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Abstract

Deep multi-modal clustering (DMC) aims to explore the correlated information
from different modalities to improve the clustering performance. Most existing
DMCs attempt to investigate the consistency or/and complementarity information
by fusing all modalities, but this will lead to the following challenges: 1) Informa-
tion conflicts between modalities emerge. 2) Information-rich modalities may be
weakened. To address the above challenges, we propose a diversity-oriented deep
multi-modal clustering (DDMC) method, where the core is dominant modality
enhancement instead of multi-modal fusion. Specifically, we select the modality
with the highest average silhouette coefficient as the dominant modality, then learn
the diversity information between the dominant madality and the remaining ones
with diversity learning, and finally enhance the dominant modality for clustering.
Extensive experiments show the superiority of the proposed method over several
compared DMC methods. To our knowledge, this is the first work to perform
multi-modal clustering by enhancing the dominant modality instead of fusion.

1 Introduction

Deep multi-modal clustering (DMC) aims to integrate data from multiple modalities (e.g., image,
text, audio, etc.) to classify the data through unsupervised learning. DMC combines the feature
extraction ability of deep learning and the clustering idea of unsupervised learning, which is an
important direction of multi-modal data analysis at present, and has achieved excellent performance
in many fields, such as the medical field [1–3], autonomous driving and intelligent transportation
[4, 5], and recommendation systems [6–8].

Related Works. At present, almost all DMCs cluster by fusion method. Based on different fusion
stages, DMCs can be roughly divided into the following three categories: 1) Feature-level fusion:
these methods [9–13] extract the features of different modalities and connect them into a single
high-dimensional feature vector, which is used as a single input for clustering or feature learning.
For example: Zhou and Shen [10] propose a method that first use an adversarial regularizer to align
modalities, and then perform an attention fusion on all modalities, so as to quantify the importance
of different modalities. 2) Decision-level fusion: these methods [14–16] first obtain independent
modeling of each modality, obtain their own output or clustering results, and then fuse these results
in the final stage. For example, Meng et al.[14] conduct the features of different modalities in
their respective clustering layers for depression regression training, and linearly weighted sums the
prediction results of each modality to obtain the fusion result as the final output result. 3) Mixed-level
fusion: these methods [17–19] combine the output of a single mode prediction through feature-level
fusion. For example, Morales et al.[17] train a separate model for each modality, then get the
predictions for each modality, and finally train a new model on these new vectors to output the final
prediction.
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Motivations. Although the above methods have achieved excellent performance, due to the use
of different levels of fusion, the following challenges arise: 1): Inconsistency of multi-modal data:
different modalities may provide conflicting or inconsistent information about the same thing. 2):
Weight assignment and modalities importance: modalities fusion can cause some informative high-
quality modalities to be forced to align with low-quality high-noise modalities [20]. To address the

VISUAL

TOUCHSMELL

TASTE HEARING

(a)

Modality 3(Dominant)

Modality 1

Modality 2

Diversity Learning

Pull

Pull

Push

Push

Enhanced Features

Consistency Features
Diversity Features

(b)

Figure 1: (a) The way humans perceive
the world and its proportion. (b) The
general idea of our method. Inspired by
multi-modal assisted vision in human
perception of the world.

above challenges, we drew inspiration from [21]. As shown
in Figure 1(a), people perceive the world in the process
of the world about 83% comes from the vision, and the
remaining ways (such as smell, touch, taste and hearing)
add up to only 17%. However, if the information obtained
by the other ways is supplemented with the information
obtained by the visual way, a more complete understanding
will be obtained. Taking driving as an example, most of the
information on the road condition comes from the vision,
if at the same time through the radio, speakers and other
information, we will have a more correct judgment on the
road condition. Inspired by this, we propose a new multi-
modal clustering method in Figure 1(b), in which modality
3 is the dominant modality. The diversity learning approach
is employed to extract the diversity information between the
dominant modality and the remaining modalities (modality
1, modality 2) and then the diversity information is spliced
to the dominant modality for enhancement. Finally, the
enhanced dominant modality is clustered.

Contributions. In this paper, we propose a diversity-
oriented deep multi-modal clustering (DDMC) method.
Specifically, our innovation lies in proposing a dominant
modality enhancement strategy that ‘enhancement instead
of fusion’. In this method, we first select an informative
modality as the dominant modality, and subsequently em-
ploy diversity learning to extract the diversity information
from other modalities from the dominant modality. Fi-
nally, we concatenate these dissimilarity information to the
dominant modality and perform the final clustering output
through the clustering module. Compared with the latest
DMCs method, our method achieves significant perfor-
mance improvement on benchmark datasets, which verifies
its effectiveness and advantages. The main contributions of our work can be summarised as follows:

• Ours is the first work to investigate multi-modal clustering by enhencing dominant modalities
rather than fusing modalities.

• We propose a diversity-oriented deep multi-modal clustering method by dominant modality
enhancement rather than modality fusion, which can maximally retain important information
in the raw modality and has the advantages of both single-modal and multi-modal clustering.

• We can effectively enhance the dominant modality by simultaneously mining the diversity
information of the remaining modality relative to the dominant modality at both the feature-
level and the cluster-level. The results on multiple multi-modal datasets can validate the
effectiveness of DDMC.

2 Methodology

A multi-modal dataset X = {X1, . . . , Xm, . . . , XM} contains N samples of M modalities, where
Xm ∈ RN×dm denotes the samples of dimension dm from the m-th modality. Our purpose is to
correctly divide N samples into K clusters by learning information between multiple modalities.
To provide a more intuitive overview of the proposed method, we present it in Figure 2. Taking
three modalities as an example, the dominant modality (modality 2 is shown in the figure) is first
determined through the selection of dominant modality module. Subsequently, each modality is
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Figure 2: Details of the proposed framework. Firstly, the dominant modality feature Ddm, consistency
features {Cm}Mm̸=dm and diversity features {Zm}Mm ̸=dm are obtained through modality specific
encoders. Then, through feature-level diversity learning and cluster-level diversity learning, the
diversity information of the remaining modality is learned. Finally, the diversity information is
enhanced for the dominant modality, and the final clustering is completed through the clustering
module. Among them, UDC is Uniform Distribution Constraint, which forces the edge distribution
of each cluster to be as close to uniform as possible. DDC is Deep Divergence-based Clustering.

modeled with its original features through independent variational encoders. Next, diversity learning
is performed at both the feature-level and the cluster-level, and the diversity information obtained
from the non-dominant modalities is used to enhance the representation of the dominant modality.
Finally, the final clustering is performed based on the enhanced dominant modality features to obtain
the clustering results.

2.1 Motivation: Modality Fusion Leads to Lower Clustering Efficiency

Figure 3: The accuracy rates of each
modality and the fused modality after
K-means clustering.

In order to learn the information between modality, re-
searchers capture the connections of heterogeneous modal-
ity by fusing each modality. However, this also brings
corresponding problems: unfair weights in the fusion can
lead to the degradation of the results. Specifically, we
illustrate it on the popular multi-modal dataset Flickr [22],
as shown in Figure 3. We conducted 20 iterations of K-
means [23] clustering for each modality and the fusion
modality, representing the quality of individual modality
and the fusion modality through its unsupervised accuracy.
As shown in the figure, it can be clearly seen that modality
3 belongs to the high-quality modality, while modality
1 and 2 belong to the low-quality modality. Due to the
unequal relationship between the weights allocated to each
modality and the quality in the fusion, the clustering effect
of the fused modality is worse. However, these low-quality
modality are not completely useless, we hope to select a high-quality modality as the dominant modal-
ity, and then learn useful information from the remaining modality to enhance the dominant modality.
Therefore, unfair alignment of high-quality modality to low-quality modality can be avoided.
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2.2 Selection of Dominant Modality

We decide that the dominant modality method is prior knowledge or the Silhouette coefficient
(SI) fraction. Prior knowledge is that the modality weights in the dataset have been measured in
previous work, or the importance of certain modality in some datasets is obvious. For these important
modalities, the dominant modality is selected. For example, the importance weights of each modality
are clearly given in [10]. In the absence of reliable prior information, the SI fraction is adopted to
determine the dominant modality. SI is a metric used to evaluate the quality of clustering results. It
combines the intra-cluster closeness and inter-cluster separation, and calculates a SI for each data
point to measure its similarity to its own cluster and its nearest neighbor cluster. In the raw features,
the clustering results are calculated by the K-means method, and then the SI score of each modality
can be derived. For each sample xm

i , the average SI of each modality is calculated as follows:

SI (Xm) =
1

N

∑
xm

i ∈Xm

SI (xm
i ) , (1)

where:

SI (xm
i ) =

b (xm
i )− a (xm

i )

max {b (xm
i ) , a (xm

i )}
, (2)

where a (xm
i ) = 1

|Cm
k |

∑
xm

j ∈Cm
k ,xm

i ̸=xm
j
d
(
xm
i ,xm

j

)
is to calculate the average distance

between this sample point and all other points in the same cluster, and b (xm
i ) =

minl∈[1,K],l ̸=k
1

|Cm
l |

∑
xm

j ∈Cm
l
d
(
xm
i ,xm

j

)
is to calculate the average distance between this sample

point and all points in the nearest neighboring cluster. |Cm
l | is the number of all sample points in the

cluster where x is located, and d(, ) is the distance between the two sample points.

The modality with the highest SI is the dominant modality Xdm is given by:

Xdm = max {SI(X1), SI(X2), ..., SI(XM )}. (3)

2.3 Diversity Learning

After selecting the dominant modality, each modality is encoded by an independent variational
encoder. The dominant modality generates feature Ddm, and the remaining modalities generate
two sets of features, diversity features {Zm}Mm ̸=dm and consistent features {Cm}Mm ̸=dm. Then, after
two levels of diversity learning, the diversity information of the remaining modalities relative to the
dominant modality can be learned while removing redundant information.

Feature-level diversity learning can extract the diversity features between non-dominant and dominant
modalities through mutual information and contrastive learning, compress redundant information and
separate consistent information from diverse information. Cluster-level diversity learning ensures
balanced distribution of each cluster through Uniform Distribution Constraint and mutual information,
and enhances the expression of dominant modality from the clustering level. Therefore, the two
are synergistically enhanced, enhancing low-level feature expression through feature-level learning,
aligning high-level semantic structures through cluster-level learning, and cluster-level can guide
feature-level learning through back-propagation to further promote clustering diversity information.

Feature-level Diversity Learning In order to learn the diversity information at the feature level,
we propose the following objective function:

min L1 = I(Xdm;Ddm) +

M∑
m ̸=dm

I(Xm;Zm) +

M∑
m̸=dm

I(Zm;Ddm). (4)

Where I(; ) is the mutual information measurement. The first two terms describe the compression loss
of the raw modalities after passing through the encoders, and the third term aims to learn the diversity
information of the dominant modality. Inspired by the Information Bottleneck (IB) theory [24, 25],
according to Eq. (4), this method can effectively screen out the minimum sufficient representation
that is most critical to the subsequent tasks of each modality under the guidance of the dominant
modality, thereby suppressing redundant modal noise and highlighting the diversity information
between the modalities.
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In order to further effectively strip away the potential diversity information in the non-dominant modal-
ity, the dominant modality Ddm is compared and aligned with the consistency features {Cm}Mm ̸=dm of
the non-dominant modality. Since the encoder network on which the consistency features {Cm}Mm ̸=dm

and the diversity features {Zm}Mm ̸=dm rely share parameters, the alignment process can more ac-
curately decouple and extract the correct diversity features from the non-dominant modality while
maintaining the consistency semantics, thereby improving the expressiveness of the dominant modal-
ity. The contrastive loss between the dominant modality Ddm and the consistency features Cm is
calculated as follows:

ℓdm,m = − 1

N

N∑
i=1

log
es(d

dm
i ,cmi )/τ1∑

s′∈Neg(ddm
i ,cmi )

es′/τ1
, sdm,m

ij

(
ddmi , cmj

)
=

(
ddmi

)T
cmj∥∥ddmi ∥∥ ·
∥∥cmj ∥∥ , (5)

where τ1 is a temperature hyperparameter, Neg
(
ddmi , cmi

)
represents the similarity set between

negative sample pairs, ddmi and cmj represent the i-th and j-th samples of features Ddm and Cm.
Contrastive learning is introduced between the dominant modality and other modalities to facilitate
the screening of consistent features and further improve the efficiency of mining diverse information.
The common way to calculate contrast loss is to accumulate the contrast loss between all modalities,
so the contrast loss function in this section can be expressed as:

L2 =
1

2
(

M∑
m̸=dm

ℓdm,m +

M∑
m̸=dm

ℓm,dm), (6)

to sum up, the loss function of the feature-level diversity learning is expressed as follows:

LFDL = L1 + L2. (7)

Cluster-level Diversity Learning In order to fully capture the semantic coherence between the
dominant modality and the non-dominant modality and improve the effectiveness of diversity features
in clustering tasks, DDMC further introduces a diversity learning mechanism at the cluster level.
Specifically, the diversity features extracted from the non-dominant modality and the dominant
modality are input into independent cluster assignment layers to obtain the cluster assignment
representation {Am}Mm=1, so as to mine the diversity information between them in the cluster
structure, thereby enhancing the clustering expression ability of the dominant modality. To this end,
we designed the following objective function:

max L3 =

M∑
m̸=dm

I(Am;Adm), (8)

at the same time, in order to improve the stability and balance of the clustering results, we further apply
the UDC method to adjust the cluster assignment representation {Am}Mm=1 to obtain {AU

m}Mm=1.
The objective function of this item is:

min L4 =

M∑
m

CE(Am;AU
m), (9)

where CE is the cross entropy [26]. The core of this method is to carry out standardization processing
similar to Sinkhorn-Knopp [27]. This method can convert the soft probability prediction of each
sample belonging to each cluster into a more balanced hard label assignment, so that each sample
is assigned to only one cluster and the distribution of the number of samples in each cluster is kept
as balanced as possible, thereby improving the discriminability and robustness of clustering. The
specific implementation details are shown in Appendix A.1. Therefore, the overall objective loss
function of cluster-level diversity learning LCDL is:

LCDL = L4 − L3. (10)

After being processed by the two-levels diversity learning module, the diversity information contained
in the remaining modalities can be effectively extracted compared to the dominant modality.
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Algorithm 1 :Diversity-oriented Deep Multi-modal Clustering

Input: Multi-modal datasets {Xm}Mm=1; Number of clusters K; Trade-off parameters α and β;
Epoch number E; Temperature parameters τ1.
Initializing the network;
Select the dominant modality by Eq. (3);
for i = e to E do

The dominant modality feature Ddm, consistency features {Cm}Mm ̸=dm and diversity features
{Zm}Mm ̸=dm are obtained through modality specific encoders;
The clustering results {Am}Mm=1 of various modality are obtained through cluster layers;
Calculate LFDL with Eq. (29), Eq. (31), Eq. (6) and Eq. (7);
Calculate LCDL with Eq. (31), Eq. (9) and Eq. (10);
Calculate LDDC by Eq. (12);
Optimize all parameters by minimizing Eq. (13);

end for
Output:Multi-modal clustering assignment Q.

2.4 Clustering Module

In order to alleviate the information interference and feature confusion problems that may be caused
by direct modal fusion, this paper first enhances the dominant modality. The enhanced dominant
modality is expressed as:

Ddm
Enhanced = Concat(D,Z1, ..., Zm, ..., ZM )(m ̸= dm). (11)

Then, the enhanced dominant mode is clustered by DDC to obtain the cluster assignment matrix Q.
DDC [28] is an effective unsupervised clustering method in deep learning, which aims to improve
clustering performance by optimizing the dissimilarity measure between sample distributions. It
consists of three parts, the first part is intra-cluster compression and inter-cluster separation, the
second part is the orthogonality constraint, and the third part is the assignment of simple simplex
corners, the loss optimization function of the clustering module is as follows:

LDDC =
1

K

K−1∑
i=1

∑
j>i

δTi Kδj√
δTi KδiδTj Kδj

+ triu(QTQ) +
1

K

K−1∑
i=1

∑
j>i

λT
i Kλj√

λT
i Kλi · λT

j Kλj

. (12)

Where K is the Gaussian matrix kernel, δi, δj denotes the column vectors of the cluster assignment
matrix Q, and K is the number of clusters. λi is the column vector of B = [Bab], defined as:
Bab = exp

(
−∥αa − eb∥2

)
.

2.5 Optimization

In summary, DDMC is achieved by minimizing the following loss function:

Ltotal = LDDC + αLFDL + βLCDL. (13)

Where α, β are trade-off parameters. To optimize the mutual information loss term in Eq. (4),
we introduce a variational optimization strategy. Specifically, we estimate the lower bound of the
mutual information term L1 through a variational method and use this as its optimization target,
because maximizing its variational lower bound can achieve an unbiased estimate of L1. The specific
implementation process is presented at Appendix A.2 and the training steps of this method are
summarized in Algorithm 1.

2.6 Theoretical Analysis

Theorem 1. By optimizing Eq. (7), it is possible to remove the private redundant information of
each modality while obtaining the diversity information of the remaining modality relative to the
dominant modality.
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Proof: For any three modalities (m ∈ {u, dm, v}), where dm is the dominant modality. We
introduce a simplified assumption: when the training is fully converged, the encoder can accurately
capture the joint information. According to the data processing inequality, , the mutual information
between representations is upper-bounded by that between the original modalities:

I(Zu;Ddm) ≤ I(Xu;Xdm), I(Cu;Ddm) ≤ I(Xu;Xdm), (14)

because Zu ↔ Xu ↔ Xdm ↔ Ddm forms a Markov chain. Similarly,

I(Zv;Ddm) ≤ I(Xv;Xdm), I(Cv;Ddm) ≤ I(Xv;Xdm). (15)

At best, the information that can be shared between each modality and the dominant modality satisfies:

I
(
Zu;Ddm

)
+ I

(
Cu;Ddm

)
= I

(
Xu;Xdm

)
,

I
(
Zv;Ddm

)
+ I

(
Cv;Ddm

)
= I

(
Xv;Xdm

)
.

(16)

Since the optimization objective tends to maximize I(Zu;Ddm) and I(Cu;Ddm), while the com-
pression loss enforces the representation to remain concise, the optimal strategy is to assign redundant
shared information to a low-dimensional subspace. Therefore, we let the encoding satisfy:

I
(
Cu;Ddm

)
= I

(
Xu;Xdm

)
, I

(
Zu;Ddm

)
= 0. (17)

That is, Cu carries all common information between Xu and Xdm, while Zu is independent ofis
independent of Ddm and contains only modality-specific information. Similarly,

I
(
Cv;Ddm

)
= I

(
Xv;Xdm

)
, I

(
Zv;Ddm

)
= 0. (18)

At this time, Cu, Cv and Ddm share the redundant information between all modalities, while Zu, Zv

each only carries the remaining independent information. According to the chain rule of mutual
information:

I
(
Xu;Zu, Ddm

)
= I

(
Xu;Ddm

)
+ I

(
Xu;Zu|Ddm

)
. (19)

When I(Zu;D) = 0, it follows that I(Xu;Zu|Ddm) = I(Xu;Zu). Assuming complete informa-
tion preservation, we have:

I(Xu;Zu|Ddm) = I(Xu;Zu), I
(
Xu;Zu, Ddm

)
= H (Xu) , (20)

where H() is the entropy. Finally, we obtain:

I (Zu;Xu) = H (Xu)− I
(
Xu;Xdm

)
= I

(
Xu;Xu|Xdm

)
. (21)

That is, Zu captures the amount of information that Xu still has given Xdm, which is exactly
the diversity information of Xu relative to Xdm. The same is true for Zv. The above derivation
shows that introducing modal contrast loss and mutual information loss under the compression loss
constraint of the variational autoencoder will decouple the latent variables of the non-dominant
modality from the latent variables of the dominant modality: the shared information is reflected in
Cu, Cv , while Zu, Zv only contains the diversity information relative to the dominant modality.

3 Experiment

In this segment, we carry out a series of experiments to verify the efficacy of the framework we have
proposed. For more experimental data and experimental details, please refer to Appendix A.3.

3.1 Datasets

We evaluate the effectiveness of our proposed method by employing five well-known datasets,
including Caltech-3V, Caltech-4V, ESP-Game, Flickr and IAPR. The Caltech image dataset [29],
which comprises 1440 samples distributed across 7 distinct classes, is available in three multi-modal
variants. Caltech-3V incorporates features of Wavelet moments [30], CENsus TRansform hISTogram
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Table 2: Clustering results in terms of ACC and NMI on the multi-modal datasets. (The bold and
underline value are the best and second best result, respectively)

Methods Caltech-3V Caltech-4V ESP-Game Flickr IAPR

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

KM 46.3 31.3 54.6 46.7 43.2 29.4 40.9 22.5 38.9 17.2
Ncuts(TPAMI’00) 42.6 25.4 67.8 47.6 41.0 25.9 48.4 26.1 41.9 18.9
AmKM 46.9 31.5 44.9 30.6 49.9 34.7 41.0 21.6 40.4 17.0
AmNcuts(TPAMI’00) 43.7 25.5 41.8 24.9 33.5 19.1 48.2 26.2 42.2 18.9

CoregMVSC (NeurIPS’11) 54.4 45.3 64.9 54.5 40.1 28.8 41.0 26.8 35.1 18.4
RMKMC (IJCAI’13) 59.5 49.4 65.5 60.3 44.7 29.7 42.3 23.4 36.4 15.9
SwMC (IJCAI’17) 30.2 23.1 43.7 44.2 43.7 44.2 34.3 34.5 30.2 23.1
ONMSC (AAAI’20) 58.2 56.8 62.3 66.1 17.1 18.1 30.6 16.4 21.6 11.1
SMCMB (TBD’23) 67.2 54.5 74.4 67.0 54.9 40.5 52.8 32.1 34.8 16.4

EAMC (CVPR’20) 38.9 21.4 29.6 16.5 27.1 6.5 30.5 9.1 37.1 16.4
DEMVC (InfoSci’21) 38.7 27.0 48.4 39.7 35.5 21.6 44.8 25.2 30.1 13.8
SiMVC (CVPR’21) 56.9 50.4 61.9 53.6 35.3 16.2 45.6 26.3 42.7 18.5
CoMVC (CVPR’21) 54.1 50.4 56.8 56.8 51.8 38.2 49.3 30.6 46.7 21.5
MFLVC (CVPR’22) 63.1 56.6 73.3 65.2 52.1 39.4 53.8 32.8 47.3 22.6
SEM (NeurIPS’23) 69.2 59.2 82.6 75.3 36.6 23.5 53.1 30.9 42.2 18.9
DIVIDE (AAAI’24) 60.9 53.8 64.3 57.9 46.5 27.0 52.3 33.5 45.6 23.0
SCMVC (TMM’24) 75.9 66.3 84.4 72.9 36.1 24.8 54.2 32.3 46.5 24.1
SSLNMVC (TMM’25) 64.4 58.3 82.1 72.8 44.8 32.3 51.2 33.0 46.4 24.0

DDMC 76.7 68.8 90.3 82.7 60.9 40.9 58.7 36.5 49.5 28.3
Ours vs BestCompared 0.8↑ 2.5↑ 5.9↑ 7.4↑ 6.0↑ 0.4↑ 4.5↑ 3.0↑ 2.2↑ 4.2↑

Table 1: Details about the Multi-modal Datasets

Dataset Samples Clusters Dimension
Caltech-3V 1440 7 40/254/928
Caltech-4V 1440 7 40/254/928/512
ESP-Game 11032 7 300/300/300
Flickr 12154 6 100/100/100
IAPR 7855 6 100/100

(CENTRIST) [31] and Local Binary
Pattern [32], treating each feature type
as a separate modality. Caltech-4V
builds upon Caltech-3V by introduc-
ing an additional feature, namely Gen-
eralIzed Search Trees [33]. ESP-
Game [34] dataset is derived from an
online image tagging game, contain-
ing 11,032 images across 7 categories,
with each sample having three modal-
ity descriptions. Flickr [22] dataset is a widely used multi-modal dataset for image retrieval,
containing 12154 sample across 6 categories. It utilizes the same three modalities as ESP-Game.
IAPR [35] is a comprehensive multi-modal image dataset, containing 6 categories with 7,855 samples
and two features.

3.2 Compared Methods

To further substantiate the merits of our proposed approach, we conducted comparative experiments
with a comprehensive set of eighteen baseline methods, classified into three types: Single-Modal
Clustering Methods: K-Means(KM), Normalized Cuts(Ncuts) [36], All-modalities KMeans(AvKM),
All-modal Normalized Cuts(AvNcuts); Traditional Multi-modal Clustering Methods: CoregMVSC
[37], RMKMC [38], SwMC [39], ONMSC [40], SMCMB [41]; Deep Multi-modal Clustering
Methods: MVSCN [42], DEMVC [43], SiMVC [44], CoMVC [44], MFLVC [45], SEM [20],
DIVIDE [46], SCMVC [47], SSLNMVC [48]. All comparison method codes are obtained from the
original authors through their official GitHub repositories or personal homepages.

Evaluation Metrics The clustering performance is meticulously assessed by employing two
extensively utilized metrics: Accuracy (ACC) and Normalized Mutual Information (NMI) [12]. [49]
The higher the value of these two indicators, the better the performance of our model in terms of
clustering accuracy and consistency.

3.3 Clustering Performance Analysis

Table 2 demonstrates the clustering effectiveness of our proposed method on five publicly available
datasets, with the clustering outcomes in terms of ACC and NMI being reported. It is observed that
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Table 3: Ablation Study on different multi-modal datasets (The bold and underline value are the best
and second best result, respectively).

Methods Caltech-3V Caltech-4V ESP-Game Flickr IAPR
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

(1) LDDC 70.2 53.2 77.8 69.6 35.3 14.4 49.0 30.7 39.1 18.0
(2) LDDC + LFDL 71.4 61.3 79.4 73.5 54.9 35.5 55.2 35.4 48.8 28.1
(3) LDDC + LCDL 75.4 64.3 82.1 81.8 36.6 22.0 55.3 36.3 45.4 24.0

(4) All Modules (The Proposed Method) 76.7 68.8 90.3 82.7 60.9 40.9 58.7 36.5 49.5 28.3

our method significantly outperforms the compared single/all-view, traditional and deep multi-modal
clustering methods. The remarkable results demonstrate the strong clustering capability of our
method, which is attributed to the two levels diversity learning that is capable of acquiring diverse
knowledge and eliminating redundant information.

The proposed method in this study demonstrates remarkable adaptability. On the Caltech dataset, as
the number of modalities increases, the ACC and NMI of the model show a steady upward trend, owing
to the rich complementary information contained in multi-modal data. As the number of modalities
increases, the model can obtain data features from more dimensions. This indicates that the proposed
method is capable of efficiently integrating information from different modalities and fully leveraging
the unique features and clustering information contained in each modality, thereby significantly
enhancing the accuracy and consistency of clustering. However, such an expected improvement in
clustering performance is conspicuously absent when observing the outcomes of the EAMC and
DEMC methods. These findings indicate that these methods might not be sufficiently robust when
confronted with variations in the number of modalities. Compared with the best competitors, our
method also obtains excellent performance. For example, on the ESP-Game dataset, our method
demonstrates a substantial improvement in both ACC and NMI compared to the second-best method
(SMCMB), achieving increases of 6.0% and 0.5% respectively. In terms of ACC and NMI results
on the five tested multi-modality datasets, the proposed method achieves average improvements of
3.88% and 3.52% over the second-best comparison method, respectively. This highlights the stability
of our method across different datasets.

3.4 Ablation Study

In this part, we give an ablation study to further show the effectiveness of different components of our
method. The DDMC includes a clustering module and two diversity learning modules, which means
there are four possible combinations. The outcomes of these combinations are presented in Table 3.
The results indicate that the performance generally improves as more modules are incorporated into
the model. For instance, on the Caltech-3V dataset, the baseline model achieved an ACC of 70.2%
and a NMI of 53.2%. In contrast, the model that includes all modules saw a significant enhancement
in performance, with an ACC of 76.7% and a NMI of 68.8%. Similar trends are observed across
other datasets, with particularly notable performance enhancements in the Caltech-4V and IAPR
datasets when all modules are integrated into the model. Specifically, the model equipped with all
modules achieved an ACC of 90.3% and a NMI of 82.7% on the Caltech-4V dataset, and an ACC of
49.5% and a NMI of 28.3% on the IAPR dataset. These results underscore the superior performance
of the model when all components are utilized.

3.5 Enhancement vs Fusion
Enhancement Fusion

Caltech-3V Caltech-4V ESP-Game  Flickr  IAPR

ACC

0.767 0.741

0.903

0.819

0.609

0.499

0.587 0.567
0.495

0.450

Figure 4: Enhancement vs Fusion

In addition, we replaced the final enhancement step with
the commonly used modality fusion strategy, and the
comparison results are shown in Figure 4. Experiments
show that the enhancement strategy outperforms the fu-
sion method on all datasets; especially on the ESP-Game
dataset, the ACC is improved by about 11%. This re-
sult shows that compared with modality fusion, dominant
modality enhancement can significantly improve cluster-
ing performance, while the noise introduced in the fusion
process will weaken the role of the dominant modality and
reduce the clustering effect, further verifying the effective-
ness of the DDMC.
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(a) Caltech-3V (b) Caltech-4V (c) ESP-Game (d) Flickr (e) IAPR

Figure 5: Parameter analysis of DDMC on different datasets.

3.6 Parameter Sensitivity

In the proposed method, we use two trade-off parameters α, β to balance LFDL, LCDL. To
thoroughly investigate the sensitivity of these parameters, we conducted extensive experiments on
all datasets with various parameter configurations. Specifically, we utilized a grid search strategy
to optimize the values of α and β within the range [10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103].
The clustering ACC results are illustrated in Figure 5. As can be seen, our method exhibits robust
performance across all datasets, with minimal performance degradation under most parameter settings.
This suggests that our method is relatively insensitive to parameter fluctuations and maintains stable
performance overall. Therefore, DDMC can have good performance in a large range of parameter
values.

4 Conclusion and Limitations

This paper introduces a novel deep multi-modal clustering framework that leverages a dominant-
modality enhancement strategy to mitigate noise from conventional feature-fusion. Rather than fusing
all modalities indiscriminately, we identify the highest-quality modality as dominant, perform two-
level diversity learning to extract diversity information from the remaining modalities, and augment
the dominant modality accordingly. This strategy significantly improves the clustering performance,
especially when the multi-modal data is unevenly distributed or has large quality differences.

In addition, our method is not without limitations. Although SI is an excellent indicator, there may
still exist other theoretically feasible indicators. We will continue to study them in the future and
introduce more robust dominant modality selection mechanisms. We also realize that this method
performs poorly when dealing with incomplete modal data, especially when some modalities are
missing or the data is unbalanced. In future research, We will explore more powerful selection
strategies and effective strategies for extracting diversity information, such as combining multiple
indicators or adaptive optimization methods, to ensure that the selection of the dominant modality is
more convincing.
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A Appendix

A.1 The Details of Uniform Distribution Constraint

The role of UDC is to force the edge distribution of each cluster to be as close to uniform as
possible when generating hard labels from the soft clustering distribution. Firstly: Firstly, perform
exponentiation operations on the original cluster distribution matrix {Am}Mm=1 to enhance the
diagonal weights, Then, define two edge vectors r ∈ RK and c ∈ RN . The goal is to make
P = diag(r)Adiag(c) satisfy the following requirements:

P1K =
1

N
1N , P⊤1N =

1

K
1K , (22)

That is, P approximates a ‘coupling matrix’ that is uniform for both rows and columns.Then iterative
calculation is carried out through the Sinkhorn-Knopp algorithm:

r(t+1) =
1
K1K

A(t)
, c(t+1) =

1
N 1N

A⊤r(t+1)
(23)

Until convergence, transform the normalized matrix Pback to the N×K shape and take the maximum
index of the n-th row to obtain the discrete label: AUn = argmaxk Pn,k The above process not only
ensures the discreteness of the output labels, but also approximately satisfies the uniform distribution
constraint of each cluster globally.

A.2 Optimization

Taking a modality X1 as an example, based on the definition of mutual information, we can get the
following formula:

I
(
X1;Z1

)
=

∫
z1,x1

p
(
z1, x1

)
log

p
(
z1, x1

)
p (z1) p (x1)

=

∫
z1,x1

p
(
z1, x1

)
log

p
(
z1 | x1

)
p (z1)

. (24)

Since the posterior distribution p
(
z1, x1

)
cannot be solved directly, another scalable distribution

q(z1) is used to approximate p(z1). By minimizing the Kullback-Leibler (KL) divergence between
the two distributions, q(z1) is optimized step by step to make it similar to p(z1). Specifically, since
KL is non-negative, we can get:

KL
[
p
(
z1
)
, q

(
z1
)]

=

∫
z1

p
(
z1
)
log

p
(
z1
)

q (z1)
> 0

=⇒
∫
z1

p
(
z1
)
log p

(
z1
)
>

∫
z1

p
(
z1
)
log q

(
z1
) (25)

Now, Eq.(24) can be estimated as:

I
(
X1;Z1

)
<

∫
z1,x1

p
(
z1, x1

)
log

p
(
z1|x1

)
q (z1)

<

∫
z1,x1

p
(
z1|x1

)
p(x1) log

p
(
z1|x1

)
q (z1)

(26)

Since {Zm}Mm̸=dm does not contain the dm-th term and the dominant modality is not distinguished
in the calculation of compression loss, for the sake of simplicity, we temporarily let Zdm = Ddm, so
that the compression loss in Eq.(4) can be estimated as:

M∑
m ̸=dm

I(Xm;Zm) + I(Xdm;D) <

M∑
m

∫
zm,xm

p (zm|xm) log
p (zm|xm)

q (zm)
(27)

In order to remove unnecessary items, Monte Carlo sampling is used to replace
∑M

m p(xm). There-
fore, Eq.(27) can be further expressed as:

M∑
m ̸=dm

I(Xm;Zm) + I(Xdm;D) <
1

N

N∑
i

{
M∑
m

∫
zm

p (zm|xm) log
p (zm|xm)

q (zm)
} (28)
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where N is the number of data samples. Assuming that
∑M

m p(zm|xm) conforms to the Gaussian
distribution, the mean µ and variance σ of each modality can be learned through the encoder. For
the convenience of calculation, we reparameterize

∑M
m zm by

∑M
m zm = µ(xm) + σ(xm) ∗ ϵ ,

where ϵ is the standard normal distribution. Therefore, the objective loss function for calculating the
compression loss in Eq.(4) can be expressed as:

M∑
m ̸=dm

I(Xm;Zm) + I(Xdm;D) <
1

N

N∑
i

{
M∑
m

Eϵ log
p (zm|xm)

q (zm)
}

≈ 1

N

N∑
i

Eϵ{
M∑
m

KL[p(zm|zm), q(xm)]}

(29)

where Eϵ represents mathematical expectation. For the calculation of diversity information loss in
Eq.(4) , we use the discrete joint probability estimation for calculation:

M∑
m ̸=dm

I(Zm;Ddm) =

M∑
m̸=dm

dm∑
i=1

dm∑
j=1

pm,dm(i, j) log

(
pm,dm(i, j)

pm(i) pdm(j)

)
(30)

where:

pm(i) =

dm∑
j=1

pm,dm(i, j), pdm(j) =

dm∑
i=1

pm,dm(i, j),

pm,dm(i, j) =
1

2N

N∑
n=1

[
Zm
n (i) ·Ddm

n (j) +Ddm
n (i) · Zm

n (j)
]
.

(31)

Similarly, the calculation of cluster assignment mutual information L3 can also be optimized by
Eq.(31).

A.3 Further Analysis

Evaluation Metrics ACC is used to evaluate the degree of correspondence between the assigned
cluster labels and the true labels of the data points, essentially measuring the extent to which the
clustering algorithm correctly identifies the inherent groupings within the dataset, which is defined
as:

ACC =

∑n
i=1 δ(pi,map(qi))

n
(32)

where n denotes the number of samples, δ(i, j) = 1 if i = j (δ(i, j) = 0, otherwise), and
map(qi) represents the clustering result qi being matched to the ground truth pi through Hungarian
algorithm[50]. NMI quantifies the mutual dependence between the clustering results and the ground
truth, taking into account the distribution of data points across different clusters, formulated by:

NMI(Ω, C) =
I(Ω;C)

(H(Ω) +H(C))/2
(33)

where Ω indicates the original ground truth, and C denotes the clustering information, H() represents
the entropy of the clustering result, and I(; ) indicates mutual information between clustering results.

Details of the Compared Methods K-Menas: An unsupervised learning algorithm that divides
data into K clusters so that the similarity of data points within clusters is high and the similarity
between clusters is low.

All-modal K-Means: This algorithm concatenate all modal features and then executes KMenas
algorithm

Normailzed Cuts: [36] An image segmentation algorithm based on graph theory is proposed to
minimize the normalized cut value to optimize the image region partitioning, while considering the
inter-group dissimilarity and intra-group similarity.

All-modal Normalized Cuts: The method uses Normalized Cuts for the joint representation of each
data point to achieve clustering.
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CoregMVSC: [37] A co-regularized multi-view spectral clustering method that enhance accuracy by
enforcing clustering consistency across views.

RMKMC: [38] A multi-view multiple kernel clustering framework based on the restarted strategy
and self-guiding mechanism.

SwMC: [39] A self-weighted mult-iview clustering algorithm that iteratively optimizes the target
similarity matrix and view weights to effectively integrate multi-view data for clustering without
requiring additional parameters.

ONMMSC: [40] A multi-view spectral clustering algorithm searches for the optimal matrix within
the neighborhood of the linear combination of Laplacian matrices, breaking through the limitations
of traditional methods to enhance clustering performance.

SMCMB: [41] This method mining rich information in multi-view data by joint learning of mul-
tiple bipartite graphs, and maintaining high efficiency on large-scale data sets, the time and space
complexity is close to linear.

EAMC: [10] An end-to-end adversarial attention network that aligns potential feature distributions
and quantifies modal importance, respectively, through adversarial learning and attention mechanisms.

DEMVC: [43] A multi-view clustering algorithm that utilizes common and complementary in-
formation from multiple views to achieve better clustering performance through deep embedded
representation learning and collaborative training mechanisms.

SiMVC: [44] A deep multi-view clustering baseline model that does not require alignment of
representation distributions

CoMVC: [44] A deep multi-view clustering algorithm that selectively aligns representations of
different views at the sample level by contrasting learning frameworks.

MFLVC: [45] A multi-level feature learning framework is proposed, which can effectively reduce the
interference of view private information by separating reconstruction target and consistency target.

DIVIDE: [46] A novel robust multi-view clustering method, which identifies global data pairs
via high-order random walks and employs a decoupled contrastive learning framework to perform
intra-view and inter-view contrastive learning in separate embedding spaces, thereby enhancing
clustering performance and robustness against missing views.

SSLNMVC: [48] A deep multi-view clustering method that enhances the consistency of multi-
view features through a consensus high-level feature learning module and aligns view-specific and
view-consensus semantic labels using a self-supervised semantic calibration module.

SEM: [20] This method solves the representation degradation problem caused by contrast learning in
multi-view scenarios through self-weighting and information reconstruction strategies.

SCMVC: [47] The method establishes a hierarchical feature fusion framework and a self-weighted
contrastive fusion approach, effectively separating the consistency objective from the reconstruction
objective.

Implementation Details Our experiments were conducted on a Windows 10 operating system,
utilizing a powerful configuration equipped with 96 GB of system memory and a high-performance
NVIDIA GeForce RTX 4090D GPU. We implemented the proposed framework using the PyTorch
platform[51]. For all datasets, the training batch size was uniformly set to 512, and we utilized the
Adam optimization algorithm with an initial learning rate of 0.0003. The configuration of parameters
in the proposed model is detailed as follows. The hyperparameters α and β are tuned to values
ranging from 0.0001 to 1000, with each value being a power of 10. Given that 100 epochs proved
to be ample for the training convergence of algorithm, we accordingly trained the model from the
beginning up to 100 epochs. To enhance robustness and circumvent local minima, we trained the
proposed model 10 times, reporting the clustering outcome with the minimal clustering loss. For all
datasets, we utilized modal-specific variational encoders comprising three fully connected layers,
each layer consists of a batch normalization layer and a RELU layer. The second layer and the output
layer are set to 512. The clustering layer adopts a fully connected layer with a softmax layer. The
parameter of the dropout layer is set to 0.1. The temperature hyperparameter in the comparative
learning is set to 0.5.
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(a) Caltech - 3V (b) Caltech - 4V (c) ESP - Game (d) Flickr (e) IAPR

Figure 6: Convergence analysis of DDMC on the datasets in the order of Caltech - 3V Caltech - 4V,
ESP - Game, Flickr and IAPR, respectively.

(a) 0 epoch (b) 25 epochs (c) 50 epochs (d) 75 epochs (e) 100 epochs

Figure 7: Evolution of cluster assignments during training on the Caltech-4V dataset.

Convergence Analysis To evaluate the convergence properties of our proposed approach, we
conducted a comprehensive series of experiments across a diverse range of datasets, including
Caltech-3V, Caltech-4V, ESP-Game, Flickr, and IAPR datasets. As depicted in Figure 6, we present
the objective loss values in conjunction with the clustering performance metrics, specifically ACC
and NMI, throughout the training epochs. It is evident that the loss values experience a pronounced
decline during the initial stages of training, particularly within the first 25 epochs. This rapid
decrease indicates that the model is effectively learning and adjusting its parameters to minimize
the loss function. Subsequently, the loss values begin to stabilize, suggesting that the model has
reached a point of diminishing returns in terms of further loss reduction. The results consistently
demonstrate that convergence for all metrics is achieved after the 100-th epoch threshold. This
uniform convergence pattern across the diverse datasets highlights the robustness of our algorithmic
iterations in attaining a balanced state, thereby ensuring consistent performance metrics irrespective
of dataset variations.

T-SNE Visualization Analysis In order to further substantiate the efficacy of our proposed frame-
work, we employed the widely recognized t-sne tool to visualize the clustering outcomes of DDMC
on the Caltech-4V dataset. The joint training of our approach yields satisfactory clustering results.
To provide an intuitive depiction of the training evolution, we carried out t-sne visualizations of the
clustering results at different training epochs, namely the 0-th, 25-th, 50-th, and 100-th epoch, as
illustrated in Figure 7. In this figure, distinct colors are assigned to represent the various clusters
generated by the DDC module. It is evident that as the number of training epochs increases, the
clustering assignments tend to become more compact and well-separated from each other. This
observation indicates the effectiveness of our proposed approach in enhancing clustering performance
throughout the training process.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction sections accurately reflect the contribution of the
paper. For details, please refer to the abstract and Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the paper are explained in Section 4. Please see Section 4
for details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provides a detailed description of the proposed theory and optimiza-
tion. For details, please see Section 2.6 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments in Section 3 are all real and effective. Please see Section 3
for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Data and code are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 3 and Appendix A.3 for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix A.3 for details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] ,

Justification: This article complies with the NeurIPS ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research work in this paper will not have any impact on society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no such risk in the paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper involved no crowdsourcing and no research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper involved no crowdsourcing and no research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodological development of this study did not involve LLM as
any significant, original, or nonstandard component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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