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Abstract

Animals and robots navigate through environments by building and refining maps of space.
These maps enable functions including navigation back to home, planning, search and foraging.
Here, we use observations from neuroscience, specifically the observed fragmentation of grid
cell map in compartmentalized spaces, to propose and apply the concept of Fragmentation-
and-Recall (FARMap) in the mapping of large spaces. Agents solve the mapping problem by
building local maps via a surprisal-based clustering of space, which they use to set subgoals
for spatial exploration. Agents build and use a local map to predict their observations; high
surprisal leads to a “fragmentation event” that truncates the local map. At these events,
the recent local map is placed into long-term memory (LTM) and a different local map is
initialized. If observations at a fracture point match observations in one of the stored local
maps, that map is recalled (and thus reused) from LTM. The fragmentation points induce a
natural online clustering of the larger space, forming a set of intrinsic potential subgoals that
are stored in LTM as a topological graph. Agents choose their next subgoal from the set of
near and far potential subgoals from within the current local map or LTM, respectively. Thus,
local maps guide exploration locally, while LTM promotes global exploration. We demonstrate
that FARMap replicates the fragmentation points observed in animal studies. We evaluate
FARMap on complex procedurally-generated spatial environments and realistic simulations to
demonstrate that this mapping strategy much more rapidly covers the environment (number
of agent steps and wall clock time) and is more efficient in active memory usage, without
loss of performance.1

1https://jd730.github.io/projects/FARMap
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1 Introduction

Human episodic memory breaks our continuous experience of the world into episodes or fragments that are
divided by event boundaries corresponding to large changes of place, context, affordances, and perceptual
inputs (Baldassano et al., 2017; Ezzyat & Davachi, 2011; Newtson & Engquist, 1976; Richmond & Zacks,
2017; Swallow et al., 2009; Zacks & Swallow, 2007). The episodic nature of memory is a core component
of how we construct models of the world. It has been conjectured that episodic memory makes it easier
to perform memory retrieval, and to use the retrieved memories in chunks that are relevant to the current
context. These observations suggest a certain locality or fragmented nature in how we model the world.

Chunking of experience has been shown to play a key role in perception, planning, learning and cognition in
humans and animals (De Groot, 1946; Egan & Schwartz, 1979; Gobet & Simon, 1998; Gobet et al., 2001;
Simon, 1974). In the hippocampus, place cells appear to chunk spatial information by defining separate maps
when there has been a sufficiently large change in context or in other non-spatial or spatial variables, through a
process called remapping; see Colgin et al. (2008); Fyhn et al. (2007). Grid and place cells in the hippocampal
formation have also been shown to fragment their representations when the external world or their own
behaviors have changed only gradually rather than discontinuously in the same environment (Carpenter et al.,
2015; Derdikman et al., 2009; Low et al., 2021) (Figure 1a).

Inspired by the concept of online fragmentation and recall (remapping to the existing fragment) proposed
for grid cells Klukas et al. (2021), we propose a new framework for map-building, FARMap, schematized in
Figure 1b. This model combines three ideas: 1) when faced with a complex world, it can be more efficient
to build and combine multiple (and implicitly simpler) local models than to build a single global (and
implicitly complex) model, 2) boundaries between local models should occur when a local model ceases to
be predictive, and 3) the local model boundaries define natural subgoals, which can guide more efficient
hierarchical exploration.

As an agent explores, it predicts its next observation. Based on a measure of surprisal between its observation
and prediction, there can be a fragmentation event, at which point the agent writes the current model into
long-term memory (LTM) and initiates a new local model. While exploring the space, the agent consults
its LTM, and recalls an existing model if it returns to the corresponding space. The agent uses its current
local model to act locally, and its LTM to act more globally. We apply this concept to solve the spatial map
building problem.

We first simulate animal studies (Derdikman et al., 2009; Carpenter et al., 2015) using FARMap showing its
ability to fragment environments at the same locations as observed in animals. This confirms that FARMap
accurately replicates the fragmentation points noted in animal research. We then evaluate the proposed
framework on procedurally-generated spatial environments. Experimental results support the effectiveness of
the proposed framework; FARMap explores the spatial environment with much less memory and computation
time than its baseline by large margins as the agent only refers to the local model and uses both memories
for setting subgoals.

The contribution of this paper is three-fold:

• We propose a new framework for mapping based on Fragmentation-And-Recall, or FARMap, that
exploits grid cell-like map fragmentation via surprisal combined with a long-term memory to perform
efficient online map building.

• We contribute procedurally-generated environments for spatial exploration, with parametrically
controllable complex shapes that include multiple rooms and pathways.

• We demonstrate the efficacy of our framework in spatial map-building tasks. Our experiments show
that FARMap reduces wall-clock time and the number of steps (actions) taken to map large spaces,
and requires smaller online memory size relative to baselines.
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Figure 1: (a) Firing fields of grid cells in various environments from Derdikman et al. (2009) (top) and
Carpenter et al. (2015) (bottom). The firing pattern changes at the boundary between two regions (frag-
mentation). (b) Overview of our approach. Given an observation from the environment, the FARMap agent
decides whether to fragment the space based on how well it can predict the observation. If fragmentation
occurs, the current map (or model) fragment is stored in long-term memory (LTM); the agent then initializes
a new map (or model) fragment. Conversely, if the current observation closely matches the observations
stored in LTM, the agent loads an existing map (or model) fragment from there (recall). Based on the current
fragment, the agent selects an action to explore the environment.

2 Related Work

2.1 Fragmentation of Grid Cell Maps

Mammalian entorhinal grid cells generate highly regular periodic spatial representations that tile open
environments (Hafting et al., 2005). This periodic response is hypothesized to be a general allothetic spatial
coordinate system that represents displacements. The spatial response is independent of the speed and
direction of movement and is believed to be formed through integration of self-velocity estimates. However,
the regular periodic firing pattern of grid cells becomes fragmented in more complex spatial layouts, such as
when an environment contains multiple subdivisions (Carpenter et al., 2015; Derdikman et al., 2009; Fyhn
et al., 2007). For instance, there is a fracture in the periodic response at sharp turns of a narrow corridor
and in doorways, where the grid phase appears to be remapped or jumps discretely to a distinct value. A
recent manuscript (Klukas et al., 2021) builds a model to predict when such discrete remapping events might
occur even though the agent explores the environment in a continuous trajectory. They formulated map
fragmentation as a clustering computation, and showed how online clustering based on observational surprisal
results in fragmentations that match the neuroscientific observations in grid cells and also match normative
clustering algorithms like DBSCAN (Ester et al., 1996). However, that work did not extensively explore the
functional utility of grid cell-like map fragmentation. Here, we show that surprisal-based fragmentation, which
fits the biological fragmentation data, is a biologically plausible principle that enables agents to efficiently
build maps of various environments online without getting stuck in local loops.

2.2 Grid Cell-Inspired SLAM

Grid cells have received attention in robotics due to their potential to produce more robust spatial navigation.
Milford et al. (2004) propose a model based on continuous attractor dynamics (Samsonovich & McNaughton,
1997) and more recently with grid cells (Ball et al., 2013; Milford et al., 2010), to achieve correct loop
closure during noisy odometry. Similarly, Zhang et al. (2021) employ growing self-organizing maps inspired
by the hippocampus for the same purpose. Yu et al. (2019) extend OpenRatSLAM (Ball et al., 2013) to
3D environments via conjunctive pose cell model that employs 3D grid cell. These methods focus on the
error-correcting properties of grid cell dynamics. They do not consider fragmented grid cell maps and the
possibility that these map fragments might represent the construction of subgoals which could be used for
further spatial exploration.
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Figure 2: Illustration of the FARMap framework. Navigation (black arrow): Given the current observation
which is an egocentric top-down view with a restricted field of view and previous action, the agent updates
its short-term memory (STM) and selects a subgoal from the current local map in STM or the local map
connectivity graph stored in LTM. The planner generates a sequence of actions for the shortest path to the
subgoal. Recall (dashed arrow): If the agent arrives at a fracture point (circle in the map), a corresponding
local map is recalled from LTM and the current local map stored in LTM is updated. Fragmentation (gray
arrow): If the current surprisal is higher than a threshold, the current local map is stored in LTM and a new
local map is initialized. o′

t is a spatially transformed observation with the same size as the current local map
to update the map.

2.3 Frontier-based SLAM

Active SLAM (simultaneous localization and mapping) agents must efficiently explore spaces to build maps.
A standard approach is to define the frontier between observed and unobserved regions of a 2D environment,
and then select exploratory goal locations from the set of frontier states (Yamauchi, 1997). Frontier-based
exploration has been extended to 3D environments (Dai et al., 2020; Dornhege & Kleiner, 2011) and used as
a building block of more sophisticated exploration strategies (Stachniss et al., 2004). Although conceptually
simple, frontier-based exploration can be quite effective compared to more sophisticated decision-theoretic
exploration (Holz et al., 2010). A cost of frontier-based exploration is the use of global maps and global
frontiers, making the process memory expensive and search intensive. In contrast to frontier-based exploration,
our approach learns the surprising parts of an environment as intrinsic subgoals, selecting among those as the
exploratory goals.

2.4 Submap-Based SLAM

Submap-Based SLAM algorithms involve mapping a space by breaking it into local submaps that are connected
to one another via a topological graph. Such Submap-Based SLAM methods are usually designed to avoid
path integration errors when building maps of large spaces (e.g. Fairfield et al. (2010)) and to reduce the
computational cost of planning paths between a start and target position (Fairfield et al., 2010; Maffei et al.,
2013). Maffei et al. (2013) add DP-SLAM (Eliazar & Parr, 2003) to SegSLAM to reduce the search space,
generating segments periodically at fixed time-intervals. Choset & Nagatani (2001) generate new landmarks
in an environment to build a topological graph of the landmarks and navigates based on the graph. FARMap
is closely related to these methods in that we build multiple submaps. However, FARMap divides space
based on properties of the space (how predictable the space is based on the local map or model), and does so
in an online manner using surprisal. As we show below, this fragmentation strategy can lead to improvements
in performance compared to random or periodic fragmentation.

4



Published in Transactions on Machine Learning Research (07/2024)

3 Fragmentaion and Recall based Spatial Mapping (FARMap)

3.1 Motivation and Overview

Animals explore spaces efficiently even in large environments by using grid cells’ remapping that divides
an environment into multiple subregions. This remapping can be modeled as surprisal-based online frag-
mentation (Klukas et al., 2021). Here, we propose a fragmentation-and-recall based spatial map-building
strategy (FARMap) inspired by remapping of grid cells. FARMap tackles the problem of SLAM algorithms:
the memory cost and search cost of finding subgoals grow rapidly with environment size; for agents exploring
a large space, the computational costs could explode.

While exploring an environment, an agent builds a local model (map) and uses it in short-term memory (STM)
to compute a surprisal signal that depends on the current observation and the agent’s local model-based
prediction. When the surprisal exceeds some threshold, this corresponds to a fragmentation event. At this
event, the local model is written to long-term memory (LTM) which builds a connectivity graph that relates
model fragments to each other so that it can share information across local models without direct access
to the stored models in LTM. Then, the agent initializes an entirely new local model. Conversely, if the
agent revisits the fracture point, the agent recalls the corresponding model fragment (local model). Hence,
the agent can preserve and reuse previously acquired information. Figure 2 shows how an agent decides its
next subgoal given the observation and the previous action with fragmentation and recall. LTM (except the
connectivity graph portion) can be regarded as external memory, while STM is modeled as working memory.
This external memory is accessed or updated only during fragmentation or recall processes. Consequently,
this can be beneficial for machines with limited memory access (see Appendix E). We also discuss LTM
retrieval overhead in Appendix C.

3.2 Overall Procedure of Spatial Navigation

Algorithm 1 presents the overall procedure of FARMap at time t. On top of the Frontier algorithm (Yamauchi,
1997), we have colored the FARMap algorithm blue. Given the previous action at−1, current observation
ot, a local predictive map Mcurr

t−1 at time t − 1, we first update the map following Eq. 1 and calculate the
surprisal st following Eq. 2.

If the agent is located at the fracture point where fragmentation happened between the current local map,
Mcurr

t and another local map stored in LTM (Line 6), we store Mcurr
t and qc in LTM, and the stored

map fragment is recalled to STM. On the other hand, if the z-scored surprisal zt calculated using the
running mean and standard deviation of surprisal within the current local map is greater than a threshold,
ρ (Line 9), we store Mcurr

t , and qc in LTM, and initialize a new map in STM. During this process, the current
locations in both Mcurr

t and the new map are marked as fracture points (Section 3.4). After checking recall
and fragmentation, we find the desirable local map fragments that are less explored than other fragments
(Section 3.6). If the current map is not the desirable map, we set the subgoal as the fracture point between
the current map and the desirable map. Otherwise, we first find frontier-edges and calculate the weight of
each frontier-edge Fi using weighted sampling with weight wi following Eq. 3 (wi is 1/di in the case of the
Frontier model). The subgoal is defined as the nearest frontier from the centroid of the sampled frontier-edge.
Finally, a planner generates a sequence of actions to navigate to the subgoal (Section 3.7). Note that while
the agent moves based on the sequence, it keeps updating the map and checking fragmentation and recall.

3.3 Local Map

The STM has a local predictive spatial map, Mcur
t ∈ R(C+1)×H×W where height H and width W grow as the

agent extends its observations in the local region by adding newly discovered regions. The first C channels
of Mcur

t denote color and the last channel denotes the agent’s confidence in each spatial cell. In this paper,
we will focus only on the update of the confidence channel (the C-th channel). The local predictive map is
simply a temporally decaying trace of recent sensory observations like a natural agent (Zhang et al., 2005):

Mcur
t,C = γ ·Mcur

t−1,C + (1− γ) · o′
t,C , (1)
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Algorithm 1 FARMap Procedure at time t. FARMap algorithm is colored in blue on top of Frontier
algorithm (Yamauchi, 1997).
Require: a spatial map Mcurr

t−1 , previous action at−1, current observation ot, short-term memory STM,
long-term memory LTM, position at time t, post, decay factor γ, fragmentation threhsold ρ and hyperpa-
rameter ϵ.

Ensure: Updated map, Mcurr
t and a sequence of actions {a}

1: procedure Step
2: Mcurr

t = γ ·Mcurr
t−1 + (1− γ) · o′

t ▷ Update the current local map
3: Calculate st = 1− ct following Eq. 2.
4: zt = (st − µt)/σt

5: qc =Nfrontier / Nknown
6: if post = fracture point then ▷ Recall
7: LTM← Store(post, qc, Mcurr

t ) ▷ Store Mcurr
t

8: STM← Recall(post; LTM) ▷ change Mcurr
t

9: else if zt > ρ then ▷ Fragmentation
10: LTM← Store(post, qc, Mcurr

t )
11: Initialize a new map Mcurr

t in STM.
12: end if
13: Update running mean µt+1 and standard deviation σt+1 of surprisal.
14: g = arg maxi

qi

di,c+ϵ ▷ Eq. 4
15: if g ̸= c then ▷ Subgoal based on connectivity between fragments.
16: subgoal ← the fracture point between the current fragment c and a fragment g
17: else
18: Find frontier-edges {Fi} and their centroids {centroidi}.
19: di = ||post − centroidi||1.
20: wi = 1/di· |Fi| · 1(Fi is not located spatially behind the agent)
21: ▷ 1(·) is 1 if the condition is true else 0.
22: Select frontier-edge Fg based on the weighted sampling with {wi}.
23: subgoal ← the nearest frontier ∈ Fg from its centroid.
24: end if
25: A sequence of actions, {a} ← Planner(subgoal; Mcurr

t ) ▷ Dijkstra’s algorithm
26: end procedure

Sec. 3.3

Sec. 3.4

Sec. 3.5

Sec. 3.6

Sec. 3.7

where γ is a decay factor and ot ∈ R(C+1)×h×w is the egocentric view input observation in the environment
at time t sized as (h, w). The last channel of the observation indicates visibility caused by occlusion or
restricted field of view (FOV); visible (1) or invisible (0) in each cell. The red region is visible and others
are invisible in Figure 2. o′

t ∈ R(C+1)×H×W denotes a spatially transformed observation to Mcur
t−1 to update

the current observation to the local map in the correct position using rotation and zero-padding. Figure 3
shows a toy illustration of how to transform the current observation to update the local map and how the
map size grows. We first rotate the observation based on the head direction of the agent in the map and
then zero-pad it so that it has the same size as the local map considering the agent’s current location in the
map. If the observation does not fit within the map due to the agent’s location, we add zero-padding (gray
in the figure) to both the transformed observation and the local map. Then, we update the local map by
adding the transformed observation. For example, once the exploration has started, the memory size is h×w
(H = h, W = w) and if the agent moves one step upward, the size changes to (h + 1)×w (H = h + 1, W = w).

3.4 Fragmentation and Recall

Fragmentation Fragmentation occurs if the z-scored current surprisal ((st − µt)/σt) exceeds a threshold,
ρ, where st denotes surprisal at time t, and µt and σt represent its running mean and standard deviation.
Initially, for each new map, the agent collects surprisal statistics and is not permitted to further fragment
space until the number of samples is greater than 25 (to ensure large enough sample conditions for statistics).
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Figure 3: Schematic illustrations of how the local map is updated. In this figure, we only consider the visibility
of each cell ignoring occupancy and color for simplification. (a) We first rotate the current observation ot,C

based on the head direction of the agent in the local map. Then, the observation is zero-padded to match the
same size as the local map. Finally, the local map is updated by adding the transformed observation o′

t,C . (b)
If the current observation does not fit within the local map due to the agent’s location, we add zero-padding
(gray) to both the observation and the local map. Hence, the size of the local map increases (H changes).

We also store the ratio qc of the number of frontier cells (Nfrontier) to the number of known cells (Nknown)
and the distance between each fracture point in the current local map Mcur

t , as further explained in this
section. The ratio is used for guiding agents on whether or not to move to other local maps. When Mcur

t

is stored in LTM, it is connected with adjacent map fragments that share the same fracture point in the
connectivity graph. In other words, the node of the graph is a model fragment, and a connection denotes
that both fragments share a fracture point. In our implementation, we designed a fracture border to prevent
unnecessary overlaps and over-fragmentation. The fracture border extends from a fracture point to the left
and right based on the agent’s head direction until the border reaches either the frontier or an occupied
cell. When the agent crosses this border, the recall process is triggered. This mechanism ensures that the
agent does not need to be exactly on a fracture point to recall existing maps, thus enhancing flexibility and
preventing over-fragmentation. The fracture points are themselves used as subgoals to switch to adjacent
map fragments mentioned in Section 3.6. Note that an agent does not need to fragment an environment if it
is a single open space, such as a large rectangular or circular arena.

Recall Each local map records the fracture points. At these points, there are overlaps with other map
fragments. When the agent moves to a fracture point in the current local map, the corresponding local map
is recalled from LTM and the current one is stored in LTM.

3.5 Surprisal

The surprisal serves as a criterion for fragmentation, which can be any uncertainty estimate of the future,
such as negative confidence or future prediction error. We employ the local predictive map for measuring
surprisal. The scalar surprisal signal st = 1− ct is generated using the local map in STM and the current
observation, where ct quantifies the average similarity of the visible part of the observation to the local
predictive map Mcur

t−1 before update:

ct =
Mcur

t−1,C · o′
t,C

||o′
t,C ||1

. (2)

The agent is assumed to maintain a running estimate of the mean µt and standard deviation σt of past
surprisals, stored as part of the current map.
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3.6 Subgoal

Subgoals are decided by using either the current local map in STM or the connectivity graph in LTM. The
former enlarges the current local map while the latter helps find the next local map to explore. An agent
explores the local region in the environment unless the current surprisal is too low (e.g., z-score is smaller
than −1) and there is a less explored local map nearby.

Subgoals made with the current local map are based on frontier-based subgoals (Yamauchi, 1997) for exploring
the local region. Each cell in the region is categorized as known and unknown based on whether it was
previously observed or not, and occupied and unoccupied (empty) based on its occupancy. In the current
local map, we first find all frontiers which are unknown cells adjacent to the known unoccupied cells. A
group of consecutive frontiers is called a ‘frontier-edge’ and Yamauchi (1997) uses the nearest centroid of the
frontier-edge as a subgoal. Unlike standard SLAM methods that employ the entire map, our map in STM
only covers a subregion of the environment. After fragmentation, the region where the agent came from has
several frontiers (border of two local models) forming a frontier-edge. It leads the agent to go back to the
previous area and recall the corresponding map fragment. This would lead to the agent moving between two
map fragments for a long time. Therefore, we prioritize the frontier-edge that is not located spatially behind
the agent. The subgoal is sampled with the following weight wi for each frontier-edge Fi:

wi = |Fi| · 1(Fi is not located spatially behind the agent)
di

, (3)

where di is the distance between the current position and the centroid of Fi and 1(·) is the indicator function
that is 1 if the condition is true otherwise 0.

Once the agent finishes mapping the local region, it should move to different subregions. However, subgoals
from the current local map can misguide the agent to the already explored region since the agent does not
have information beyond the map. Hence, we employ the connectivity graph of local maps stored in LTM.
We leverage the discovery ratio (the ratio of the number of frontier cells to the number of known cells) q
mentioned above to find the most desirable subregions to explore. We also utilize the Manhattan distance
between the current agent location and the fracture point between the current (c-th) local map and the
connected i-th local map, di,c where dc,c = 0 and dj,c =∞ if the j-th local map is disconnected to the current
map. Then, the desirable local map is selected as

g = arg max
i

qi

di,c + ϵ
, (4)

where ϵ denotes the preference of staying in the current local map; a smaller value encourages staying in
the current local map. If g is not equal to c, the fracture point between the current local map and the g-th
local map is set as the subgoal. Once the agent arrives at the fracture point, the corresponding local map
is recalled and the agent recursively checks Eq. 4 until g is the arrived subregion. Note that the distances
between fracture points stored in the recalled local map are precomputed since they are fixed.

3.7 Planner

The planner takes a subgoal and the current spatial map in STM and finds the shortest path within the map
from the current agent location to the subgoal. We use Dijkstra’s algorithm for planning a path to the next
subgoal. However, the planner can be any path planning method such as the A∗ algorithm (Hart et al., 1968)
or RRT (LaValle, 1998).

4 Procedurally-Generated Environment

We build a procedurally-generated environment for the map-building experiments. Figure 9 and Algorithm 2 in
Appendix show the procedure of map generation. We first generate grid-patterned square rooms and randomly
connect and merge them. Then, we flip boundary cells (empty or occupied) multiple times for diversity.
Formally, given the length of a square S, the interval between square rooms, L, and the size of the grid, (N, M),
we first generate the binary square grid mapM∈ {0(empty), 1(occupied)}(N ·S+(N+1)·L)×(M ·S+(M+1)·L). Let
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(a) Observation (b) Small (size: 3249) (c) Medium (size: 13689) (d) Large (size: 23868)

Figure 4: Environments. Empty cells (that can be occupied by the agent) are black; walls are randomly
colored. (a) Top-down visualization of the agent’s local field of view (FOV) (agent: red triangle; shaded
region: observation) within an environment (b). The agent has only a locally restricted egocentric view. The
right side is occluded by a wall. (b) Top-down view of one environment. The red box marks the region shown
in (a). (c), (d) Examples of medium and large environments.

si be the i-th square in a row-major order in M. For each of the adjacent square pairs, we connect two
squares with probability pconnect as a width w ∼ unif{1, 2, . . . , S − 1} or merge (a special case of connecting
with width S) them with probability pmerge. Then, we flip all boundaries between occupied and empty
cells K times with probability pflip. After flipping the boundaries, there are several isolated (i.e., not
connected to other submaps) submaps in M. We only use the submaps where the sizes are greater than a
threshold (3S2 in our implementation). After creating maps, we randomly colorize each occupied cell and
scale them up by a factor of 3. Note that the proposed environment has much more complex maps compared
to Minigrid (Chevalier-Boisvert et al., 2018). Please refer to Appendices D and F.1 for more details.

Figure 4 shows examples of environments and observation. The walls in the environment are randomly
colored and are composed of various narrow and wide pathways. For each trial, the agent is randomly placed
before it begins to explore the environment. Figure 4a illustrates an example of the agent’s view in the small
environment shown in Figure 4b. The agent is presented as a red triangle and the observed cells are shaded.
The agent has a restricted field of view with occlusion (130◦).

5 Experiments

In this section, we conduct experiments for FARMap comparing with its baselines on the proposed procedurally
generated map environments and robot simulations. We conduct an ablation study, and a sensitivity analysis of
hyperparameters in Appendices H and I, respectively. To quantify the difficulty of the proposed environments
for the RL exploration algorithm, we measure the performance of RND (Burda et al., 2019) in the environments
in Appendix J.

We measure the map coverage, memory usage, and wall-clock time for each environment at each time step as
our evaluation criteria and calculate the mean and standard deviation over all runs. The memory usage in
each environment is calculated as a ratio of the local map size (memory size, H ×W ) to the environment size.
Note that the local map size is the asymptotically dominant factor in the memory. We compare FARMap
with standard frontier-based exploration (Frontier) (Yamauchi, 1997). Please refer to Appendix F for the
experimental settings.

5.1 Comparison with Grid Cell Remapping

We conduct experiments within simulated environments that replicate existing rat studies (Derdikman et al.,
2009; Carpenter et al., 2015) to validate that the fracture points generated by FARMap correspond with
the actual remapping locations where activation patterns are changed in these experiments. Since there
is no established metric for quantifying remapping patterns of grid cells in neuroscience, we qualitatively
compare the fracture points with the remapping locations. Figure 5 illustrates that the fracture points align
closely with the actual remapping locations of rats’ grid cells observed in the experiments. This alignment
can be attributed to our agent’s egocentric view and its limited field of view, similar to that of the rats in the
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(a) Derdikman et al. (2009) (b) Carpenter et al. (2015)

fracture point

start location

grid cell neural activity FARMap Simulation grid cell neural activity FARMap Simulation

remapping

Figure 5: Comparison between remapping locations of grid cells in neuroscience experiments (Derdikman
et al., 2009; Carpenter et al., 2015) and fracture points of FARMap in simulation. The red rectangles and
emerald circles denote the actual remapping locations and fracture points, and the red triangle is the start
location of the simulation. The fracture points are well aligned with the actual remapping locations.

experiment. When the agent passes through a narrow pathway (Figure 5a) or turns a corner (Figure 5b), it
encounters new observations that were previously occluded. These new observations significantly increase the
surprisal. When the surprisal drops again below a threshold from above, it triggers a fragmentation event,
as in Klukas et al. (2021). The difference in surprisal before and after these events is due to the sudden
exposure to new, unpredicted information, which is more pronounced after the agent has turned or moved
past the occlusion.

5.2 FARMap in Procedurally-Generated Environments

We conduct experiments on 1,500 different environments to show that FARMap can explore new environments
without prior training. Note that FARMap is not a learning algorithm; rather, it operates similarly to Frontier
and other SLAM methods by efficiently exploring new environments without learning. Figure 6 summarizes
the performance over the course of exploration on 1,500 environments with three groups based on their sizes;
small (size < 5,000), medium (5,000 ≤ size < 15,000), and large (size ≥ 15,000). The lines in the plots are
the average of all experiments or a group of experiments and the shaded areas are standard errors of the
mean which are not visible due to a large number of trials. FARMap clearly outperforms the baseline on
every step, which means that it explores the environment more efficiently. On the other hand, FARMap
generally uses a stable amount of memory on average (40 %) over all experiments while Frontier requires
much more memory as map coverage increases. The average memory usage of FARMap is almost consistent
in any group of environments as the agent explores environments while the usage of Frontier keeps increasing.

Figure 7 and Table 1 analyze memory size and wall-clock-time changes depending on the environment size.
‘Random Exploration’ denotes an agent moving randomly at every step. Although its runtime is fast, it
cannot explore as many areas when the environment becomes larger or more complex. The memory usage of
FARMap in each environment is measured by the biggest memory size during exploration since the size is
dynamically changed by fragmentation and recall. FARMap clearly outperforms the baseline with a much less
wall-clock time while planning. This is because our agent only refers to the subregion of the environment, not
using the entire map. Especially in large environments, it is approximately four times faster than the baseline.
Moreover, FARMap requires less memory than the baseline, as we mentioned above. The high confidence
intervals are caused by aggregating results from multiple high-variance environments (see Appendix G). We
also measure the ratios of memory usage and map coverage and of wall-clock time and map coverage in
Table 2. The result shows that FARMap has a smaller ratio in all criteria, which means that it requires fewer
time and memory resources to explore 1% of an environment.

5.3 Dynamic Environment

Inspired by Random Disco Maze (Badia et al., 2020), we build medium-sized 345 dynamic environments
where the wall colors change every time step that contributes to an increase in surprisal due to mismatched
predictions. Table 3 shows that all methods work well in the environments, and FARMap retains its efficiency
compared to Frontier in terms of memory and wall-clock time.
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Figure 6: Growth in agent-explored map region as a function of the number of steps in the environment
matches the performance of an augmented Frontier-based baseline with less memory use. Mean spatial map
coverage performance (top) and mean memory usage (bottom) as a function of the number of steps taken in
various sizes of environment sets. FARMap achieves better or comparable exploration than a Frontier-based
exploration baseline (Frontier) (Yamauchi, 1997). while using only about half the memory on average. The
memory benefit increases in a larger environment.
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Figure 7: Relative memory and wall-clock time advantage of FARMap to Frontier grow with environment
size. Comparison of memory cost (left) and wall-clock time (right) as a function of environment size (circles:
experimental results; line: linear regression fit). FARMap requires substantially less memory and is much
faster than other methods.

Table 1: Comparison of average map coverage (%), memory use (%), and wall-clock time (s) for small,
medium, and large environments. The memory usage advantage of FARMap relative to its counterpart grows
with environment size. The numbers in parentheses are 95 % confidence intervals generated by bootstrap
with one million samples. †: Random Exploration does not need memory for exploration.

Model
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time

Random Exploration 51.1 (10.3, 96.1) -† 17.5 (6.0, 52.8) 30.7 (3.9, 72.5) - 30.6 (6.6, 90.6) 19.9 (2.2, 49.8) - 55.8 (8.1, 117.9)
Frontier (Yamauchi, 1997) 97.2 (76.0, 100.0) 80.4 (61.8, 88.7) 360.5 (154, 773) 76.3 (15.6, 99.8) 73.3 (13.0, 92.3) 871.9 (290, 2020) 41.4 (6.1, 84.3) 44.4 (3.8, 84.3) 1261.0 (217, 3189)

FARMap 99.0 (96.3, 100.0) 79.1 (61.4, 88.0) 278.2 (139, 538) 86.4 (15.6, 100.0) 62.9 (12.5, 90.2) 321.4 (191, 528) 56.6 (6.1, 97.7) 31.4 (3.8, 54.3) 352.5 (202, 633)

5.4 FARMap in Robot Operation Simulation

We simulate FARMap in four continuous environments with TurtleBot3 (Burger) via Robot Operation
System (ROS) (Macenski et al., 2022) with Gazebo simulator. ROS is one of the standard libraries for
conducting robotic experiments, and it allows for straightforward deployment to real robots at no additional
cost. Unlike experiments performed in Section 5.2, the observation here involves a 360-degree first-person
view via the default laser scan. We utilize the default global planner in the ‘move_base’ package. Frontier
and FARMap are tested in four continuous 3D environments with a fixed starting location (Figure 8), for
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Table 2: Comparison of the ratios of memory usage and map coverage, and of wall-clock time and map
coverage. Smaller value denotes the model is more efficient than others. FARMap has the smallest ratios in
all comparisons.

Model Small Medium Large
Memory / Coverage Time /Coverage Memory /Coverage Time / Coverage Memory /Coverage Time / Coverage

Frontier 0.83 3.71 0.96 11.43 1.07 30.46
FARMap 0.80 3.52 0.73 3.72 0.55 6.22

Table 3: All methods have stable performance in dynamic environments. We measure average map coverage
(%), memory use (%), and wall-clock time (s) for dynamic environments with 95% confidence intervals
computed by bootstrap with one million samples.

Method Coverage (%) Memory (%) Time (s)
Frontier 95.0 (72.2, 100.0) 86.6 (64.5, 90.0) 742.2 (385.6, 1361.7)
FARMap 95.5 (72.5, 100.0) 67.9 (37.0, 89.6) 386.0 (154.5, 521.7)

Agent
(turtlebot)

ObservationEnvironment Environment 2

Environment 1 AWS Office

American

Figure 8: Robot simulation environments. The turtlebot agent moves around with a 360-degree laser scan
sensor to map the entire space.

2500 steps using five different random seeds. The laser scan operates at a frequency of 2.5Hz, meaning that
the agent updates the local map every 0.4 seconds.

Table 4 presents a comparison between FARMap and Frontier in terms of map coverage and memory usage
measurements without any normalization. We do not use wall-clock time for the comparison as it is now
related to the agent step. In most environments, FARMap has better exploration performance with less
memory. Although FARMap consumes more memory than Frontier in the AWS Office, its memory-to-coverage
ratio is better than Frontier’s (1.16 compared to 1.26, respectively).

5.5 FARMap with Neural SLAM

We conducted experiments on both FARMap and Frontier integrated with the pre-trained Neural SLAM (Chap-
lot et al., 2020) obtained from the official repository for the Gibson (Shen et al., 2021) exploration task with
the Habitat simulator (Szot et al., 2021). We use ‘American’ used in Section 5.4 as an example. For the
fair comparison with FARMap and Neural SLAM, we replaced the global policy in FARMap or Frontier
to establish the ‘long-term goal’, following Chaplot et al. (2020). This essentially means that we employ a
Neural SLAM module to convert RGB observations to a 2D map and a Local Policy to generate discrete
actions based on the given global goal. Table 5 demonstrates that Neural SLAM, when substituting FARMap
for global policy, attains superior exploration performance. In contrast, incorporating Frontier led to a
decrement in performance. These experimental outcomes also hint at the potential advantages of applying
our fragmentation-and-recall concept to exploration methods that leverage maps.
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Table 4: FARMap has better performance with less memory and time in 3D robot simulation environment 1
while it has similar performance with more time in environment 2. The number in parenthesis denotes a 95%
confidence interval.

Model Environment 1 Environment 2 AWS Office (Erdogan, 2019) American (Shen et al., 2021)
Coverage (k) Memory (k) Coverage (k) Memory (k) Coverage (k) Memory (k) Coverage (k) Memory (k)

Frontier 7.0 (± 1.4) 20.5 (± 1.0) 8.3 (± 0.6) 32.8 (± 34.4) 38.2 (± 30.0) 48.1 (± 20.8) 13.8 (± 3.1) 11.0 ( ± 2.1)
FARMap 7.7 (± 1.0) 20.1 (± 2.4) 8.3 (± 0.1) 23.0 (± 8.6) 57.0 (± 4.7) 66.0 (± 14.3) 15.8 (± 4.2) 10.6 (± 3.7)

Table 5: Comparison of Neural SLAM and its adaptations with Frontier and FARMap on the Gibson American
environment.

Model % Cov. Cov. (m2)

Neural SLAM (Chaplot et al., 2020) 0.818 64.795
Neural SLAM w/o global policy + Frontier 0.733 58.103
Neural SLAM w/o global policy + FARMap 0.833 66.012

6 Discussion

We have proposed a new framework for exploration based on local models and fragmentation, inspired by how
natural agents explore space efficiently through grid cells’ remapping. Our framework dynamically fragments
the exploration space based on the current surprisal in real time and stores the current model fragment
in long-term memory (LTM). Stored fragments are recalled when the agent returns to the state where the
fragmentation happened so that the agent can reuse the local information. Accordingly, the agent can refer to
longer-term local information. This method shows potential for broad application in tasks involving streaming
observations or data that are recurrent or reused (Hwang et al., 2023). Specifically, we have applied this to
the setting of spatial exploration. The surprisal is generated by short-term memory (STM) using a local
map in FARMap. FARMap closely replicates the fragmentation behavior observed in animal studies. This
alignment with biological systems underscores the potential of our framework for capturing essential aspects
of natural exploration processes.

FARMap outperforms the baseline method (Yamauchi, 1997) in terms of reduced wall-clock time, memory
requirements, and action count while enhancing map-building performance in both static and dynamic
discrete environments as well as in continual robot simulations. Considering that Yamauchi (1997) is still a
core algorithm in the recent state-of-the-art SLAM methods (Bonetto et al., 2022; Hess et al., 2016; Placed
et al., 2022) (e.g., Figure 12), FARMap is complementary in that it addresses a key inefficiency of global
map-based approaches, which is that they can be memory-intensive and computationally demanding.

Our paper aims to be a proof-of-concept for fragmentation and recall in spatial map-building inspired by
biological principles using frontier-based exploration and Neural SLAM (Chaplot et al., 2020). We believe
that this concept can be applicable to other exploration paradigms and various applications (see Appendix E).
This concept can make large-scale exploration, which typically requires a huge memory size and long-ranged
memory span, significantly more efficient.

Broader Impact Statement

Our main focus of this work is to connect neuroscience and spatial exploration so that two different research
communities interact more actively with each other. Our method can be exploited for military purposes like
other spatial exploration methods or SLAM.
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Appendix

A Bridging between Neuroscience and Machine Learning

Our contributions hold significant relevance for the machine learning (ML) community, beyond robotic SLAM.
They also help to connect back to neuroscience, by generating functional hypotheses that can be tested in
the brain.

Our interdisciplinary approach, which leverages biological principles towards making broader AI advancements,
has the potential to develop more robust and efficient AI systems and inspire novel ML algorithms. The
Fragmentation-and-Recall framework is not only effective with traditional SLAM (Yamauchi, 1997) but also
improves the exploration performance of SLAM based on neural networks (Chaplot et al., 2020). This shows
the potential of FARMap when it combines with a neural network-based spatial exploration approach.

Further, FARMap is designed as a fundamental algorithm that should be relevant beyond spatial tasks like
robotic navigation. For instance, it can be leveraged for any model-based learning, from motor control to
reinforcement learning. The agent builds local models (where “local” may be in terms of spatial location for
a navigating agent or in state space for motor control, for instance). When the local model fails to predict
the next states well, the agent may select a different local model or build a new model. Thus, the concept of
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surprisal-based clustering and memory-efficient mapping can be extended to other areas of machine learning,
such as spatial exploration, memory optimization, reinforcement learning, and autonomous decision-making,
and goal-directed behavior.

Conversely, in neuroscience, where the phenomenon of spatial fragmentation was observed, its implications
for function have not yet been studied or appreciated. FARMap supplies hypotheses for the functional roles
of the observed map fragmentation, motivating experiments to test these hypotheses. In addition, FARMap
provides a unifying algorithm for episodic memory, spatial navigation, and perhaps also segmented motor
control. It predicts that a universal “surprisal” signal might exist in the brain and play a central role in
signaling and inducing model or map fragmentations across behavioral domains. Thus, FARMap motivates
new experiments in neuroscience: to search for signals that trigger the building of entirely new models or
maps, across domains of spatial mapping, cognitive modeling, and motor control.

B Additional Related Works

B.1 Graph-Based SLAM

Graph-based SLAM (Grisetti et al., 2010; Yang et al., 2021; Kulkarni et al., 2022) constructs a topological
graph for efficient exploration by reducing the dimensionality of the planning problem. Once this graph is
established, a planner utilizes it to navigate toward subgoals. GBPlanner (Yang et al., 2021; Kulkarni et al.,
2022) creates a random graph in the local region and uses it for path planning. This reduces computational
cost for local path planning by reusing sparse graph nodes although it still uses a frontier. In contrast,
FARMap aims for efficient exploration in terms of memory, time, and the number of steps by dividing the
environment (i.e., fragmentation) and the topological graph is used for moving one subregion to another. We
believe that there is a potential synergy between graph-based SLAM and FARMap. Such synergy can be
achieved by substituting frontier-based exploration with a graph-based approach, pairing global fragmentation
from FARMap with relatively local planning from graph-based methods.

B.2 Reinforcement Learning in Neuroscience

Many animal experiments involving goal-directed learning combine rewards (or punishments) with tasks, such
as evidence accumulation (Mochizuki-Freeman et al., 2022; Nieh et al., 2021; Lee et al., 2022; Pinto et al.,
2019) and simple visual cues (Vorhees & Williams, 2006). This has led computational neuroscientists to
use reinforcement learning (RL) to model brain functions, resulting in models with good explanatory power
for both neural and behavioral data (Niv, 2009; Pedamonti et al., 2023; Recanatesi et al., 2021; Vorhees &
Williams, 2006). However, spatial learning (Tolman, 1948) served as a powerful rebuttal to reward-based
learning and the behaviorist school in Psychology: Animals typically acquire and represent spatial information
even in the absence of spatially-conditioned rewards. Grid and place cells form spatial representations, and
grid cell remapping is observed in free-moving animals with no operant or reinforcement-based training.
Thus, goal-directed learning is not required for spatial representations and remapping. However, spatial
representations and remapping could very well play an important role in spatial reinforcement learning.
Integrating the fragmentation-and-recall framework into goal-conditioned RL is an intriguing direction for
future research, beyond the scope of the present paper.

B.3 Memory-Based Reinforcement Learning

Although the reinforcement learning (RL) algorithm is beyond the scope of this paper, FARMap is similar
to memory-based RL in the sense that it uses memories. Hung et al. (2019) combine LSTM (Hochreiter
& Schmidhuber, 1997) with external memory, along with an encoder and decoder for the memory. Ritter
et al. (2018a;b) use DND (Pritzel et al., 2017) to store the states of LSTM with its inputs and retrieve old
states to update the state of LTM in meta-reinforcement learning tasks. Similarly, Fortunato et al. (2019)
use working memory and an episodic memory structure but employ an output of the episodic memory as
an input for the working memory. On the other hand, Lampinen et al. (2021) utilize a hierarchical LTM
with chunks and attention for long-term recall inspired by Transformers (Vaswani et al., 2017) however,
their chunks are formed periodically rather than based on content and are not used as intrinsic options for
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exploration. Our spatial map-building framework is similar to memory-based RL methods in terms of having
two memory architectures inspired by the brain. However, FARMap fragments an environment (or space) in
an online manner and recalls stored memories inspired by grid cells, while memory-based RL stores previous
states. Moreover, we use the connectivity graph of STMs to find the next subgoal for efficient map building.
We would like to emphasize that FARMap is not a reinforcement learning method. On the other hand, we
believe that our proposed concept, fragmentation-and-recall can be applicable to memory-based reinforcement
learning by reducing search space in the memory.

C LTM Retrieval Overhead

FARMap needs to consider the retrieval time of LTM since it is not located in the main memory. If the
memory (RAM) is larger than the environment so that we can even use LTM on RAM, retrieval time is not
a concern, and FARMap is useful in boosting speed, although it might use more memory. In our original
scenarios, LTM is an external memory (non-volatile memory). Usually, SSD’s speed (including bandwidth
and read/write) is around 300-600 MB/s while RAM (DDR4) operates at 5-25 GBps. In this case, SSD
read/write can be a bottleneck. However, the flash memory speed is around 5 GBps, and the retrieval time
for the map will be negligible compared to the planning time. It is generally not recommended to use a hard
disk drive (HDD), whose data transfer rate is around 100 MB/s.

D Discussion about the Proposed Environment

D.1 Wall Color and Exploration

When the environment is static, the color of the wall does not affect FARMap; the model can still detect
surprisal events effectively even if the wall color remains constant. On the other hand, in dynamic environments,
where the color of walls changes at each time step (as discussed in Section 5.3), the color changes contribute
to an increase in surprisal due to mismatched predictions. Despite this increased surprisal, FARMap remains
effective in detecting and managing fragmentation events, demonstrating its robustness in both static and
dynamic scenarios.

D.2 Comparison with MiniGrid

MiniGrid (Chevalier-Boisvert et al., 2018) is specifically designed for Reinforcement Learning (RL) experiments
and involves tasks that require an agent to understand and navigate environments by avoiding hazards, picking
up colored keys, opening doors, and recognizing goals. This setup necessitates an RL policy, whereas FARMap
is not based on reinforcement learning algorithms. Additionally, the MiniGrid environment is composed of
simple rectangular rooms and corridors, which do not provide the level of complexity we require for evaluating
our method. To thoroughly test FARMap’s capabilities, we use more complex maze environments that better
challenge the agent’s ability to manage fragmentation and recall in a variety of spatial configurations.

E Potential Applications

In this section, we introduce several potential applications where FARMap can be helpful by reducing memory
and time costs.

E.1 Mars Exploration

Mars exploration rovers such as Opportunity and Curiosity have limited resources. For example, the Curiosity
rover has 256 MB of RAM and 2GB of flash memory2. However, the mission range on Mars may be much
larger than the RAM. Therefore, efficient mapping is required and we believe that FARMap could be helpful
in Mars exploration.

2https://mars.nasa.gov/msl/spacecraft/rover/brains/
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Table 6: The statistics of the size of environments in the dataset.

Statistics All Small Medium Large
The number of environments 1500 1015 345 140

Average size 5697.8 2466.7 8532.4 22138.7
Standard deviation of size 6265.8 1253.7 2828.5 4872.9

E.2 2D/3D Mapping with LiDAR

As mentioned in Section 5.4, FARMap is capable of utilizing observations from LiDAR for map-building in
continuous environments. The resolution of the sensor can be set to a cell unit. Considering the properties of
the Robot Operating System (ROS) (Macenski et al., 2022), we believe that FARMap can be easily deployed
to a real robot. Additionally, it is feasible to extend it to 3D by using 3D voxel mapping instead of 2D pixel
mapping. This approach can prove beneficial in large-scale environments such as buildings, airports, and
houses.

F Experimental Details

Our models are implemented on PyTorch and the experiments are conducted on an Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz for spatial exploration experiments and on an NVIDIA Titan V for RND and Neural
SLAM.

F.1 FARMap Environment Generation

To generate the environment, we run map generation (Algorithm 2) 200 times and then use the 300 largest-
sized maps. All maps are scaled up by a factor of 3 after colorization for the task. On every trial, we sample
S and N from {3, 4, 5, 6, 7} and set M = N . K, L ∈ N are sampled from [0, 10] and [1, 3], respectively. We set
pconnect, pmerge and pflip to 0.25, 0.25, and 0.05, respectively. Figure 9 illustrates the procedure of environment
generation described in Algorithm 2. Table 6 shows the statistics of the size of the generated environments.

F.2 FARMap

We run the agent on 1,500 different environments: 300 different maps with five random seeds and the starting
position and the color of the map are changed on each random seed. We set γ, ρ, and ϵ to 0.9, 2, and 5,
respectively. The observation size (h, w) is (15,15). If the frontier-based exploring agent is surrounded by a
large frontier-edge in an open space, the centroid of the frontier can fall into the interior of the explored space,
leading to no new discovery. This causes the agent to become stuck. We improve the agent by selecting the
nearest unoccupied cell from the nearest frontier state to the centroid.

F.3 RND

We train RND (Burda et al., 2019) for 1 million steps without extrinsic reward for each environment. RND
is based on recurrent PPO (Schulman et al., 2017). Table 7 shows the architecture of RND used for the
experiments. The learning rate is 0.0001, the reward discount factor is 0.99 and the number of epochs is 4.
For other parameters, we use the same values mentioned in PPO and RND: we set the GAE parameter λ as
0.95, value loss coefficient as 1.0, entropy loss coefficient as 0.001, and clip ratio (ϵ in Eq. 7 in Schulman et al.
(2017)) as 0.1.

G Wide Confidence Intervals

In Table 1, 95% confidence intervals for each measurement are generated by bootstrapping with one million
samples. The confidence intervals are very wide because our metrics (map coverage, memory usage, and
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Algorithm 2 Spatial Exploration Environment Generation
Require: N, M, L, S, K, pconnect, pmerge, pflip
Ensure: A set of maps, {M}.

1: procedure MapGeneration
2: Initialize M∈ {0, 1}(N ·S+(N+1)·L)×(M ·S+(M+1)·L), (N, M) grid with interval L and each square sized

(S, S). ▷ Figure 9 (1).
3: for (si, sj) ∈ {(si, sj)|si and sj are adjacent, i ≤ j} do ▷ Get adjacent grid square pairs.
4: x ∼ B(1, pconnect) ▷ Connect adjacent squares with probability pconnect.
5: if x = 1 then
6: w ∼ unif{1, . . . , S − 1}
7: Connect si and sj with width w. ▷ Figure 9 (2).
8: end if
9: x ∼ B(1, pmerge) ▷ Merge adjacent squares with probability pmerge.

10: if x = 1 then
11: Merge si and sj by removing the interval. ▷ Figure 9 (3).
12: end if
13: end for
14: for k ← 1 to K do
15: for c ∈ {c|c ∈M,∃c′ c xor c′ = 1, c′ ∈ Adj(c)} do ▷ Get boundary cells in the map.
16: x ∼ B(1, pflip) ▷ Flip the cell with probability pflip.
17: c = c xor x ▷ Figure 9 (4)-(6).
18: end for
19: end for
20: Divide M into a set of isolated maps {mi} ▷ Figure 9 (7).
21: Filter out a map in {mi}, where the size is smaller than 3S2.
22: Randomly colorize the occupied cell in each map. ▷ Figure 9 (8).
23: Scale up each map in {mi} by factor of 3.
24: end procedure

Connect Merge Flip

Flip Colorization 
Remove

small maps

S = 4
N = M = 4
L = 1
K = 9
Pconnect = 0.25
Pmerge = 0.25
Pflip = 0.05

Flip

(2) (3) (4)

(6) (7) (8)

(1)

(5)

Figure 9: Procedure of map generation. (1) We first set square grid where black and white denote empty and
occupied, respectively. (2) We randomly connect and (3) merge adjacent grid. (4)-(6) We also randomly flip
the boundaries of empty and occupied cells recursively. (7) Then, we remove small isolated subregions and
(8) randomly colorize occupied cells. Finally, we increase the size of the map.

wall-clock time) depend on the size and the complexity of the environment, and each method is evaluated on
many varied environments as shown in Table 6 and the code repository.

We also present results with much smaller groups in Figure 10. We first sort the environments based on their
sizes, and then we partition the environments into 150 groups, each of size 10, and calculate the average with
bootstrapping to get a 95 % confidence interval for each group. The 95% confidence intervals measured by
bootstrapping are also smaller than the reported range in Table 1. In particular, FARMap has a relatively
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Table 7: The architecture of RND agent. The networks are divided into the policy module and RND module.

Policy module RND module

Conv2d (8×8, 16) Conv2d (8×8, 32)
Conv2d (4×4, 32) Conv2d (4×4, 64)
FC (3200×512) Conv2d (3×3, 64)

LSTM (512, 512) FC (3136×512)
FC (512×5) × 2 FC (512×512)
FC (512×1) × 2 FC (512×512)
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Figure 10: Map coverage, memory usage, and wall-clock time advantage of FARMap to Frontier grow with
environment size. Comparison of these metrics as a function of environment size. The mean (line) and 95%
confidence interval (shade) are calculated by bootstrapping with one million samples each from 150 groups
(10 environments each) ordered by size.

steady wall-clock time across the entire environments while Frontier requires more time with high variance
depending on the environments. Although the gaps between FARMap and Frontier in all metrics are small in
small environments, they become larger as the environment size grows. In other words, FARMap is better
than Frontier in all environments in terms of map coverage, memory usage, and wall-clock time.

H Ablation Study

Table 8 illustrates the ablation study of components of FARMap. Each component contributes to improving
the performance while it increases memory and time which are negligible compared to the baseline performance
(44.4, 1261.0, respectively). We also evaluated FARMap, random fragmentation, and uniform fragmentation
methods on top of FARMap. This is to demonstrate that surprisal produces effective fragmentations that
maintain the exploration performance with low memory and fast wall-clock time. Random and Uniform
models only change the fragmentation criteria and other parts (e.g., LTM, subgoal selection, and planning)
remain the same. Table 9 shows that there is a trade-off between frequency of fragmentation and memory
usage and wall-clock time. FARMap achieves better exploration performance than random and uniform
fragmentation models. Table 10 shows Frontier and FARMap with RRT planner (LaValle, 1998) in large
environment. Although the performance gaps between the two models are reduced, FARMap still outperforms
Frontier.
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Table 8: Ablation study for each component in large environments. We chose the best-performed fragmentation
threshold without the z-score variant in [0.1, 0.9].

z-score LTM subgoal Coverage Memory Time
- - 51.7 (22.1, 90.5) 20.8 (10.0, 49.6) 177.3 (121.7, 254.8)
✓ - 52.8 (21.9, 85.6) 30.4 (15.3, 57.7) 302.3 (167.9, 519.2)
✓ ✓ 56.6 (6.1, 97.7) 31.4 (3.8, 54.3) 352.5 (202.0, 633.0)

Table 9: Comparison of vanilla FARMap and FARMap with random, and uniform fragmentation in Large
Environments. The random model decides to fragment with probability on every time step and the uniform
model makes a fragmentation on every Interval step (L).

Model Coverage Memory Time
FARMap 56.6 (6.1, 97.7) 31.4 (3.8, 54.3) 352.5 (202, 633)

Random (P = 0.1) 45.2 (15.4, 82.3) 7.8 (4.4, 13.2) 111.3 (70.9, 141.0)
Random (P = 0.05) 47.5 (18.0, 87.4) 12.1 (6.7, 20.0) 136.5 (179.8)
Random (P = 0.01) 49.0 (18.6, 87.6) 24.5 (12.9, 43.7) 290.7 (148.1, 499.6)
Random (P = 0.005) 49.1 (20.5, 89.6) 30.5 (16.1, 60.0) 378.1 (201.7, 637.7)
Random (P = 0.001) 54.1 (23.5, 92.4) 46.1 (20.9, 81.4) 683.4 (292.3, 1484.4)

Uniform (L = 25) 49.1 (15.8, 82.5) 7.5 (4.7, 11.8) 110.8 (84.6, 143.7)
Uniform (L = 50) 48.8 (17.3, 89.5) 12.6 (6.8, 20.9) 147.3 (112.9, 200.8)
Uniform (L = 100) 48.3 (18.7, 88.8) 19.3 (10.7, 32.1) 216.5 (150.3, 330.2)
Uniform (L = 200) 48.8 (22.0, 90.0) 27.5 (14.0, 45.5) 322.2 (209.1, 612.0)
Uniform (L = 500) 52.2 (22.0, 90.0) 38.2 (16.5, 82.5) 484.2 (292.9, 840.6)
Uniform (L = 1000) 53.4 (22.1, 91.9) 46.5 (23.4, 87.9) 712.3 (380.6, 1425.0)

Table 10: Comparison of average map coverage (%), memory use (%), and wall-clock time (s) in large
environments. Both Frontier and FARMap use RRT (LaValle, 1998) planner.

Model Coverage Memory Time
Frontier (Yamauchi, 1997) 46.9 (20.7, 94.0) 49.7 (22.6, 90.3) 880.9 (395.6, 1673.1)

FARMap 50.9 (17.3, 91.3) 30.4 (13.8, 55.7) 318.1 (174.6, 500.6)

Table 11: Sensitivity analysis about fragmentation threshold, ρ in FARMap. The numbers in parentheses are
the standard deviation.

ρ
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time
1.0 99.1 71.5 117.9 87.1 39.6 146.2 60.9 17.9 148.4
1.5 99.1 75.7 158.0 87.6 50.2 180.1 59.7 23.3 188.9

2.0 (ours) 99.0 79.1 278.2 86.4 62.9 321.4 56.6 31.4 352.5
2.5 98.8 80.7 207.1 89.0 79.7 557.3 58.4 56.9 770.5
3.0 98.8 81.5 296.1 91.0 85.0 698.2 60.9 67.9 1068.0

I Sensitivity Analysis for Hyperparameters in FARMap

We test FARMap with various hyperparameters; fragmentation threshold (ρ), decaying factor (γ), and ϵ.
All experiments are conducted in the same environments. While comparing one hyperparameter, we fix the
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Table 12: Sensitivity analysis about decaying factor, γ in Eq. 1. The numbers in parentheses are the standard
deviation.

γ
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time
0.8 98.8 79.4 210.5 85.3 64.5 304.0 55.6 32.8 304.8

0.9 (ours) 99.0 79.1 278.2 86.4 62.9 321.4 56.6 31.4 352.5
0.95 99.1 79.0 178.3 87.3 61.3 507.5 59.2 31.9 284.7
0.99 99.1 80.8 262.3 89.3 76.5 453.8 60.4 46.7 541.5

Table 13: Sensitivity analysis about ϵ in Eq. 4. The numbers in parentheses are the standard deviation.

ϵ
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time
1 99.0 79.1 198.0 86.8 63.0 275.3 56.6 31.5 294.8
3 99.0 79.1 198.1 86.7 63.0 271.3 56.5 31.5 294.5

5 (ours) 99.0 79.1 278.2 86.4 62.9 321.4 56.6 31.4 352.5
10 99.0 79.1 197.1 86.6 62.9 272.5 56.3 31.4 294.9
15 99.0 79.1 198.5 86.6 63.0 288.7 55.9 31.1 295.7

Table 14: Average map coverage (%), memory use (%), and wall-clock time (s) of RND in small, medium,
large, and dynamic environments. The numbers in parentheses are 95 % confidence intervals generated by
bootstrapping with one million samples across various environments. The memory usage is calculated by the
ratio between the number of parameters (7.7M) and each environment size.

Environment Coverage (%) Memory (%) Time (s)

Small 77.0 (31.3, 100.0) 421.7k (157.5k, 1012.5k) 31.6 (23.9, 40.4)
Medium 37.1 (11.0, 77.0) 99.7k (53.7k, 151.9k) 31.2 (23.7, 39.6)

Large 14.9 (3.4, 33.5) 36.2k (24.4k, 49.7k) 30.9 (25.0, 39.6)
Dynamic 37.2 (23.9, 35.6) 99.7k (53.7k, 151.9k) 29.1 (10.5, 75.8)

remaining parameters as ρ = 2.0, γ = 0.9, ϵ = 5. Table 11 presents the performance of FARMap with different
fragmentation thresholds, ρ. The smaller value makes it more prone to fragment the space, which means
it can use less memory but overly fragment the space. On the other hand, a bigger threshold uses more
memory with less fragmentation. Hence, we choose 2 as the threshold value (95% confidence interval if the
distribution follows a Gaussian). On the other hand, FARMap is robust to the decaying factor and ϵ as
shown in Tables 12 and 13, respectively.

J Reinforcement Learning Method in the Proposed Environments

We run RND (Burda et al., 2019) based on PPO-LSTM (Schulman et al., 2017) to give an example of
reinforcement learning exploration method in the proposed procedurally-generated environments. Table 14
shows the performance of RND in static and dynamic environments. To quantify RND’s memory usage based
on this measurement, we divided the number of parameters (7.7M) by the environment size. Note that it is
difficult to compare with FARMap or Frontier directly since the RL agent is trained on each environment
before testing it while FARMap and Frontier have no training. However, in both sets of environments, RND
has much lower coverage than FARMap but it is much faster since it does not need to update the local map
and planning. We also demonstrate the average map coverage across the number of steps in Figure 11.
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Figure 11: Growth in agent-explored map region as a function of the number of steps from the first step in
the environment matches the performance of RND. Mean spatial map coverage performance as a function of
the number of steps taken in various sizes of environment sets. The shade denotes the standard error.
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Figure 12: (a) The schematic diagram of ExplORB-SLAM from Placed et al. (2022). (b) An example of
FARMap integrated ExplORB-SLAM. FARMap encapsulates ‘Frontier Detector’ and LTM subgoal can
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