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Abstract

We introduce and study the Combinatorial Ski Rental (CSR) problem, which in-
volves multiple items that can be rented or purchased, either individually or in
combination. At each time step, a decision-maker must make an irrevocable buy-or-
rent decision for items that have not yet been purchased, without knowing the end
of the time horizon. We propose a randomized online algorithm, Sorted Optimal
Amortized Cost (SOAC), that achieves the optimal competitive ratio. Moreover,
SOAC can be extended to address various well-known ski rental variants, including
the multi-slope, multi-shop, multi-commodity ski rental and CSR with upgrading
problems. Building on the proposed SOAC algorithm, we further develop a learning-
augmented algorithm that leverages machine-learned predictions to improve the
performance of CSR. This algorithm is capable of recovering or improving upon
existing results of learning-augmented algorithms in both the classic ski rental
and multi-shop ski rental problems. Experimental results validate our theoretical
analysis and demonstrate the advantages of our algorithms over baseline methods
for ski rental problems.

1 Introduction

Sequential decision-making under uncertainty is ubiquitous yet challenging in the digital transforma-
tion of society. We study the ski rental problem [17, 8], a classic online decision-making problem that
addresses the rent-or-buy dilemma. In its basic form [1, 19, 16, 20], the problem involves repeatedly
deciding whether to rent or buy an item without knowing its future usage duration. This paper
introduces and studies a more general variant, the Combinatorial Ski Rental (CSR) problem, which
extends the rent-or-buy decisions from one item to multiple items.

In the CSR problem, a player participates in a skiing season of unknown duration. Skiing requires
multiple essential items, such as skis, boots, helmets, and goggles. Each day, the player must
decide whether to buy or rent items that have not yet been purchased, with the goal of minimizing
the total rent and purchase cost over the entire season. The combinatorics of CSR stems from the
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purchase cost, which is cheaper when purchasing multiple items as a combo compared to buying
each item separately. The CSR model is inspired by real-world scenarios involving decisions over
multiple combinations [26, 15, 24], such as selecting data plan bundles in telecommunications [18],
configuring flexible service packages in cloud computing [4], and subscribing to software suites (e.g.,
Microsoft Office) [32], where users must choose among various combinations of applications.

Traditionally, online algorithms for ski rental problems are designed for worst-case scenarios, with
performance measured by the classic competitive ratios [7]. While this ensures robustness, it often
comes at the cost of poor performance on favorable real-world inputs. To address the pessimism
of classic competitive algorithms, learning-augmented algorithms [21, 27, 14, 23], as a rapidly
emerging field, aim to enhance traditional online algorithms by leveraging predictions from machine
learning models. These algorithms are designed to make use of potentially imperfect predictions to
achieve two goals: performing near-optimally when the predictions are accurate (i.e., consistency)
and retaining worst-case guarantees when predictions are misleading (i.e., robustness) [33, 34]. In
this paper, we aim to design both robust and learning-augmented algorithms for the CSR problem.

CSR with non-upgrading

multi-slope ski rental

multi-commodity 
ski rental

CSR with upgrading

classic ski 
rental

multiple paths 
single option

multi-shop ski rental

single path 
multiple options

multiple paths 
multiple options

Figure 1: Relationship between CSR and other ski
rental variants

Prior work. Many variants of the ski rental
problem have been studied to address increas-
ingly complex application scenarios. In single-
item ski rental problems, two main variants have
been explored: (i) multi-shop ski rental[1, 25],
where a skier must first choose one from multi-
ple shops, and then decide whether to rent or buy
one item from the chosen shop; (ii) multi-slope
ski rental [19, 6], where the skier has access to
multiple rental and purchase options, and can
adaptively switch among them over time. In
multi-item settings, in addition to the rent-or-
buy decisions, the skier must also determine the
order in which to purchase different items, re-
ferred to as the purchase path in this paper. Two special cases of the multi-item ski rental problem
have been studied. [29] considers the multi-commodity ski rental problem, where the rental and
purchase costs are additive across items. [32] studies a more general model in which both rental
and purchase costs are submodular and also frames the model as combinatorial ski rental. However,
the problem in [32] assumes that purchases can be upgraded, i.e., the player only needs to pay the
price difference to sequentially acquire new items. We can show that under the simplified models
in [29] and [32], the optimal order of purchasing items is fixed, i.e., there is only one purchase path.
As a result, their algorithms focus solely on determining the timing of purchases along this single
path, thereby avoiding the challenge of selecting from multiple purchase paths. Algorithmically, both
models can be viewed as special cases of the multi-slope ski rental problem for a single item. The
relationships among the different variants are illustrated in Figure 1.

The CSR problem studied in this work generalizes all the aforementioned models. We consider
multiple items with a submodular purchase cost and consider that purchases cannot be upgraded,
i.e., the full price must be paid for each new item. In this setting, the selection of the purchase
path becomes crucial and must be determined jointly with the timing of item purchases, making
the problem significantly more challenging. The most relevant work [32] has derived an optimal
e/(e− 1)-competitive algorithm for the CSR with upgrading. However, the non-upgrading variant
remains open, requiring new algorithmic techniques and analysis. We focus on the variant with
non-upgrading, and unless otherwise specified, use CSR to refer to the non-upgrading variant.

Contributions. In this work, we first propose an optimal randomized algorithm called Sorted Optimal
Amortized Cost (SOAC) for the CSR problem. To the best of our knowledge, this is the first optimal
online algorithm for CSR. The SOAC algorithm represents a general framework that can obtain optimal
solutions across a wide spectrum of ski rental variants, including the multi-slope [19], multi-shop [1],
multi-commodity ski rental [29] and CSR with upgrading problems [32].

Subsequently, we propose a learning-augmented algorithm for the CSR problem, termed LA-SOAC,
which provides consistency and robustness guarantees. LA-SOAC can recover and even improve
existing consistency-robustness trade-offs of learning-augmented algorithms for ski rental variants.
In particular, we recover the consistency and robustness bounds for the classic ski rental problem
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studied in Purohit et al. [21]. For the multi-shop variant, we prove that our algorithm achieves both
tighter consistency and robustness bounds than those established in Wang et al. [25]. Numerical
experiments validate our theoretical results and demonstrate the performance advantage of LA-SOAC.

Algorithmic ideas and technical novelty. Technically, the proposed algorithms SOAC and LA-SOAC
adopt a novel strategy, OAC, which makes decisions by tracking the cost incurred by the offline optimal
solution. At each time step, it allocates a daily cost budget proportional to the offline benchmark.
This design eliminates the need for intricate mathematical case analysis and can be broadly applied
to the family of ski rental problems. Furthermore, to address the challenges from multiple purchase
paths, we reformulate the problem as computing an augmented path that encompasses all possible
purchase paths. We then prove that the competitive ratio is a convex function with respect to the
probability distribution over these paths, enabling us to efficiently compute the optimal strategy.

2 Problem Statement

2.1 The combinatorial ski rental problem

Consider a player who aims to participate in a skiing season with an unknown horizon T ∈ N+. To
ski on each day, the player must have a setM := {1, 2, . . . ,m} of skiing equipment (referred to as
items) that are either rented or purchased. At the beginning of each day, the player must choose to
either buy or rent items that have not yet been purchased without knowing the horizon T . The goal is
to minimize the overall cost of renting and purchasing items during the skiing season.

CSR is a generalization of the classic ski rental problem, considering rent-or-buy decisions for
multiple items. For convenience, we refer to each individual item as a base item and any subset of
these base items as a super item. 2M denotes the set of super items. Let g(S) : 2M → R+ and
f(S) : 2M → R+ denote the rental rate function and the purchase cost function for a super item
S ∈ 2M, respectively, with f(∅) = g(∅) = 0. In this paper, we focus on a setup where the rental rate
is additive and the purchase cost is submodular.
Assumption 1 (Additive rental rate). The rental rate of CSR g(S) is additive, i.e., g(S) =∑

i∈S g({i}), where g({i}) is the rental rate of base item i.

Assumption 2 (Submodular purchase cost). The purchase cost of CSR is submodular, i.e., for
any S ∈ 2M and Z ⊆ Z ′ ∈ 2M, it holds that f(S | Z ′) ≤ f(S | Z), where f(S | Z) :=
f(S ∪ Z)− f(Z).

We assume that the purchase price is submodular because it reflects the fact that buying multiple
items together is cheaper than purchasing them individually. The combinatorics of CSR stems from
this submodularity. Furthermore, we consider an additive rental rate to simplify our analysis, as our
results can be readily extended to scenarios with submodular rental rates, since our algorithm relies
only on the buy-to-rent ratio ordering, which remains well-defined under submodular rental rates.
Both purchase cost and rental rate functions are known to the decision maker upfront.
Definition 1 (Information Setup I). We define all information known prior to the online decision
maker of CSR as information setup I := {M, f(·), g(·)}.

2.2 Online formulation

An online deterministic strategy for CSR consists of two layers of decisions: the purchase path
σ := (S1, S2, . . . , Sl), which is an ordered sequence of super items such that ∪li=1Si =M; and the
associated purchase time t(σ) := {t(S | σ)}S∈σ , where t(S | σ) is the time of purchasing the super
item S, given that purchase path σ is chosen. For randomized strategies, without loss of generality,
we focus on the mixed strategy that is a distribution over deterministic strategies. Thus, we denote a
general randomized algorithm for CSR by A := A(q,p), where q := {q(σ)}σ∈Σ is the probability of
choosing purchase path σ over all possible purchase paths in Σ and p := {pn(S | σ)}n∈N+,S∈σ,σ∈Σ

is the purchase probability, i.e., pn(S | σ) represents the probability of purchasing super item S on
day n, given purchase path σ. For notational convenience, we omit the index σ of super item Si and
path length l in a purchase path σ. The expected cost of an online algorithm A is

ALG(T ;A) =
∑
n∈[T ]

∑
σ∈Σ

∑
i∈[l]

(
q(σ) · f(Si) · pn(Si | σ) + q(σ) · (1− Fn(Si | σ)) · g(Si)

)
, (1)
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where Fn(S | σ) =
∑n

i=1 pi(S | σ) is the cumulative distribution function of buying super item S by
day n when purchase path σ is chosen. The first summation term inside the parentheses represents the
expected purchase cost. And the second term represents the expected rental cost, where 1−Fn(Si | σ)
denotes the probability that Si has not yet been purchased by day n. Additionally, under the purchase
path σ, pn(Si+1 | σ) = 0 when Fn(Si | σ) < 1 to enforce the order of purchase in σ.

2.3 Offline optimal structure

The goal of this work is to design an online algorithm for the CSR such that its expected cost is
comparable to the optimal offline cost, which is obtained with prior knowledge of the time horizon T .
Let OPT(T ) represent the optimal offline cost of the CSR for a given T . Since the purchase cost is
submodular, purchasing items as a combo is always cheaper than buying them separately. The offline
optimal algorithm is to purchase one super item at the beginning and rent remaining items until T .
Therefore, OPT(T ) can be determined by solving the following equation

OPT(T ) = min
S∈2M

{f(S) + T · g (M\ S)}. (2)

Figure 2: Illustrating the optimal offline cost
for the CSR problem.

The super item purchased in the beginning varies
under different time horizons. Let σ∗ :=
(S∗

1 , S
∗
2 , . . . , S

∗
K) denote the sequence of optimal pur-

chase sets as T increases. Note that σ∗ does not repre-
sent multiple purchases over time, but rather a struc-
tural summary of how the purchase decision of offline
algorithm changes with T . However, in special case
when the purchase cost can be upgraded [31], σ∗ can
be shown to be the optimal purchase path in an on-
line algorithm, which can be pre-determined in the
beginning and thus simplifies the algorithm design.
Thus, OPT(T ) is a piece-wise linear function of T
and we illustrate it using the red curve in Figure 2.
Each blue line illustrates the total cost of purchasing
and renting, given by f(S∗

i )+T ·g (M\ S∗
i ), which

corresponds to the scenario where one super item S∗
i

is purchased at the beginning, while the remaining items are continuously rented until time T . The
y-intercept of the line represents the purchase cost of the super item, and its slope indicates the total
rental rate of the remaining items.

Given the information setup I , the performance of an online algorithm A is evaluated by a competitive
ratio CR(A) := supT

ALG(T ;A)
OPT(T ) , which is the worst-case ratio over all possible skiing horizon T . In

the following, we design optimal robust algorithms that minimize the competitive ratio among all
online algorithms in Section 3, and learning-augmented algorithms by leveraging machine learned
predictions in Section 4.

3 Competitive Algorithms

In this section, we propose SOAC, an optimal randomized algorithm to solve the CSR. Recall that
a randomized algorithm involves two layers of challenging decisions: the purchase path selection,
followed by purchase time decisions for each super item in the path. We first consider a purchase
path σ is fixed, and focus on determining the purchase probability. To address this, we introduce
an optimal amortized cost strategy, denoted as OAC. Then we design the optimal algorithm SOAC by
constructing an augmented purchase path and employing OAC as subroutines for CSR.

3.1 Optimal amortized cost strategy

In the CSR problem, the competitive performance of the online algorithm depends on how to balance
the immediate purchase cost against the potential rental costs. A straightforward idea is to amortize
the daily costs in order to balance the two sources of costs. Consequently, we define a class of
amortized cost strategies, which set the quota of the amortized cost on day n as α ·∆OPT(n), where
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∆OPT(n) = OPT(n) − OPT(n − 1) is the increment of offline optimal cost in Eq. (2) and α is the
target competitive ratio.

Let ∆ALG(n; A) := ALG(n; A)− ALG(n− 1; A) and ∆OPT(n) = OPT(n)− OPT(n− 1) denote the
incremental costs of online algorithm A and offline algorithm if the time horizon progresses from
n− 1 to n, where ALG(n; A) is given in Eq. (1) for CSR, and OPT(n) is defined in Eq. (2).

Definition 2 (Amortized Cost Strategy, AC(σ;α)). Given a purchase path σ (equivalently the path
selection probability q) and a parameter α > 1, AC(σ;α) determines the purchase probability p of
an online algorithm A = (q,p) by solving the following system of equations

∆ALG(n; A) = α ·∆OPT(n), when n < TA,

∆ALG(n; A) ≤ α ·∆OPT(n), when n = TA,

∆ALG(n; A) = 0, when n > TA.

(3)

∆ALG(n; A) := ALG(n; A) − ALG(n − 1; A) is the incremental cost of the online algorithm A,
where ALG(n; A) is given in Eq. (1). TA is the “completion time” when algorithm A purchases all
items and the cost stops growing. It is a variable to be determined by solving the system of equations.

Note that the amortized cost strategy AC(σ;α) and the completion time TA depend on the parameter
α. A larger α encourages earlier purchases of items to avoid incurring high rental costs, thereby
completing the acquisition of all base items at an earlier stage, i.e., a smaller TA. We define
an optimal amortized cost strategy (OAC) as the AC(σ;α) that sets α such that TA = TOPT =
min{argmaxT∈N+ OPT(T )}. TOPT ∈ N+ is the “critical time" when the optimal offline cost stops
growing, i.e., the minimum length of time horizon in which the offline algorithm purchases all items
in the beginning.

Given a purchase path σ, Algorithm 1 illustrates the algorithm for the optimal amortized cost strategy
(OAC(σ)) and its competitive ratio is denoted as α(σ) := CR(OAC(σ)). Since TA is a non-increasing
function of α, Algorithm 1 employs a dichotomous search to find the α such that TA = TOPT.

Example 1. We show how to apply OAC for the classic single-item ski rental problem. In this case,
the set of itemsM contains only one item, i.e., |M| = 1, and the rental rate and purchase price are
given by g({1}) = 1 and f({1}) = b, respectively. The costs of optimal offline algorithm and the
online algorithm can be derived as follows: OPT(n) = min{n, b}, ALG(n; A) =

∑
i∈[n](i− 1 + b) ·

pi ({1}) + n · (1−
∑

i∈[n] pi ({1})). Based on Eq. (3), OAC is the solution to the equations:

∆ALG(n; A) = α, n ≤ b; ∆ALG(n; A) = 0, n > b.

Solving the above equations yields the optimal competitive ratio α = 1+ 1
((1− 1

b )
−b−1)

and purchasing

probability pn ({1}) =
(
b−1
b

)b−n 1
b(1−(1−(1/b))b)

, n ≤ b, which match the classic results for the
single-item ski rental problem in [12].

3.2 The SOAC algorithm

In CSR, an online algorithm that follows a determinstic purchase path achieves suboptimal perfor-
mance due to the submodular purchase cost. We next design a Sorted Optimal Amortized Cost
Algorithm (SOAC, Algorithm 2) that determines the purchase path Σ with probability q = {q(σ)}σ∈Σ

and the corresponding purchase probability p := {pn(S | σ)}n∈N+,S∈σ,σ∈Σ simultaneously. In the
high level, SOAC uses the purchase path probability q to construct an ancillary augmentation path
γBR(q). This augmentation path encompasses all possible optimal outcomes for CSR problems. We
show that the competitive ratio of OAC(γBR(q)) is convex in q (see Lemma 5), and thus we derive the
optimal purchasing path probability using projected gradient descent method. In the following, we
show the details of SOAC.
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Algorithm 1 OAC: Optimal Amortized Cost
Input:I = (M, f, g), σ, ε
Initialize: α = 1, αmax = f(M), αmin = 1
Construct algorithm A = AC (σ;α)
Calculate OPT(T ) and TOPT based on Eq. (2)
while αmax − αmin > ε do

Calculate TA using α according to
Eq. (1) and Eq. (3)

if TA < TOPT then αmax ← α
else αmin ← α
end if
Update α← (αmax + αmin)/2

end while

Algorithm 2 SOAC: Sorted Optimal Amortized Cost
Input: I = (M, f, g), ε, η
All disjoint partitions: Γ =

{
γ1, γ2, . . . , γ|Γ|

}
Sort divisions Γ by BR:

{
σ1, σ2, . . . , σ|Γ|

}
Construct γBR(q) based on Eq. (4)
Initialize: α← f(M), αnew ← 1, ∆α← 1

q = (q(σi))
|Γ|
i=1 ← ( 1

|Γ| , . . . ,
1
|Γ| )

while ∆α > ε do
q ← q − η · ∇qα(γ

BR(q))
q ← ProjectSimplex(q)
αnew ← α(γBR(q)), ∆α← |α− αnew|
α← αnew

end while

Let BR(S) := f(S)/g(S) denote the buy-to-rent ratio (BR) of a super item S. A key observation is
that the smaller the BR, the earlier the super item should be bought (See Lemma 3), which can greatly
reduce the number of possible purchase paths. Define Γ = {γ1, γ2, . . . , γ|Γ|} as the set of all possible
disjoint partitions of M and Σ = {σ1, σ2, . . . , σ|Γ|} as the corresponding set of purchase paths,
where σi is obtained by sorting the super items in γi in ascending order of BR values. Let D denote
the total number of possible super items2, including all individual base items as well as combinations
with bundle discounts. Denote these super items by S[1], S[2], . . . , S[D], sorted in ascending order of
BR, i.e., BR(S[1]) ≤ BR(S[2]) ≤ . . . ≤ BR(S[D]).

Given set Σ of purchase paths and the path selection probability q, we define an augmented path as

γBR(q) := (I(q̂[1], S[1]), I(q̂[2], S[2]), . . . , I(q̂[D], S[D])), (4)

where I(q̂[i], S[i]) denotes a new super item that comprises the same base items as S[i] but has a
purchase price of q̂[i] · f(S[i]) and a rental rate of q̂[i] · g(S[i]), and q̂[i] =

∑
σ∈Σ:S[i]∈σ q(σ) is the

sum of selection probabilities from paths that contain super item S[i]. The construction of γBR(q)
equivalently transforms the path-level probability structure in the CSR problem into item-level decision
information, enabling efficient decision-making under a fixed q (See Lemma 4).

Recall that competitive ratio of SOAC(γBR(q)) is α(γBR(q)). Our problem reduces to find the path
selection probability to minimize the competitive ratio, i.e., q∗ = argminq α(γ

BR(q)). To achieve
this, we employ the Projected Gradient Descent (PGD) method. At each iteration, we compute
the gradient of the competitive ratio with respect to q and update q along the direction of the
negative gradient. To ensure that q remains a valid probability distribution (i.e., q(σi) ≥ 0 and∑|Γ|

i=1 q(σi) = 1), we project the updated q onto the probability simplex.

Example 2. We demonstrate the SOAC algorithm with three items, rented daily at $0.30, $0.80, and
$0.50, and individually purchasable at $149.99 each. Bundled purchases offer discounts: $229.99 for
any pair and $329.99 for all three. The buy-to-rent ratios of all super items can be sorted as follows

BR({2, 3}) ≤ BR({2}) ≤ BR({1, 2, 3}) ≤ BR({1, 2}) ≤ BR({1, 3}) ≤ BR({3}) ≤ BR({1}).

We can find a total of 5 sorted purchase paths of the set {1, 2, 3}, where the super items in each path
are arranged in ascending order of their buy-to-rent ratios.

Path 1-5: ({1, 2, 3}), ({1, 2}, {3}), ({2}, {1, 3}), ({2, 3}, {1}), ({2}, {3}, {1}).

Let qi for i ∈ {1, 2, . . . , 5} denote the probability of selecting the i-th path. These probabilities are
used to construct an augmented purchase path as follows:(
I(q4, {2, 3}), I(q3+q5, {2}), I(q1, {1, 2, 3}), I(q2, {1, 2}), I(q3, {1, 3}), I(q2+q5, {3}), I(q4+q5, {1})

)
.

2In practical applications, D can be much smaller than |2M| as not all combinations are eligible for discounts.
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Offline 
breakpoint

Figure 3: (Example 2) (a) Purchase probabilities along different paths.
(b) Theoretical vs. empirical competitive ratios across varying horizons.

To determine the optimal
probabilities qi, we adopt
projected gradient descent
to minimize the competi-
tive ratio of the augmented
purchase path. The re-
sults show that only two
paths have non-zero prob-
abilities: Path 1 ({1, 2, 3})
with 70.4% and Path 4
({2, 3}, {1}) with 29.6%.
Using qi, we compute the
optimal randomized pur-
chase probabilities for each item per path per day, as illustrated in Figure 3(a). The offline breakpoint
in Figure 3(a) arises because this point lies exactly at a transition point of the piecewise linear offline
optimal function, where the slope of the function changes. Figure 3(b) compares the competitive
ratio of SOAC with a baseline that fixes a single path. The results indicate that fixing the path leads to
sub-optimal performance. Moreover, the average competitive ratio over varying horizons aligns well
with the theoretical expected competitive ratio, demonstrating the accuracy of SOAC.

3.3 Theoretical Result for Competitive Algorithms

Our first main result is to show the optimality of SOAC for the CSR problem.
Theorem 1. Given setup information I, the SOAC algorithm attains the optimal competitive ratio
among all online algorithms for the CSR problem.

The competitive ratio of the CSR problem depends on the setup information, and exhibits no closed
form expressions. Notably, the competitive ratio can exceed the well known ratio e/(e− 1) for the
classic ski rental problem as shown in Figure 3. This is inherently due to risk of a fault path selection
in the online algorithms, and there is a cost to switch across different paths when the purchases cannot
be upgraded. This is also the key difference of CSR from other existing variants of ski rental problems.
Furthermore, we can show that the CSR problem generalizes many well-established variants of the ski
rental problems, including the multi-shop ski rental [1], multi-slope ski rental [19], multi-commodity
ski rental [29] and CSR with upgrading [32] problems. Therefore, our proposed SOAC algorithm can
also achieve optimal ratios for those variants.
Lemma 1. The SOAC algorithm achieves the optimal competitive ratios for multi-shop, multi-slope,
multi-commodity and CSR with upgrading ski rental problems.

In fact, SOAC not only provides an alternative algorithm to previous variants, but also resolves some
open problems. For example, in multi-commodity ski rental problem [29], prior work only achieves
optimal solutions when all items have the same buy-to-rent ratio. The SOAC algorithm provides the
first optimal randomized solution for arbitrary price configurations, filling this gap in the literature. A
formal discussion related to generality of our model and algorithm is provided in Appendix E. We
end this section by providing a proof sketch for Theorem 1, and its full proof is given in Appendix C.

Proof sketch of Theorem 1. To prove the optimality of SOAC, we first show that for a given purchase
path σ, the optimal amortized cost strategy OAC(σ) is optimal.
Lemma 2 (Optimality of OAC). For the CSR problem with setup information I, given purchase path
σ, OAC(σ) achieves the optimal competitive ratio among all online algorithms.

Next, we show that we can only focus on the purchase paths whose super items are arranged in
increasing order of their buy-to-rent ratios. This greatly reduces the possible purchase paths.
Lemma 3 (Optimal purchase order). Given a disjoint partition γ = {S1, S2, . . . , Sl} ofM, OAC(γBR)
achieves the minimum competitive ratio among all purchase paths with the same super items in γ,
where γBR = (S[1], S[2], . . . , S[l]) such that BR(S[1]) ≤ BR(S[2]) ≤ . . . ≤ BR(S[l]).

Building on Lemma 3, we can further prove that the optimal strategy for a CSR, with a given set of
possible purchase paths and the associated path selection probability q, is equivalent to a CSR with
one augmented purchase path γBR(q), which is defined in Eq. (4).
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Lemma 4 (Equivalent problem transformation). Given the setup information I for CSR, given a
purchase path probability q, the CSR problem reduces to determining the optimal purchase probability
p for the augmented purchase path γBR(q).

Given the path selection probability q, SOAC uses OAC(γBR(q)) to determine the purchase probability
and obtain the corresponding competitive ratio α(γBR(q)). Finally, SOAC obtains the optimal q∗ using
a PGD method. The optimality of q∗ is ensured by proving the convexity of α(γBR(q)) in q.

Lemma 5 (Convexity property). The competitive ratio α(γBR(q)) of the optimal amortized cost
strategy under the augmented path γBR(q) is a convex function of the path selection probability q.

Combining all above results gives the proof Theorem 1.

Remark 1. The proposed algorithm SOAC establishes the first unified theoretical framework for
various ski-rental variants, proving both the existence and computability of the optimal solution.
Although the worst-case computational complexity of SOAC is exponential due to the exponential
number of possible combinations, in practical scenarios only a limited number of combinations are
relevant, which reduces the runtime to polynomial time. We provide a detailed runtime analysis in
Appendix G.5. Moreover, for existing variants such as the multi-shop ski rental, multi-slope ski rental,
and multi-commodity ski rental problems, the computational complexity of SOAC remains polynomial.

4 Learning-Augmented Algorithms

Based on the optimal robust algorithm SOAC, this section continues to explore how machine-learned
predictions can be leveraged to break the pessimistic worst-case bounds. Consider that in the
beginning of a ski season, we obtain a prediction y of the time horizon T . Our goal is to design a
learning-augmented SOAC (LA-SOAC) that can provide the best possible consistency and robustness
guarantees. In particular, let Ay;λ := (qy;λ,py;λ) denote the algorithm for a given prediction y
and confidence parameter λ, where λ ∈ (0, 1) is a hyperparameter that indicates the confidence
in the prediction (the smaller λ, the more confidence in the prediction). An algorithm Ay;λ is µ-
consistent if ALG(T ; Ay;λ) ≤ µ · OPT(T ) when the prediction is accurate (i.e., y = T ), and β-robust
if ALG(T ; Ay;λ) ≤ β · OPT(T ) for any actual end times T .

Recall that a key design in SOAC is to enforce the completion time TA, at which the algorithm’s
cost stops to increase, to the critical time of offline optimal TOPT, at which the offline algorithm
stops to increase. Our core idea of LA-SOAC is to dynamically adjust the completion time Tα

based on the predicted value y. Intuitively, when the prediction y is large, a smaller completion
time Tα is preferred. However, the original SOAC fails if the completion time is set larger than
TOPT, since the incremental cost ∆OPT(n) = 0 for n > TOPT, making it infeasible to track OPT(n)
beyond this point. To address this problem, we introduce an augmented cost function OPT(n).
Let t∗ = max{n ∈ N+ | ∆OPT(n) ≥ OPT(TOPT)/TOPT}. The increment of OPT(n) is defined as
∆OPT(n) = ∆OPT(n) for n ≤ t∗, and ∆OPT(n) = OPT(TOPT)/TOPT for n > t∗. This modified cost
ensures that the incremental cost of OPT(n) is at least OPT(TOPT)/TOPT.

In LA-SOAC, we extend SOAC to SOAC, which replaces OPT(n) with OPT(n) and changes the critical
time from TOPT to TML. Let SOAC(TML) denote the modified strategy (See Appendix F for full
description). The LA-SOAC algorithm adjusts TML based on the prediction y: If y ≥ TOPT, it prioritizes
early purchases by setting TML = ⌊λT (1)

OPT⌋, where the parameter T (1)
OPT ≤ TOPT. If y < TOPT, it delays

purchases by setting TML = ⌈T (2)
OPT/λ⌉, where T

(2)
OPT ≥ TOPT. Using adjusted critical times, LA-SOAC

computes purchase probabilities Ay;λ. The procedure is outlined in Algorithm 3.

Algorithm 3 LA-SOAC: Learning-Augmented SOAC

1: Input: Setup information I = (M, f, g); prediction y; parameters T (1)
OPT , T

(2)
OPT , λ;

2: if y ≥ TOPT then
3: Set TML ← ⌊λT (1)

OPT⌋ and obtain A
(1)
y;λ = (q

(1)
y;λ,p

(1)
y;λ) = SOAC(TML);

4: else
5: Set TML ← ⌈T (2)

OPT/λ⌉ and obtain A
(2)
y;λ = (q

(2)
y;λ,p

(2)
y;λ) = SOAC(TML).

6: end if
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Theorem 2. Given parameters T
(1)
OPT ≤ TOPT, T

(2)
OPT ≥ TOPT, and confidence factor λ ∈

(0, 1), let A
(1)
y;λ and A

(2)
y;λ denote purchase probabilities determined in Algorithm 3. Then

the consistency of Algorithm 3 is max

{
ALG(TOPT; A(1)

y;λ)

OPT(TOPT)
,
ALG(TOPT; A(2)

y;λ)

OPT(TOPT)

}
and its robustness is

max

{
ALG(⌊λT (1)

OPT ⌋; A(1)
y;λ)

OPT(⌊λT (1)
OPT ⌋)

,
ALG(⌈T (2)

OPT /λ⌉; A(2)
y;λ)

OPT(TOPT)

}
.

Due to the complexity of the expected costs in the CSR problem, there are no closed-form expressions
for consistency and robustness in general. Theorem 2 states that both consistency and robustness of
LA-SOAC are dominated by two extreme ratios. Suppose the prediction is accurate, i.e., y = T . If

y ≥ TOPT, the cost ratio
ALG(T ; A(1)

T ;λ)

OPT(T ) is maximized at T = TOPT; if y < TOPT, the ratio
ALG(T ; A(2)

T ;λ)

OPT(T )

is also maximized at T = TOPT. Thus, consistency is dominated by the maximum of these two
extreme ratios. In contrast, when the prediction y may be arbitrarily inaccurate, the cost ratio peaks at
T = ⌊λT (1)

OPT⌋ if y ≥ TOPT, and at T = ⌈T (2)
OPT/λ⌉ if y < TOPT. Note that OPT(⌈T (2)

OPT/λ⌉) = OPT(TOPT),
so in the denominator we use T = TOPT for computing OPT(T ). Thus, robustness is governed by the
maximum of these two extreme-case ratios.

Parameters T
(1)
OPT and T

(2)
OPT are set to TOPT in general, and can be specifically designed to optimize

consistency and robustness. Specifically, in the classic ski rental problem, we can set T (1)
OPT = T

(2)
OPT =

TOPT, and LA-SOAC recovers the explicit bounds [21], as shown in Corollary 1. For the multi-shop
ski rental problem, by properly setting T

(1)
OPT and T

(2)
OPT , LA-SOAC attains improved consistency and

robustness bounds compared to previous results [25], as shown in Corollary 2.
Corollary 1. For the classic ski rental problem with purchase price b and rental price 1, when
T

(1)
OPT = T

(2)
OPT = TOPT and λ ∈ ( 1b , 1], LA-SOAC is λ

1−e−λ -consistent and 1+1/b
1−e−(λ−1/b) -robust.

Corollary 2. For the multi-shop ski rental problem with s shops, where the purchase prices satisfy
b1 > · · · > bs and the rental prices satisfy 1 = r1 < · · · < rs, when T

(1)
OPT = TOPT, T (2)

OPT = b1, and

λ ∈
(

1
bs
, 1
]
, LA-SOAC guarantees a consistency ratio no worse than rsλ

1−e−rsλ and a robustness ratio

no worse than b1
bs

max
{

rs
1−e−rs(λ−1/bs) ,

1/λ+1/b1
1−e−1/λ

}
, which are the bounds established in [25].

5 Numerical Results

Figure 4: Consistency vs. robustness.

We empirically evaluate the performances of LA-SOAC. Con-
sider three items, with item prices b1 = 80, b2 = 110, and
b3 = 130, and the same rental price of 1. The discount
factor for purchasing any two items together is set to 0.95,
and 0.9 for three items. We let the actual number of days,
T , be uniformly distributed within the region [1, 4TOPT]. The
predicted number of days, y, is set to y = T + ϵ, where the
simulated error ϵ follows a normal distribution with mean
δ and standard deviation η, i.e., ϵ ∼ N (δ, η2). Here, δ con-
trols the bias of the prediction, while η (referred to as the
error parameter) characterizes the variability or uncertainty
in the prediction. For each standard deviation, 10,000 sam-
ples are randomly sampled in this study, and their average
competitive ratios are calculated. Figure 4 compares the trade-off performance of the LA-SOAC
algorithm against strategies that follow only a single path. The results demonstrate that LA-SOAC
consistently outperforms the others.

Figures 5(a) and 5(b) further illustrate the average competitive ratio under varying levels of pre-
diction error η. Specifically, Figure 5(a) presents results with δ = 0 for different values of
λ ∈ {0.25, 0.5, 0.75, 1}. When λ is smaller, the average competitive ratio is lower under accu-
rate predictions but higher under inaccurate predictions. Figure 5(b) evaluates performance across
varying error levels δ ∈ {50, 100, 150, 200}. For a fixed λ, the results indicate that the optimal
choice of bias δ depends on the error parameter η. When η is small, a smaller bias δ tends to yield
better competitive ratios, as it allows the algorithm to more effectively exploit accurate predictions.
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(a) (b) 

Figure 5: (a) Average numerical competitive ratio over various error parameters η and λ. (b) Average
numerical competitive ratio over varying error parameters η and δ.

(a) (b) 

Figure 6: (Multi-shop ski rental) (a) Consistency vs. robustness. (b) Average competitive ratios.

In contrast, when η is large, a larger bias δ becomes beneficial, as it helps hedge against extreme
inaccuracies, thereby improving overall performance.

We compare our LA-SOAC algorithm with the state-of-the-art learning-augmented algorithm for
multi-shop ski rental (Algorithm 3 in [25] referred to as LA-MSSR). The evaluation utilizes the dataset
from [25], comprising 6 shops with purchase prices defined as b1 = 100, b2 = 95, b3 = 90, b4 =
85, b5 = 80, b6 = 75 and rental prices given by r1 = 1.00, r2 = 1.05, r3 = 1.10, r4 = 1.15, r5 =
1.20, r6 = 1.25. Consistent with [25], the actual number of days is modeled as uniformly distributed
within the interval [1, 3b1]. Figure 6(a) illustrates the performance trade-off of LA-SOAC compared
to LA-MSSR [25] and a baseline strategy that follows a single path. The results demonstrate that
LA-SOAC achieves a superior trade-off compared to [25]. Furthermore, Figure 6(b) compares the
average competitive ratio, demonstrating that LA-SOAC offers a better trade-off and surpasses the
performance of [25] in certain cases. For more numerical experiments about SOAC and LA-SOAC,
see Appendix G. The source code for reproducing all experiments is available at https://github.
com/guodongsanjianke/Combinatorial_Ski_Rental_Problems.

6 Conclusion

In this paper, we study robust and learning-augmented algorithms for the CSR problem. We first
propose the SOAC algorithm, an optimal randomized algorithm for CSR, which can be extended to
address many other variants of the ski rental problem. Building on this, we introduce a learning-
augmented algorithm that provides both consistency and robustness guarantees, and can recover
or improve existing results of learning-augmented algorithms in classic ski rental and multi-shop
ski rental problems. Although the computational complexity of the SOAC algorithm can grow
exponentially with the number of super items, this is an algorithmic limitation stemming from the
combinatorial nature of the problem. In practical applications, however, the number of combinations
is often limited, i.e., not all combinations are eligible for discounts. This can significantly reduce the
computational complexity of the SOAC algorithm. In future work, we plan to apply our algorithms to
real-world scenarios to investigate their practical impact.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly reflect the contributions and scope of this
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We analyzed the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This paper gives complete assumptions for all theoretical results as well as
complete and correct proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All results in the paper are reproducible, and we have provided the source code
in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the supplementary materials, we have provided our source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly specifies all details of the training and testing processes (See
Section 4 and Appendix G).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information to describe the required computing
resources (See Appendix G).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The CSR problem has no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The model we used appropriately credits the original creator.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have not released any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related work

The classic ski rental problem was first introduced by [12], where optimal deterministic and ran-
domized algorithms were developed, achieving competitive ratio upper bounds of 2 and e/(e− 1),
respectively. The rent-or-buy dilemma in ski rental problem [17, 8] has a wide range of applications,
including on/off scheduling of small cell base stations for energy saving with intermittent demands
[15], request-response caching for cloud services [13], and bandwidth cost minimization in content
delivery networks [20]. Additionally, it applies to purchasing multi-kind Bahncards to reduce ticket
prices for future journeys, thereby lowering repeated travel costs [24].

Various variants [29, 28, 9] of the ski rental problem have since been proposed to address more
complex application scenarios. The most relevant work [32] proposes a randomized algorithm for
the CSR that allows for upgrades, achieving a competitive ratio of e/(e − 1) using a primal-dual
framework. Their work addresses CSR with upgrading as the primal problem and combinatorial online
bipartite matching as the dual problem. The multi-slope ski rental problem [19, 6, 10] is a variant
that introduces a one-time setup cost and a usage-duration-dependent cost for each option, enabling
customers to switch between options. This problem is further divided into two versions: additive and
non-additive. The additive version allows buying costs to accumulate, while the non-additive version
has arbitrary switching costs for each switch. In [19], an optimal randomized algorithm for the
additive version and an e-competitive ratio for the non-additive version are proposed. [1] introduces
the multi-shop ski rental problem, in which multiple shops offer the required item. Upon arrival at
the ski field, customers must select a shop and decide whether to rent or purchase the item from
that shop [25]. The authors derive closed-form solutions for this problem and develop a linear-time
algorithm to compute these solutions efficiently.

Another variant is the two-level ski rental problem [28], which involves making decisions on individual
or combined purchases of all items. They develop an optimal deterministic online algorithm that uses
two fixed thresholds for decision-making when rental costs exceed predefined levels. Further, the
authors [29] investigate the multi-commodity ski rental problem, which requires considering multiple
purchase combinations without any discounts. They propose an online algorithm and demonstrate
its optimality when items have the same rent-to-buy ratio. [31] study the multi-discount ski rental
problem, which involves a single item with multiple rental options [22, 30], each with a rental
duration and increasing discounts as the rental duration increases. They propose a 4-competitive ratio
algorithm and observe that the competitive ratio increases with the number of available rental options.

In recent years, the integration of learning-based predictions into online algorithms has introduced
a new paradigm known as learning-augmented online algorithms. These methods aim to balance
two key metrics: consistency and robustness [27, 14, 23]. Consistency measures the algorithm’s
performance with perfect predictions, while robustness focuses on the algorithm’s performance when
the prediction is of low quality. Researchers have proposed several learning-augmented algorithms to
tackle different variants of the ski rental problem [5, 25, 2]. For instance, [21] has demonstrated the
high robustness of their machine-learning algorithm for the classic ski rental problem. Similarly, [25]
has used machine learning algorithms to significantly improve the performance of their algorithm
for the multi-shop ski rental problem. [2] have studied strategies for customizing machine learning
algorithms by incorporating optimization objectives into the loss function. [11] have developed an
algorithm that balances consistency with robustness for the ski rental problem with expert advice and
established strict upper and lower bounds for the consistency ratio based on the number of experts.

B Proof for Lemma 2

The Lemma 2 is established by Proposition 1, Proposition 2, and Proposition 3. Given a purchase
path σ, we define a family of amortized cost strategies {AC(σ;α)}α>1, parameterized by the target
competitive ratio α, and show that any optimal online algorithm belongs to this family (Proposition 1).
We then establish that the completion time TA of the algorithm A = AC(σ;α), defined as the time at
which all purchases are completed, is monotonically non-increasing with respect to α (Proposition 2).
Furthermore, we prove that no AC(σ;α) algorithm can have a completion time TA exceeding TOPT,
the completion time of the optimal offline algorithm (Proposition 3). Combining these results,
we conclude that the minimal competitive ratio among AC(σ;α) strategies is attained when the
completion time equals TOPT.
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Proposition 1. Given the information setup I of the CSR problem, among all online algorithms that
follow the purchase path σ, the amortized cost strategies {AC(σ;α)}α>1 include the optimal online
algorithm.
Proposition 2. Given information setup I of the CSR problem and a purchase path σ, if there exist
algorithms A1 = AC(σ;α1) and A2 = AC(σ;α2) with α1 < α2, then TA2 ≤ TA1 .
Proposition 3. Given a setup I for the CSR problem, a purchase path σ, and the algorithm A =
AC(σ;α); there does not exist an α such that TA > TOPT.

B.1 Proof of Proposition 1

We begin by establishing Proposition 4, which demonstrates that for the CSR problem with |M| = 1,
purchasing the item earlier results in a lower cost when the game duration is long.
Proposition 4. For a information setup I = (M, f, g) of CSR, where |M| = 1, let k, u ∈ N+ and
k < u. Suppose A1 and A2 are two online algorithms for the problem satisfy ∆ALG(n; A2) =
∆ALG(n; A1) for n ̸= k, u and ∆ALG(n; A2) > ∆ALG(n; A1) for n = k. Then, we have
∆ALG(u; A1)−∆ALG(u; A2) > ∆ALG(k; A2)−∆ALG(k; A1).

Proof. Consider the set S = {1}, which is an element ofM. The cost incurred by the algorithm on
day n can be expressed as

∆ALG(T ) = (1− Fn−1(S)) · g(S) + (f(S)− g(S)) · pn(S),
where the first term on the right-hand side represents the expected rental cost, and the second term
represents the expected purchase cost. From the above expression, we can derive the purchase
probability on day n as pn(S) =

(
∆ALG(T )− (1− Fn−1(S)) · g(S)

)
/
(
f(S)− g(S)

)
. Applying

this formula to algorithms A1 and A2, we obtain the following observations

(1) When i < k or i > u, we have pi(S; A1) = pi(S; A2) and Fi(S; A1) = Fi(S; A2).

(2) When i = k, it holds that pi(S; A1) < pi(S; A2) and Fi(S; A1) < Fi(S; A2).

(3) When k < i < u, similarly, pi(S; A1) < pi(S; A2) and Fi(S; A1) < Fi(S; A2).

As a result, we obtain

pu(S; A1)− pu(S; A2) > pk(S; A2)− pk(S; A1),

and therefore, the following inequality holds

∆ALG(u; A1)−∆ALG(u; A2)

= (Fu−1(S; A2)− Fu−1(S; A1)) · g(S) + (f(S)− g(S)) · (pu(S; A1)− pu(S; A2))

> (Fk−1(S; A1)− Fk−1(S; A2)) · g(S) + (f(S)− g(S)) · (pk(S; A2)− pk(S; A1))

= ∆ALG(k; A2)−∆ALG(k; A1).

This concludes the proof of Proposition 4.

For a purchase path (S1, S2, . . . , Sl), if the purchasing process follows the AC (σ;α) strategy, then any
super item that lies along the incremental optimal offline cost trajectory satisfies the three properties
stated in Remark 2. Therefore, to establish Proposition 1, it suffices to show that the AC (σ;α) strategy
includes the optimal strategy for purchasing a single super item, provided that the incremental optimal
offline cost associated with this super item satisfies the conditions specified in Remark 2.
Remark 2. For a purchase path (S1, S2, . . . , Sl), if the purchasing strategy adheres to AC (σ;α),
then any super item that lies along the incremental optimal offline cost function ∆OPT(T ) satisfies
the following three properties:

(1) Non-negativity: ∆OPT(T ) ≥ 0, for all T ∈ N+.

(2) Monotonicity: ∆OPT(T ) is non-increasing for T > 1.

(3) Stability: There exists a time TOPT ∈ N+ such that ∆OPT(T ) > 0 for T = TOPT, and
∆OPT(T ) = 0 for all T ≥ TOPT + 1.
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To facilitate the analysis, we assume that the purchase of a super item Si begins at time n = 1. Since
part of the cost at n = 1 may be attributed to the purchase of a previous super item, the incremental
optimal offline cost ∆OPT(T ) is monotonically non-increasing for n > 1. To prove Proposition 1, it
suffices to establish the following proposition (Proposition 5).

Proposition 5. Consider a super item S with a purchase price f(S) and a rental rate g(S). Suppose
the optimal offline function for this super item satisfies the conditions outlined in Remark 2. Let the
competitive ratio of algorithm A1 be CR(A1). Then, there exists an algorithm A2 that satisfies the
AC(σ;α) strategy and whose competitive ratio satisfies CR(A2) ≤ CR(A1), i.e., algorithm A1 is not
superior to algorithm A2.

Proof. If algorithm A1 satisfies the AC (σ;α) strategy, the proof is straightforward by taking A2 = A1.

However, if algorithm A1 does not satisfy the AC (σ;α) strategy, then there must exist a day k < TA1

such that
∆ALG(k; A1) < CR(A1) ·∆OPT(k). (5)

Without loss of generality, assume that k is the first day for which the above inequality holds. To
make the equality in Eq. (5) hold, we can consider shifting the purchase probability: increase it on
day k and decrease it after day k. There are two possible cases when making this adjustment.

Case 1: Reducing the purchase probability after day k is not sufficient to achieve the equality. This
means that even if we increase the purchase probability on day k to the maximum extent (i.e., make
the cumulative purchase probability reach 1 by day k), the cost incurred by the algorithm on day k
still does not reach the required budget. Mathematically, this implies the following inequality holds

CR(A1) ·∆OPT(k) − (1− Fk−1(S; A1)) · g(S)
f(S)− g(S)

≥ 1− Fk−1(S; A1). (6)

Eq. (6) can be simplified to (1− Fk−1(S; A1)) · f(S) < CR(A1) ·∆OPT(k).

Based on this, we can construct a new algorithm A2 with modified purchase probabilities as follows

pn(S; A2) =


pn(S; A1), if n < k,

1− Fn−1(S; A1), if n = k,

0, if n > k.

With this construction, algorithm A2 satisfies the AC (σ;α) strategy, and we also ensure that CR(A2) ≤
CR(A1).

Case 2: Suppose it is possible to make the equality in Eq. (5) hold on day k by reducing the
purchase probabilities after day k. This implies that

(1− Fk−1(S; A1)) · f(S) ≥ CR(A1) ·∆OPT(k).

We then construct a modified algorithm A(1) with the following purchase probability allocation

(1) pn(S; A(1)) = pn(S; A1), for n < k or n > k + τ .

(2) pn(S; A(1)) = 0, for k + 1 ≤ n ≤ k + τ − 1.

(3) pn(S; A(1)) = CR(A1)·∆OPT(k)− (1−Fk−1(S; A1))·g(S)
f(S)−g(S) , for n = k.

(4) pn(S; A(1)) =
∑k+τ

j=k+1 pj(S; A1) −
(
pk(S; A(1))− pk(S; A1)

)
, for n = k + τ .

The integer τ is chosen to ensure the feasibility of the probability adjustment, satisfying

k+τ−1∑
j=k+1

pj(S; A1) < pk(S; A(1))− pk(S; A1) and
k+τ∑

j=k+1

pj(S; A1) ≥ pk(S; A(1))− pk(S; A1).
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Algorithm A(1) is valid since it satisfies the following conditions
∞∑

n=1

pn(S; A(1)) = 1, and 0 ≤ pn(S; A(1)) ≤ 1.

We now proceed to prove that CR(A(1)) ≤ CR(A1) case by case.

Subcase (1): for n < k.

According to the construction of algorithm A(1), we have

∆ALG(n; A(1)) = ∆ALG(n; A1) = CR(A1) ·∆OPT(n), for n < k.

Therefore, it follows that

ALG(n; A(1)) = CR(A1) · OPT(n), for n < k.

Subcase (2): for n = k.

∆ALG(k; A(1)) =
(
1− Fk−1(S; A(1))

)
·g(S)+(f(S)− g(S))·pk(S; A(1)) = CR(A1)·∆OPT(k).

Thus, we obtain ALG(k; A(1)) ≤ CR(A1) · OPT(k).
Subcase (3): for n = k + τ .

According to Proposition 4, reallocating costs from later stages to earlier ones results in lower total
costs. Therefore, we derive

ALG(k + τ ; A(1)) < ALG(k + τ ; A1) ≤ CR(A1) · OPT(k + τ).

Subcase (4): for n > k + τ .

In this case, we have

ALG(n; A(1)) =

n∑
j=1

∆ALG(j; A(1)) = ALG(k + τ ; A(1)) +

n∑
j=k+τ+1

∆ALG(j; A(1))

≤ ALG(k + τ ; A1) +

n∑
j=k+τ+1

∆ALG(j; A1)

≤ CR(A1) · OPT(n), for n > k + τ.

Subcase (5): for k < n < k + τ .

We prove that ALG(n; A(1)) ≤ CR(A1) · OPT(n) by contradiction.

Assume there exists some n with k < n < k + τ such that ALG(n; A(1)) > CR(A1) · OPT(n).
Without loss of generality, let n be the smallest integer greater than k for which the inequality fails.
Therefore, we have

ALG(n− 1; A(1)) ≤ CR(A1) · OPT(n− 1),

∆ALG(n; A(1)) > CR(A1) ·∆OPT(n).

According to the construction of A(1), we know

∆ALG(n; A(1)) = ∆ALG(n+ 1; A(1)) = · · · = ∆ALG(k + τ − 1; A(1)) ≤ ∆ALG(k + τ ; A(1)).

By the monotonicity of ∆OPT, it holds that

∆OPT(n) ≥ ∆OPT(n+ 1) ≥ · · · ≥ ∆OPT(k + τ).

Hence, for all i such that n ≤ i ≤ k + τ , we have ∆ALG(i; A(1)) > CR(A1) ·∆OPT(i), which leads
to ALG(k + τ ; A(1)) > CR(A1) · OPT(k + τ). This contradicts the conclusion ALG(k + τ ; A(1)) ≤
CR(A1) · OPT(k + τ). Therefore, it hold that ALG(n; A(1)) ≤ CR(A1) · OPT(n), for k < n < k + τ .
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In summary, we have shown that the competitive ratio of algorithm A(1) does not exceed that of A1,
i.e.,

CR(A(1)) ≤ CR(A1).

By iteratively applying the above procedure, we can construct a sequence of algorithms
A(1), A(2), . . . , A(d), where the final algorithm A(d) satisfies the AC (σ;α) strategy. These algo-
rithms satisfy the following conditions

CR(A1) ≥ CR(A(1)) ≥ CR(A(2)) ≥ · · · ≥ CR(A(d)).

Let A2 = A(d). Then, A2 satisfies AC (σ;α) strategy and CR(A2) ≤ CR(A1). Therefore, Proposition 5
is proved.

Given the result in Proposition 1, we now proceed to establish Proposition 2 and 3. Proposition 2
shows that achieving a smaller target competitive ratio requires a longer duration to complete the
purchasing process. Proposition 3 demonstrate that an AC(σ;α) algorithm with a completion time
exceeding TOPT does not exist.

B.2 Proof of Proposition 2.

Proof. If algorithm A buys only Si on day n following purchase path σ, then on that day, only
the super item Si has a non-zero purchase probability, while all other super items have a purchase
probability of 0. Consequently, the cost incurred by algorithm A on day n is given by

∆ALG(n; A) = f(Si) · pn(Si; A) + (1− Fn(Si; A)) · g(Si) +
∑l

j=i+1
g(Sj). (7)

If algorithm A is able to completely purchase Si on day n and proceed to the next super item, then
set pn(Si; A) = 1− Fn−1(Si; A) and let

∆ALG(n; A) = ∆ALG(n; A)− f(Si) · pn(Si; A). (8)

Since the purchase path is fixed and identical for both algorithms A1 and A2, it is sufficient to
demonstrate the conclusion for |M| = 1 based on Eq. (7) and Eq. (8). Consider the set S = {1}.
The purchase probability on day n can be expressed as

pn(S) =
∆ALG(T )− (1− Fn−1(S)) · g(S)

f(S)− g(S)
.

Since α1 < α2, it follows that ∆ALG(T ;A1) < ∆ALG(T ;A2). Consequently, we have pn(S; A1) <
pn(S; A2) for n ≤ TA2 . Algorithms A1 and A2 satisfy the following conditions∑TA1

i=1
pi(S; A1) = 1;

∑TA2

i=1
pi(S; A2) = 1.

Thus, TA2 ≤ TA1 .

B.3 Proof of Proposition 3.

Proof. Consider the purchase path σ = (S1, S2, . . . , Sl). We use a proof by contradiction. Suppose
that the completion time of algorithm A exceeds TOPT. In this case, we have FTOPT(Sl;A) < 1. Let
n = TOPT + 1,

∆ALG(n;A) =
∑

i∈[l−1]

[
f(Si) · pn(Si;A) + (1− Fn(Si;A)) · g(Si)

]
+ f(Sl) · pn(Sl;A) + (1− Fn(Sl;A)) · g(Sl)

=
∑

i∈[l−1]

[
f(Si) · pn(Si;A) + (1− Fn(Si;A)) · g(Si)

]
︸ ︷︷ ︸

Term 1

+ (f(Sl)− g(Sl)) · pn(Sl;A)︸ ︷︷ ︸
Term 2

+(1− FTOPT(Sl;A)) · g(Sl)︸ ︷︷ ︸
Term 3

.
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Since Term 1 ≥ 0, Term 2 ≥ 0 and Term 3 > 0, we have ∆ALG(n;A) > 0, while α∆OPT(n) = 0.
This implies ∆ALG(n;A) > α∆OPT(n), which contradicts the AC(σ;α) strategy. Thus, Proposition 3
holds.

C Proof for Theorem 1

The proof of Theorem 1 is established through Lemma 2, Lemma 3, 4 and 5. First, Lemma 2
establishes that for a given purchase path σ, the strategy OAC(σ) achieves optimality. For a given
purchase set, Lemma 3 guarantees the optimality of the purchase order. Building on this result,
Lemma 4 further demonstrates that the optimal strategy for a CSR with a given purchase probability
q is equivalent to a CSR characterized by an augmented purchase path γBR(q). This augmented
path γBR(q) is constructed based on the purchase probability vector q and the purchase path set
Σ. Consequently, the strategy OAC(γBR(q)) is guaranteed to be optimal for a CSR with purchase
probability q. Moreover, Lemma 5 establishes that the competitive ratio α(γBR(q)) is a convex
function of the purchase probability q. This convexity property allows the efficient computation of
the optimal purchase probability q∗ using numerical optimization methods.

C.1 Proof of Lemma 3.

To evaluate the performance of the algorithm under disjoint sets γ, including randomized paths, we
consider strategies satisfying

∆ALG(n; A) = α ·∆OPT(n), when n ≤ TOPT,

∆ALG(n; A) = 0, when n > TOPT,
(9)

which are not necessarily constrained to a fixed purchase order. Define a strategy A1 such that∑TOPT
n=1 pn(Sv;A1) = 1 and ∆ALG(n; A1) = α1 ·∆OPT(n), for any day n ∈ N+ and v ∈ [l]. Suppose

strategy A does not follow an ascending order of the buy-to-rent ratio. That is, there exist times k, u,
and super items Si, Sj such that k < u, f(Si)

g(Si)
>

f(Sj)
g(Sj)

, and pk(Si;A1) > 0, pu(Sj ;A2) > 0. Let

0 < δ1 ≤ pk(Si;A1) and δ2 = f(Si)−g(Si)
f(Sj)−g(Sj)

δ1 > 0. Define a strategy A2 such that

pn(Sv; A2) =


pn(Sv; A1), for n ̸= k, u and v ∈ [l],

pn(Sv; A1), for n = k, u and v ∈ [l], v ̸= i, j,

pk(Si; A1)− δ1, pk(Sj ; A1) + δ2, for n = k,

pu(Si; A1) + δ1, pu(Sj ; A1)− δ2, for n = u.

Then the strategy A2 is well-defined, i.e.,
∑TOPT

n=1 pn(Si;A2) = 1, and ∆ALG(k; A2) = α1 ·∆OPT(k).
we will prove that strategy A2 outperforms strategy A1, i.e., ∆ALG(n; A2) ≤ α1 ·∆OPT(n) for any
day n ∈ N+.

(1) For n ≤ k, it is evident that ∆ALG(n; A2) = α1 ·∆OPT(n).

(2) For k < n < u,
∆ALG(n; A1)−∆ALG(n; A2)

= (1− Fn(Si;A1)) g(Si) + f(Si)pn(Si;A1) + (1− Fn(Sj ;A1)) g(Sj) + f(Sj)pn(Sj ;A1)

− (1− Fn(Si;A2)) g(Si)− f(Si)pn(Si;A2)− (1− Fn(Sj ;A2)) g(Sj)− f(Sj)pn(Sj ;A2)

=− δ1g(Si) + δ2g(Sj)

=
(f(Si)− g(Si)) g(Sj)− (f(Sj)− g(Sj)) g(Si)

f(Sj)− g(Sj)
δ1.

Since f(Si)
g(Si)

>
f(Sj)
g(Sj)

, it follows that f(Si)−g(Si)
f(Sj)−g(Sj)

> g(Si)
g(Sj)

. Thus, ∆ALG(n; A1)−∆ALG(n; A2) > 0,
implying ∆ALG(n; A2) < ∆ALG(n; A1) = α1 ·∆OPT(n).

(3) For n = u, similar to (2), we derive the following:

∆ALG(n; A1)−∆ALG(n; A2) =
(f(Si)− g(Si)) · f(Sj)− (f(Sj)− g(Sj)) · f(Si)

f(Sj)− g(Sj)
· δ1.
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Given that f(Si)
g(Si)

>
f(Sj)
g(Sj)

, it follows that

(
g(Si)

f(Si)
−1

)
(

g(Sj)

f(Sj)
−1

) > 1. By multiplying both numerator and

denominator by f(Si) · f(Sj), we obtain

(f(Si)− g(Si)) · f(Sj)

(f(Sj)− g(Sj)) · f(Si)
> 1.

Thus, ∆ALG(n; A1)−∆ALG(n; A2) > 0, which implies

∆ALG(n; A2) < ∆ALG(n; A1) = α1 ·∆OPT(n).

(4) For n > u, it is evident that ∆ALG(n; A2) = α1 ·∆OPT(n).

In summary, strategy A2 outperforms strategy A1, i.e., ∆ALG(n; A2) ≤ α1 · ∆OPT(n), for any
n ∈ N+. Subsequently, by adjusting strategy A2 to move the purchase sequence forward according
to the order of probabilities until ∆ALG(n; A2) = α2 ·∆OPT(n), it follows from Proposition 5 that
α2 ≤ α1. By iteratively applying this method, the optimal strategy is obtained by arranging items in
ascending order of the values f(Si)/g(Si). This completes the proof of Lemma 3.

C.2 Proof of Lemma 4.

Given q, the CSR problem of designing the optimal randomized algorithm to minimize the competitive
ratio can be formulated according to Eq. (1) as follows

min
α≥1,p

α

s.t.
T∑

n=1

|Γ|∑
i=1

∑
S∈γi

[q(σi)f(S) · pn(S | σi) + (1− Fn(S | σi)) · q(σi)g(S)] ≤ α · OPT(T ), ∀T ∈ N+

(10)

Since ∪|Γ|i=1{q(σi)γi} = γ(q), where q(σi)γi = {q(σi)S}S∈γi
, Eq. (10) can be reformulated as

min
α≥1,p

α, s.t.
T∑

n=1

∑
S∈γ(q)

[f(S) · pn(S) + (1− Fn(S)) · g(S)] ≤ α · OPT(T ), ∀T ∈ N+, (11)

where pn(S) represents the probability of purchasing super item S at time n, and Fn(S) =∑n
i=1 pn(S).

Given a purchase probability q =
(
q(σ1), q(σ2), . . . , q(σ|Γ|)

)
, Eq. (11) indicates that the problem

reduces to determining the optimal purchase probability p for the set γ(q). According to Lemma 3,
the optimal purchase path is the augmented purchase path γBR(q). Thus, OAC(γBR(q)) is optimal for
a given purchase path probability q, proving Lemma 4.

C.3 Proof of Lemma 5.

For all purchase path probability x,y ∈ [0, 1]|Γ|, where x =
(
x(σ1), x(σ2), . . . , x(σ|Γ|)

)
and y =

(
y(σ1), y(σ2), . . . , y(σ|Γ|)

)
satisfy

∑|Γ|
i=1 x(σi) = 1 and

∑|Γ|
i=1 y(σi) =

1. Let algorithm A = OAC(γBR(x)) and algorithm B = OAC(γBR(y)),
where γBR(x) = (I(x̂[1], S[1]), I(x̂[2], S[2]), . . . , I(x̂[D, S[D])) and γBR(y) =
(I(ŷ[1], S[1]), I(ŷ[2], S[2]), . . . , I(ŷ[D], S[D])). x̂[i] =

∑
σ∈Σ:S[i]∈σ x(σ) and ŷ[i] =∑

σ∈Σ:S[i]∈σ y(σ) is the sum of selection probabilities from paths that contain super item
S[i]. The competitive ratios are α1 = α(γBR(x)) and α2 = α(γBR(y)).

∀ t ∈ [0, 1], let z = tx + (1 − t)y :=
(
z(σ1), z(σ2), . . . , z(σ|Γ|)

)
. Define algorithm

C = OAC(γBR(z)), where γBR(z) = (I(ẑ[1], S[1]), I(ẑ[2], S[2]), . . . , I(ẑ[D], S[D])) and ẑ[i] =∑
σ∈Σ:S[i]∈σ z(σ) is the sum of selection probabilities from paths that contain super item S[i]..

We will prove that α(γBR(z)) ≤ α1 + (1− t)α2.
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Define algorithm C1 purchase probability is z = tx+ (1− t)y and the purchase probability of the
super item I(ẑ[i], S[i]) (i = 1, 2 . . . D) on day n is, for any i = 1, 2, . . . , D,

pn
(
I(ẑ[i], S[i]); C1

)
=

t x̂[i]

t x̂[i] + (1− t) ŷ[i]
· pn

(
I(x̂[i], S[i]); A

)
+

(1− t) ŷ[i]

t x̂[i] + (1− t) ŷ[i]
· pn

(
I(ŷ[i], S[i]); B

)
,

where pn
(
I(ẑ[i], S[i]); C1

)
denotes the probability that algorithm A buys I(ẑ[i], S[i]) on day n.

Consequently, the cumulative distribution function of the super item I(ẑ[i], S[i]) on n days is, for any
i = 1, 2, . . . , D,

Fn

(
I(ẑ[i], S[i]); C1

)
=

t x̂[i]

t x̂[i] + (1− t) ŷ[i]
Fn

(
I(x̂[i], S[i]); A

)
+

(1− t) ŷ[i]

t x̂[i] + (1− t) ŷ[i]
Fn

(
I(ŷ[i], S[i]); B

)
.

Since pn
(
I(x̂[i], S[i]); A

)
, pn

(
I(ŷ[i], S[i]); B

)
∈ [0, 1] and FTα1

(
I(x̂[i], S[i]); A

)
=

1, FTα2

(
I(ŷ[i], S[i]); B

)
= 1, we have pn

(
I(ẑ[i], S[i]); C1

)
∈ [0, 1] and

Fmax{Tα1
,Tα2

}
(
I(ẑ[i], S[i]); C1

)
= 1. Therefore, this definition of algorithm C1 is reason-

able. The daily cost for algorithm C1 is

∆ALG(n; C1) =

D∑
i=1

(
(1− Fn(I(ẑ[i], S[i]); C1))ẑ[i] · g(S[i]) + ẑ[i] · f(S[i]) · pn(I(ẑ[i], S[i]); C1)

)
=

D∑
i=1

tx̂[i] ·
(
(1− Fn(I(x̂[i], S[i]); A)) · g(S[i]) + f(S[i]) · pn(I(x̂[i], S[i]); A)

)
+

D∑
i=1

(1− t)ŷ[i] ·
(
(1− Fn(I(ŷ[i], S[i]); B)) · g(S[i]) + f(S[i]) · pn(I(ŷ[i], S[i]); B)

)
.

Based on the definitions of algorithm A and algorithm B, we have

D∑
i=1

(
(1− Fn(I(x̂[i], S[i]); A))x̂[i] · g(S[i]) + x̂[i] · f(S[i]) · pn(I(x̂[i], S[i]); A)

)
= α1 ·∆OPT(n)

(12)
D∑
i=1

(
(1− Fn(I(ŷ[i], S[i]); B))ŷ[i] · g(S[i]) + ŷ[i] · f(S[i]) · pn(I(ŷ[i], S[i]); B)

)
= α2 ·∆OPT(n)

(13)

By multiplying both sides of Eq. (12) by t and both sides of Eq. (13) by 1− t, and then adding the
resulting equations, we obtain

∆ALG(n; C1) = (tα1 + (1− t)α2) ·∆OPT(n). (14)

Thus, algorithm C1 achieves a competitive ratio of tα1 + (1 − t)α2 with a purchase probability
z = tx+ (1− t)y. According to Lemma 4, OAC(γBR(z)) is the optimal algorithm for the purchase
path probability z, resulting in α(γBR(z)) ≤ tα1 + (1− t)α2. Consequently, the competitive ratio
α(γBR(q)) is a convex function with respect to q.

D Optimal algorithm for CSR with upgrading

In this section, we present results related to CSR with upgrading. Specifically, we demonstrate that
the optimal purchase strategy corresponds to OAC (σ∗), where σ∗ = (S∗

1 , S
∗
2 , . . . , S

∗
K) represents the

purchase path of the optimal offline algorithm. Furthermore, we establish that the upper bound on the
algorithm’s competitive ratio is e/(e− 1).
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D.1 Problem setting

In CSR with upgrading, a purchase path is a sequence of super items (S1, S2, . . . , Sl) with non-
decreasing purchase cost, i.e., f(Si) ≤ f(Sj) for all i, j ∈ {1, 2, . . . , l} and i ≤ j. Once the super
item Si+1 is purchased, the algorithm replaces the previously purchased super item Si with Si+1.
The expected cost of an online algorithm A is

ALG(T ;A) =
∑
n∈[T ]

∑
σ∈Σ

∑
i∈[l]

q(σ) · (f(Si)− f(Si−1)) · pn(Si | σ)︸ ︷︷ ︸
expected purchase cost

+
∑
n∈[T ]

∑
σ∈Σ

∑
i∈[l]

q(σ) · (1− Fn(Si | σ)) · (g(Si)− g(Si−1))︸ ︷︷ ︸
expected rental cost

,
(15)

where Fn(S | σ) =
∑n

i=1 pi(S | σ) is the cumulative distribution function of buying super item
S by day n when purchase path σ is chosen. The first term represents the expected purchase cost,
where q(σ) · (f(Si) − f(Si−1)) · pn(Si | σ) denotes the expected cost incurred by purchasing Si

on day n when the purchase path σ is chosen. The cost of purchasing Si is f(Si)− f(Si−1) due to
upgrading. The second term represents the expected rental cost, where 1− Fn(Si | σ) denotes the
probability that Si has not yet been purchased by day n. Additionally, under the purchase path σ,
pn(Si+1 | σ) = 0 when Fn(Si | σ) < 1. The differences in ALG(T ;A) between CSR with upgrading
and CSR lie in the purchase path Σ and the structure of the purchase cost.

In CSR with upgrading, the player can buy super items with incremental purchase cost over time and
still benefit from combined purchase discounts. For example, if a player switches from a Microsoft
365 basic plan to a personal plan, they just need to equivalently pay the difference in cost between
the two plans. However, in CSR, a player must pay the full price for each additional item purchased.
If the player initially buys a subset of items and later decides to buy additional unpurchased items,
they must pay the full cost without any discount regardless of previous purchase.

Comparison between CSR and CSR with upgrading We use a simple example to compare CSR and
CSR with upgrading. Consider a scenario involving two items. The purchasing decision depends not
only on the cost and potential discounts associated with bundles but also on the constraints imposed by
the online setting. Figure 7(a) shows the purchase paths for buying items as one combination (Path 1),
buying them separately (Path 2), and the optimal offline path (Path 3) as the skiing season progresses.
In the CSR with upgrading setting, players can adopt an adaptive strategy by first purchasing one item
and later upgrading to the bundle, allowing them to exploit discounts when advantageous. However,
in CSR, once an item is purchased, upgrading to the bundle is not feasible without incurring the full
bundle price. Consequently, players must commit to either Path 1 or Path 2 at the outset, making
it challenging to optimize decisions without prior knowledge of future needs. The CSR problem
can result in competitive ratios exceeding e/(e− 1) due to the irreversibility of the purchase paths,
especially under moderate discount factors, as decision-making becomes more complex in this case.
In contrast, CSR with upgrading consistently maintains competitive ratios below this threshold and
aligns with CSR only in scenarios involving extreme discount rates [1, 19, 31].

D.2 Overview the main results for CSR with upgrading

For the upgrading version, the expected purchase cost of acquiring all base items is fixed, regardless of
the order of purchase. As a result, the only cost difference between strategies arises from the expected
rental cost. At any given moment, the optimal online algorithm will choose to buy the super item
that minimizes the current rental cost through upgrading. Since this super item is fixed, the selection
process must follow a fixed purchase path rather than being randomized. Based on Lemma 2, the
optimal purchase strategy must adhere to the OAC (σ) strategy. Furthermore, we show that the optimal
purchase path is the same as the purchase sequence by the offline algorithm σ∗ = (S∗

1 , S
∗
2 , . . . , S

∗
K),

which solves the Eq. (2) as the skiing season expands.

Theorem 3. Given information setup I for the CSR with upgrading problem, OAC (σ∗) is the optimal
online algorithm and achieves the optimal competitive ratio α(σ∗).
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Figure 7: (a) The figure illustrates three offline purchase paths: Path 1 (blue arrow) represents
the combined purchase, Path 2 (green arrow) corresponds to purchasing the items separately, and
Path 3 (red arrow) denotes the optimal offline path, where item 2 is purchased first, followed by
the combination of items 1 and 2. In the CSR with upgrading scenario, all three paths are feasible.
However, in the CSR scenario, the player is restricted to Path 1 or Path 2, as upgrading is not allowed.
(b) The upper bound of the competitive ratio is computed for two items with prices in the range
[20, 80], where the combined purchase price is represented as the product of a discount factor and the
sum of the individual prices.

The optimal offline algorithm determines which items to buy or rent at the beginning of the ski
season by knowing the number of skiing days in advance. The elements in the set σ∗ represent the
purchasing strategy that incurs the least cost as the skiing time increases. For CSR with upgrading,
even though the number of skiing days is not known in advance, the algorithm can reverse previous
decisions through upgrades. The optimal online algorithm will continuously upgrade its purchases to
ensure that the current cost grows at the slowest possible rate. Therefore, the optimal purchase path
should be σ∗. We formally prove this in Appendix D.3.

The optimal competitive ratio α(σ∗) of OAC (σ∗) depends on the information setup in a complicated
manner, and it is challenging to obtain a closed-form solution. However, the following lemma shows
that α(σ∗) is upper bounded by e/(e− 1), which is the optimal competitive ratio of the classic ski
rental problem.

Lemma 6. For any information setup I, OAC (σ∗) for CSR with upgrading achieves a competitive
ratio upper bounded by e/(e− 1).

Compared to classic ski rental that buys or rents all items in a combination, CSR with upgrading
achieves a better competitive ratio. This arises because, although both offline and online algo-
rithms gain flexibility in fine-grained purchase options to reduce overall cost, the online algorithm
experiences a more significant improvement.

D.3 The optimal purchase path

In this section, we demonstrate that for CSR with upgrading, the optimal algorithm follows a fixed
purchase path σ∗ (Theorem 3). We prove Proposition 1, Proposition 2, and Proposition 3 for CSR with
upgrading based on the same principle, with necessary adjustments to the rental rate and purchase
price for CSR with upgrading.

For CSR with upgrading, the cost of purchasing all base items is fixed at f(M), regardless of the
purchase order. The difference in cost among different strategies arises from the rental cost. Intuitively,
when the expected purchase cost up to time n is Cn, the optimal purchase strategy should select the
super item that minimizes the rental cost while spending Cn on purchases. Consequently, the optimal
purchase strategy follows a fixed purchase path and adheres to the OAC (σ) strategy, as demonstrated
in Lemma 2. The next step is to determine the optimal purchase path. An intuitive idea is to follow
the order σ∗ = (S∗

0 , S
∗
1 , S

∗
2 , . . . , S

∗
K) in OPT, as OPT will always select the super item that minimizes

the current cost. We prove this conclusion as stated in Theorem 3.
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Proof of Theorem 3. We define the augmented set of super items is defined as γ(q) :=
{I(q(σ), Sσ)}σ∈Σ,Sσ∈σ, where I(q(σ), Sσ) represents a new super item containing the same base
items as Sσ but with a purchase cost of q(σ) · f(Sσ) and a rental rate of q(σ) · g(Sσ). For simplicity,
we refer to Sσ as S. Thus, for CSR with upgrading, all randomized strategies can be expressed as
a fixed purchase path (I(q(σ0), S0), I(q(σ1), S1), I(q(σ2), S2), . . . , I(q(σl), Sl)), where S0 = ∅,
and for all i, j ∈ {0, 1, 2, . . . , l} with i ≤ j, it holds that q(σi) · f(Si) ≤ q(σj) · f(Sj). Additionally,
q(σl) = 1 and Sl = {M}.
At this point, the problem transforms into an CSR problem with l super items to be se-
quentially purchased, where the purchase cost and rental rate of the i-th super item are
given by q(σi) · f(Si) − q(σi−1) · f(Si−1) and q(σi) · g(Si) − q(σi−1) · g(Si−1), re-
spectively, for i ∈ [l]. The purchase order follows the sequence i = 1, . . . , l. In
other words, the problem reduces to minimizing the CSR problem with the purchase order
(I(q(σ1), S1)/I(q(σ0), S0), I(q(σ2), S2)/I(q(σ1), S1), . . . , I(q(σl), Sl)/I(q(σl−1), Sl−1)), where
q(σl) = 1, Sl = {M}, and I(q(σi), Si)/I(q(σi−1), Si−1) denotes a super item with a purchase cost
of q(σi) · f(Si)− q(σi−1) · f(Si−1) and a rental cost of q(σi) · g(Si)− q(σi−1) · g(Si−1).

By Lemma 3, the optimal purchase path can be recursively characterized as

Ŝi = argmin
Si

{
f(Si)− f(Ŝi−1)

g(Si)− g(Ŝi−1)

∣∣∣∣∣ f(Si) > f(Ŝi−1)

}
, i = 1, 2, . . . (16)

This result can be rigorously established via mathematical induction.

When i = 1,

Ŝ1 = argmin
S1

{
q(σ1) · f(S1)− q(σ0) · f(Ŝ0)

q(σ1) · g(S1)− q(σ0) · g(Ŝ0)

∣∣∣∣∣ q(σ1) · f(S1) > q(σ0) · f(Ŝ0)

}

= argmin
S1

{
f(S1)− f(Ŝ0)

g(S1)− g(Ŝ0)

∣∣∣∣∣ f(S1) > f(Ŝ0)

}
,

where we set q(σ1) = 1 because Ŝ1is the optimal purchase set.

Assume the characterization holds for i− 1 ≥ 1. For i, we have

Ŝi = argmin
Si

{
q(σi) · f(Si)− q(σi−1) · f(Ŝi−1)

q(σi) · g(Si)− q(σi−1) · g(Ŝi−1)

∣∣∣∣∣ q(σi) · f(Si) > q(σi−1) · f(Ŝi−1)

}

= argmin
Si

{
q(σi) · f(Si)− f(Ŝi−1)

q(σi) · g(Si)− g(Ŝi−1)

∣∣∣∣∣ q(σi) · f(Si) > f(Ŝi−1)

}

= argmin
Si

{
f(Si)− f(Ŝi−1)

g(Si)− g(Ŝi−1)

∣∣∣∣∣ f(Si) > f(Ŝi−1)

}
,

The last equation holds because if both q(σi) · f(S(1)
i ) > f(Ŝi−1) and q(σi) · f(S(2)

i ) > f(Ŝi−1)
hold, and if

f(S
(1)
i )

g(S
(1)
i )

>
f(S

(2)
i )

g(S
(2)
i )

,

then S
(2)
i is strictly better than S

(1)
i . In other words, the selection of Ŝi is independent of the value of

q(σi). Therefore, we set q(σi) = 1, as Ŝi represents the optimal choice at this stage. This completes
the proof of the claim.

Hence, by induction, the recurrence relation in Eq. (16) holds for all i ≥ 1. This relation recursively
determines the sequence (S∗

0 , S
∗
1 , S

∗
2 , . . . , S

∗
K).

D.4 An e/(e− 1) upper bound for CSR with upgrading

To prove the upper bound of e/(e− 1) on the competitive ratio for CSR with upgrading (Lemma 6),
we show there exists an algorithm for CSR with upgrading that is e/(e− 1) competitive. OAC(σ∗) is
the optimal online algorithm for CSR with upgrading and thus α(σ) ≤ e/(e− 1).
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Given a setup I = (M, f, g) of CSR with upgrading, we define K classic ski rental problems using
the purchase sequence σ∗ = (S∗

0 , S
∗
1 , S

∗
2 , . . . , S

∗
K) derived from the optimal offline cost. Each

information setup is defined as Ii = (Mi, fi, gi) for i ∈ {1, 2, . . . ,K}, where |Mi| = 1. The
purchase cost is fi(Mi) = f(S∗

i ) − f(S∗
i−1), and the rental cost is gi(Mi) = g(S∗

i ) − g(S∗
i−1).

The optimal offline cost for setup Ii is given by

OPT(T ; Ii) = min
{(

g(S∗
i )− g(S∗

i−1)
)
· T, f(S∗

i )− f(S∗
i−1)

}
. (17)

When the algorithm buys the i-th super item in the OPT purchase sequence, it is referred to as state i.
Unlike CSR, which has K + 1 states, the classic ski rental problem has only two states: state 0, when
the item is rented for the entire duration, and state 1, when the item is purchased at the beginning of
the ski season. We define p

(i)
n (A, I) as the probability of being in state i at time n for algorithm A.

Let A∗
i denote the optimal randomized algorithm for information setup Ii, i ∈ {1, 2, . . . ,K}. The

competitive ratio of this strategy is known to be e/(e−1) for each instance i. For CSR with upgrading,
define algorithm A∗ to satisfy the following conditions: among multiple combinations of purchases,
only the sets S∗

0 , S
∗
1 , S

∗
2 , . . . , S

∗
K are likely to be purchased, with the probability of purchasing any

other combination being zero. The probability of being in each state is given by

p(0)n (A∗, I) = p(0)n (A∗
1, I1),

p(i)n (A∗, I) = p(1)n (A∗
i , Ii)− p(1)n (A∗

i+1, Ii+1), i = 1, 2, . . . ,K − 1,

p(K)
n (A∗, I) = p(1)n (A∗

K , IK).

Since upgrading is allowed, algorithm A∗ at time n must be in one of these K + 1 states. The cost of
algorithm A∗ at time n is

ALG(n; A∗, I) =
K∑
i=0

p(i)n (A∗, I) · f(S∗
i ) +

n∑
j=1

K∑
i=0

p
(i)
j (A∗, I) · g(M\ S∗

i ), (18)

where the first term represents the expected purchase cost until day n, and the second term represents
the expected rental cost until day n.

We then show that the algorithm A∗ defined above achieves a competitive ratio of e/(e−1) (Lemma 6).
To establish this result, we prove Proposition 6, 7, and 8. Proposition 6 demonstrates the soundness
of algorithm A∗; Proposition 7 states that the sum of the costs of K online algorithms A∗

i is equal to
the cost of the online algorithm A∗; Proposition 8 clarifies that the sum of the optimal offline costs
for these K instances equals the optimal offline cost for the CSR with upgrading problem.

Proposition 6. For the randomized algorithm A∗ defined above, the following conditions hold

(1) p
(i)
n (A∗, I) ≥ 0, i ∈ {0, 1, 2, . . . ,K}.

(2)
∑K

i=0 p
(i)
n (A∗, I) = 1.

Proof. To support the claim (1), we need to show that p(1)n (A∗
i , Ii) ≥ p

(1)
n (A∗

i+1, Ii+1) for i =
1, 2, . . . ,K − 1. Given that A∗

i is the optimal randomized strategy for the classic ski rental problem,
Proposition 9 proves p(1)n (A∗

i , Ii) =
(1−1/si)

−n−1
(1−1/si)−si−1

and indicates that p(1)n (A∗
i , Ii) is monotonically

decreasing with respect to ti. Since ti ≤ ti+1 for i = 1, 2, . . . ,K − 1, it follows that p(1)n (A∗
i , Ii) ≥

p
(1)
n (A∗

i+1, Ii+1). For claim (2), we derive the following

K∑
i=0

p(i)n (A∗, I) = p(0)n (A∗
1, I1) +

K−1∑
i=1

(p(1)n (A∗
i , Ii)− p(1)n (A∗

i+1, Ii+1)) + p(1)n (A∗
K , IK)

= p(0)n (A∗
1, I1) + p(1)n (A∗

1, I1) = 1.

Proposition 7. ALG(n; A∗, I) =
∑K

i=1 ALG(n; A∗
i , Ii), ∀n ∈ N+.
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Proof. The cost of algorithm A∗
i at time n is

ALG(n; A∗
i , Ii) = (f(S∗

i )− f(S∗
i−1) · p(1)n (A∗

i , Ii) +
n∑

j=1

(g(S∗
i )− g(S∗

i−1)) · p
(0)
j (A∗

i , Ii).

Then, we have
K∑
i=1

ALG(n; A∗
i , Ii) =

K∑
i=1

(f(S∗
i )− f(S∗

i−1)) · p(1)n (A∗
i , Ii)︸ ︷︷ ︸

Term (1)

+

n∑
j=1

K∑
i=1

(g(S∗
i )− g(S∗

i−1)) · p
(0)
j (A∗

i , Ii)︸ ︷︷ ︸
Term (2)

.

For the first term of Eq. (18), we have

K∑
i=0

p(i)n (A∗, I) · f(S∗
i )

=p(0)n (A∗
1, I1) · f(S∗

0 ) +

K−1∑
i=1

(
p1n(A

∗
i , Ii)− p(1)n (A∗

i+1, Ii+1)
)
· f(S∗

i ) + p(1)n (A∗
K , IK) · f(S∗

K)

=p(1)n (A∗
1, I1) · f(S∗

1 ) +

K∑
i=2

p(1)n (A∗
i , Ii) ·

(
f(S∗

i )− f(S∗
i−1)

)
=

K∑
i=1

p(1)n (A∗
i , Ii) ·

(
f(S∗

i )− f(S∗
i−1)

)
=Term (1).

For the second term of Eq. (18), by utilizing the relationship p
(1)
n (A∗

i , Ii) = 1 − p
(0)
n (A∗

i , Ii) for
i ∈ {1, 2, . . . ,K}, we obtain

n∑
j=1

K∑
i=0

p
(i)
j (A∗, I) · g(M\ S∗

i )

=

n∑
j=1

(
p
(0)
j (A∗

1, I1) · g(M\ S∗
0 ) +

K−1∑
i=1

(p
(1)
j (A∗

i , Ii)− p
(1)
j (A∗

i+1, Ii+1)) · g(M\ S∗
i ) + p

(1)
j (A∗

K , IK) · g(M\ S∗
K)

)

=

n∑
j=1

(
p
(0)
j (A∗

1, I1) · g(S∗
K) +

K−1∑
i=1

(p
(0)
j (A∗

i+1, Ii+1)− p
(0)
j (A∗

i , Ii)) · g(M\ S∗
i )

)

=

n∑
j=1

K∑
i=1

p
(0)
j (A∗

i , Ii) · (g(S∗
i )− g(S∗

i−1)) = Term (2).

Therefore, it can be concluded that the cost of algorithm A∗ is equal to the sum of the costs of the K
algorithms for i ∈ {1, 2, . . . ,K}.

Proposition 8. OPT(n; I) =
∑K

i=1 OPT(n; Ii), ∀n ∈ N+.

Proof. Let i(n) be the state that optimal is in at time n, where n ∈ N+. Then, when i ≤ i(n),
OPT(n; Ii) = f(Si) − f(Si−1); when i > i(n), OPT(n; Ii) = (g(Si)− g(Si−1)) · n. We can get
that

K∑
i=1

OPT(n; Ii) =
i(n)∑
i=1

(f(Si)− f(Si−1)) +

K∑
i=i(n)+1

(g(Si)− g(Si−1)) · n

= f(Si(n))− f(S0) +
(
g(SK)− g(Si(n))

)
· n

= f(Si(n)) + g(M\ Si(n)) · n
= OPT(n; I).
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Proof of Lemma 6. Since each algorithm A∗
i has an upper bound on its competitive ratio of

e/(e− 1), we can derive the following relationship

ALG(n; A∗, I) =
K∑
i=1

ALG(n; A∗
i , Ii) ≤

e

e− 1

K∑
i=1

OPT(n; Ii) =
e

e− 1
OPT(n; I),

which means that algorithm A∗ has e/(e− 1) competitive ratio.

D.5 Proof of Proposition 9

To prove Proposition 6, we establish Proposition 9, which outlines some properties of the optimal
randomized strategy for the classic ski rental problem.
Proposition 9. For a classic ski rental problem I = (M, f, g), whereM = {1}. The rental rate
is given by g({1}) = r and the purchase price is f({1}) = b, with b/r ∈ N+ and b/r > 1. The
cumulative distribution function of the optimal randomized algorithm A∗ on day i (i ≤ b/r) is given
by

Fi({1}; A∗) =
(1− r/b)−i − 1

(1− r/b)−b/r − 1
.

Moreover, Fi({1}; A∗) for i ≤ b/r is monotonically decreasing with respect to b/r.

Proof. The probability that the optimal randomized strategy [12] for the classic ski rental problem
buys on day i is given by

pi ({1}; A∗) =

{(
b−r
b

)b/r−i 1

b/r(1−(1−(r/b))b/r)
, i ≤ b/r

0, n > b/r

When i ≤ b/r, this represents a geometric series with a common ratio of b/(b− r). Therefore, we
have

Fi({1}; A∗) =
p1 ({1}; A∗) · (1− (b/(b− r))i)

1− (b/(b− r))
=

(1− r/b)−i − 1

(1− r/b)−b/r − 1
.

To demonstrate that Fi({1}; A∗) for i ≤ b/r is monotonically decreasing with respect to b/r, define
the function F (n) as follows

F (n) =
(1− 1/n)−i − 1

(1− 1/n)−n − 1
=

(n/(n− 1))i − 1

(n/(n− 1))n − 1
, 1 ≤ i ≤ n, i ∈ N+.

We just need to demonstrate that the function F (n) is monotonically decreasing with respect to
n (n ≥ 2), establishing the desired property of Fi({1}; A∗). Define two auxiliary functions:
f1(n) = (n/(n− 1))i, f2(n) = (n/(n− 1))n. Then, we can express F (n) as

F (n) =
f1(n)− 1

f2(n)− 1
.

Then, we compute the derivatives of f1(n) and f2(n)

df1(n)

dn
= − if1(n)

n(n− 1)
,

df2(n)

dn
= f2(n)

(
ln

n

n− 1
− 1

n− 1

)
.

Using these derivatives, we can express the derivative of F (n) as follows

dF (n)

dn
= − if1(n)

n(n− 1)
(f2(n)− 1)− f2(n)(f1(n)− 1)

(
ln(1 +

1

n− 1
)− 1

n− 1

)
.

By applying the inequality ln(1 + 1
n−1 ) ≥

1
n−1 −

1
2(n−1)2 , we obtain

dF (n)

dn
=

(1/2)nf2(n)(f1(n)− 1)− i(n− 1)f1(n)(f2(n)− 1)

n(n− 1)2
.
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Then, we derive the expression for n(n− 1)2F ′(n),

n(n− 1)2F ′(n) =
1

2
nf2(n)(f1(n)− 1)− i(n− 1)f1(n)(f2(n)− 1)

=
(n
2
− i(n− 1)

)( n

n− 1

)n+i

+ i(n− 1)

(
n

n− 1

)i

− n

2

(
n

n− 1

)n

.

We simplify further

n(n− 1)2F ′(n)

(n/(n− 1))i
=
(n
2
− i(n− 1)

)( n

n− 1

)i

+ i(n− 1)− n

2

(
n

n− 1

)n−i

≤
(n
2
− i(n− 1)

)( n

n− 1

)i

+ i(n− 1)

(
n

n− 1

)n−i

− n

2

(
n

n− 1

)n−i

=
(n
2
− i(n− 1)

)( n

n− 1

)n−i
((

n

n− 1

)i

− 1

)
.

Since n
2 − i(n− 1) ≤ 0 for 1 ≤ i ≤ n, i ∈ N+ and n ≥ 2, it follows that

n(n− 1)2F ′(n)

(n/(n− 1))i
≤ 0,

which implies that F ′(n) ≤ 0. Therefore, we can conclude that F (n) is monotonically decreasing
with respect to n for n ≥ 2.

E Proof for Lemma 1

The proof of Lemma 1 can be decomposed into three lemmas, each demonstrating how the CSR
problem is reduced to one of the following problems: multi-shop ski rental [1], multi-slope ski
rental [19], and multi-commodity ski rental [29]. For details on CSR with upgrading, see Appendix D,
Theorem 3.

Proposition 10. The CSR problem can be reduced to the multi-shop ski rental problem by restricting
the purchase path set Σ to single-element paths corresponding to individual shops. Consequently, the
SOAC algorithm achieves the optimal competitive ratio for the multi-shop ski rental problem.

Proposition 11. The CSR problem can be reduced to the multi-slope ski rental problem by restricting
the purchase path σ to a single path. Consequently, the SOAC algorithm achieves the optimal
competitive ratio for the multi-slope ski rental problem.

Proposition 12. The CSR problem can be reduced to the multi-commodity ski rental problem by
assuming that no combination purchases provide a discount. Consequently, the SOAC algorithm
achieves the optimal competitive ratio for the multi-commodity ski rental problem.

The online strategy of the CSR is characterized by two fundamental decision dimensions:

• Purchase Path (σ1, σ2, . . . , σ|Σ|): This represents the process of purchasing all required
items along multiple distinct paths.

• Purchase Time (t(σ) := {t(S | σ)}S∈σ): This defines the specific time t(S | σ) at which a
super item S is purchased along the path σ.

Compared to the classical ski rental problem, the CSR introduces two additional layers of complexity:

• Path Dimension: The decision-making framework expands from a single purchase path to
multiple paths.

• Time Dimension: The decision process extends from single-stage to multi-stage decision-
making, which requires determining when different super items should be purchased.
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E.1 Proof of Proposition 10

Proof. In the multi-shop ski rental problem, a skier must decide how to ski for an unknown duration
T . The skier chooses a shop i from a set of shops {1, 2, . . . ,m} and can only rent or purchase ski
equipment from that selected shop. Each shop i offers a daily rental price ri and a purchase price
bi, where ri, bi > 0. It is assumed that r1 < r2 < · · · < rm and b1 > b2 > · · · > bm, ensuring that
shops with lower rental prices have higher purchase prices to avoid trivial decisions. The skier’s goal
is to select a shop and determine the optimal purchase time to minimize total costs, without changing
shops midway.

In the CSR problem, consider a scenario where there is only one item and this item is combined with
itself, resulting in different rental and purchase costs. Under these conditions:

• The purchase path set Σ is restricted to single-element paths, where each path corresponds
to selecting one “super item" Si = {i}.

• Each super item Si has a rental cost ri and a purchase cost bi, directly corresponding to the
rental and purchase prices of shop i.

Thus, the purchase path set becomes Σ = {{1}, {2}, . . . , {m}}, similar to choosing a shop in the
multi-shop ski rental problem. This demonstrates that the multi-shop ski rental problem is a special
case of the CSR problem.

Remark 3 (Analysis of Path Irreversibility). In the multi-shop ski rental problem, changing shops
midway during the rental period is prohibited. If such changes were allowed, the problem would
reduce to the classical ski rental problem, where the user would simply rent from the shop with the
lowest rental price and purchase from the shop with the lowest purchase price. Similarly, the primary
distinction between the CSR and CSR with upgrading problems is that the CSR problem disallows
changing purchase paths midway. Allowing such changes would transform the CSR problem into the
multi-slope ski rental problem, as shown in Theorem 3.

E.2 Proof of Proposition 11

Proof. In the multi-slope ski rental problem, the user needs to utilize a resource for an unknown
duration. The cost of resource usage is determined by multiple states (or slopes) S = {0, 1, . . . , k}.
Each state i has a purchase cost bi and a rental rate ri, typically satisfying b0 < b1 < · · · < bk
and r0 > r1 > · · · > rk, where b0 = 0. For simplicity, we assume that rk = 0. If rk ̸= 0, an
additional state can be introduced, defined as bk+1 =∞ and rk+1 = 0, to accommodate this case.
The user’s objective is to determine a set of transition times (t1, t2, . . . , tk), where ti denotes the
time to transition from state i − 1 to state i. Transitions are only allowed in the forward direction
i→ i+ 1, and skipping states is not permitted.

To reduce this problem to the CSR problem, we restrict the purchase path in the CSR problem to a
single path σ = (S0, S1, S2, . . . , Sk). This restriction is feasible under the assumption that each Si

corresponds to a base item containing only one element. In this case, there is no discount for any
combination of elements, so the only valid path to purchase is σ. The cost parameters are defined as
follows

• The purchase cost of super item Si is f(Si) = bi − bi−1 for i ∈ {1, . . . , k} and f(S0) = 0;

• The rental cost of super item Si is g(Si) = ri−1 − ri for i ∈ {1, . . . , k} and g(S0) = 0.

In the CSR problem, state i corresponds to the state where super items S0, S1, . . . , Si have been
purchased. In this state, the purchase cost is

∑i
j=0 f(Sj), and the rental cost is

∑k
j=i+1 g(Sj). By

the definition of the purchase and rental costs for the super items, we have
i∑

j=0

f(Sj) = bi,

k∑
j=i+1

g(Sj) = ri.

Thus, under this special case, the decision path dimension of the CSR problem reduces to a single
path, making it equivalent to the multi-slope ski rental problem.
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Algorithm 4 OAC: Extended Amortized Cost
1: Input: Information setup I = (M, f, g); purchase path σ; stopping criterion ε; critical time TML
2: Initialization: α = 1, αmax = f(M), αmin = 1
3: Compute OPT(T ) and TOPT using Eq. (2)
4: Compute OPT(T ) using Eq. (19)
5: Construct algorithm A = AC(σ;α)
6: while αmax − αmin > ε do
7: Calculate TA using α according to Eq. (1) and Eq. (20)
8: if TA < TML then
9: αmax ← α

10: else
11: αmin ← α
12: end if
13: Update α← (αmax + αmin)/2
14: end while
15: return αmax, AC(σ;αmax)

E.3 Proof of Proposition 12

Proof. The multi-commodity ski rental problem considers a set of items that must be utilized
simultaneously, where each item has its own independent rental and purchase prices. By imposing
the constraint in the CSR problem that no combinations of items are eligible for discounts, the CSR
problem can be simplified and directly reduced to the multi-commodity ski rental problem.

Remark 4. Existing research on the multi-commodity ski rental problem has achieved optimal
solutions only in scenarios where all items share the same buy-to-rent ratio. However, determining
the optimal randomized algorithm for arbitrary purchase and rental price configurations remains an
open problem. The algorithm proposed in this paper provides the first optimal randomized solution
for the general multi-commodity ski rental problem, thereby addressing this gap in the literature.

F Supplementary Material for LA-SOAC

F.1 Supplementary details of LA-SOAC

This section details the implementation of the LA-SOAC algorithm, presented in Section 4. We begin
by outlining the core design principles of the algorithm, and then formally describe the mechanics of
the algorithm.

The LA-SOAC algorithm aims to optimize purchasing strategies based on machine-learned predictions.
It takes a hyperparameter λ ∈ (0, 1) as input and generates two different purchasing strategies based
on the predicted time y relative to the optimal completion time TOPT. The strategies are defined as
follows

• If y ≥ TOPT, the algorithm prioritizes early purchases, setting the completion time to
TML = ⌊λT (1)

OPT⌋.This is different from a baseline approach without machine learning, which
completes the purchase at TOPT.

• If y < TOPT, the algorithm delays the purchase, setting the completion time to TML =

⌈T (2)
OPT/λ⌉.

An issue arises because the incremental cost ∆OPT(n) = 0 for n > TOPT, rendering it infeasible to
track the optimal cost function OPT(n) beyond this point. To address this, we introduce an augmented
cost function, OPT(n), define its increment ∆OPT(n) as

∆OPT(n) =

{
∆OPT(n), n ≤ t∗,
OPT(TOPT)

TOPT
, n > t∗.

(19)

As established in Lemma 2, OPT(n) must be concave to ensure the validity of prior theoretical results.
The definition of OPT(n) satisfies this requirement, enabling feasible cost tracking. We propose an
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Algorithm 5 SOAC: Sorted Optimal Amortized Cost Algorithm
1: Input: Information setup I = (M, f, g); stopping criterion ε; Learning rate: η; critical time TML
2: Calculate all disjoint divisions: Γ =

{
γ1, γ2, . . . , γ|Γ|

}
3: Sort divisions Γ by BR:

{
σ1, σ2, . . . , σ|Γ|

}
4: Construct γBR(q) based on Eq. (4)
5: Initialization:
6: q = (q(σi))

|Γ|
i=1 ← ( 1

|Γ| , . . . ,
1
|Γ| ), α← f(M)

7: for t = 1, . . . do
8: for i = 1, . . . , |Γ| do
9: /* Compute Gradient by the Finite Difference Method

10: gradi ← ∂
∂q(σi)

CR(OAC(γBR(q)))
11: end for
12: /* Gradient Update

13: q ← q − η · grad
14: /* Projection to Simplex

15: q ← ProjectSimplex(q)
16: αnew = CR(OAC(γBR(q)))
17: if |α− αnew| < ε then
18: Break
19: end if
20: α← αnew
21: end for

algorithm, denoted as OAC, which modifies the AC strategy by substituting OPT(n) with OPT(n) in
Algorithm 1, while adhering to the specified conditions. Denote a strategy satisfying Eq. (20) as the
AC strategy.

∆ALG(n; Ay;λ) = α ·∆OPT(n), if n < TAy;λ
,

∆ALG(n; Ay;λ) ≤ α ·∆OPT(n), if n = TAy;λ
,

∆ALG(n; Ay;λ) = 0, if n > TAy;λ
.

(20)

The implementation of the OAC algorithm is detailed in Algorithm 4. The algorithm employs a binary
search to iteratively refine the parameter α within the interval [αmin, αmax]. Initially, α is set, and the AC
strategy is constructed based on the input purchase path σ. The algorithm then calculates the optimal
cost OPT(T ) and the augmented cost OPT(T ) using Eq. (2) and (19), respectively. Convergence is
achieved when the difference between αmax and αmin falls below the stopping criterion ε. Then, by
replacing the subroutine SOAC in algorithm OAC with OAC, we obtain the modified algorithm SOAC.

F.2 Proof of Theorem 2

Proof. We analyze the performance of the ML-based algorithm case by case.

Case 1: y ≥ TOPT In this case, the threshold determined by the ML algorithm is given by TML =

⌊λT (1)
OPT⌋. According to Algorithm 3, the algorithm ensures a uniform ratio across decision points up

to TML:
∆ALG(n; A(1)

y;λ)

∆OPT(n)
= c, ∀n ≤ ⌊λT (1)

OPT⌋,

for some constant c. Moreover, ∆ALG(n; A(1)
y;λ) = 0 for n > ⌊λT (1)

OPT⌋.

Consistency: When T = y ≥ TOPT, the cost of the offline optimal algorithm beyond TOPT remains
constant, and the online algorithm incurs no additional cost beyond TML. The worst-case competitive

ratio, therefore, occurs at x = TOPT, yielding
ALG(TOPT;A

(1)
y;λ)

OPT(TOPT)
, which upper bounds the consistency ratio.

Robustness: We consider arbitrary T > 0 and analyze the robustness under two subcases:

Subcase 1.1: ⌊λT (1)
OPT⌋ ≤ t∗.
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In this regime, ∆OPT(n) = ∆OPT(n) for all n ≤ ⌊λT (1)
OPT⌋, hence the cost ratio remains constant. The

worst case again occurs at T = ⌊λT (1)
OPT⌋, giving a robustness ratio of

ALG(⌊λT (1)
OPT ⌋;A(1)

y;λ)

OPT(⌊λT (1)
OPT ⌋)

.

Subcase 1.2: ⌊λT (1)
OPT⌋ > t∗.

In this case, the relationship ∆OPT(n) = ∆OPT(n) still holds for n ≤ t∗. Beyond this point, ∆OPT(n)
is constant. Due to the construction of Algorithm 3, we have:

∆ALG(n; A(1)
y;λ) = ∆ALG(n+ 1; A(1)

y;λ),

while the offline cost decreases, i.e., ∆OPT(n) ≥ ∆OPT(n+ 1). It follows that

∆ALG(n; A(1)
y;λ)

∆OPT(n)
≤

∆ALG(n+ 1; A(1)
y;λ)

∆OPT(n+ 1)
,

and consequently,

ALG(n; A(1)
y;λ)

OPT(n)
=

∑n
i=1 ∆ALG(i; A(1)

y;λ)∑n
i=1 ∆OPT(i)

≤
∑n+1

i=1 ∆ALG(i; A(1)
y;λ)∑n+1

i=1 ∆OPT(i)
=

ALG(n+ 1; A(1)
y;λ)

OPT(n+ 1)
.

Hence, the worst-case ratio is again achieved at x = ⌊λT (1)
OPT⌋.

Case 2: y < TOPT Let TML = ⌈T (2)
OPT/λ⌉. According to Algorithm 3, the following holds:

∆ALG(n; A(2)
y;λ)

OPT(n)
= c′, ∀n ≤ TML,

and ∆ALG(n; A(2)
y;λ) = 0 for n > TML.

Consistency: When n ≤ t∗, the augmented and actual optimal costs match, i.e., ∆OPT(n) =
∆OPT(n), which implies

∆ALG(n; A(2)
y;λ)

∆OPT(n)
= c′, ∀n ≤ t∗.

For t∗ < n < TML, ∆OPT(n) is constant. We can get that

∆ALG(n; A(2)
y;λ)

∆OPT(n)
≤

∆ALG(n+ 1; A(2)
y;λ)

∆OPT(n+ 1)
,

and consequently,

ALG(n; A(2)
y;λ)

OPT(n)
=

∑n
i=1 ∆ALG(i; A(2)

y;λ)∑n
i=1 ∆OPT(i)

≤
∑n+1

i=1 ∆ALG(i; A(2)
y;λ)∑n+1

i=1 ∆OPT(i)
=

ALG(n+ 1; A(2)
y;λ)

OPT(n+ 1)
.

The competitive ratio is non-decreasing, with the worst case again occurring at TOPT.

Robustness: Since ∆OPT(n) = 0 for n > TOPT, the worst case occurs when T = ⌈T (2)
OPT/λ⌉, in which

the cost ratio of the online algorithm to the optimal offline algorithm is

ALG(⌈T (2)
OPT/λ⌉; A

(2)
y;λ)

OPT(⌈T (2)
OPT/λ⌉)

=
ALG(⌈T (2)

OPT/λ⌉; A
(2)
y;λ)

OPT(TOPT)
.

In summary, Algorithm 3 exhibits max

{
ALG(TOPT;A

(1)
y;λ)

OPT(TOPT)
,
ALG(TOPT;A

(2)
y;λ)

OPT(TOPT)

}
-consistency and

max

{
ALG(⌊λT (1)

OPT ⌋;A(1)
y;λ)

OPT(⌊λT (1)
OPT ⌋)

,
ALG(⌈T (2)

OPT /λ⌉;A(2)
y;λ)

OPT(TOPT)

}
-robustness.
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F.3 Proof of Corollary 1

Proof. In the classic ski rental problem, the optimal offline cost is given by OPT(T ) = min{b, T},
and the critical threshold at which buying becomes optimal is TOPT = b. For a randomized online
algorithm A, the expected cost can be written as:

∆ALG(n; Ay;λ) =
∑
i∈[n]

(i− 1 + b) · pi({1}) + n ·

1−
∑
i∈[n]

pi({1})

 ,

where pi({1}) denotes the probability of purchasing the item on day i.

Note that OPT(TOPT)
TOPT

= 1. Therefore, OPT(n) = 1 for all n ∈ N+ in this setting. Let k = ⌊λb⌋ and
l = ⌈b/λ⌉. According to Eq. (20), the probability distributions under the proposed algorithm are
given as follows:

(1) When y ≥ b (corresponding to the algorithm A
(1)
y;λ),

pn({1}) =


(
b−1
b

)k−n · 1

b
(
1−(1− 1

b )
k
) if n ≤ k,

0 otherwise.

The corresponding target competitive ratio is 1

1−(1− 1
b )

k .

(2) When y < b (corresponding to the algorithm A
(2)
y;λ),

pn({1}) =


(
b−1
b

)l−n · 1

b
(
1−(1− 1

b )
l
) if n ≤ l,

0 otherwise.

The corresponding target competitive ratio is 1

1−(1− 1
b )

l .

Consistency. We first bound the competitive ratio when the predictor is correct.

Bound 1: For the algorithm A
(1)
y;λ,

ALG(TOPT;A
(1)
y;λ)

OPT(TOPT)
=

ALG(b;A(1)
y;λ)

b
≤ ⌊λb⌋

1− (1− (1/b))⌊λb⌋
· 1
b
≤ ⌊λb⌋/b

1− e−
⌊λb⌋

b

≤ λ

1− e−λ
.

Bound 2: For the algorithm A
(2)
y;λ,

ALG(TOPT;A
(2)
y;λ)

OPT(TOPT)
=

ALG(b;An)

b
≤ b

1− (1− (1/b))⌈b/λ⌉
· 1
b
≤ 1

1− e−
⌈b/λ⌉

b

≤ 1

1− e−
1
λ

≤ λ

1− e−λ
,

where the last inequality follows from Lemma 19 in [3].

Therefore, the consistency bound for both cases is upper bounded by λ
1−e−λ .

Robustness. We now consider the case where the prediction is inaccurate, and we evaluate robust-
ness to prediction errors.

Bound 1: According to Theorem 2,

ALG(⌊λTOPT⌋;A(1)
y;λ)

OPT(⌊λTOPT⌋)
=

ALG(⌊λTOPT⌋;A(1)
y;λ)

⌊λTOPT⌋
≤ 1

1− (1− (1/b))⌊λb⌋
≤ 1

1− e−
⌊λb⌋

b

≤ 1

1− e−(λ−1/b)
.

Bound 2:
ALG(⌈TOPT/λ⌉;A(2)

y;λ)

OPT(TOPT)
≤ ⌈b/λ⌉

1− (1− (1/b))⌈b/λ⌉
· 1
b
≤ 1/λ+ 1/b

1− e−
⌈b/λ⌉

b

≤ 1/λ+ 1/b

1− e−
1
λ

≤ 1 + 1/b

1− e−λ
,

where we use l = ⌈b/λ⌉ ≤ b/λ+ 1.

Hence, the robustness bound is at most 1+1/b
1−e−λ .
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F.4 Proof of Corollary 2

Proof. In the multi-shop ski rental problem, we choose shop n when y ≥ TOPT and shop 1 when
y < TOPT, while keeping all other aspects of Algorithm 3 unchanged. According to Theorem 1, this
shop selection strategy yields a higher target competitive ratio compared to the case where all shops
are simultaneously considered. As a result, the resulting algorithm serves as an upper bound for both
the consistency bound and the robustness bound of Algorithm 3. In the following, we employ this
selection strategy to prove the consistency bound and the robustness bound.

Let the optimal offline cost is given by OPT(T ) = min{bs, T}, and the critical time is TOPT = bs.
Note that OPT(TOPT)

TOPT
= 1. Therefore, OPT(n) = 1 for all n ∈ N+ in this setting. Let k = ⌊λbs⌋ and

l = ⌈b1/λ⌉.
When y ≥ bs, the corresponding target competitive ratio is rs

1−(1− bs−rs
bs

)
k ≤ rs

1−e
− rs

bs
k
≤

rs

1−e
−rs(λ− 1

bs
)
. When y < b, the corresponding target competitive ratio is 1

1−
(
1− 1

b1

)l ≤ 1

1−e−
1
λ

.

Consistency. We first bound the competitive ratio when the predictor is correct.

Bound 1: For the algorithm A
(1)
y;λ,

ALG(TOPT;A
(1)
y;λ)

OPT(TOPT)
=

ALG(bs;A
(1)
y;λ)

bs
≤ rs · ⌊λbs⌋

1− e−
rs
bs

k
· 1
bs
≤

⌊λbs⌋ rsbs
1− e−

⌊λbs⌋rs
bs

≤ rsλ

1− e−λrs
.

Bound 2: For the algorithm A
(2)
y;λ,

ALG(TOPT;A
(2)
y;λ)

OPT(TOPT)
=

ALG(bs;An)

bs
≤ 1

1− e−
1
λ

≤ λ

1− e−λ
≤ rsλ

1− e−λrs
,

where the last inequality follows from λ ≤ rsλ.

Therefore, the consistency bound for both cases is upper bounded by rsλ
1−e−λrs

.

Robustness. We now consider the case where the prediction is inaccurate, and we evaluate robust-
ness to prediction errors.

Bound 1: According to Theorem 2,

ALG(⌊λT (1)
OPT⌋;A

(1)
y;λ)

OPT(⌊λTOPT⌋)
≤ rs

1− e−rs(λ− 1
bs

)
≤ b1

bs
· rs

1− e−rs(λ− 1
bs

)
.

Bound 2:

ALG(⌈T (2)
OPT/λ⌉;A

(2)
y;λ)

OPT(TOPT)
≤ ⌈b1/λ⌉

1− e−
1
λ

· 1
bs
≤ b1

bs
· 1/λ+ 1/b1

1− e−
1
λ

,

where we use l = ⌈b1/λ⌉ ≤ b1/λ+ 1.

Hence, the robustness bound is at most b1
bs

max
{

rs
1−e−rs(λ−1/bs) ,

1/λ+1/b1
1−e−1/λ

}
.

G Supplementary Numerical Results

In this section, we conduct numerical experiments to evaluate the performance of the SOAC algorithm
and LA-SOAC algorithm. Specifically, we investigate the relationship between path selection complex-
ity and the competitive ratio. Additionally, we perform further experiments using the SOAC algorithm
to solve multi-shop, multi-slope problems. The experimental platform is an AMAX TR40-X4 server,
configured with dual Intel Xeon Gold 6448H processors. The system is equipped with 512 GB of
DDR5-4800 ECC memory, two 16 TB hard disk drives, two 960 GB solid-state drives, and four
graphics processing units.
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G.1 Supplementary numerical results in Section 5

Building upon the experimental setup detailed in Section 5, we conducted more comprehensive
numerical experiments to investigate the impact of various parameters on the performance of the
LA-SOAC algorithm.

(a) (b) (c) 

(d) (e) (f) 

Figure 8: Average competitive ratio across different error parameter η with λ ∈ {0.25, 0.5, 0.75, 1}
and δ = 0.

The impact of the hyperparameter λ. Figures 8 illustrate the average competitive ratio of LA-SOAC
under different values of λ ∈ {0.25, 0.5, 0.75, 1} and varying error parameters η. The hyperparameter
λ captures the degree of trust placed in machine learning predictions: a smaller λ corresponds to
higher trust, while a larger λ reflects greater caution. When predictions are highly accurate, a
smaller λ enables LA-SOAC to achieve performance close to the offline optimal. However, as the
prediction error increases, over-reliance on inaccurate predictions (i.e., low λ) can lead to significant
performance degradation. In contrast, with a larger λ, the algorithm becomes more conservative,
and the competitive ratio rises more slowly as η increases. These results show the trade-off between
consistency and robustness controlled by λ, and demonstrate that LA-SOAC consistently performs at
least as well as algorithms that follow a single deterministic path.

The impact of biased error δ. Figure 9 illustrates the average competitive ratio of LA-SOAC under
different bias levels δ ∈ {50, 100, 150, 200} and varying error parameters η, with fixed values of
λ = 0.25 and λ = 0.75. The results reveal how the bias parameter δ influences the trade-off between
exploiting accurate predictions and mitigating the risk of large errors. When the error level η is small,
a smaller bias δ leads to better competitive ratios, as it enables the algorithm to more aggressively
utilize accurate predictions. Conversely, when η is large, a larger δ becomes advantageous by hedging
the impact of significant prediction errors, thereby improving its overall performance.

G.2 Application of SOAC to the multi-shop ski rental problem

In the multi-shop ski rental problem, a skier must decide how to ski for an unknown duration T . The
skier chooses a shop i from a set of shops {1, 2, . . . ,m} and can only rent or purchase ski equipment
from that selected shop. Each shop i offers a daily rental price ri and a purchase price bi, where
ri, bi > 0. It is assumed that r1 < r2 < · · · < rm and b1 > b2 > · · · > bm, ensuring that shops
with lower rental prices have higher purchase prices to avoid trivial decisions. The skier’s goal is
to select a shop and determine the optimal purchase time to minimize total costs, without changing
shops midway.
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(a) (b) 

(c) (d) 

Figure 9: Average competitive ratio across different error parameter η and bias δ ∈
{50, 100, 150, 200}, with fixed values of λ = 0.25 and λ = 0.75.

We consider a scenario with three shops, each offering different rental and purchase prices. The
rental and purchase prices at these shops are as follows: shop 1 with r1 = 1 and b1 = 594, shop
2 with r2 = 1.2 and b2 = 576, and shop 3 with r3 = 1.3 and b3 = 560. Based on the calculated
probabilities, the likelihood of selecting each shop is determined: the probability of choosing shop 1
is 87.9%, the probability for shop 2 is 0%, and the probability for shop 3 is 12.1%. This indicates
that the user is only likely to choose between shop 1 and shop 3. The daily purchase probabilities
for these two shops are illustrated in Figure 10(a). We then compute the probability of choosing
each shop for different values of b1 by varying the purchase price b1 of shop 1 while keeping the
prices of the other shops constant, as shown in Figure 10(b). The results indicate that as b1 increases,
the probability of selecting shop 1 decreases, while the probability of selecting shop 2 increases.
Additionally, the competitive ratio rises. This occurs as a higher purchase price for shop 1 increases
the risk associated with selecting it, as the potential rental benefit diminishes.

Figure 10: (a) Probability of purchase for each shop in the three-shop ski rental problem. Shop 1 has
a purchase price b1 = 594 and a rental price r1 = 1, shop 2 has a purchase price b2 = 576 and a
rental price r2 = 1.2, and shop 3 has a purchase price b3 = 560 and a rental price r3 = 1.3. (b) The
impact of the competition ratio and the probability of selecting each shop after adjusting the purchase
price of shop 1.
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G.3 Application of SOAC to the multi-slope ski rental problem

The multi-slope ski rental problem considers a scenario where a user needs to utilize a resource for an
unknown duration. The cost of resource usage is determined by multiple states (or slopes), denoted
as S = {0, 1, . . . , k}. Each state i is associated with a purchase cost bi and a rental rate ri, which
typically satisfy the conditions b0 < b1 < · · · < bk and r0 > r1 > · · · > rk, with b0 = 0. State
transitions are constrained to be forward-only, meaning that one cannot move backward or skip states.
The objective is to determine the optimal state (or slope) to minimize the cost at a given time t.

A randomized profile is defined as the probability vector p(t) = (p0(t), . . . , pk(t)), where pi(t)
represents the probability of being in state i at time t. To illustrate how SOAC can be applied to this
problem, consider an example inspired by [19]. Assume there are three states with purchase and
rental costs defined as b = (b0, b1, b2) and r = (r0, r1, r2), respectively. This corresponds to the
CSR problem, where a fixed purchase path is given by σ = (S0, S1, S2, S3). For each state i, the
associated costs are defined as: f(S0) = g(S0) = 0, f(S1) = b1 − b0, g(S1) = r0 − r1, f(S2) =
b2 − b1, g(S2) = r1 − r2, f(S3) = ∞, g(S3) = 0. For example, consider the following
configurations of b and r

• Example 1: b = (0, 0.5, 0.9), r = (2, 0.5, 0.1),
• Example 2: b = (0, 0.5, 0.7), r = (2, 0.5, 0.3),
• Example 3: b = (0, 0.5, 0.55), r = (2, 0.5, 0.45).

By applying the SOAC algorithm to these examples, the probabilities of being in each of the three
states can be computed, as illustrated in Figure 11. These results are consistent with the experimental
results in [19].

Figure 11: Illustrative examples demonstrating the application of the SOAC algorithm to solve
the multi-slope problem. (a) Example 1: b = (0, 0.5, 0.9), r = (2, 0.5, 0.1); (b) Example 2:
b = (0, 0.5, 0.7), r = (2, 0.5, 0.3); (c) Example 3: b = (0, 0.5, 0.55), r = (2, 0.5, 0.45).

G.4 Supplementary numerical results of SOAC and LA-SOAC

Consider a scenario in which a company requires specific software to support both its daily operations
and long-term growth. However, the duration for which these software applications will be used
remains uncertain. The market offers a diverse range of software options, which can be acquired
either through a perpetual purchase or on-demand leases. It is important to note that some software
applications are interrelated, and bundling multiple products from the same vendor may result in
additional discounts. The company’s business needs may require anywhere from 6 to 16 software
applications. For the sake of simplicity, we assume each application is priced at one unit for
rental. Furthermore, discounts are available only for certain combinations of the first six software
packages. A summary of the purchase prices for these 16 software packages, including the discounted
combination prices, is provided in Table 1.

For applications that do not qualify for combination discounts, Lemma 3 establishes that the optimal
strategy is to purchase them individually. As a result, there are eight distinct purchase paths. These
paths are summarized in Table 2, which excludes applications 7 through 16. These applications are
purchased individually and are incorporated into the table based on the buy-to-rent ratio.
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Table 1: Purchase prices of 16 software applications and corresponding combination purchase prices.

Items {1} {2} {3} {4} {5}
Prices 202 535 960 370 206
Items {6} {7} {8} {9} {10}
Prices 171 800 120 714 221
Items {11} {12} {13} {14} {15}
Prices 556 314 430 558 187
Items {16} {1, 2} {2, 3, 4} {4, 5} {5, 6}
Prices 472 663.3 1715.8 524.16 327.99

We computed the probability of selecting the optimal purchase path for firms acquiring between 6
and 16 applications. The results indicate that the decision ultimately narrows down to either path 1 or
path 2, as shown in Figure 12(a). As the number of applications increases, the probability of choosing
path 1 decreases, while the probability of selecting path 2 rises. This shift leads to a corresponding
reduction in the competitive ratio. The underlying reason for this change is that as the path selection
process becomes more deterministic, the decisions in the CSR problem are simplified. This reduction
in decision uncertainty results in a lower competitive ratio.

(a) (b) (c) 

Figure 12: Analysis of path selection probabilities and competitive ratios. Path 1 is defined as
({5, 6}, {1}, {2, 3, 4}), and Path 2 as ({5, 6}, {1, 2}, {4}, {3}). The remaining items are purchased
independently and assigned to paths based on the buy-to-rent ratio. (a) Illustrates the effect of
increasing the number of undiscounted items on the path selection probability and the competitive
ratio. (b) Illustrates the case where the number of items is fixed at 10, and different discounts are
applied to the combination {1, 2}. The discount for this combination is defined as the sum of the
purchase prices of items 1 and 2, multiplied by the discount factor. (c) Validation of theoretical vs.
experimental competitive ratios.

Furthermore, we fixed the selection of the first 10 items, modified the price of the combination
{1,2}, and kept the prices of the remaining items unchanged. We then computed the probabilities of
selecting path 1 and path 2 for various discount factors for the combination {1,2}, along with the
corresponding competitive ratios, as shown in Figure 12(b). Similar to the conclusions drawn in
Figure 12(a), an increase in the discount leads to greater uncertainty in the path selection process.
This increased uncertainty leads to a more complex decision-making process in the CSR problem,
which in turn results in a higher competitive ratio.

Based on the same pricing settings as in Figure 12(a), we further evaluate the theoretical performance
of the SOAC algorithm. Specifically, we consider scenarios with 6, 8, and 16 items, where purchase
decisions are made according to the randomized probabilities computed by Algorithm 2. We then
evaluate the empirical performance of the algorithm by computing the empirical average competitive
ratio for varying end times of the game. As illustrated in Figure 12(c), the experimental competitive
ratios align well with their theoretical counterparts, validating the accuracy of the algorithm. Moreover,
we observe that the fluctuation in the experimental competitive ratio is more pronounced when the
end time is shorter. This is because randomized experiments conducted over shorter durations tend
to exhibit greater variance. Additionally, the fluctuation decreases as the number of items increases.
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Table 2: Purchase paths for multiple software applications, with software 7 through 16 omitted for
convenience.

Path 1-4 Path 5-8

({5, 6}, {1}, {2, 3, 4}) ({6}, {1}, {5}, {4}, {2}, {3})
({5, 6}, {1, 2}, {4}, {3}) ({5, 6}, {1}, {4}, {2}, {3})
({6}, {1}, {4, 5}, {2}, {3}) ({6}, {1}, {5}, {2, 3, 4})
({6}, {5}, {1, 2}, {4}, {3}) ({6}, {4, 5}, {1, 2}, {3})

This is attributed to the fact that with more items, the decision paths become more deterministic,
thereby reducing the variance, as also reflected in Figure 12(a).

For the learning-augmented algorithm, we let the actual number of days, T , be uniformly distributed
within the region [1, 4Toff]. The predicted number of days, y, is set to y = T + ϵ, where the simulated
error ϵ follows a normal distribution with a mean of δ and a standard deviation η. For each standard
deviation η, 10,000 samples are randomly sampled in this study, and their average competitive ratios
are calculated. As illustrated in Figure 13, we evaluated the average competitive ratio of the LA-SOAC
algorithm for 10 items across varying error parameters. Our analysis focused on how this ratio
changes with the parameter λ, and we also compared it to the average competitive ratio achieved
by selecting a single path. The results indicate that LA-SOAC effectively balances consistency and
robustness. Specifically, when the algorithm increasingly relies on the predicted values and the
prediction error is minimal, its average competitive ratio approaches that of the offline optimal
solution. Furthermore, LA-SOAC demonstrates superior performance compared to strategies that
commit to a single path.

(a) (b) (c) 

(d) (e) (f) 

Figure 13: Average competitive ratio across different error parameters η with 10 items.

G.5 Runtime Analysis

In this subsection, we provide a detailed runtime evaluation to complement the scalability experiments
in Appendix G.4 and to demonstrate the practical feasibility of SOAC. All experiments were conducted
on an AMAX TR40-X4 server (detailed specifications in Appendix G) using CPU-only computation
without CUDA acceleration.

We study runtime as the number of discount combinations increases. All experiments were run with
high precision (10−6) and practical precision (10−4). When reducing the precision from 10−6 to
10−4, the number of iterations decreases to approximately 7% of the high-precision runs.
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Table 3: Runtime scaling with purchase paths. Entries marked with * are extrapolated estimates.

Combos Purchase Paths Time/Iter Iterations → Runtime

High Precision (10−6) Practical Precision (10−4)

4 10 0.285s 436 → 2.1 min 10 → 2.85 s
7 30 2.97s 492 → 24.3 min 36 → 2.4 min
8 60 11.25s 560 → 1.75 h 35 → 11.1 min

10 120 69.29s 525 → 10.1 h 40 → 48 min
12 240 451.67s 500* → 2.6 d 35* → 4.39 h
14 405 1972.02s 500* → 11.4 d 35* → 19.2 h

The per-iteration time complexity is polynomial in the number of purchase paths. A cubic fit of the
form

y = 0.0000253x3 + 0.00180x2 − 0.00746x+ 0.334

achieves a good fit quality (residual sum of squares (RSS = 0.74) ), confirming theoretical polynomial
behavior.

The total runtime increases rapidly as the number of discount combinations grows. However, the above
experiments are based on adversarially constructed discount combinations designed to maximize
overlap and diversity among purchase options, which tend to produce a large number of purchase
paths. In practical scenarios, the structure of discount bundles is often more regular and aggregated.
For example, practical combinations may include larger bundle sets, which significantly reduce the
number of distinct purchase paths and, consequently, the total runtime.

To illustrate this difference, we further compare synthetic adversarial (many small, disjoint combi-
nations) and practical realistic (fewer, larger combinations) scenarios. An additional 8-item case
study is shown in Table 4. It can be seen that realistic structures lead to substantially fewer purchase
paths and much shorter computation times. Moreover, the computation of purchase probabilities is
performed offline during the planning phase, and the resulting online buy-or-rent decisions can be
executed instantaneously without any runtime overhead.

Table 4: Runtime comparison under adversarial vs. realistic combination structures.

Setting Discount Combos Purchase Paths Total Time

Adversarial

10 61 7.18 min
20 187 2.2 h
25 352 –
30 524 –

Realistic

10 11 17.6 s
20 21 42.2 s
25 26 1.05 min
30 32 1.61 min
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