.8 44.2
SimpleClick 1.4 0.6 0.2 2.4 1.6 1.6 1.5
DINO-B 35.0 11.0 1.7 29.4 14.8 27.4 14.9
MAE-B 44.6 17.8 2.9 34.3 28.9 31.1 21.6
MAE-H 50.0 23.2 3.5 40.3 31.9 34.9 24.1
SD 57.6 38.8 8.5 48.2 40.0 51.4 30.9

Table 1: We evaluate zero-shot mIoU at a single prompt point on a wide spread of datasets. We match
or recover a high percentage of performance (minimum 70%) on all datasets except COCOM

exc/S.
This suggests that, for larger objects, our models have learned strong object-level representations
that transfer across categories and styles. Our baselines, SimpleClick and DINO-B are far below
MAE-B, suggesting this generalization is unique to generative models. Additionally, we strongly
outperform SAM on the iShape dataset, which evaluates segmentation of detailed and complex struc-
tures. SAM is trained on SA-1B. All other models are trained on our limited Hypersim+VK2.

Evaluation: Our finetuned models have seen masks of some limited object categories in a single
synthetic and realistic style. We aim to evaluate our models’ zero-shot generalization to unseen
categories and styles. We select 5 datasets from (Kirillov et al., 2023), each of which contains a
very different domain from the others: COCOexc (The COCO 2017 validation set (Lin et al., 2014),
but we exclude object types seen in finetuning, The list of categories are presented in Appendix
D), DRAM (Cohen et al., 2022) (art), EgoHOS (Zhang et al., 2022b) (egocentric), iShape (Yang
et al., 2021) (complex and fine structures), and PIDRay (Zhang et al., 2022a) (luggage x-rays). We
describe the details and motivation for each dataset in Appendix A.2.

4.2 MODELS AND BASELINES

Understanding the conditions under which generalization is possible is central to understanding our
findings. In practice, generalization depends on two types of factors: the choice of model architec-
ture and the properties of the training data. First, we implement our method on several generative
models and compare them with some baselines. Unless specified, the models are finetuned using the
loss and datasets described above. We finetune Stable Diffusion variants at 480×640 (Hypersim)
and 368×1024 (Virtual Kitti 2) and ImageNet-pretrained models at 224×224.

We apply our method to four different settings that include diffusion and MAE models: Stable
Diffusion v2 (SD) (Rombach et al., 2021): Following (Garcia et al., 2024), we set t = N−1 in an N -
step latent diffusion model and finetune end-to-end without noise. Using the frozen VAE to decode
the U-Net output, we optimize pixel-space loss, yielding a one-step, deterministic image segmenter.
MAE with Decoder (MAE-B/H) (He et al., 2022): We finetune an MAE with its decoder end-to-
end to showcase that a strong generative prior learned solely from ImageNet-1K images without
internet-scale pretraining or text supervision can effectively generalize. We use MAE ViT-B for
direct comparison to DINO-B/SimpleClick (see below) and MAE ViT-H to demonstrate scalability.

We compare with the following baselines: SimpleClick (Liu et al., 2023a): A SOTA promptable
segmenter using an MAE-B ViTDet (Li et al., 2022) backbone. We finetune SimpleClick using its
released training code on our synthetic dataset to show that existing architectures cannot generalize
well beyond supervised categories. DINO + VAE (DINO-B) (Caron et al., 2021): To test whether
generalizable object groupings are exclusive to generative pretraining, we attach DINO to a frozen
VAE decoder (from Stable Diffusion) via a simple up-conv and fine-tune end-to-end. DINO pro-
vides the discriminative features, while the VAE can decode to object shapes unseen in finetuning.
Segment Anything (SAM) (Kirillov et al., 2023): We use SAM ViT-H off-the-shelf as a high-water
mark for generalization that is supervised on the huge SA-1B dataset with 1B annotated masks.
Additional details are in Appendix A.1.

We examine the role of training data by varying both domain and object category diversity. We train
on (i) the full MS-COCO train split or (ii) ClevrTex (Karazija et al., 2021), a synthetic, shape-centric
dataset. COCO has real-world visual diversity but includes noisier labels while ClevrTex contains
pixel-perfect annotations but a narrow set of simple object types. As our Hypersim and Virtual

7
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Data COCOL
exc COCOM

exc COCOS
exc DRAM EgoHOS iShape PIDRay

Original 50.0/57.6 23.2/38.8 3.5/8.5 40.3/48.2 31.9/40.0 34.9/51.4 24.1/30.9
COCO 53.6/64.0 18.8/44.0 2.9/9.8 48.1/51.2 26.8/35.2 33.4/41.2 25.7/31.9
ClevrTex 40.0/47.1 19.4/21.6 1.9/7.5 23.5/28.0 21.4/21.9 27.6/32.1 22.2/23.7
10 classes 54.8/56.1 21.7/35.2 2.7/5.0 40.1/45.1 29.4/38.5 33.0/53.6 17.6/22.8
5 classes 42.1/47.6 16.2/29.7 1.4/6.4 34.2/38.2 23.7/34.4 28.5/48.5 15.2/19.4

Table 2: We explore how the diversity of the finetuning domain impacts generalization. Interestingly,
our model still performs well with real-world data (COCO) or synthetic shape-segmentation datasets
(ClevrTex). Furthermore, performance with just 10 classes from Hypersim results in nearly identical
performance to the full dataset (33+ classes), suggesting generalization emerges without diverse
finetuning data. However, some degree of diversity is still needed for optimal performance, as seen
by the performance drops on ClevrTex or with only 5 classes. We report results with both the MAE-
H and SD backbones (reported as MAE-H/SD).

Kitti 2 mix contains both complex shapes and high quality labels, comparing these regimes helps
disentangle the impact of object complexity from annotation quality. To study category diversity, we
also experiment with restricting Hypersim to only 10 and 5 classes of labeled masks in finetuning.
To ensure the model does not see the masks of unknown categories, we disable the loss for pixels
within the bounding box of all unknown objects. Additional details appear in Appendix A.1.

4.3 ZERO-SHOT PROMPTABLE INSTANCE SEGMENTATION

We evaluate our model on the task of zero-shot point-promptable instance segmentation. Following
Kirillov et al. (2023), we first evaluate our models’ ability to produce reasonable masks using only a
single prompt point at the ground truth object center and comparing the predicted mask’s IoU with
the respective ground truth. Then, following the so-called “golden” standard of prompting (Ravi
et al., 2024; Kirillov et al., 2023; Liu et al., 2023a; Sofiiuk et al., 2022; Lin et al., 2022; Sofiiuk et al.,
2020), we iteratively find the largest contiguous area of the ground truth with no mask predicted yet,
and select the next prompt point in that area closest to the area’s center. As promptable segmentation
is a highly ambiguous task, we do not necessarily expect to get high IoU, but we do hope for it to
approach our high-water mark, SAM.

Results. First, we examine model performance using a single prompt at the object center (Table
1). On all evaluation datasets except COCOM/S

exc (Medium and Small), our model approaches or
marginally exceeds SAM, despite never seeing labeled masks for these categories. This indicates
that generative models learn transferable object-level features, particularly for larger objects and
intricate details (evidenced by superior results on the iShape dataset). Interestingly, SAM struggles
in some cases because it seems to group by texture for out-of-distribution cases, such as art.

Our method also surpasses both baselines, SimpleClick and DINO-B. SimpleClick, as expected,
struggles with zero-shot mask generation. SimpleClick’s failure to generalize represents a weakness
in existing segmentation architectures: nearly all models use mask predictors finetuned from scratch
(Kirillov et al., 2023; Wang et al., 2024). When faced with object types unlike anything seen in
finetuning, these models will fail to generalize as the mask predictor has only seen the object types
in finetuning and lacks any other visual priors. Our method deliberately uses only generatively pre-
trained parameters, so that the entire model retains broad visual priors for test-time generalization.

Our finetuned DINO-B model successfully activates on objects, but struggles to separate their in-
stances. We hypothesize this is because self-distillation (and discriminative pretraining in general)
over-emphasize semantics via invariant representations, meaning they enforce that the output rep-
resentation does not change across augmentations. In contrast, to succeed at instance segmentation,
one must learn equivariant representations, meaning they account for changes in the scale, shape, or
structure of the image (and the objects within) (He, 2017). We hypothesize that generative models
are well posed to learn equivariant representations because they must learn to synthesize a plausible
image for every corrupted input they receive.

However, our models have limitations segmenting small objects, likely due to biases from pre-
training: Stable Diffusion’s text conditioning emphasizes large, prominent objects, while MAE’s
ImageNet-1K pretraining prefers central “main” objects. Additionally, models like SAM and other
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SAM DINO-B MAE-B MAE-H SD MAE-H (COCO) SD (COCO) MAE-H (ClevrTex)
79.0 33.2 53.7 80.5 93.4 75.9 89.7 86.4

SD (ClevrTex) MAE-H (10 classes) SD (10 classes) MAE-H(5 Classes) SD (5 Classes) Sobel
88.5 86.9 92.5 83.1 91.7 65.0

Table 3: We evaluate the zero-shot edge AP for recall less than 20% of the edges synthesized from
our models and baseline segmentations on BSDS500. Nearly all generative models outperform
SAM, even when trained on polygonal mask edges from COCO. This suggests that our models’
ability to produce detailed groupings is due to the generative prior, and not any specific dataset.

state-of-the-art segmenters (He et al., 2017; Cheng et al., 2022; Cai & Vasconcelos, 2019) fine-
tune at 1024×1024 resolution, whereas we fine-tune at lower resolutions: 480×640 (Hypersim)
and 368×1024 (Virtual Kitti 2) for Stable Diffusion variants, and 224×224 for ImageNet-based
models. We expect that stronger generative models, such as FLUX.1, would enhance small-object
segmentation. We leave this to future work due to their large parameter counts.

We also find that our models generalize well, even without synthetic or complex datasets, as shown
in Table 2. Surprisingly, our models learn to generalize even with only 5 object types (books, chairs,
lamps, tables, and pillows) seen in finetuning, or when only finetuned on simple shapes such as
cubes or spheres (ClevrTex). Furthermore, our models still excel at segmenting fine structures (as
shown on iShape) when finetuned on COCO, which mostly contains polygonal mask annotations.
Additionally, we see only minor improvement when generative models are finetuned with COCO,
suggesting that our models’ zero-shot generalization is very close to the “upper bound” of seeing
the objects in finetuning. This suggests generative pretraining is a powerful paradigm to learn gen-
eralizable instance grouping priors.

4.4 ZERO-SHOT EDGE DETECTION

We evaluate our segmentation features on the task of edge detection with the BSDS500 dataset
(Martin et al., 2001). It is important to note that we are not simply trying to find all edges in the
image, but only object boundaries. Following (Kirillov et al., 2023), we simply apply a Sobel
filter on the predicted features followed by nonmax suppression to thin the edges. We use the edge
detection described above on the original image as a “weak” baseline and on the output of SAM’s
AutoMaskGenerator as a “strong” baseline. We report AP for recall less than 20%. We explain this
choice (and display the full precision-recall curves) in Appendix B.

Results. Our model accurately delineates the edges of primary objects in each image despite never
seeing a mask of the object type. As shown in Table 3, our SD model produces much finer edges
compared to SAM. Additionally, our MAE-H model marginally outperforms SAM despite being
supervised at less than 5% of the resolution (224 × 224 vs 1024 × 1024). We also observe that when
we change the training data from synthetic Hypersim+VK2 to human-labeled COCO, we observe
a decrease of less than 5 points in edge AP on both SD and MAE-H models. Because COCO’s
edges are coarse and polygonal, the relatively small performance drop supports our hypothesis that
our model’s accurate and clean edges stem from generative pre-training and are not due to the bias
from the synthetic data. More interestingly, our SD (COCO) model is still better than SAM by
more than 10 points for recall less than 20%. Both COCO and SA-1B have similar polygonal
edges, which suggests by learning to synthesize scenes, generative models inherently learn a detailed
representation of object boundaries. Our precise edges also persist (and are sometimes even stronger
than the base model) when dataset complexity reduces, suggesting the generative model “defaults”
to predicting clean edges when segmenting an object.

5 CONCLUSION

Our findings suggest that learning to generate visual reality inherently teaches a detailed understand-
ing of its constituent parts. Our models are able to segment objects and styles unseen in pretraining
and finetuning, yet still achieve competitive performance with heavily supervised models. As we
continue to scale generative models and diversify their pretraining data, their ability to perceive the
visual world will only grow. Learning to leverage these powerful representations for a wide variety
of visual tasks has the potential to enable a new frontier in generalizable perception.
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APPENDIX

A EXPERIMENTAL MODELS AND DATASETS

A.1 ADDITIONAL DETAILS FOR MODELS AND BASELINES

Stable Diffusion 2 (SD): We finetune Stable Diffusion 2 U-Net end-to-end using our loss. We
follow the method in (Garcia et al., 2024) which enables deterministic one-step prediction. This has
been shown to outperform multi-step stochastic inference with standard diffusion training for other
perceptual tasks. To train it in pixel space, we fix the timestep to the highest (999). We replace the
input with our image’s VAE latent without adding any noise. We set the CLIP embedding to the null
condition. We freeze the VAE and finetune the U-net end to end with our instance coloring loss as
described above. We show in Appendix B that the choice of timestep has negligible effect on the
results as the timestep cross-attention within the U-net is finetuned too.

MAE with Decoder (MAE-B/H): We finetune MAE with the decoder end-to-end. In particular,
MAE is trained only on images, so it allows us to explore if a strong generative prior (without any
additional labels such as text or class condition) is enough to learn strong segmentation features.
Additionally, we can evaluate if internet-scale pretraining is necessary to generalize. We finetune
both the ImageNet-1K pretrained MAE ViT-B (for a direct comparison with DINO and SimpleClick)
and the ViT-H (for a rough comparison to SAM and Stable Diffusion). The masking ratio is set to
0%, so no tokens are masked. Our backbones use normalized tokens during pretraining, as this is
the standard. We hypothesize this leads to the token artifacts seen in the qualitative figures. It is
possible results may improve by using un-normalized tokens.

SimpleClick: We train SimpleClick, a state-of-the-art promptable instance segmenter, on the same
synthetic datasets that we train our generative models on. This helps us investigate whether our
generalization is due to the generative model itself, or simply an effect of training on synthetic
data. Our model initializes with an MAE ViT-B encoder, along with a feature pyramid learned from
scratch. We finetune using its released training code.

DINO + VAE (DINO-B): We investigate whether a strong discriminative model can suffice for
segmentation features without necessarily learning to synthesize images. However, we must pair
it with a model that knows how to upsample images of all types from a low-dimensional space so
that it will be able to generate images of objects unseen in training. To investigate this, we join
ImageNet-1K pretrained DINO ViT-B with the Stable Diffusion VAE decoder, and connect them
with a single up-conv layer. Additionally, the latent features of images compressed with the Stable
Diffusion VAE often look like the image itself (Kouzelis et al., 2025). Thus, to succeed, all DINO
needs to do is generate these object groupings at a lower resolution.

Segment Anything (SAM): SAM is a large-scale promptable instance segmentation model super-
vised on over a billion masks from a very large distribution of data. We use SAM as a benchmark to
evaluate the extent to which our model generalizes across a wide variety of images. While in some
cases we outperform SAM, we do not mean for this to claim that our models are inherently superior
to it. We use the publicly available ViT-H checkpoint and inference library.

Dataset Baselines: We finetune the models (MAE-H and SD) with the same loss and implementa-
tion details. For 5 and 10 category models, we computed no loss for any pixels inside the bounding
boxes of the objects that are outside the “allowed” categories. We also pruned any images with more
than 35% of image area that is “not allowed” or any images with no allowed masks as we found it
important to have a smaller amount of high quality data, rather than a larger set of low quality data.
Because of limited time, we reported results for SD (10 classes) and SD (5 classes) after only 15k
iterations of finetuning, rather than the full 30k. We will update our rebuttal draft with results from
the full finetuning schedule.

To match their pretraining resolutions, SimpleClick, DINO, and MAE are finetuned at 224×224
resolution, rather than the standard ones described in implementation details.
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A.2 EVALUATION DATASETS

COCOexc: We evaluate on the COCO 2017 validation set, as is standard for a large variety of
segmentation tasks. To showcase our zero-shot generalization to unseen mask categories, we choose
a subset of COCO dataset with categories not seen in our finetuning and call it COCOexc dataset.
COCOexc does not include object types that Hypersim does not have a explicit category for, but we
have observed to exist in the dataset (i.e. wine glass, teddy bear, potted plant). However, we have
seen that our synthetic data does not contain any masks for humans or animals, so COCOexc includes
such images. COCOexc contains 86% of the images and 64% of the masks in the full COCO 2017
validation set. We provide a full list of categories in Appendix D.

DRAM: Humans are able to perceive objects in a wide variety of visual media with large amounts
of abstraction. Unfortunately, most existing segmentation methods require high amounts of labeled
data to generalize to art. DRAM is a segmentation dataset that has annotated a large variety of
art pieces across styles and time periods, including many abstract styles such as impressionism,
ink-and-wash, and cubism. We evaluate on the test set.

EgoHOS: Egocentric vision is crucial for embodied AI and robotics. However, segmentation in
egocentric tasks is challenging because the first-person views often have frequent occlusions, motion
blur, and variable lighting, resulting in inconsistent and ambiguous object boundaries. The EgoHOS
dataset provides segmentations of a large amount of egocentric images of humans interacting with
everyday objects. We evaluate on the test set.

iShape: Many objects in the real world have fine, intricate structures. We evaluate our models’ abil-
ity to accurately segment these objects using the iShape dataset. iShape is an instance segmentation
dataset which contains many occlusions and complex, fine structures such as wires or fences. We
evaluate on the test set.

PIDRay: Humans effortlessly apply their understanding of object shapes even in scenarios never
encountered in nature. For instance, TSA agents can quickly identify dangerous items in X-ray
images of luggage. To assess our models’ generalization to this challenging scenario, we employ
the PIDRay dataset, which features labeled examples of hazardous objects in baggage. This task is
particularly demanding because many dangerous items are small and deliberately concealed within
other objects. We evaluate on the “easy” subset of the test set.

B ADDITIONAL RESULTS AND EXPERIMENTAL DETAILS

Figure 5: We evaluate segmentation quality as
the number of prompt points increases. Our
SD model marginally exceeds SAM at 1 prompt
point and recovers >82% of SAM’s perfor-
mance at 9 prompt points. This is surprising as
we do not use a learned mask encoder for mul-
tiple prompt points, but simply merge similar-
ity maps computed individually from each point
prompt.

Figure 6: We plot the full precision-recall of
the zero-shot edge detection on BSDS500. Our
strongest models outperform SAM’s precision
when recall is low, suggesting their segmenta-
tions lie on the exact boundaries of the corre-
sponding objects. However, as shown in Figure
7, our models sometimes do not predict objects
for certain regions of the image, leading to lower
precision at higher recall values.
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Original GT SD Edges MAE-H Edges SAM Edges

Figure 7: Delineating the edges of the objects in the scene is a fundamentally ambiguous task. While
our models’ outputs do not exactly match the ground truth (neither do SAM’s), they represent one
interpretation of the “objects” in the scene. Our model tends to include certain objects, such as the
clouds or grass, in the background. This emerges without supervision and may be an inherent bias
from generative pretraining.

Lvar Lsep Lmean smooth ℓ1 Norm mIoU

× ✓ ✓ ✓ ✓ 0.2
✓ × ✓ ✓ ✓ 30.4
✓ ✓ × ✓ ✓ 29.3
✓ ✓ ✓ × ✓ 27.7
✓ ✓ ✓ ✓ × 26.2
✓ ✓ ✓ ✓ ✓ 31.6

Table 4: Ablation study using mIoU at a single center point on COCOexc on our SD model.

We explore if our masks improve with additional prompt points (Figure 5). We average IoU across
datasets, excluding COCOM/S

exc (since few small objects are detected in the first place). Remarkably,
our SD model achieves over 82% mIoU relative to SAM at 9 prompt points, despite lacking a learned
prompt encoder for multi-point prompts or masks from any of the evaluated categories.

Additionally, as shown in Figure 6, our Stable Diffusion variant outperforms SAM in the first quar-
ter of the precision-recall curve, and our MAE ViT-H variant matches SAM for the first 20% of
recall despite having a substantially smaller training resolution when evaluated on edge accuracy on
BSDS500. However, as visualized in Figure 7, many labeled regions exist at the interface between
object and background (e.g., clouds, plants, or rocks). Our model tends to include these regions in
the background. As a result, no edges are detected for some objects in our features, and the preci-
sion falls for higher recalls. This behavior is fully emergent, as our model has never seen masks of
the overwhelming majority of objects present in the BSDS500 dataset. This hypothesis is further
supported by how our models with 5 and 10 classes only perform better. Specifically, they have no
loss computed on a high amount of the background (because we ignore loss for pixels inside the
bounding box of unknown-category objects). As a result, our 5 and 10 category models sometimes
activate on objects that SD or MAE-H would consider background. Thus, we opt to report AP under
20% recall as the lower precision later in the curve is not due to inaccurate edges, but rather a lack
of segmented objects in those regions.

We present an ablation study in Table 4 to examine the effect of each loss component and the VAE
normalization using mIoU at a single center point on the COCOexc dataset. First, removing the intra-
instance variance loss (Lvar) (row 1) causes performance to collapse. This is essential to our method;
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SD timestep COCOL
exc COCOM

exc COCOS
exc DRAM EgoHOS iShape PIDRay

t=999 (original) 57.6 38.8 8.5 48.2 40.0 51.4 30.9
t=499 58.8 37.5 6.2 48.9 28.6 50.9 31.5
t=1 57.9 38.4 8.5 47.8 31.3 49.2 28.0

Table 5: We ablate the role of the fixed timestep in our results. As shown above, it does not make a
major difference on the results as the timestep cross-attention is finetuned in the U-net.

SD MAE-H model
Augmentation COCOL

exc COCOM
exc COCOS

exc COCOL
exc COCOM

exc COCOS
exc

Original 57.6 38.8 8.5 50.0 23.2 3.5
Solarize 58.6 35.5 7.7 50.8 21.3 1.1
Contrast 2.0× 53.6 36.7 8.6 46.7 19.7 2.4
Contrast 0.5× 61.4 38.4 8.5 49.6 27.6 3.2
Grayscale 56.7 34.0 7.7 45.5 23.0 3.1
Hue +0.3 55.8 34.2 7.9 49.7 21.8 1.4
Hue -0.3 57.0 35.9 8.2 51.0 23.2 3.5

Table 6: We evaluate our models’ zero-shot accuracy robustness to several image color changes and
perturbations. As shown below, our models exhibit strong robustness to all with limited drop in
mask quality. Particularly, the solarize augmentation results loosely suggest that our model is not
grouping based on low-level color/texture and has some sense of high-level grouping.

without it, the model does not produce uniform masks. Eliminating the pixel-level separation loss
(row 2) prevents the model from learning sharp object boundaries, causing it to slightly overestimate
mask boundaries. Eliminating the mean-level loss (row 3) results in a reduced mIoU as well, but
instead affects the model’s ability to discriminate smaller objects. Replacing the smooth ℓ1 loss with
ℓ2 loss (row 4) and the normalization of VAE outputs (Norm, row 5) results in mIoU of 27.7 and
26.2, respectively. Both smooth ℓ1 loss and normalization of VAE output helps the model converge
to lower loss values earlier. Overall, the complete model that integrates all these components (row
6) achieves the highest mIoU of 31.6, confirming that each element plays a role in obtaining optimal
performance. We also ablate the fixed timestep value for our SD model in Table 5.

In Table 6, we explore our models’ robustness to a variety of image perturbations. This helps show
that our model is robust to changes in color and texture, despite never receiving any supervision for
this.

Finally, in Table 7, we explore how deep we need to finetune our model to achieve strong results.
We start with full finetuning and gradually reduce the layers trained to the last N layers in the model,
plus the final projection to pixel space, freezing the rest of the model. We find that finetuning just
the decoder leads to very similar performance to full finetuning. Additionally, we find that just one
or two layers are enough to achieve reasonable performance. This suggests that the ”core” object
grouping information is highly saturated in the decoder, especially the last layers. This makes sense
because 1) since the rest of the model is frozen, only the representations that are available at the last
N layers will actually have an effect on the output 2) these layers are the ones most responsible for
synthesizing images, for which understanding object grouping is frozen.

C IMPLEMENTATION DETAILS

We train our models on a node with four RTX6000 Ada GPUs. We train our models with a batch
size of 2, with gradient accumulation for 4 steps, for an effective batch size of 32. We do this
intentionally, as described in (Ke et al., 2024), to mix gradients between images sampled from
Hypersim and Virtual Kitti 2. We train our model for 30,000 iterations, which takes about 29 hours
for SDv2 and 12 hours for MAE ViT-H. However, our models show no signs of overfitting, and
performance would likely benefit from additional iterations, but we didn’t explore this due to timing
constraints. We sometimes struggle with memory constraints when finetuning Stable Diffusion, as
some images in Hypersim have a very high number of instances (2000+). Thus, we compute the loss
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Last N blocks finetuned COCOL
exc COCOM

exc COCOS
exc

MAE-H (original, full finetune) 50.0 23.2 3.5
Decoder only (8 layers) 53.5 20.2 3.0
4 layers 45.5 16.3 2.5
2 layers 40.0 13.0 2.0
1 layer 36.4 10.6 1.4
0 layers (linear probe) 19.6 2.7 0.0

Table 7: We explore how many layers need to be finetuned for our method to work. Surprisingly,
full finetuning does not yield performance gains over finetuning the decoder. Additionally, just one
or two layers need to be finetuned for reasonable performance.

on up to 1250 instances at most. We normalize final pixel-level outputs as we observe it improves
convergence. We start our learning rate at 6e-5, after 100 steps of warmup. We then decay on
a cosine schedule so that we end at 1

20 of our original learning rate. We train at a resolution of
480×640 for Hypersim and 368×1024 for Virtual Kitti 2 for our Stable Diffusion variants. For
ImageNet-pretrained models (MAE, DINO, SimpleClick), we resize Hypersim images to 224×224
and randomly crop a 224×224 region in Virtual Kitti 2 dataset. We set λsep and λmean to 300 and
compute all losses in the range of [0, 255] to weight all terms equally. For Stable Diffusion, we
finetune only the U-net and freeze the VAE. We set the text condition to the empty string. For all
prompting experiments, we fix the threshold to 3

255 and use a window size of 9 (for joint bilateral
smoothing). We also performed some minor data cleaning prior to training where we removed all
images with no masks and any scenes with less than 10 objects.

D LIST OF OBJECT TYPES IN HYPERSIM AND COCOEXC

For each dataset, we provide a list of labeled object types present, along with the number of objects
with that type.

D.1 HYPERSIM

This list includes only objects with instance and class annotations. Certain objects which have
instance-level annotations but lack class labels, such as teddy bears or potted plants, were placed
into the “unknown” object category.

Total number of objects: 3,693,970

Objects by category: Unknown (1,375,739), books (1,149,313), chair (334,422), lamp (211,409),
table (102,093), pillow (74,230), window (51,444), picture (46,102), cabinet (38,253), paper
(34,420), sofa (30,895), blinds (29,462), clothes (28,917), door (20,410), box (19,769), desk
(19,418), floormat (18,879), counter (14,446), bookshelf (12,887), shelves (11,886), sink (10,026),
mirror (7,488), bed (6,001), towel (5,250), television (4,367), nightstand (2,803), bathtub (2,556),
refrigerator (2,243), curtain (2,066), toilet (1,068), dresser (717), wall (106), whiteboard (100).

D.2 COCOEXC

We excluded object categories that either labeled in our train set or we have observed to appear.
For example, we have excluded “wine glass” or “knife” as these would be placed into Hypersim’s
“unknown” category. We have personally verified all of the objects below to not exist in the subset
of Hypersim we train on.

Total number of objects: 23,195

Objects by category: Person (11,004), traffic light (637), handbag (540), bird (440), boat (430),
truck (415), umbrella (413), cow (380), banana (379), motorcycle (371), backpack (371), carrot
(371), sheep (361), donut (338), kite (336), bicycle (316), broccoli (316), cake (316), suitcase (303),
orange (287), bus (285), pizza (285), horse (273), surfboard (269), zebra (268), sports ball (263),
elephant (255), tie (254), skis (241), giraffe (232), tennis racket (225), dog (218), cat (202), train
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(190), skateboard (179), sandwich (177), baseball glove (148), baseball bat (146), airplane (143),
hot dog (127), frisbee (115), fire hydrant (101), stop sign (75), bear (71), snowboard (69), parking
meter (60).

E LLM DISCLOSURE

We used LLMs to help polish writing.
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Image DINO-B MAE-B MAE-H SD (10 Classes) SD SAM

Figure 8: Qualitative Results on the COCOexc (Lin et al., 2014) dataset. These results are randomly
chosen and not cherry-picked.
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Image DINO-B MAE-B MAE-H SD (10 Classes) SD SAM

Figure 9: Qualitative Results on the DRAM (Cohen et al., 2022) dataset. These results are randomly
chosen and not cherry-picked.
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Image DINO-B MAE-B MAE-H SD (10 Classes) SD SAM

Figure 10: Qualitative Results on the EgoHOS (Zhang et al., 2022b) dataset. These results are
randomly chosen and not cherry-picked.
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Image DINO-B MAE-B MAE-H SD (10 Classes) SD SAM

Figure 11: Qualitative Results on the iShape (Yang et al., 2021) dataset. These results are randomly
chosen and not cherry-picked.
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Image DINO-B MAE-B MAE-H SD (10 Classes) SD SAM

Figure 12: Qualitative Results on the PIDRay (Zhang et al., 2022a) dataset. These results are ran-
domly chosen and not cherry-picked.
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Figure 13: Qualitative comparison of all models on a challenging, in-the-wild image.
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DINO-B MAE-B MAE-H

MAE-H (5 classes) MAE-H (10 classes) MAE-H (ClevrTex) MAE-H (COCO)

SD (5 classes) SD (10 classes) SD (ClevrTex) SD (COCO)

SD SAM

Figure 14: Qualitative comparison of all models on a challenging, in-the-wild image.
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Figure 15: Qualitative comparison of all models on a challenging, in-the-wild image.
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Figure 16: Qualitative comparison of all models on a challenging, in-the-wild image.
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Figure 17: Qualitative comparison of all models on a challenging, in-the-wild image.
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Figure 18: Qualitative comparison of all models on a challenging, in-the-wild image.
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Figure 19: Qualitative comparison of all models on a challenging, in-the-wild image.
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