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ABSTRACT

We introduce a new point of view on transferability of graph neural networks based
on the intrinsic notion of information diffusion within graphs. This notion is adapted
to considering graphs to be similar if their overall rough structures are similar, while
their fine-print articulation may differ. Transferability of graph neural networks
is then considered between graphs that are similar from this novel perspective
on transferability. After carefully analysing transferability of single filters, the
transferability properties of entire networks are relegated to the transferability
characteristics of the filters employed inside their convolutional blocks. A rigorous
analysis establishes our main theoretical finding: Spectral convolutional networks
are transferable between graphs whose overall rough structures align, if their
filters arise as Laplace transforms of certain generalized functions. Numerical
experiments illustrate and validate the theoretical findings in practice.

1 INTRODUCTION

A fundamental quality of any machine learning model is its ability to generalize beyond the data on
which it was trained. In the graph neural network (GNN) setting, a crucial aspect of this capability is
characterized by the property of transferability: If two graphs are similar, also their respective latent
embeddings should be similar to each other. I.e. GNNs should be transferable between such graphs.

We may thus think of transferability as encoding information about continuity properties of GNNs:
Equipping the space of graphs, with a suitable distance-notion capturing graph similarity, we may
consider GNNs as functions mapping from this space to latent Euclidean spaces. Transferable models
then correspond to continuous maps: Their outputs are close if input graphs are close to each other. In
contrast, non-transferable GNNs are discontinuous: Embeddings generated by such models may vary
strongly even if the corresponding graphs are close to each other. If a transferable GNN model is then
confronted during inference with a graph that is similar to a graph that was already observed during
training, generated latent embeddings will be similar. Hence a good performance on the train-set will
translate to a similarly good performance on the test set: The model will be able to generalize.

Here we will be analyzing transferability properties of spectral graph neural networks (Bruna et al.,
2014; Defferrard et al., 2016); a prominent class of GNNs which continue to set the state of the art
on a diverse set of tasks (He et al., 2021; 2022a; Wang & Zhang, 2022; Koke & Cremers, 2024).
From a theoretical perspective, transferability of such models has been predominantly investigated
in the setting of (very) large graphs taken to faithfully approximate a common underlying ambient
object. Examples of such objects are metric measure spaces (Levie et al., 2019a) and graphons (Ruiz
et al., 2020; Maskey et al., 2021), which are applicable to graphs where the number of edges |E | is
of OpN2q, with N the number of nodes. Large sparse graphs (|E | “ OpNq) are instead considered
to approximate the same graphop (Le & Jegelka, 2023) or graphing (Roddenberry et al., 2022).
Transferability outside this asymptotic regime of large graphs has to the best of our knowledge so far
only been investigated for limited examples and a restrictive class of filter functions Koke (2023).

Contributions: Here we propose an alternative approach to transferability: Fundamentally, we
consider two graphs to be similar if the rough overall structures within them align, while fine-
print articulations are allowed to vary. This setting captures fundamental examples such as graphs
discretizing the same manifold, graphs describing the same object at different resolutions or graphs
differing by edge deletions. To quantify similarity in this setting, we build on the notion of diffusion
distance (Hammond et al., 2013), which provides a relaxation of the canonical linear distance ||L´L̃||
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between Laplacians L, L̃ of different graphs. Within this relaxed distance measure, variations in
coarse structure are weighted more heavily, while variations in fine-structure are instead discounted.
A rigorous analysis then establishes our main theoretical finding: Networks are transferable between
graphs that are close in the diffusion sense, if their filters arise as Laplace transforms.

Our novel viewpoint provides a broad and general framework to analyze transferability: It is not
dependent on any ambient space, applies outside the setting of large graphs, is not restricted to a
certain scaling behaviour of the number of edges and covers settings where previous transferability
results are not applicable (e.g. between original and coarsified graphs). To provide guidance for the
practicioner, we perform carefully designed numerical experiments highlighting the importance of
transferability, showcasing the failure of common architectures to transfer and numerically verifing
that architectures conforming to our developed theory indeed do exhibit transferability.

Caveat: The notion of diffusion-similarity central to our analysis below is adapted to the setting
where the rough overall structure within graphs is more important than fine structure details. Utilizing
such a relaxation of the standard linear distance ||L´ L̃|| allows to consider more relaxed conditions
on filter functions than previous works (Gama et al., 2019; Wang et al., 2021) in this setting. It
is however important to note that since our analysis is based on a distance notion that discounts
fine-structure details within graphs, the results in our paper do not allow to draw conclusions about
transferability and model performance in settings where the exact articulation of a graph is important.

2 BACKGROUND: SPECTRAL CONVOLUTIONAL NETWORKS ON GRAPHS

2.1 GRAPHS AND THEIR FUNDAMENTAL PROPERTIES

Graphs: A graph G :“ pG, Eq is a collection of nodes G and edges E Ď G ˆ G. We assume (real)
edge-weights with potentially Aij ‰ Aji if the graph is directed. Nodes i P G may have individual
node-weights µi ą 0. In a social network, a node weight µi “ 1 might e.g. signify that node i
represents a single user. A weight µj ą 1 would indicate that node j represents a group of users.

Feature spaces: Given F -dimensional node features on a graph with N “ |G| nodes, we collect
individual scalar node-signals x P RN into a feature matrix X of dimension N ˆ F . Taking
node weights into account, we equip the space of such signals with an inner-product according to
xX,Y y “ TrpX⊺MY q “

řN
i“1

řF
j“1pXijYijqµi with M “ diag ptµiuq the node-weight matrix.

Graph Laplacians: Spectral graph neural networks are typically based on some choice of (positive
semi-definite) graph Laplacian L (Defferrard et al., 2016; He et al., 2021; 2022b), on which we will
hence also focus here. Most important to us will be the un-normalized (in-degree) graph Laplacian
L “ M´1pD ´Aq. Here A is the (weighted) adjacency matrix and D is the diagonal degree matrix.

2.2 SPECTRAL CONVOLUTIONAL FILTERS

A spectral graph convolutional filter is then constructed by applying a learnable function hθp¨q

to an underlying characteristic operator L; typically a graph Laplacian. The resulting filter matrix
hθpLq P RNˆN acts on scalar graph signals x P RN via matrix multiplication; sending x to hθpLq¨x:

x ÞÑ hθpLq ¨ x

In practice it is prohibitively expensive to implement such filters using e.g. an explicit eigendecom-
position (Defferrard et al., 2016). Instead, a generic filter function hθp¨q is typically parameterized
as a weighted sum over ’simpler’ basis functions tψiuiPI “: Ψ as hθp¨q :“

ř

iPI θi ¨ ψip¨q. The
functions ψip¨q are then often chosen as polynomials ψipλq “

ř

k akλ
k (Defferrard et al., 2016;

Kenlay et al., 2020; He et al., 2021; 2022b), so that ψipLq is also given as a polynomial; now in
the matrix L: ψipLq “

ř

k akL
k. The matrices tψipLquiPI are then precomputed. Complete filters

hθpLq are parametrized via the learnable coefficients tθiuiPI as hθpLq :“
ř

iPI θi ¨ ψipLq.

2.3 SPECTRAL GRAPH CONVOLUTIONAL NETWORKS:

Learnable filters are then combined into a (K-layer) graph convolutional network mapping initial
node-features X P RNˆF to final representations XK P RNˆFK . Layer-updates are implemented as
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Xℓ
i: “ ρ

˜

Fℓ´1
ÿ

j“1

hℓθij pLqpXℓ´1
j: q `Bℓi:

¸

(1) ô Xℓ “ ρ

˜

ÿ

iPI

ψipLq ¨Xℓ´1 ¨W ℓ
i `Bℓ

¸

(2)

with biases Bℓ P RNˆFℓ (B:j “ bj ¨ 1G) and weight matrices W ℓ
i P RFℓ´1ˆFℓ . We here con-

sider activation functions ρ satisfying ρp0q “ 0 and |ρpaq ´ρpbq| ď |a´ b| such as e.g. (leaky-)ReLu.
The scalar (1) and matrix (2) viewpoints are connected via the identity hθij pLq ”

ř

kpWkqijψkpLq.
With basis functions Ψ “ tψiuiPI , weights W and biases B, we denote the output of a graph neural
network based on the operator L and applied to the node feature matrix X as Φ “ ΦW ,B,ΨpL,Xq.

3 WHEN SHOULD MODELS BE TRANSFERABLE? A DIFFUSION PERSPECTIVE.

To determine between which graphs a GNN should be transferable, we need a measure of closeness
between graphs. If graphs G, G̃ share a node set, an obvious first choice is the distance }L ´ L̃}

between their respective Laplacians. This measure is e.g. especially well adapted to the important
setting of similarity under small edge variations (wij ÞÑ pwij ` δijq with |δij | ! 1) (Gama et al.,
2019; 2020). There do however also exist structural changes which may be considered small, but to
which this standard measure }L´ L̃} is insensitive: Removing any edge from an unweighted graph
G to obtain G̃ will always result in 2 “

}L ´ L̃}. Depending on the location of
this edge removal, the graphs G, G̃ might
however still exhibit considerable simi-
larity: Removing a single edge in an N -
clique graph KN (Fig. 1) intuitively cor-
responds to a much more minor structural
modification than removing the bridge-
edge connecting two cliques (Fig. 2).
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Figure 1: Left: original KN graph
Right: KN without edge r1 Ø 5s

(a)

(b)

Figure 2: Dumbbell
with & w/o bridge

3.1 THE NOTION OF DIFFUSION DISTANCE

This intuition that the graphs of Fig. 1 are closer to each other than those of Fig. 2 is related to the
way information diffuses within them. Deleting the sole edge between cliques disrupts information
flow. In contrast deleting a single edge in a high connectivity area hardly has any repercussions. To
quantify this, we recall that the diffusion equation on a graph is given by dXptq{dt “ ´L ¨Xptq with
solution Xptq “ e´Lt ¨Xp0q. Given the same initial conditions, the maximal possible difference
in diffusion-flows Xptq generated by the
two Laplacians L, L̃ at time t is

ηptq “ }e´Lt ´ e´L̃t}.

In Fig. 3 we plot this difference for the
graphs of Fig. 1. If N ą 2, ηptq only
attains small values. Hence at any given
time information is indeed diffused very
similarly over the distinct graphs G, G̃. Figure 3: ηptq for Fig. 1 Figure 4: ηptq for Fig. 2

Taking the supremum suptě0 ηptq leads to the notion of diffusion distance dpG, G̃q “ suptě0 ηptq of
graphs sharing a node set (Hammond et al., 2013). As N increases, this maximal overall difference
becomes smaller. Hence from a diffusion perspective, KN becomes more and more similar to its
reduced version with edge removed. For K2 instead dpG, G̃q “ 1. Deleting the single present
edge between two nodes produces a very different graph. Similarly removing the only edge that is
connecting two cliques of N nodes as in Fig. 2 leads to diffusion-flow differences ηptq that tend to
one (c.f. Fig. 4). Hence the corresponding graphs are not considered similar from the perspective of
diffusion. This is a sensible result, as they e.g. differ in their numbers of connected components.

Here we will hence consider two graphs to be similar if information diffuses similarly within them.
For graphs sharing a node set, this is captured by the diffusion distance dpG, G̃q “ suptě0 ηptq. The
exponential suppression of high-lying spectral information renders this metric adept at capturing
variations preserving coarse structures (but ill-suited for fine-structure variations; c.f. Appendix C).
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3.2 GENERALIZING DIFFUSION SIMILARITY TO VARYING NUMBERS OF NODES

For graphs G, G̃ with different numbers of nodes, the diffusion processes e´Lt, e´L̃t are defined on
spaces of different dimensions. Hence they may not straightforwardly be compared. A first idea to
overcome this obstacle is to consider a linear intertwining operator J : R|G| Ñ R|G̃|, transferring
signals from the graphG to the graph G̃ (Braker Scott, 2021):

Definition 3.1. Graphs G, G̃ are monodirectionally similar
under the intertwining J if suptě0 }Je´Lt ´ e´L̃tJ} ! 1.
In this setting, we can transfer the diffusion process from G
to G̃ without a large deviation, but generically not vice versa.

(a) (b)
Figure 5: Monodirectionally similar
graphs

Such a setting might e.g. occur if G is a subgraph of G̃: In the example of Fig. 5 (further discussed in
Appendix G) we may transfer the diffusion process on the right hand side onto the graph on the left
hand side. Transferring in the opposite direction is however impossible: Information flowing from
the top node of the directed graph in Fig. 5 (a) could never be accounted for in the graph of Fig. 5 (b).

In order to establish a reflexive notion of similarity (where G is similar to G̃ and G̃ is also similar to
G), we need to be able to transfer the diffusion process from G to G̃ and then also back to G again,
without accruing a big error. As an example, let us consider graphs that contain clusters of nodes
which are connected by significantly larger edge weights than those of edges outside of these clusters.
From a diffusion perspective, information in a graph equalizes faster along edges with large weights.

(a) (b)

Figure 6: (a) G (stongly connected)
clusters in red (b) Coarse grained G

In the limit where edge-weights within certain sub-graphs
tend to infinity, information within these clusters equalizes
immediately. Such clusters thus effectively behave as single
nodes. We might thus consider a coarse grained graph G
where strongly connected clusters are fused together and
represented only via single nodes. This naturally leads to the
notion of graph coarsification, as first formalized and studied
in Loukas & Vandergheynst (2018); Loukas (2019).

In our case at hand the node set G of the coarse grained graph G is then given by the set of connected
components in Gcluster (c.f. Fig 7). Edges E are given by elements pR,P q P G ˆ G with non-zero
accumulated edge weight WRP “

ř

rPR

ř

pPP Wrp. Node weights in G are defined accordingly by
aggregating as µ

R
“

ř

rPR µr. To compare signals on these two graphs, we
define intertwining operators JÓ, JÒ transferring information between G and G:
Let x be a scalar graph signal and let 1R be the vector that has 1 as entry for
nodes r P R and is zero otherwise. Denote by uR the entry of u at node R P G.
Projection JÓ is then defined component-wise by evaluation at node R P G as the
average of x over R: pJÓxqR “ x1R, xy{µ

R
. Going in the opposite direction, Figure 7: Gcluster

interpolation is defined as JÒu “
ř

RPG uR ¨ 1R. In this setting, we have (c.f. Appendix I.1) that

}e´tL ´ JÒe´tLJÓ} À 1{wmin
high for any t ą 0. (3)

Here wmin
high " 1 denotes the minimal edge weight inside the strongly connected clusters in G.

As the strength of the edge-weights in Gcluster tends to infinity, we have by 3 that also ηptq “

}e´Lt ´ JÒe´LtJÓ} Ñ 0 for any t ą 0. Thus (for t ą 0) the diffusion process e´Lt on G acts
essentially as first projecting the input-signal to G via JÓ, then diffusing information on the coarse
grained graph G via e´Lt and finally interpolating back to the original graph G via JÒ. Generalizing
the notion of projection and interpolation beyond coarse-graining we make the following definition:

Definition 3.2. Consider two graphs G and G̃ with linear intertwining operators J and J̃ mapping
from G to G̃ and vice versa. We call G and G̃ bidirectionally similar if }e´Lt ´ J̃e´L̃tJ} “ ηptq

for some (fast decaying) function ηptq ě 0 with limtÑ8 ηptq “ 0 and ηp0q “ }IdG ´ J̃J}.

Since G and G̃ typically have different numbers of nodes, we generically can not demand J̃J “ IdG.
In the coarse graining setting above, J(“ JÓ) is not invertible as it maps from a larger to a smaller
graph. Hence in this setting J̃J(“JÒJÓ) will not have full rank and can thus in particular never equal
the identity IdG. We thus have suptě0 ηptq “ ηp0q “ }IdG ´ J̃J} ą 0 independent of L, L̃. In this
bidirectional setting, similarity between the two graphs is instead measured by how fast the difference
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between the respective diffusion processes on G and G̃ becomes negligible as diffusion
time t increases beyond the initial t “ 0; i.e. by how
fast ηptq decays to zero. Exemplarily , we plot ηwptq “

}e´Lt ´ JÒe´L̃tJÓ} for the coarse graining setting
of Figure 8: We have ηwp0q ” }IdG ´ JÒJÓ} “ 1
irrespective of the variable edge weight w (colored red
in Fig. 8). For fixed t ą 0, we see that ηwptq Ñ 0 as
w increases. Additionally, the decay ηwptq Ñ 0 for
increasing t is faster, the larger w is chosen. This is
congruent with our intuition: The stronger two nodes
are connected, the more they act as a single entity.

w

(a)

(b)

Figure 8: ηwptq-plot for graphs (a) & (b)

4 ESTABLISHING TRANSFERABILITY BETWEEN SIMILAR GRAPHS

We now characterize those filters and networks that are transferable between graphs that are similar in
the mono- and bidirectional diffusion sense of Definitions 3.1 & 3.2. A discussion of the alternative
setting where instead }L´ L̃} is small is provided in Appendix E. There, additional conditions on
filter functions are generically necessary to guarantee transferability (Gama et al., 2019; 2020).

4.1 LAPLACE-TRANSFORM-FILTERS

In the bidirectional setting of eq. (3), this e.g. means that we want our filter function gθ to satisfy

}gθpLq ´ JÒgθpLqJÓ} Ñ 0 if }e´Lt ´ JÒe´LtJÓ}tą0 Ñ 0. (4)

In other words deploying gθ on G should approximately result in the same outcome as first projecting
to G, then deploying gθ there and finally interpolating back to G if the two graphs are similar.
Typical polynomial filters (gθpLq “ θ0Id` θ1L` θ2L

2 ` ...) will not be able to satisfy (4): Here
the norm of the Laplacian L on the graph G tends to infinity as at least one of the weights inside
G tends to infinity (wmin

high Ñ 8). Hence we also have }gθpLq} Ñ 8 for any such polynomial filter.
Since on the coarse grained graph G the norm }gθpLq} ň 8 is constant, we have 8 Ð }gθpLq}{2 ď

p}gθpLq} ´ }JÒgθpLqJÓ}q ď }gθpLq ´ JÒgθpLqJÓ} for any polynomial gθ. Hence the difference
}gθpLq ´ JÒgθpLqJÓ} diverges and we can in particular never achieve }gθpLq ´ JÒgθpLqJÓ} Ñ 0.

To characterize the class of filters that can satisfy (4), we note that as per our assumption, at any
time t ą 0 the diffusion flows over the graphs G,G are similar. Such a similarity will persist If
we build up filters as a weighted sum of such diffusion flows that have progressed to various times
(gpL̃q „

ř

k ake
´tkL̃) and the coefficients takuk are not too large. If for each time individually

we have }e´Lt ´ JÒe´LtJÓ| ă δ, we can estimate }gpL̃q ´ JÒgθpLqJÓ} ď p
ř

k |ak|q ¨ δ by a
triangle-inequality argument. Making this idea precise, we hence make the following definition:

Definition 4.1. Let ψ̂ be a (generalized) function defined on r0,8q for which }ψ̂}1 :“
ş8

0
|ψ̂ptq|dt ă

8. A Laplace Transform Filter (LTF) ψ is any function defined as ψpzq :“
ş8

0
e´tzψ̂ptqdt.

The integral in Definition 4.1 defines the Laplace-Transform of the (generalized) function ψ̂ (c.f. e.g.
Widder (1941) or Appendix H.2 for an introduction). The result of applying such a Laplace transform
filter ψ to a characteristic operator L can then be represented as ψpLq “

ş8

0
ψ̂ptqe´tLdt. The term

generalized function ψ̂ is used in a distributional sense: We e.g. allow ψ̂ptq to be given as the dirac
delta distribution ψ̂δt0 ptq :“ δpt´ t0q with t0 ě 0. We provide a rigorous mathematical discussion
in Appendix H. Here we give two instructive examples of Laplace Transform Filters:

Example 4.2. Exponential basis functions: Considering ψ̂k “ δpt´ kt0q (t0 ą 0, k P N) yields
ψkpzq “ e´pkt0qz . Using this set ΨExp “ te´pkt0qzukPN a wide class of filter functions hθp¨q :“
ř

i θi ¨ψip¨q may be parametrized (c.f. Appendix H.2). Corresponding filters ψkpLq “ e´pkt0qL have
e.g. been used in (Wang et al., 2021; 2022) to construct convolutional networks on manifolds.

Example 4.3. Resolvent basis functions: Defining ψ̂k :“ p´tqk´1e´λt yields ψkpzq “ pz ` λq´k.
Using the set ΨRes “ tpz ` λq´kukPN yields a function class thθp¨q :“

ř

i θi ¨ ψip¨qu which was
theoretically investigated in Koke (2023) and is used for tasks such as node classification (Levie et al.,
2019c) or molecular property prediction (Batatia et al., 2024).

5
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4.2 ESTABLISHING SINGLE FILTER TRANSFERABILITY

The fact that Laplace transform filters arise as an integral over diffusion processes that have progressed
to various times t P r0,8q, indeed endows such filters with the desired transferability properties:
Theorem 4.4. As we prove in Appendix H.3, we find for the transferability of a single filter ψ that:

• }JψpLq ´ ψpL̃qJ} ď }ψ̂}1 ¨ suptě0 }Je´Lt ´ e´L̃tJ} in the monodirectional setting.

• }ψpLq ´ J̃ψpL̃qJ} ď
ş8

0
|ψ̂ptq| ¨ }e´Lt ´ J̃e´L̃tJ}dt in the bidirectional setting.

In the monodirectional setting of Definition 3.1, }ψ̂}1 determines the stability constant, while the
generalized diffusion distance suptě0 }Je´Lt ´ e´L̃tJ} measures graph-similarity. Here no further
restrictions on filter functions need to be imposed to guarantee (mono-directional) transferability.

In the bidirectional setting of Definition 3.2, transferability is determined by the interplay of the
difference }e´Lt ´ J̃e´L̃tJ} “ ηptq and the (generalized) function ψ̂ptq. As we observed in Fig. 8,
we generically have 0 ă ηp0q „ 1 (as opposed to ηp0q ! 1), with a decay to zero for increasing t.

Hence transferability for a filter ψ is worse (i.e. the difference }ψpLq ´ J̃ψpL̃qJ} is larger), the
more the (finite) mass of ψ̂ is concentrated towards the origin. In particular if ψ̂ptq “ δptq, we have
ş8

0
|ψ̂ptq|ηptqdt “ ηp0q “ }IdG ´ J̃J} ě 0. Thus for filters to be transferable in the bidirectional

setting, the generalized function ψ̂ may not contain any dirac-delta at t “ 0. As we show in Appendix
H.4, this is equivalent to demanding decay of the resulting filter function ψ to zero at infinity:

Corollary 4.5. Consider a sequence of graphsGn for which }e´Lnt´J̃ne
´L̃tJn}|tą0 Ñ 0. Then for

a Laplace transform filter ψ, we have }ψpLnq ´ J̃nψpL̃qJn}| Ñ 0 if and only if limrÑ8 ψprq “ 0.

Here Jn, J̃n denote projection and interpolation operators for the nth graph Gn in the sequence
tGnun. As a consequence of Corollary 4.5 only filter functions satisfying limrÑ8 ψprq “ 0
guarantee bidirectional transferability. When expanding filters as hθpLq :“

ř

k θk ¨ ψkpLq (c.f.
Section 2.2) and using Exponential- or Resolvent basis- functions (c.f. Examples 4.2 & 4.3), this
e.g. means that including the k “ 0 term will (only) result in monodirectional transferability, while
excluding it will additionally also result in bidirectional transferability.

4.3 TRANSFERABILITY AFTER FILTER COMPOSITION: THE NETWORK LEVEL

We now combine filters into entire spectral convolutional networks (c.f. Section 2.3). We will assume
that the basis functions Ψ “ tψiuiPI utilized in equation (2) are given as Laplace Transform Filters
such as the ones introduced in Examples 4.2 & 4.3. For such LTF-based architectures, we then
derive transferability guarantees in terms of the learned weights & biases and – importantly – the
transferability properties these basis functions tψiuiPI utilized inside the networks.

4.3.1 NODE-LEVEL TRANSFERABILITY

At the node level, we are interested in transferring generated node-embeddings between graphs.

Monodirectional Transferability: In this setting we start by considering initial node-features X
on G. We then consider two ways of generating embeddings on the graph G̃: On the one hand, we
may first generate node embeddings ΦpXq on G and then transfer the result to G̃ to obtain node
embeddings JΦpXq there. On the other hand, we may first transfer the original node-features X
on G to the graph G̃ yielding JX . Then we may generate node-embeddings on G̃ using the same
network Φ there, yielding ΦpJXq. For the difference between these node-embeddings, we find:
Theorem 4.6. Let ΦW ,B,Ψ be a K-layer deep LTF-based network. Assume

ř

iPI }W ℓ
i } ď W and

}Bℓ} ď B. Choose C ě }ΨipL̃q} (i P I) and w.l.o.g. assume CW ą 1. Assume ρpJXq “ JρpXq.
If biases are enabled, assume J1G “ 1G̃. Then we have with δ “ maxiPIt}JψipLq ´ ψiprLqJ}u:

}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ δ.
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We prove Theorem 4.6 in Appendix H.7. We see that transferability is determined by the sizes W,B
of learned weight and bias matrices, the network depth K as well as the transferability error δ of the
individual basis functions. The constant C is typically of order one (e.g. in Examples 4.2 & 4.3)).
Stated conditions might be relaxed (e.g. to J and ρ only almost commuting) at the cost of larger
stability constants. Nevertheless, the commutativity assumption for J and ρ is e.g. satisfied for the
coarse-graining example of Section 3. Similarly J1G “ 1

rG is satisfied in this setting. If directed
graphs are considered, it however need not be fulfilled, as we discuss further in Appendix I.3: There
exist situations for which networks without biases are transferable while networks with biases are not.

Bidirectional Transferability: Here we compare node embeddings ΦpXq generated on G with
node-embeddings generated by first projecting to G̃, applying Φ there and then translating back to G.
Theorem 4.7. Let ΦW ,B,Ψ be a K-layer deep LTF-based network. Assume that

ř

iPI }W ℓ
i } ď W

and }Bℓ} ď B. Choose C ě }ΨipLq}, }ΨipL̃q} (i P I) and w.l.o.g. assume CW ą 1. Assume
ρpJ̃X̃q “ J̃ρpX̃q and if biases are enabled, assume rJ1

rG “ 1G. Set maxiPIt}ψipLq´J̃ψiprLqJ}u “

δ1 and define δ2 “ maxiPIt}ψipL̃qrJJ̃ ´ IdG̃s}u. With this, we have that

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ pδ1 ` δ2q.

Here we additionally demand that maxiPIt}ψipL̃qrJJ̃ ´ IdG̃s}u “ δ2 is small to establish transfer-
ability. This is e.g. true in the coarse graining example of Section 3, where JJ̃ “ JÓJÒ “ IdG (as
opposed to the opposite pairing JÓJÓ ‰ IdG). In general demanding }ψipL̃qrJJ̃ ´ IdG̃s} ! 1 is
however a much weaker condition than rJJ̃ ´ IdG̃s “ 0. We discuss this further in Appendix H.7.

4.3.2 GRAPH LEVEL TRANSFERABILITY

Beyond node level tasks, one might also consider graph level tasks, where entire graphs are embedded
into latent spaces. We first specify how graph-level latent embeddings arise:
Definition 4.8. We aggregate embeddings X P RNˆF of individual nodes to graph-embeddings
ΩpXq P RF as ΩpXqj “

řN
i“1 |Xij | ¨ µi. Here tµiui is the set of node-weights (c.f. Section 2.1).

Given such an aggregation of node embeddings into latent-embeddings of entire graphs, we may then
relegate graph-level transferability back to node-level transferability. We have (c.f. Appendix H.8)):
Theorem 4.9. Assuming ΩpJXq “ ΩpXq, we have in the setting of Theorem 4.6 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq} ď }JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq}.
Assuming ΩpX̃q “ ΩpJ̃X̃q, we have in the (bidirectional) setting of Theorem 4.7 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq} ď }ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}.

The consistency assumption ΩpJXq “ ΩpXq clearly need only be satisfied on the output of the
node-level network Φ; where it is e.g. satisfied for the coarse graining example of Section 3.

5 EXAMPLE SETTINGS AND VALIDATION OF THEORETICAL FINDINGS

Having established our theoretical results, we now showcase how they are applicable in practice.

5.1 GRAPH-LEVEL TRANSFERABILITY BETWEEN RESOLUTIONS

Let us first revisit our earlier example of graphs G,G describing the same underlying object at
different resolution scales (c.f. Section 3): One original resolution-scale and one ’coarse-grained’
scale, where (typically strongly connected) clusters within G are aggregated to single nodes in G.

Transferability of LTF-based networks: To numerically investigate transferability of LTF-based
networks in this multi-resolution setting above, we make use of the QM7 dataset (Rupp et al., 2012),
consisting of graphs of organic molecules containing both hydrogen and heavy atoms. Prediction
target is molecular atomization energy. Each molecule is represented by a weighted adjacency matrix,
whose entries Aij “ ZiZj ¨ |x⃗i ´ x⃗j |

´1 correspond to Coulomb repulsions between atoms i and j.

7
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From a physical perspective, describing a molecule at the level of interacting atoms corresponds
to a specific choice of resolution scale: Interactions of individual protons and neutrons inside the
individual atomic nuclei are discarded. Instead only an aggregate description is used and each nucleus
is described by a single node. In order to test GNN-transferability between graphs describing the
same object at different resolutions, we additionally also consider a version of QM7 where we lower
the resolution scale even further: Here we aggregate each heavy atomic core additionally together
with its surrounding single-proton hydrogen atoms into super-nodes. Appendix J.1 provides exact
details. We might interpret this QM7coarse dataset as a model for data obtained from a resolution-
limited observation process unable to resolve positions of individual (small) hydrogen atoms and
only providing information about how many hydrogen atoms are bound to a given heavy atom.

We then consider two architectures using Laplace transform filters (LTF-Exp & LTF-Res) based on
the exponential and resolvent basis-functions introduced in Examples 4.2 & 4.3. We also investigate
transferability properties of typical types of GNN architectures: We represent message-passing
architectures through GCN, attention based methods via GATv2 and simple and advanced spectral
methods via ChebNet and BernNet respectively. Pooling methods are represented through SAG. As
our experiment considers graphs on different resolution scales, we also investigate transferability
of methods whose propagation scheme is inherently multi-scale (SAG-M, UFGNet, Lanczos and
PushNet). Using the high-resolution graphs tGu of QM7 and the low-resolution graphs tGu in
coarsified-QM7, we then investigate the transferability of GNNs by confronting models during
inference with a resolution-scale different from the one they were trained on. Table 1 collects results.

Mean-absolute-errors (MAEs) made dur-
ing inference increase significantly for
methods not employing Laplace trans-
form filters, when going from a same-
resolution setting to a cross-resolution
setting. Standard architectures are not
transferable in the considered setting.
While also such methods can enjoy
transferability properties (Ruiz et al.,
2020; Roddenberry et al., 2022; Le &
Jegelka, 2023), corresponding guaran-
tees have only been established in the set-
ting of large graphs and thus do not apply
here. As we see, also employing com-
mon multi-scale propagation schemes
does not result in transferability. Cross-
resolution MAEs of such methods are
among the largest (of order 102-103).

Table 1: Regression using high- and low-resolution QM7

Mean Absolute Error (Ó) on QM7 [kcal/mol]

Training High Resolution Low Resolution

Inference
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution

GCN 125.34˘2.47 63.17˘0.92 67.75˘3.73 380.51˘30.33

GATv2 415.09˘96.5748.41˘19.20 60.01˘3.34 245.03˘90.97

ChebNet 568.47˘37.70 64.63˘1.21 64.90˘4.55339.64˘101.30

SAG 542.16˘27.33 68.43˘1.93104.20˘3.92 506.75˘60.57

BernNet 765.22˘495.2883.76˘21.75 90.52˘37.17594.62˘341.55

SAG-M 285.53˘95.54 66.22˘4.51 73.57˘14.57 307.67˘77.24

UFGNet 620.21˘4.80 13.71˘1.05 24.53˘4.80156.44˘156.44

Lanczos 939.87˘16.35 10.55˘3.22 83.11˘5.27654.61˘529.13

PushNet 2442.59˘303.27 60.94˘1.83 69.25˘3.11 124.08˘3.94

LTF-Res 16.54˘3.01 16.53˘3.03 15.79˘0.98 13.80˘1.34

LTF-Exp 16.37˘1.71 16.36˘2.16 16.25˘1.41 16.25˘1.41

MAEs of LTF-based methods do not increase when going from a same- to a cross-resolution setting:
Networks based on Laplace transform filters are transferable. In cross-resolution settings, MAEs of
LTF-Res and LTF-Exp are lower than that of other methods by a factor of order at least 101 but up
to 102. Interestingly LTF-Res’s best performance is achieved when trained on low-resolution data
and deployed on high resolution test-data; a setup is likely to occur in real-life settings without high-
quality training-data. We can understand these transferability results from a diffusion perspective:

Figure 9: ηptq-plots

Numerically evaluating the left hand side of eq. (4) for graphs G in
QM7 and G in QM7coarse, we find that e.g. }e´tL ´ JÒe´tLJÓ}|tě1 À

10´1. When investigating the differences }e´tL ´ JÒe´tLJÓ} ” ηptq
of diffusion flows, we find that ηptq drops to zero fast, as exemplarily
plotted in Fig. 9 for the first few molecules of QM7. Thus from the the
perspective of diffusion, original molecular graphs G and correspond-
ing coarse grained graphs G are close to each other. The transferability
theory developed in Section 4 then explains the transferability of LTF-
based networks in Table 1 (c.f. also the discussion in Appendix J.2).

Continuity of LTF-based Networks: We now probe the properties of LTF-based networks even
further: Theorem 4.9 guarantees that if a sequence of graphs tGnun converges to a limit graph G in
the diffusion-flow sense (i.e. ηptq|tą0 of Definition 3.2 approaching the constant-zero-function), the
embeddings tFnun generated for the graphs tGnun will converge to the latent embedding F of G.
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Equation (4) now guarantees, that increasing edge-weights within the components of Gcluster
that are being collapsed into single nodes produces graphs
tG̃u that converge (in the diffusion sense) to the coarse-
grained graph G. This is of course desirable: The stronger
the connectivity within the connected components of
Gclsuter, the more it is justified to treat them as the (super-
)nodes making up G (c.f. Section 3). To numerically verify
the convergence of corresponding latent embeddings we
modify the molecular graphs of QM7 again: We now de-
flect hydrogen atoms (H) out of their equilibrium positions
towards the respective nearest heavy atom. This then in-
troduces a setting precisely as discussed: Edge-weights
Aij “ ZiZj ¨ |x⃗i ´ x⃗j |

´1 between heavy atoms remain
the same, while those between H-atoms and nearest heavy
atomic nuclei increasingly diverge. We then compare em-
beddings tF u generated for coarsified graphs tGu, with
embeddings tF̃ u of graphs tG̃u where hydrogen atoms
have been deflected. As is evident from Figure 10, the
transferability error of LTF-Res and LTF-Exp converges
towards zero. We might thus think of LTF-based models Figure 10: Latent distance }F̃ ´ F }

as continuously mapping from the space of graphs (equipped with the diffusion-flow topology) to the
Euclidean latent space. For other models, the latent distance }F̃ ´ F } does not tend to zero. Thus
these models can not be considered continuous. As we explore further in Appendix K, the underlying
reason is that as G̃ Ñ G in the diffusion-flow sense, information propagation inside such models is
more and more governed by an effective propagation graph which is decidedly different from G.

5.2 NODE LEVEL TRANSFERABILITY AND GRAPHS WITH VARYING CONNECTIVITY

We next consider popular citation networks (c.f. Appendix
J.5 where each node corresponds to a piece of scientific
writing. Labels correspond to the academic discipline of
the paper and an edge implies a citation. We then expand
individual nodes into connected k-cliques (c.f. Fig. 11).
We might interpret this as further dissecting each article
into subsections, which reference each other.

(a) (b)

Figure 11: Individual nodes (a) replaced
by k-cliques (b)

Figure 12: Node-Classification-Accuracy (Ò) and uncertainty (for 100 runs) vs. clique size.

Both typical models (c.f. Appendix J.5) and LTF-based methods were then trained on the same
(k-fold expanded) train-set and asked to classify nodes in the (k-fold expanded) test-partition. The
classification accuracy of methods not employing Laplace Transform filters decreases significantly
with increasing clique size (c.f. Fig. 12). We can understand the underlying reason for this using
GCN as an Example (c.f. Appendix K for other methods): Inside a GCN-layer, a node feature matrix
X is updated as X ÞÑ ÂXW , with the renormalized adjacency matrix Â given as Âij „ Aij{

a

didj .
As the degree di of each node increases (linearly) with increasing clique-size k, the message-strength
Âij between the respective cliques decreases as Âij „ 1{k. Hence information propagation between
the cliques becomes disrupted as k increases: GCN is more and more transferable between the
given graph and a modified version where edges between cliques are removed. This is not the case
for LTF-based networks since from a diffusion perspective, original- and disconnected graphs are
not similar (c.f. Fig. 4). Hence such models are able to propagate information also between high
connectivity areas and thus are able to retain a high classification accuracy.

9
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5.3 TRANSFERABILITY BETWEEN GRAPHS DISCRETIZING A COMMON MANIFOLD

The concept of operators capturing the geometry of underlying spaces also applies to manifolds M,
where the Laplace-Beltrami operator ∆M can be thought of as a continuous analogue of the Graph
Laplacian (Hein et al., 2006). This is hence is a prime setting for studying transferability. Counter to
previous works (Levie et al., 2019a; Wang et al., 2021), our diffusion framework here allows to derive
transferability guarantees beyond the settings of bandlimited signals and probabalistic guarantees:
We consider the setting of two graphs G1, G2 discretely approximating the same
manifold (c.f. e.g. Fig. 13). This can be made mathematically precise using
the concept of generalized norm resolvent convergence (c.f. e.g. (Post, 2012)
for a discussion). Here we note the following: Given projection operators JÓ

i

mapping from M to Gi and interpolation operators JÒ

i mapping from Gi to
M, we may measure the difference }e´t∆M ´ JÒ

i e
´tLiJÓ

i } ď δi in diffusion
flows on the respective spaces. The fidelity of the discrete approximation is then
essentially determined by the size of δi ! 1. As discussed in detail in Appendix
I.2, we have in this setting:

}e´tL1 ´ pJÓ
1J

Ò
2 qe´tL2pJÓ

2J
Ò
1 q} À pδ1 ` δ2q (5)

Figure 13: Torus
Discretizations

# Nodes N
Figure 14: Transferability error E “ }Φ1pJÓ

1fq ´ pJÓ
1J

Ò
2 qΦ2pJÓ

2fq} vs. # Nodes N “ |G2| “ 4|G1|

If δ1, δ2 ! 1, the graphs G1 and G2 are thus bidirectionally similar in the sense of Definition 3.2.
As an Example, we prove in Appendix I.2 that for the regular grid discretisation of the Torus and
judiciously chosen translation operators JÒ

i J
Ó

i , we have }e´t∆M ´ JÒ

i e
´tLiJÓ

i }|tą0 ď δi Ñ 0 as the
number of nodes in the approximating graphs Gi is increased. Given a fixed input signal f P L2pMq

on the Torus M, eq. (5) together with Theorem 4.6 then implies that thus also the transferability
error E “ }Φ1pJÓ

1fq ´ pJÓ
1J

Ò
2 qΦ2pJÓ

2fq} tends to zero as N increases. This error E measures the
difference between sampling the signal f on M to G1 and passing it through a GNN there, versus
sampling f to G2, applying the GNN on G2 instead and subsequently transfering the output to G1.
To numerically verify, that this transferability error indeed tends to zero for LTF-based methods, we
fix the number of nodes as N “ |G2| “ 4|G1| in the respective graphs. We then plot E as a function
of the number of nodes N for randomly initialized networks, with uncertainty calculated over 100
initializations. Appendix J.6 contains additional details. As evident from Fig. 13, the transferability
error for LTF-based methods tends to zero as N is increased. Additionally transferability errors of
LTF-based methods are consistently two orders of magnitude smaller than those of other networks.

6 CONCLUSION

We developed a novel approach to transferability based on the intrinsic notion of diffusion on graphs,
which considers graphs to be similar if their rough overall structures align. Transferability of entire
networks in this setting was relegated to the filter functions employed inside their convolutional
blocks. A rigorous analysis established that when the rough overall information whithin graphs is
paramount, networks are transferable if filters arise as Laplace transforms while other filter choices
will not lead to transferability. In example settings – including settings not covered by other already
established approaches to transferability – this was then confirmed numerically.
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A NOTATION

We provide a summary of employed notational conventions:

Table 2: Notational Conventions

Symbol Meaning
G a graph
G Nodes of the graph G
E Edges of the graph G
N number of nodes |G| in G
G Coarse grained version of graph G
µi weight of node i
M weight matrix
x¨, ¨y inner product
A (weighted) adjacency matrix
Din/out in/out-degree matrix
Lin in-degree graph Laplacian
L,∆ Graph Laplacian
∆M Manifold Laplacian / Laplace Beltrami operator
νpLq departure from normality of L
σpLq spectrum (i.e. collection of eigenvalues) of L
h a filter function
hpLq function h applied to operator L
Ψ a filter bank
ψi an element of a filter-bank
JÓ, JÒ projection and interpolation operator
J, J̃ intertwining operators
Φ map associated to a graph convolution network
Ω graph-level aggregation mechanism
Zi atomic charge of atom corresponding to node i
x⃗i Cartesian position of atom corresponding to node i
ZiZj

|x⃗i´x⃗j |
Coulomb interaction between atoms i and j

|x⃗i ´ x⃗j | Euclidean distance between xi and xj

B FURTHER DISCUSSION OF EXISTING APPROACHES TO TRANSFERABILITY

In this section we provide further details on existing approaches to transferability of graph neural
networks:

Graphon Neural Networks and the Transferability of Graph Neural Networks (Ruiz et al., 2020):
This seminal work explores the theoretical underpinnings of Graph Neural Networks (GNNs) in the
context of graphons, a mathematical generalization of graphs to large-scale, continuous structures.
The paper establishes a connection between GNNs and graphons, providing insights into the behavior
of GNNs on large, dense graphs (|E | is of OpN2q, with N the number of nodes (Le & Jegelka, 2023))
by modeling these graphs as graphons. This framework helps understand how GNNs operate in the
limit of large graphs and their potential to generalize across different graph structures in this realm. A
central focus of the paper is the transferability of GNNs—specifically, their ability to perform well
on large graphs that may differ in size or topology from those seen during training. Transferability
errors between graphs discretizing the same graphon are established to be of OpN´ 1

2 q, with N the
minimum number of nodes. Assumptions on considered filter functions are that they are bounded and
Lipschitz continuous (c.f. AS2 on page 6; ibid.).

Transferability of Graph Neural Networks: an Extended Graphon Approach (Maskey et al.,
2021): This work is in spirit similar to (Ruiz et al., 2020) whose results it extends from considering
the adjacency matrix as the graph shift operator to more general graph shift operators and from
considering only polynomial filters to allowing for general continuous filter functions.
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Limits, approximation and size transferability for GNNs on sparse graphs via graphops (Le
& Jegelka, 2023): In contrast to approaches using graphons, which focus on large dense graphs,
this paper instead focuses on transferability on sparse graphs (|E | “ OpNq). The paper makes use
of the concept of Graphops, a mathematical operator that can be used to model how GNNs behave
on large sparse graphs. This operator helps analyze the limit behavior of GNNs, capturing the way
information is propagated through large sparse graph structures.

One of the focuses of the paper is size transferability, which refers to the ability of a GNN to
generalize across graphs of different sizes. The authors explore how GNNs can transfer learned
representations from smaller, sparse graphs to larger ones, and vice versa. By leveraging the Graphop
framework, the paper formalizes conditions for successful transferability between graphs of varying
sizes.

On Local Distributions in Graph Signal Processing (Roddenberry et al., 2022): Thiw work is
rooted in the field of graph signal procesing (GSP) and puts a particular emphasis on the transferability
of GSP techniques across different graph structures. The paper focuses on the concept of graphings,
which are a probabilistic framework for representing large sparse graphs and their underlying
structures.

The paper investigates how local signal behaviors, defined by local distributions over neighborhoods
in a graph, can be transferred from one graph to another. Specifically, it formalizes how GSP
techniques—such as filtering and node classification—can be transferred to graphs that are not
identical but share similar local structures.

By modeling large graphs through graphings, the authors provide a framework that makes it possible
to generalize local distributions and signal processing tasks across different graphs.

Graph Convolutional Neural Networks via Scattering (Zou & Lerman, 2020) This work
provides a different perspective on Graph Convolutional Networks (GCNs) by connecting them to
scattering transforms, a concept from signal processing. The authors demonstrate that GCNs can
be interpreted as a discrete graph counterpart of scattering transforms, which involve multi-scale
wavelet-like operations that capture hierarchical information across different levels of graph structure.
This connection highlights the multi-scale nature of GCNs, similar to scattering transforms, which
analyze signals at varying resolutions.

A key focus of the paper is the stability of GCNs when viewed through the scattering framework.
The authors argue that scattering transforms offer a more stable approach to graph signal processing
compared to traditional GCNs, especially in the presence of noisy or incomplete graph data. The
multi-layer structure of GCNs, when interpreted as a series of scattering operations, allows for more
robust signal propagation across the graph, making GCNs less sensitive to perturbations in the graph
topology.

By linking GCNs with scattering transforms, the paper provides both a theoretical foundation for
understanding GCNs’ operations and an approach to improving their robustness and interpretability
in graph-based learning tasks.

Derived single filter transferability results depend on spectral properties of the utilized Laplacians on
the respective graphs. The conditions on the spectrum also arise from a Lipschitz type approach to
bounding differences, where the difference }ψpLq ´ ψpL̃q} is then via a triangle inequality argument
reduced to bounding each term }ψpλkquku

⊺
k ´ ψpλ̃kqũkũ

⊺
k} individually. This is done in eq.s (64)

and (68) respectively, which are condingent the there stated spectral restrictions.

Limitless transferability for graph convolutional Networks (Koke, 2023): This work studies
stability- and transferability proeprties of spectral graph neural networks, with a particular focus
on directed graphs. In spirit, it is the closest to our work here, as one of the main class of filters it
investigates is the class of resolvent based filter functions which constitute an example (i.e. Example
4.3) of the more general class of Laplace transform filters considered in this present work.

Stability to Deformations of Manifold Filters and Manifold Neural Networks (Wang et al.,
2024a) :
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This work explores the theoretical foundation of manifold filters and manifold neural networks
(MNNs), focusing on their transferability across manifolds. Similarly to the filters analyzed in the
present work, manifold filters are defined in terms of Laplace transforms. By framing graph neural
networks (GNNs) as discrete approximations of MNNs, the authors analyze conditions under which
MNNs remain stable under smooth deformations of the manifold.

Stability is shown to depend on specific spectral properties of the filter functions, including Lipschitz
continuity and integral Lipschitz continuity, which control the trade-off between robustness and
frequency discriminability. The paper establishes that filters meeting these conditions can generalize
effectively to new manifolds by adapting to changes in the Laplace-Beltrami operator’s spectrum.

More techicalle, filters are bounded as |ψpLq ´ ψpL̃q| ď K}L ´ L̃}. In Theorem 2 absolute
perturbations are considered (L̃ “ L ` A), in Theorem 3 relative perturbations are considered
(L̃ “ L` EL). In both cases the conditions on spectrum and filter functions stem from the fact that
Lipschitz-ness does not directly translate to operator Lipschitz-ness when measured in spectral norm
(see e.g. Wihler (2009) for a discussion).

Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-
offs (Wang et al., 2024b): Here instead of measuring the linear norm difference }LP ´ LP }

between a graph Laplacian L and a manifold Laplacian L (which generically would be infinite
as L is an unbounded operator), the difference of the action of these operators on eigenfunctions
(}LPϕ´ LPϕ}). After a triangle inequality argument, one term that has to be bounded in order to
bound the difference in filter outputs is }ϕni ´ϕi} of the ith eigenfunction and eigenvector respectively.
The fidelity of this approximation depends on spectral separation properties (c.f. Theorem 4 ibid.),
which hence leads to the requirement that the spectrum be α-separated. This requirement can thus be
considered an artifact of considering the linear approximation }ϕni ´ ϕi} for each eigenfunction. In
contrast, in our approach (c.f. Appendix F.2) the notion of approximation of the Laplacian on the
underlying manifold is different. We bound the quantity }JÒe´tLJÓ ´ e´t∆} instead. Hence we do
not need to bound differences between individual eigenfunctions and eigenvectors and hence avoid
dependencies on spectral separations.

Transferability of Spectral Graph Convolutional Neural Networks (Levie et al., 2019a): As one
of the earliest works challenging the then prevailing belief that spectral methods are not transferable,
this work was among the first to present theoretical proofs and experimental evidence to demonstrate
that these methods can generalize effectively under certain conditions.

The key contribution is a theoretical framework in which transferability depends on how well graphs
approximate a shared underlying continuous domain, such as a topological space or metric-measure
space. Many graph convolutional networks are then shown to have "principle transferability" in this
setting, meaning that their ability to generalize is built-in and does not rely on additional training.
The analysis introduces the transferability inequality, which bounds the generalization error of filters
based on the graph Laplacian’s approximation quality and sampling consistency.

The study also develops sufficient conditions for achieving low transferability errors, demonstrating
that spectral ConvNets can perform consistently across graphs with varying sizes, topologies, and
dimensions, provided the graphs discretize the same continuous domain.

As in our work, filters here are only required to be bounded and Lipschitz continuous (c.f. Theorem
17 ibid.). However, signals are assumed to be bandlimted. We avoid Levie’s growth of the stability
constant with the number of considered eigenvalues (c.f. the discussion towards the end of page
12 ibid.) by avoiding approximations of individual eigenfunctions and instead approximating the
bounded operator e´t∆ directly.

Diffusion Scattering Transforms on Graphs (Gama et al., 2019): This work emphasizes the
stability of scattering-based representations against perturbations in graph topology and reindexing.
By extending the concept of scattering transforms to graph-structured data, the framework introduces
diffusion scattering transforms that leverage diffusion operators to capture multi-scale hierarchical
features of graph signals.

The authors focus on ensuring that the transforms are robust to changes in graph structure, such as
modifications to edge weights or topology. Stability is achieved through the use of diffusion wavelets,
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which provide a principled way to construct graph filters that are invariant to local perturbations while
retaining sensitivity to meaningful global graph features. The stability analysis demonstrates that the
scattering transform bounds the impact of graph perturbations in terms of the changes they induce in
the graph Laplacian’s spectrum, ensuring reliable performance across varied graph inputs.

Here the dependence in Theorem 5.3 on the ’spectral gap’ as defined before Proposition 4.1 comes
from the Lipschitz type argument used in eq. (48).

Stability Properties of Graph Neural Networks (Gama et al., 2020): This paper investigates
the stability properties of Graph Neural Networks (GNNs) to perturbations in the underlying graph
structure. The authors analyze how small changes in graph topology— such as modifications to edge
weights, addition or deletion of edges, or reindexing of nodes—affect the outputs of GNNs.

The paper develops a rigorous mathematical framework to assess the stability of GNNs using tools
from spectral graph theory. It establishes that GNNs are stable to localized perturbations in the graph
topology, with the degree of stability depending on the spectral properties of the graph filters used
within the network. Specifically, it is shown that GNNs exhibit a trade-off between stability and
discriminability: filters that are more stable to perturbations may sacrifice sensitivity to high-frequency
information, which can limit their ability to differentiate fine-grained graph structures.

Here as well, Lipschitz type arguments are being used (See e.g. the assumptions of Theorem 1)
to establish single filter transferability. Since scalar Lipschitzness does not translate to operator
Lipschitzness under spectral norm, additional restrictions on spectrum and filter functions need to be
hence imposed.

Following this, the authors highlight the importance of filter design in achieving a balance between
robustness and expressivity. Filters that adhere to conditions such as Lipschitz continuity or integral
Lipschitz continuity are particularly effective in maintaining stability while preserving key graph
features.

C COMPARISON OF DIFFUSION SIMILARITY WITH STANDARD
NORM-SIMILARITY

In contrast to previous works, we do not use the norm difference ||L´ L̃|| to measure graph similarity.
Instead, the distance measure we are considering is the diffusion distance

dpL, L̃q “ sup
tě0

||e´tL ´ e´tL̃||,

introduced by Hammond et al. (2013).

From a spectral perspective, the key idea here is that including the exponential into the distance
metric leads to an (exponential) suppression of large eigenvalues of L and L̃. Information encoded
into these large eigenvalues (and corresponding eigenspaces) corresponds to fine structure details of
the graphs G and G̃ (c.f. e.g. Chung (1997)).

Suppressing this fine-structure information before taking a distance measurement effectively leads
to a comparison that is predominantly determined by the coarse structures within the graphs. If
the rough structures within the two graphs are similar, the distance between the two graphs will
then be relatively small. Thus this metric is adapted to considering graphs that are similar up to
fine-structure variations to be close to each other. This is the setting we are interested in when
considering transferability, so that this distance measure is adapted to this setting of transferring
filters between approximately similar graphs (see also the discussion in Section 3).

In the original pape that first introduced this notion of graph similarity (Hammond et al., 2013), the
authors showed diffusion distances (dp¨, ¨q) to be a well defined metric on the space of graphs. Here,
’metric’ is used in the strictly mathematical sense (i.e. satisfying the defining properties of positivity,
symmetry and the triangle inequality). Hence the notion of diffusion similarity equips the space of
graphs with a well defined (metric-)topology. This topology respects the one induced by Euclidean
norms: If }Ln ´ L} Ñ 0 for one (and hence all) Euclidean norm, then also dpLn, Lq Ñ 0.
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At the same time, the metric dp¨, ¨q arising from diffusion similarity is able to capture more general
settings of graph similarity: One example is a sequence of graphs where the connectivity in certain
subgraphs increases (c.f. Section 3.2). Such a sequence does not converge in any Euclidean norm.
However, in the diffusion-distance metric it is Cauchy and hence also convergent. The limit is a
coarse grained graph, where strongly connected clusters are collapsed to single nodes. Thus this
diffusion based metric is e.g. naturally able to capture convergence to graphs of reduced size.

Additionally, the notion of diffusion similarity is not limited to the setting of coarse-graining graphs.
Other examples settings captured by this notion of diffusion similarity are rewiring operations in
graphs, the inclusion of subgraphs, or graphs discretizing the same ambient space. Additionally the
notion of diffusion similarity naturally extends to directed graphs.

Hence it is indeed fair to conclude that diffusion similarity is a well-adapted and widely applicable
notion of graph similarity.

D DISCUSSION OF ’RESTRICTED SPECTRAL SIMILARITY’ (LOUKAS, 2019)
AND IMPLICATIONS IN THE GRAPH COARSENING SETTING

A well established notion of graph similarity is that of ’Restricted Spectral Similarity’ (Loukas,
2019).

This notion is adapted to approximations of properties of a graph through a reduced version while
preserving its fundamental spectral characteristics within a restricted subspace. This measure extends
the concept of spectral similarity, commonly used in graph sparsification, to scenarios where the
reduced graph has fewer vertices than the original, thus operating on a lower-dimensional space.

Spectrally restricted similarity ensures that the eigenvalues and eigenspaces of the reduced graph
closely align with those of the original graph for a specified subset of eigenmodes. This property
guarantees that critical features, such as cuts and the behavior of algorithms reliant on spectral
embeddings (e.g., spectral clustering), remain well-approximated in the reduced graph. Theoretical
results demonstrate that preserving this restricted spectral similarity leads to robust graph reduction
techniques that maintain essential graph properties and enable the effective use of the reduced graph
for tasks like unsupervised learning or partitioning.

In the context of the setting in our paper, restricted spectral similarity is almost able to guarantee
transferability between an original graph and its coarse grained version:

Consider two graphs L and Lc. Using the notation of ’Andreas Loukas, Graph reduction
with spectral and cut guarantees’, we are interested in bounding the difference in filter outputs
}gpLq ´ P ⊺gpLcqP }. Let us exemplarily consider the case gpzq “ e´z (corresponding to
ĝptq “ δpt´ 1q).

Denote by Q,Qc the spectral projections onto the first k eigenvectors of L,Lc respectively. Denote
by Q̃, Q̃c the respective spectral projections onto the remaining eigenvectors of the respective two
operators.

We may first observe that we may reduce the problem to considering only the first k eigenvectors of
the respective operators:

}gpLq ´ P ⊺gpLcqP } “ }e´L ´ P ⊺e´LcP }

“ }Qe´LQ´ P ⊺Qce
´LcQcP } ` }Q̃e´LQ̃´ Q̃c P

⊺e´LcQ̃cP }

ď }Qe´LQ´ P ⊺Qce
´LcQcP } ` maxte´λpk`1q , e´λc,pk`1q u

“ }Qe´LQ´ P ⊺Qce
´LcQcP } ` Opϵq.

We may decompose Q e´LQ into a sum over one dimensional eigenspaces as

Qe´L Q “

k
ÿ

i“1

e´λivixvi, ¨y

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

with eigenvectors tvkuk.

Similar considerations also hold for the coarse grained graph. Using this, we find

}Qe´LQ´ P ⊺Qce
´LcQcP }

ď}

k
ÿ

i“1

pe´λi ´ e´λc,i qvi xvi, ¨y } ` }

k
ÿ

i“1

pe´λipvi xvi, ¨y ´ P ⊺vc,i x vc,i , P ¨y q }

The first term is then bounded by a small quantity, as Theorem 13 of ’Andreas Loukas, Graph
reduction with spectral and cut guarantees’ guarantees that λi « λc,i for i ď k.

For the second term we note that we may bound

}

k
ÿ

i“1

pe´λipvi xvi, ¨y ´ P ⊺vc,i x vc,i , P ¨y q } ď } Q´ P ⊺QcP }.

If we could bound this term by a small quantity, we would be done. In ’Andreas Loukas, Graph
reduction with spectral and cut guarantees’ such an alignment between the eigenspaces of L and
the lifted eigenspaces of Lc is attacked from the direction of canonical angles. This uses machinery
introduced in Davis & Kahan (1970).

The canonical angle operator introduced there (and utilized in Loukas (2019) is defined as

Θ “

ˆ

Θ0 0
0 Θ1

˙

with Θ0,Θ1 defined in eq. (1.16) of There it is then established (c.f. ibid. page 10) that
} Q˘P ⊺QcP } “ } sinpΘq}. Hence, had we bounds on the entirety of Θ, we would be done.
In ’Andreas Loukas, Graph reduction with spectral and cut guarantees’, a bound on Θ0 is provided
(c.f. ibid. Theorem 14). However, without an additional bound on Θ1 (c.f. Davis & Kahan (1970).
eq. (1.16)) we unfortunately can not achieve our desired bound above.

E STABILITY WHEN }L ´ L̃} ! 1

In this section we dicuss in addition to results in the main paper also stability in the setting where
}L ´ L̃} ! 1 as briefly considered at the beginning of Section 3. This is an important and well
studied setting (Gama et al., 2019; 2020; Levie et al., 2019b; Kenlay et al., 2021b). It is different
from the one considered in Section 4, as filter outputs are bounded with respect to a different notion
of distance (i.e. the spectral difference }L´ L̃}) than the notion of diffusion similarity.

We first reduce the transferability of entire networks to the transferability of basisi functions tpsiiui
making up the basis set Ψ of a given spectral convolutional network (c.f. Section 2).

Theorem E.1. Let ΦW ,B,Ψ be a K-layer deep graph convolutional architecture. Assume in each
layer 1 ď ℓ ď K that

ř

i }W ℓ
i } ď W and }Bℓ} ď B. Choose C ě }ΨipLq} (@i P I) and w.l.o.g.

assume CW ą 1. With this, we have with δ “ maxiPIt}ΨipLq ´ ΨiprLq}u that

}ΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL,Xq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ δ.
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Proof. For simplicity in notation, let us denote the hidden representations in the network correspond-
ing to L̃ by Xℓ. With this, we note:

}XK ´ X̃K} ď
ÿ

iPI

}ψipLq ´ ψipL̃q} ¨ }XK´1} ¨ }WK
i } `

ÿ

iPI

}ψipL̃q} ¨ }X̃K´1 ´XK´1} ¨ }WK
i }

ď δW }XK´1} ` CW }X̃K´1 ´XK´1}

ď δW }XK´1} ` CWδ}XK´2} ` pCW q2}X̃K´1 ´XK´1}

ď
δ

C
¨

˜

K
ÿ

ℓ“1

pCW qℓ}XK´ℓ}

¸

“
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j}Xj}

¸

Hence we need to bound the quantity }Xj} in terms of C,W,B and X .

We have

}Xj} ď
ÿ

i

}ψipLq} ¨ }Xj´1} ¨ }W j
i | ` }BJ}

ď CW }Xj´1} `B

ď pCW q2}Xj´2} ` CWB `B

ď B

˜

j´1
ÿ

k“0

pCW qk

¸

` pCW qj}X}

“

#

B pCW q
j

´1
CW´1 ` pCW qj}X} ;CW ‰ 1

jB ` }X} ;CW “ 1
.

For the case CW “ 1, we thus find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pjB ` }X}q

¸

“
δ

C
¨

ˆ

K}X} `B
KpK ´ 1q

2

˙

.

For the case CW ‰ 1, we find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j

„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}

ȷ

¸

For CW ą 1, we may further estimate this as

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j

„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}

ȷ

¸

ď δ ¨
KpCW qK

C

„

B

CW ´ 1
` }X}

ȷ

.

This proves the claim.

Theorem E.1 reduces the question of stability of entire networks to the question of single filter
stability of the basis elements ψi in Ψ “ tψiuiPI . In practice, the difference "}ψipLq ´ ψiprLq}" may
of course be evaluated numerically if the basis Ψ is already given.

When designing new architectures, it is however important to know in advance how the choice
of basis functions affects the stability properties of the network. To this end, bounds of the form
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}ψipLq ´ ψiprLq} ď Cψi
¨ }L´ rL} are desirable. Many existing works focus on deriving bounds of

exactly this form (Gama et al., 2019; 2020; Levie et al., 2019b; Kenlay et al., 2021a;b).

Beyond this existing literature, we here provide an additional bound of the above form under the
assumptions that L, L̃ are diagonalizable. This is always true for undirected graphs. Additionally, any
Laplacian of a directed graph can be approximated by diagonalizable matices to arbitrary precision.

The bound below is based on existing work of Wihler (2009) who considered the case of unitarily
diagonalizable matrices. To extend this to arbitrarily diagonalizable operators L “ V ´1ΛV we
measure the severity of the failure to be unitarily diagonalizable via the condition number κpVLq “

}VL} ¨}V ´1
L } of the change-of-basis matrix VL (with κpVLq “ 1 whenever the change-of-basis matrix

VL is unitary).

Importantly in contrast to existing works, it should be noted that below we estimate the difference
}ψipLq ´ ψiprLq} (which is measured in spectral norm } ¨ }) by the difference }L ´ L̃}F which is
measured in Frobenius norm. Using the Frobenius norm as opposed to the spectral norm allows us
to derive a uniform bound, where the the stability constant Lψ does not depend on the eigenvalue
structure of the respective Lapalcians L, L̃:

Theorem E.2. If L, L̃ are diagonalizable, we have with the Frobenius norm denoted by } ¨ }F that
}ψprLq ´ ψpLq} ď κpVLq ¨ κpVL̃q ¨ Lψ ¨ }rL´ L}F . Here Lψi is the Lipschitz constant of ψi.

Proof. The claim directly follows from Lemma E.3 after noting that

||X||op “ λmaxpXq ď

g

f

f

e

n
ÿ

i“1

λ2i pXq “ ||X||F

Lemma E.3. Let g : C Ñ C be Lipschitz continuous with Lipschitz constant Dg. Let X and Y
satisfy

V ´1XV “ diagpλ1, ...λN q “: DpXq

W´1YW “ diagpµ1, ...µN q “: DpY q.

This implies
}gpXq ´ gpY q}F ď }V ´1}}V }}W´1}}W } ¨Dg ¨ }X ´ Y }F .

Proof. This proof builds on the proof idea in Wihler (2009). We find:

}gpXq ´ gpY q||2F “ ||gpV DpXqV ´1q ´ gpWDpY qW´1q}2F

“ }V gpDpXqqV ´1 ´WgpDpY qqW´1}2F

ď }V }}W´1} ¨ }gpDpXqqV ´1W ´ V ´1WgpDpY qq}2F

“ }V }}W´1} ¨
ÿ

i,j

ˇ

ˇpgpDpXqqV ´1W ´ V ´1WgpDpY qqqij
ˇ

ˇ

2

“ }V }}W´1} ¨
ÿ

i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k

rgpDpXqqsikrV ´1W skj ´ rV ´1W sikrgpDpY qqskj

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ }V }}W´1} ¨
ÿ

i,j

ˇ

ˇrV ´1W sij
ˇ

ˇ

2
|gpλjq ´ gpµiq|2

ď }V }}W´1} ¨
ÿ

i,j

ˇ

ˇrV ´1W sij
ˇ

ˇ

2
D2
g |λj ´ µi|

2

“ }V }}W´1} ¨D2
g}DpXqV ´1W ´ V ´1WDpY q}2F

ď }V }}V ´1}}W´1}}W } ¨D2
g}X ´ Y }2F .
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F COMPARISON OF DIFFUSION FLOWS FOR EDGE-REWIRING IN KN

We are interested in establishing that in the setting of Section 3, we have

}e´Lt ´ e´L̃t} À e´pN´2qt.

To this end, we first note that both Laplacians L, L̃ correspond to graphs that are connected. Hence
the kernel of both Laplacians is spanned by the vector of 1 of all ones. Denote by P the orthogonal
projection onto 1 and set Q “ Id´ P . We then have

}e´Lt ´ e´L̃t} “ }Qe´LtQ´Qe´L̃tQ}.

Next we note for the Laplacian L on KN that

L “ N ¨Q,

and hence
}e´Lt ´ e´L̃t} “ }Qe´Nt ´Qe´L̃tQ}.

From perturbation theory, we note that for the eigenvalues of symmetric matrices A, pA`Bq ordered
in decreasing order, we have (c.f. e.g. Kato (1976))

|λipA`Bq ´ λipAq| ď }B}.

Since L̃ arises from L by deleting a single edge and the Laplacian defined on an unweighted connected
two-node graph has operator norm equal to two, we find

|λ´N | ď 2

for any λ P σpL̃q. Thus with spectral projection Pλ of L̃, we find

}e´Lt ´ e´L̃t} ď e´Nt

›

›

›

›

›

›

ÿ

0‰λPσpL̃q

Qp1 ´ epN´λqtPλQ

›

›

›

›

›

›

À e´pN´2qt.

G EXAMPLE OF UNIDIRECTIONALLY SIMILAR GRAPHS

Here we further discuss the example of unidirectionally similar graphs introduced in Fig. 5 of Section
3.

(a) (b)

Figure 15: Example of unidirectionally similar graphs

Let us denote the graph of Fig. 15 (a) by G̃ and the graph of Fig. 15 (b) by G. On both these graphs
let us consider the out-degree Laplacian (c.f 2.1)

Lout :“ Dout ´W

as characteristic operator on both G and G̃.

The diffusion process e´tL arises as the solution operator of the differential equation

dxptq

dt
“ ´Lxptq.

Using this, we see that no information flows from the ’top’ node of G̃ to either of the two bottom
nodes in Fig. 15 (a). Chosing as J the obvious inclusion operator mapping from G̃ toG and assigning
the value ’0’ to the top node in G̃, we easily find }e´tLJ ´ e´tL̃J} “ 0. The diffusion on G̃ (i.e.
the graph in Fig. 15 (a)) however is dependent on the top node in G̃ as well if this node carries a
non-zero initial value. Hence we can not transfer it to G.
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H LAPLACE TRANSFORM FILTERS

In this section we provide an overview of the concept of Laplace transforms. We begin with a
recapitulation of complex measures.

H.1 COMPLEX MEASURES ON Rě0 AND THEIR THEORY OF INTEGRATION

As reference for this section Tao (2013) might serve.

In mathematics, a measure is a formal generalization of concepts such as length, area and volume.
We are interested in assigning a generalized notion of length (or mass) to subsets of the real half-line

Rě0 “ r0,8q.

The set will turn out to be a so called σ-Algebra; i.e. a set Σ of sets for which

• H,Rě0 P Σ

• A,B P σ ñ AXB P Σ

• A,B P Σ ñ AzB P Σ

• A,B P Σ ñ AYB P Σ.

We now take ΣRě0 to be the smallest such set of sets Σ that contains all open intervals.

A complex measure then is a set-function that assigns to each set in ΣRě0
a complex number in a

certain way:
Definition H.1. A complex measure µ on Rě0 is a complex valued function µ : ΣRě0

Ñ C
satisfying

µ

˜

ď

n

An

¸

“
ÿ

n

µ pAnq

for any countable (potentially infinite) collection of sets in ΣRě0
which are pairwise disjoint.

Let us provide some examples:
Example H.2. The prototypical example of a measure is the standard Lebesgue measure that assigns
to any interval pa, bq the length µLebppa, bqq “ |a´ b| (a, b P Rě0).
Example H.3. Alternatively, we might consider the Dirac measure µδt0 , which assigns the value
µδt0 ppa, bqq “ 1 to any interval pa, bq containing t0 (i.e. t0 P pa, bq). Otherwise it assigns the value
µδt0 ppa, bqq “ 0 if t0 R pa, bq.

Example H.4. Every integrable function ψ̂ : Rě0 Ñ C defines a complex measure via µψ̂ppa, bqq “
şb

a
ψ̂ptqdt.

Any given measure on Rě0 defines a unique way of integrating (known as Lebesgue integration) a
function f defined on Rě0. This proceeds by approximating any function f via a weighted sequence
of indicator functions (with A P ΣRě0 a set)

χAptq “

"

1 ; t P A

0 ; t R A
.

as
fptq « fnptq :“

ÿ

k

ankχAk
ptq.

with ak P C. For these functions, one then sets
ż

Rě0

fndµ ”
ÿ

k

ank ¨ µpAkq.

Since we have limnÑ8 fn “ f , one then simply sets
ż

Rě0

fdµ ” lim
nÑ8

ż

Rě0

fndµ.
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Example H.5. For the prototypical example of the standard Lebesgue measure, this process simply
yields

ż

Rě0

fptqdµLebptq “

ż 8

0

fptqdt.

Example H.6. For the Dirac measure µδt0 , the above process yields
ż

Rě0

fptqdµδt0 ptq “ fpt0q

Example H.7. For measures arising from integrable functions ψ̂ : Rě0 Ñ C as µψ̂ppa, bqq “
şb

a
ψ̂ptqdt, we find

ż

Rě0

fptqdµψ̂ “

ż 8

0

ψ̂ptqfptqdt.

H.2 LAPLACE TRANSFORMS

We say complex valued measure µ is finite if we have
ż

Rě0

d|µ|ptq ă 8.

Here the measure |µ| arises from the original measure µ via

|µ|ppa, bqq ” |µppa, bqq|.

For any such finite measure µ we may define its Laplace transform as

ψµpzq :“

ż

Rě0

e´tzdµptq.

This function fµ is well defined for z in the right hemisphere

CR :“ tz P C : Repzq ě 0u.

of the complex plane C, since there we have

|ψµpzq| “

ˇ

ˇ

ˇ

ˇ

ż

Rě0

e´tzdµptq

ˇ

ˇ

ˇ

ˇ

ď

ż

Rě0

|e´tz|d|µ|ptq

ď

ż

Rě0

d|µ|ptq ă 8.

Example H.8. For the Dirac measure µδt0 , we have

ψµδt0
pzq “ e´t0z.

Example H.9. For any integrable function ψ̂, we have

ψpzq ”

ż

Rě0

e´tzdµψ̂ “

ż 8

0

ψ̂ptqe´tzdt.

More specifically, if the integrable function is given as ψ̂k :“ p´tqk´1e´λt (with Repλq ą 0), then
ψkpzq “ pz ` λq´k:

Example H.10. If ψ̂k :“ p´tqk´1e´λt yields ψkpzq “ pz ` λq´k, then

ψkpzq “ pz ` λq´k.

For k “ 1, this can be seen from
ż 8

0

e´tze´λtdt “ ´
1

z ` λ
e´pz`λq

ˇ

ˇ

ˇ

ˇ

8

0

.

For k ą 1, the claim follows from differentiating the above expression with respect to z Note that the
functions ψkpzq “ pz ` λq´k are also defined if Repzq ď 0, as long as z ‰ ´λ.
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Using the function ψk of the examples above, a wide class of functions may be parametrized
Theorem H.11. Let f : Rě0 Ñ 0 be any function with lim

xÑ8
fpxq “ 0. Then for any ϵ ą 0, there is

a function
hpxq “

ÿ

k

θkψkpxq

for which
sup

xPr0,8q

|fpxq ´ hpxq| ă ϵ.

Here the basis functions tψku may either be chosen as ψkpzq “ pz ` λq´k or ψkpxq “ e´pkt0qx for
any t0 ą 0.

Proof. This is a direct consequence of the Weierstrass approximation theorem.

H.3 PROOF OF THEOREM 4.4

In this section, we prove Theorem 4.4, which we restate here for convenience:

Theorem H.12. We have }JψpLq´ψpL̃qJ} ď }ψ̂}1 ¨suptě0 }Je´Lt´e´L̃tJ} in the unidirectional
setting. In the bidirectional setting }ψpLq ´ J̃ψpL̃qJ} ď

ş8

0
|ψ̂ptq|ηptqdt holds true.

Proof. We start by proving the first claim. To this end, we note

}JψpLq ´ ψpL̃qJ} “

›

›

›

›

ż

Rě0

”

Je´tL ´ e´tL̃J
ı

dµψ̂

›

›

›

›

ď

ż

Rě0

›

›

›

”

Je´tL ´ e´tL̃J
ı
›

›

›
d|µ|ψ̂

ď sup
tě0

}Je´Lt ´ e´L̃tJ} ¨

ż

Rě0

d|µ|ψ̂

Observing that in the notation of Section 4.2 we precisely have

}ψ̂}1 ”

ż

Rě0

d|µ|ψ̂

the claim follows.
Proceeding as above, we note

}ψpLq ´ J̃ψpL̃qJ} ď

ż 8

0

›

›

›

”

e´tL ´ J̃e´tL̃J
ı
›

›

›
d|µ|ψ̂,

from which the second claim follow.

H.4 PROOF OF COROLLARY 4.5

Here we prove Corollary 4.5; restated here for convenience:

Corollary H.13. Consider a sequence of graphs Gn for which }e´Lnt ´ J̃ne
´L̃tJn} Ñ 0. Then for

a Laplace transform filter ψ, we have }ψpLnq ´ J̃nψpL̃qJn}| Ñ 0 if and only if limrÑ8 ψprq “ 0.

Proof. Let us first prove that the condition is sufficient. To this end assume that limrÑ8 ψprq “ 0.
This implies that µψ̂pt0uq “ 0. Hence we have

}ψpLnq ´ J̃nψpL̃qJn} “

›

›

›

›

ż 8

0

”

e´Lt ´ J̃e´L̃tJ
ı

dµψ̂ptq

›

›

›

›

ď

ż 8

0

›

›

›
e´Lt ´ J̃e´L̃tJ

›

›

›
d|µ|ψ̂ptq

The integrand
›

›

›
e´Lt ´ J̃e´L̃tJ

›

›

›
converges to zero everywhere except on a set of measure zero (i.e.

the set tt|t “ 0u “ t0u). The dominated convergence theorem then yields the claim.
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H.5 ADDITIONAL TECHNICAL CONVERGENCE RESULT FOR LAPLACE TRANSFORM FILTERS

Here we prove an additional technical convergence result, which will be needed in section I.1.

For a generic operator, we measure the failure to be (unitarily) diagonalizable via its so-called
departure from normality ν2pLq “ p}L}2F ´

ř

λkPσpLq |λk|2q which is zero if and only if L is
unitarily diagonalizable Bandtlow (2004).
We then have:
Theorem H.14. Let ψ be a Laplace transform filter. There exists a constant C “ Cψ,νpLq,νpL̃q

ă 8

so that we have }JψpLq ´ ψpL̃qJ} ď C ¨ }JpL` λIdq´1 ´ pL̃` λĨdq´1J}.

Proof. We make use of the holomorphic functional calculus (Kato, 1976; Post, 2012) to represent
ψpLq as

ψpLq :“ ´
1

2πi

¿

Γ

ψpzq ¨ pL´ z ¨ Idq´1dz

to arrive at

}JψpLq ´ ψpL̃qJ} ď
1

2π

¿

Γ

|ψpzq| ¨ }JpL´ zIdq´1 ´ pL̃´ zIdq´1J}d|z|.

Combining results of Post (2012) and Bandtlow (2004) yields

}JpL´ zIdq´1 ´ pL̃´ zIdq´1J}

ď

˜

1 ` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

¨

˜

1 ` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

ˆ}JpL` λIdq´1 ´ pL̃` λIdq´1J}.

Hence we may set

C “
1

2π

¿

Γ

|ψpzq| ¨ pνpLq,νpL̃q
pzqd|z|

with

pνpLq,νpL̃q
pzq

”

˜

1 ` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

¨

˜

1 ` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

Such a result also holds in the bidirectional setting:

Theorem H.15. Consider a graph sequenceGn with }pLn`λIdq´1´J̃npL̃`λIdq´1Jn} Ñ 0. If the
graphs are directed, assume eigenvalues of allLns lie within a cone of opening angle α ă π symmetric
about the real axis. Then we have }ψpLnq ´ J̃nψpL̃qJn} Ñ 0 if and only if limrÑ8 ψprq “ 0.

Proof. As in the proof above, we arrive at

}ψpLq ´ J̃ψpL̃qJ} ď
1

2π

¿

Γ

|ψpzq| ¨ }pL´ zIdq´1 ´ J̃pL̃´ zIdq´1J}d|z|.

Since }pLn`λIdq´1 ´ J̃npL̃`λIdq´1Jn} Ñ 0 implies }pLn´ zIdq´1 ´ J̃npL̃´ zIdq´1Jn} Ñ 0
uniformly (in z) on compact sets (c.f. e.g. Arendt (2001)), we can apply dominated convergence as
in the proof of Corollary 4.5 in Appendix H.4; if we find an majorizing function that is integrable
on Γ. But this is ensured by the decay of ψ and the possibility to choose Γ to lie within in a cone of
opening angle α ň π about the real axis of opening angle less than π.
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H.6 DISCUSSION OF EXTENSION BEYOND SPECTRAL ASSUMPTIONS

Above, we have assumed that all appearing eigenvalues λ P C in the spectrum σpLq have real part
Repλq ě 0. This guarantees that

lim sup
tÑ8

}e´Lt} ă 8.

From this we find that

}ψpLq} “

›

›

›

›

ż

Rě0

e´tLdµptq

›

›

›

›

ď

ˆ

lim sup
tÑ8

}e´Lt}

˙

¨

ż

Rě0

d|µ|ptq ă 8,

so that the filter ψpLq is indeed well-defined. If we want to allow Repλq ă 0 as well, we have two
options:

The set tRepλqu is bounded from below: In this setting we have a guarantee that there is c´ ą 0

so that for all appearing eigenvalues in the spectra of L and L̃ we have

´c´ ď Repλq.

This implies that
lim sup
tÑ8

}e´Lte´c´t} ă 8.

Using
›

›

›

›

ż

Rě0

e´tLdµptq

›

›

›

›

“

›

›

›

›

ż

Rě0

e´tLe´c´tec´tdµptq

›

›

›

›

ď

ˆ

lim sup
tÑ8

}e´Lte´c´t}

˙

¨

ż

Rě0

ec´td|µ|ptq,

the developed theory above is still applicable in this setting, as long as we assume that the measure µ
defining the Laplace transform filter ψ satisfies

ż

Rě0

ec´td|µ|ptq ă 8.

Note that this is stronger than the demand
ż

Rě0

d|µ|ptq ă 8.

made in Definition 4.1.

The set tRepλqu is not bounded from below: In this setting, we pick a µ P C with Repµq ă 0

and µ R σpLq Y σpL̃q. We then restrict the class of filters to those determined by Example 4.3:
There we chose ψ̂k :“ p´tqk´1e´µt, which yielded filters of the form thθp¨q :“

ř

i θi ¨ψip¨qu , with
ψkpLq “

“

pL` µIdq´1
‰k

. Such filters hence remain defined as long as µ R σpLq.

H.7 PROOF OF THEOREMS 4.6 & 4.7

Theorem H.16. Let ΦW ,B,Ψ be a K-layer deep LTF-based network. Assume
ř

iPI }W ℓ
i } ď W and

}Bℓ} ď B. Choose C ě }ΨipL̃q} (i P I) and w.l.o.g. assume CW ą 1. Assume ρpJX̃q “ Jρp rXq.
If biases are enabled, assume J1G “ 1G̃. Then we have with δ “ maxiPIt}JψipLq ´ ψiprLqJ}u:

}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ δ.

Proof. Let us define
X̃ :“ JX.

Let us further use the notation ψ̃i :“ ψipL̃q and ψi :“ ψipLq.
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Denote by Xℓ and rXℓ the (hidden) feature matrices generated in layer ℓ for networks based on ψi
and ψ̃i respectively: I.e. we have

Xℓ “ ρ

˜

ÿ

iPI

ψiX
ℓ´1W ℓ

i `Bℓ

¸

and

rXℓ “ ρ

˜

ÿ

iPI

ψ̃i rXℓ´1W ℓ
i ` B̃ℓ

¸

.

We then have

}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq}

“}JXK ´ rXK}

“

›

›

›

›

›

Jρ

˜

ÿ

iPI

ψiX
L´1WK

i `BK

¸

´ ρ

˜

ÿ

iPI

ψ̃i rXK´1WK
i ` B̃L

¸
›

›

›

›

›

“

›

›

›

›

›

ρ

˜

J
ÿ

iPI

ψiX
L´1WK

i ` B̃K

¸

´ ρ

˜

ÿ

iPI

ψ̃i rXK´1WK
i `BL

¸
›

›

›

›

›

Here we used the assumption that ρ and J commute. We also made use of the assumption J1G “ 1G̃
when dealing with biases .
Using the fact that ρp¨q is 1-Lipschitz-continuous (c.f. Section 2.3), we can establish

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

˜

J
ÿ

iPI

ψiX
L´1WK

i ` B̃K

¸

´

˜

ÿ

iPI

ψ̃i rXK´1WK
i ` B̃K

¸
›

›

›

›

›

.

We then have
}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

JψiX
K´1WK

i ´
ÿ

iPI

ψ̃i rXK´1WK
i

›

›

›

›

›

.

From this, we find (inserting a zero), that

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

JψiX
K´1WK

i ´
ÿ

iPI

ψ̃i rXK´1WK
i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

pJψi ´ ψ̃iJqXK´1WK
i

›

›

›

›

›

`
ÿ

iPI

}ψ̃i} ¨ } rXK´1 ´ JXK´1} ¨ }WK
i }

ď

›

›

›

›

›

ÿ

iPI

pJψi ´ ψ̃iJqXK´1WK
i

›

›

›

›

›

` CW ¨ } rXK´1 ´ JXK´1}

ď
ÿ

iPI

›

›

›
pJψi ´ Jψ̃iJq

›

›

›
¨
›

›XK´1
›

› ¨
›

›WK
i

›

› ` CW ¨ } rXK´1 ´ JXK´1}

ď
ÿ

iPI

δ ¨
›

›XK´1
›

›W ` CW ¨ }J̃ rXK´1 ´XK´1}

Arguing as in the proof of Appendix E then yields the claim.
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For the bidirectional setting we find the following:

Theorem H.17. Let ΦW ,B,Ψ be a K-layer deep LTF-based network. Assume that
ř

iPI }W ℓ
i } ď W

and }Bk} ď B. Choose C ě }ΨipLq}, }ΨipL̃q} (i P I) and w.l.o.g. assume CW ą 1. Assume
ρpJ̃Xq “ J̃ρpXq and if biases are enabled, assume rJ1

rG “ 1G. Set maxiPIt}ψipLq´J̃ψiprLqJ}u “

δ1 and define δ2 “ maxiPIt}ψipL̃qrJJ̃ ´ IdG̃s}u. With this, we have that

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ pδ1 ` δ2q.

Proof. Let us define

X̃ :“ JX.

Let us further use the notation ψ̃i :“ ψipL̃q and ψi :“ ψipLq.

Denote by Xℓ and rXℓ the (hidden) feature matrices generated in layer ℓ for networks based on ψi
and ψ̃i respectively: I.e. we have

Xℓ “ ρ

˜

ÿ

iPI

ψiX
ℓ´1W ℓ

i `Bℓ

¸

and

rXℓ “ ρ

˜

ÿ

iPI

ψ̃i rXℓ´1W ℓ
i ` B̃ℓ

¸

.

We then have

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

“}XK ´ J̃ rXK}

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ J̃ρ

˜

ÿ

iPI

ψ̃i rXK´1WK
i ` B̃L

¸
›

›

›

›

›

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ ρ

˜

J̃
ÿ

iPI

ψ̃i rXK´1WK
i `BL

¸
›

›

›

›

›

Here we used the assumption that ρ and J̃ commute. fact that since ReLUp¨q maps positive entries
to positive entries and acts pointwise, it commutes with JÒ. We also made use of the assumption
J̃1G̃ “ 1G when dealing with biases .
Using the fact that ρp¨q is 1-Lipschitz-continuous (c.f. Section 2.3), we can establish

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ ρ

˜

J̃
ÿ

iPI

ψ̃i rXK´1WK
i `BL

¸
›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i `BK ´ J̃
ÿ

iPI

ψ̃i rXK´1WK
i `BK

›

›

›

›

›

.
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Using the assumption that }ψ̃rJJ̃ ´ IdG̃s} ď δ2, we have

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJ̃ ψ̃iJqJ̃ rXK´1WK
i

›

›

›

›

›

`

›

›

›

›

›

ÿ

iPI

J̃ ψ̃irIdG̃ ´ JJ̃s rXK´1WK
i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJ̃ ψ̃iJqJ̃ rXK´1WK
i

›

›

›

›

›

` δ2 ¨

›

›

›

›

›

ÿ

iPI

rXK´1WK
i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJ̃ ψ̃iJqJ̃ rXK´1WK
i

›

›

›

›

›

` δ2 ¨

›

›

›

rXK´1
›

›

›
¨W

From this, we find (assuming }J̃}, }J} ď 1 ), that

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJ̃ ψ̃iJqJ̃ rXK´1WK
i

›

›

›

›

›

` δ2 ¨

›

›

›

rXK´1
›

›

›
¨W

ď

›

›

›

›

›

ÿ

iPI

pψi ´ J̃ ψ̃iJqXK´1WK
i

›

›

›

›

›

`
ÿ

iPI

}J̃ ψ̃iJ} ¨ }J̃ rXK´1 ´XK´1} ¨ }WK
i } ` δ2 ¨

›

›

›

rXK´1
›

›

›
¨W

ď

›

›

›

›

›

ÿ

iPI

pψi ´ J̃ ψ̃iJqXK´1WK
i

›

›

›

›

›

` CW ¨ }J̃ rXK´1 ´XK´1} ` δ2 ¨

›

›

›

rXK´1
›

›

›
¨W

ď
ÿ

iPI

›

›

›
pψi ´ J̃ ψ̃iJq

›

›

›
¨
›

›XK´1
›

› ¨
›

›WK
i

›

› ` CW ¨ }J̃ rXK´1 ´XK´1} ` δ2 ¨

›

›

›

rXK´1
›

›

›
¨W

ďδ1 ¨
›

›XK´1
›

›W ` CW ¨ }J̃ rXK´1 ´XK´1} ` δ2 ¨

›

›

›

rXK´1
›

›

›
¨W

Arguing as in the proof of Appendix E then yields the claim.

Discussion of the condition δ2 “ maxiPIt}ψipL̃qrJJ̃ ´ IdG̃s}u ! 1 Since limrÑ8 ψiprq “ 0,
JJ̃ only needs to map eigenvectors of L corresponding to small eigenvalues approximately to
themselves. On the remaining eigenvectors, ψipLq will already approximately act as zero. Since only
one of the factors in the product ψipL̃q ¨ rJJ̃ ´ IdG̃s needs to be approximately zero, this relaxes
conditions on how the remaining factor (i.e. rJJ̃ ´ IdG̃s) needs to act on such eigenvectors.

H.8 PROOF OF THEOREM 4.9

Here we prove Theorem 4.9; restated again for convenience:
Theorem H.18. Assuming ΩpJXq “ ΩpXq, we have in the setting of Theorem 4.6 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq} ď }JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq}.
Assuming ΩpX̃q “ ΩpJ̃X̃q, we have in the (bidirectional) setting of Theorem 4.7 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq} ď }ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}.

Proof. We note

}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq}

“}ΩpΦW ,B,ΨpL,Xqq ´ ΩpΦW ,B,ΨprL, JXqq}

“}ΩpJΦW ,B,ΨpL,Xqq ´ ΩpΦW ,B,ΨprL, JXqq}.
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To prove the claim from here, we only have to note that the aggregation method Ω as defined in
Section 4.3.2 is 1-Lipschitz (as a consequence of the reverse triangle inequality). The proof for the
bidirectional setting proceeds analogously.

A similar proof shows the following for the bidirectional setting:

Theorem H.19. Assuming ΩpXq “ ΩpJ̃Xq, we have in the setting of Theorem H.17 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq} ď }ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq} .

I FURTHER DISCUSSION FOR EXAMPLES OF TRANSFERABILITY SETTINGS

I.1 FURTHER DISCUSSION OF THE SETTING OF COARSE-GRAINING GRAPHS

In this appendix, we illustrate:

}p∆ ` Idq´1 ´ JÒp∆ ` Idq´1JÓ} À 1{λ1p∆highq.

Using Theorem H.15, then yields the prove of the desired equality (3)

}e´tL ´ JÒe´tLJÓ} À 1{wmin
high for any t ą 0.

after noting the linear relation in scaling behaviour λ1pLclusterq „ wmin
high.

For convenience, we restate the definitions leading up to this setting again:
Definition I.1. Denote by G the set of connected components in Ghigh. We give this set a graph
structure as follows: Let R and P be elements of G (i.e. connected components in Ghigh). We define
the real number

WRP “
ÿ

rPR

ÿ

pPP

Wrp,

with r and p nodes in the original graph G. We define the set of edges E on G as

E “ tpR,P q P G ˆ G :WRP ą 0u

and assign WRP as weight to such edges. Node weights of limit nodes are defined similarly as
aggregated weights of all nodes r (in G) contained in the component R as

µ
R

“
ÿ

rPR

µr.

In order to translate signals between the original graph G and the limit description G, we need
translation operators mapping signals from one graph to the other:
Definition I.2. Denote by 1R the vector that has 1 as entries on nodes r belonging to the connected
(in Ghign) component R and has entry zero for all nodes not in R. We define the down-projection
operator JÓ component-wise via evaluating at node R in G as

pJÓxqR “ x1R, xy{µ
R
.

The upsampling operator JÒ is defined as

JÒu “
ÿ

R

uR ¨ 1R;

where uR is a scalar value (the component entry of u atR P G) and the sum is taken over all connected
components in Ghigh.

As proved in (Koke, 2024), we then have the following:

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Theorem I.3. We have
›

›Rzp∆q ´ JÒRzp∆qJÓ
›

› “ O
ˆ

}∆reg.}

λ1p∆highq

˙

holds; with λ1p∆highq denoting the first non-zero eigenvalue of ∆high.

λmaxp∆reg.q “ }∆reg.}.

We here restate the proof for convenience.

Proof. We will split the proof of this result into multiple steps. For z ă 0 Let us denote by

Rzp∆q “ p∆ ´ zIdq´1,

Rzp∆highq “ p∆high ´ zIdq´1

Rzp∆reg.q “ p∆reg. ´ zIdq´1

the resolvents correspodning to ∆, ∆high and ∆reg. respectively.
Our first goal is establishing that we may write

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1

¨Rzp∆highq

This will follow as a consequence of what is called the second resolvent formula Teschl (2014):

"Given self-adjoint operators A,B, we may write

RzpA`Bq ´RzpAq “ ´RzpAqBRzpA`Bq.”

In our case, this translates to

Rzp∆q ´Rzp∆highq “ ´Rzp∆highq∆reg.Rzp∆q

or equivalently
rId`Rzp∆highq∆reg.sRzp∆q “ Rzp∆highq.

Multiplying with rId`Rzp∆highq∆reg.s
´1 from the left then yields

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1

¨Rzp∆highq

as desired.
Hence we need to establish that rId`Rzp∆highq∆reg.s is invertible for z ă 0.

To establish a contradiction, assume it is not invertible. Then there is a signal x such that

rId`Rzp∆highq∆reg.sx “ 0.

Multiplying with p∆high ´ zIdq from the left yields

p∆high ` ∆reg. ´ zIdqx “ 0

which is precisely to say that
p∆ ´ zIdqx “ 0

But since ∆ is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our
contradiction and established

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
Rzp∆highq.

Our next step is to establish that

Rzp∆highq Ñ
P high
0

´z
,
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where P high
0 is the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue

λ0p∆highq “ 0 of ∆high. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g.
Teschl (2014)), we may write

Rzp∆highq ” p∆high ´ zIdq´1 “
ÿ

λPσp∆highq

1

λ´ z
¨ P high

λ .

Here σp∆highq denotes the spectrum (i.e. the collection of eigenvalues) of ∆high and the
tP high

λ uλPσp∆highq are the corresponding (orthogonal) eigenprojections onto the eigenspaces of the
respective eigenvalues. Thus we find

›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ăλPσp∆highq

1

λ´ z
¨ P high

λ

›

›

›

›

›

›

;

where the sum on the right hand side now excludes the eigenvalue λ “ 0.

Using orthonormality of the spectral projections, the fact that z ă 0 and monotonicity of 1{p¨ ` |z|q

we find
›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
.

Here λ1p∆highq is the firt non-zero eigenvalue of p∆highq.
Non-zero eigenvalues scale linearly with the weight scale since we have

λpS ¨ ∆q “ S ¨ λp∆q

for any graph Laplacian (in fact any matrix) ∆ with eigenvalue λ. Thus we have
›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
ď

1

λ1p∆highq
ÝÑ 0

as λ1p∆highq Ñ 8.

Our next task is to use this result in order to bound the difference

I :“

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1
P high
0

´z
´ rId`Rzp∆highq∆reg.s

´1
Rzp∆highq

›

›

›

›

›

›

.

To this end we first note that the relation

rA`B ´ zIds´1 “ rId`RzpAqBs´1RzpAq

provided to us by the second resolvent formula, implies

rId`RzpAqBs´1 “ Id´BrA`B ´ zIds´1.

Thus we have
›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›
ď 1 ` }∆reg.} ¨ }Rzp∆q}

ď 1 `
}∆reg.}

|z|
.

With this, we have
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›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´Rzp∆q

›

›

›

›

›

›

“

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´ rId`Rzp∆highq∆reg.s

´1
¨Rzp∆highq

›

›

›

›

›

›

ď

›

›

›

›

›

P high
0

´z

›

›

›

›

›

¨

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

›

›

›

›

›

P high
0

´z
´Rzp∆highq

›

›

›

›

›

¨

›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›

ď
1

|z|

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

ˆ

1 `
}∆reg.}

|z|

˙

¨
1

λ1p∆highq
.

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. Horn &
Johnson (2012), Section 5.8. "Condition numbers: inverses and linear systems"):

Given square matrices A,B,C with C “ B ´A and }A´1C} ă 1, we have

}A´1 ´B´1} ď
}A´1} ¨ }A´1C}

1 ´ }A´1C}
.

In our case, this yields (together with }P high
0 } “ 1) that

›

›

›

›

”

Id` P high
0 {p´zq ¨ ∆reg.

ı´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

ď
p1 ` }∆reg.}{|z|q

2
¨ }∆reg.} ¨ }

P high
0

´z ´Rzp∆highq}

1 ´ p1 ` }∆reg.}{|z|q ¨ }∆reg.} ¨ }
P high

0

´z ´Rzp∆highq}

For Shigh sufficiently large, we have

} ´ P high
0 {z ´Rzp∆highq} ď

1

2 p1 ` }∆reg.}{|z|q

so that we may estimate

›

›

›

›

›

›

«

Id` ∆reg.
P high
0

´z

ff´1

´ rId` ∆reg.Rzp∆highqs
´1

›

›

›

›

›

›

ď2 ¨ p1 ` }∆reg.}q ¨ }
P high
0

´z
´Rzp∆highq}

“2
1 ` }∆reg.}{|z|

λ1p∆highq

Thus we have now established
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´Rzp∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

}∆reg.}

λ1p∆highq

˙

.

Hence we are done with the proof, as soon as we can establish
”

´zId` P high
0 ∆reg.

ı´1

P high
0 “ JÒRzp∆qJÓ,

with JÒ,∆, JÓ as defined above. To this end, we first note that

JÒ ¨ JÓ “ P high
0 (6)
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and
JÓ ¨ JÒ “ IdG. (7)

Indeed,the relation (6) follows from the fact that the eigenspace corresponding to the eignvalue zero
is spanned by the vectors t1RuR, with tRu the connected components of Ghigh. Equation (7) follows
from the fact that

x1R,1Ry “ µ
R
.

With this we have
”

Id` P high
0 ∆reg.

ı´1

P high
0 “

“

Id` JÒJÓ∆reg.
‰´1

JÒJÓ.

To proceed, set

x :“ F Óx

and

X “

”

P high
0 ∆reg. ´ zId

ı´1

P high
0 x.

Then
”

P high
0 ∆reg. ´ zId

ı

X “ P high
0 x

and hence X P RanpP high
0 q. Thus we have

JÒJÓp∆reg. ´ zIdqJÒJÓX “ JÒJÓx.

Multiplying with JÓ from the left yields

JÓp∆reg. ´ zIdqJÒJÓX “ JÓx.

Thus we have
pJÓ∆reg.J

Ò ´ zIdqJÒJÓX “ JÓx.

This – in turn – implies

JÒJÓX “
“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

Using

P high
0 X “ X ,

we then have

X “ JÒ
“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

We have thus concluded the proof if we can prove that JÓ∆reg.J
Ò is the Laplacian corresponding to

the graph G defined in Definition I.1. But this is a straightforward calculation.

As a corollary, we find

Corollary I.4. We have

Rzp∆qk Ñ JÒRkp∆qJÓ

Proof. This follows directly from the fact that

JÓJÒ “ IdG.
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I.2 FURTHER DISCUSSION OF GRAPHS DISCRETIZING AN AMBIENT SPACES

Here we further discuss the setting of two graphs discretizing the same ambient space M in the sense
of

}JÒ

i e
´t∆iJÓ

i ´ e´t∆M} ď δ.

We will assume JÓ

i J
Ò

i “ IdGi
, which is a justified assumption, as Example I.5 below elucidates. In

this setting, we then have

}e´t∆1 ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

“}e´t∆1 ´ JÓ
1 e

´t∆MJÒ
1 ` JÓ

1 p∆M ` Idq´1JÒ
1 ´ pJÓ

1J
Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

ď}e´t∆1 ´ JÓ
1 e

´t∆MJÒ
1 } ` }JÓ

1 e
´t∆MJÒ

1 ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

We note

}e´t∆1 ´ JÓ
1 e

´t∆MJÒ
1 }

“}JÓ
1J

Ò
1 e

´t∆1JÓ
1J

Ò
1 ´ JÓ

1 e
´t∆MJÒ

1 }

ď}JÓ
1 }}JÒ

1 } ¨ }e´t∆1 ´ JÒ
1 e

´t∆MJÓ
1 } À δ.

We consider:

}e´t∆M ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

ď}JÓ
1 }}JÒ

1 } ¨ }e´t∆M ´ JÒ
2 e

´t∆2JÓ
2 }

À}e´t∆M ´ JÒ
2 e

´t∆2JÓ
2 } ď δ.

Hence we have indeed established

}e´t∆1 ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q} À 2δ.

Next let us consider an explicit example.

Example I.5. To this end, let us revisit the torus-setting introduced in Fig. 13.

Figure 16: Distinct Torus Discretizations

We begin by recalling that the standard torus T arises as the cartesian product of two circles S1 of
circumference 2π:

T “ S1 ˆ S1.

Let us parametrize these circles via angles 0 ď θ1, θ1 ď 2π. The Laplacian on T can then be written
as

∆T “ ´B2
θ1 ´ B2

θ2 .
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A set of corresponding normalized eigenfunctions are given as

ϕk1,k2 “
1

2π
e´ik1θ1e´ik2θ2

with corresponding eigenvalues
λk1,k2 “ k21 ` k22

and k1, k2 P Z.

We now consider a regular discretization of T using N2 nodes. This mesh can be thought of as
arising from regular discretizations of each S1 factor; with a node being placed at angles ϕ “ 2π

N k
with 0 ď k ď N . The individual node weight of each node in the mesh discretization of T is set to
µ “

p2πq
2

N2 . We might think of this discretization TN pf T as arising via a cartesian product of the
groupZ{NZ (i.e. the group of integers modulo N ) with itself. Each node ofTN “ Z{NZˆZ{NZ
is then specified by a tuple pa, bq P TN , with a P Z{NZ and b P Z{NZ.

The graph Laplacian ∆N on TN “ Z{NZˆZ{NZ then acts on a scalar node signal xab as

p∆Nxqab “
N2

p2πq2

`

4xab ´ xpa`1qb ´ xpa´1qb ´ xapb`1q ´ xapb´1q

˘

.

Henceforth we will adopt the notation xpa, bq ” xab.
Normalized eigenvectors for this Laplacian ∆N on TN are given as

ϕNk1,k2 “
1

2π
e´i

2πk1
N ae´i

2πk1
N b

with 0 ď k1, k2 ď pN ´ 1q. Corresponding eigenvalues are found to be

λNk1,k2 “
N2

π2

”

sin2
´ π

N
¨ k1

¯

` sin2
´ π

N
¨ k2

¯ı

.

To facilitate contact between T and its graph approximation TN , we define an interpolation operator
JÒ

N that maps a graph signal fpa, bq defined on T “ Z{NZˆZ{NZ to a function f defined on T
by defining

fpθ1, θ2q “ fpa, bq

whenever 2π
N pa´ 1q ď θ1 ď 2π

N a and 2π
N pb´ 1q ď θ2 ď 2π

N b.
We then take JÓ to be the adjoint of JÒ (i.e. JÓ “ pJÒq˚. It is not hard to see that JÓJÒ “ IdTN

.
We now want to show that (for t ą 0)

}e´t∆T ´ JÒe´t∆NJÓ} Ñ 0 (8)

as N Ñ 8. To this end, denote by Pk1,K2 the orthogonal projection onto ϕk1,k2 . Denote by PNk1,K2

the orthogonal projection onto ϕNk1,k2 . We note

}e´t∆T ´ JÒe´t∆NJÓ} “

›

›

›

›

›

›

ÿ

k1,k2PZ

e´λk1,k2
tPk1,k2 ´

ÿ

´´
N´1

2 ďp1,p2ď
N´1

2

e´λk1,k2
tPNp1,p2

›

›

›

›

›

›

.

From this we observe

}e´t∆T ´ JÒe´t∆NJÓ} “

›

›

›

›

›

›

ÿ

k1,k2PZ

e´λk1,k2
tPk1,k2 ´

ÿ

´´
N´1

2 ďp1,p2ď
N´1

2

e´λN
p1,p2

tPNp1,p2

›

›

›

›

›

›

ď

›

›

›

›

›

›

ÿ

N´1
2 ă|k1|,|k2|

e´λk1,k2
tPk1,k2

›

›

›

›

›

›

`

›

›

›

›

›

›

ÿ

´´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
tPk1,k2 ´ e´λN

k1,k2
tPNk1,k2

¯

›

›

›

›

›

›

For the first summand, we already have
›

›

›

›

›

›

ÿ

N´1
2 ă|k1|,|k2|

e´λk1,k2
tPk1,k2

›

›

›

›

›

›

ď e´t
pN´1q2

2 .
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Hence let us investigate the second summand. We note
›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
tPk1,k2 ´ e´λN

k1,k2
tPNk1,k2

¯

›

›

›

›

›

›

(9)

ď

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
t ´ e´λN

k1,k2
t
¯

PNk1,k2

›

›

›

›

›

›

`

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2
tpPk1,k2 ´ PNk1,k2q

›

›

›

›

›

›

For the first summand we note
›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
t ´ e´λN

k1,k2
t
¯

PNk1,k2

›

›

›

›

›

›

“ sup
´

N´1
2 ďk1,k2ď

N´1
2

ˇ

ˇ

ˇ
e´λk1,k2

t ´ e´λN
k1,k2

t
ˇ

ˇ

ˇ

“ sup
´

N´1
2 ďk1,k2ď

N´1
2

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

We note
ˆ

N2

π2
sin2

´ π

N
k

¯

´ k2
˙

“ O
ˆ

k4

N2

˙

.

Using
N2

π2
sin2

´ π

N
N

1
3

¯

À N
2
3

we note

sup
´

N´1
2 ďk1,k2ď

N´1
2

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

ď sup
|k1|,|k2|ďN

1
3

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

` sup
|k1|,|k2|ąN

1
3

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

ď e´tp2N
2
3 q ` e´tp2N

2
3 q ` e´tpN

2
3 q.

Hence it remains to bound the second summand in (9). We note

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2
tpPk1,k2 ´ PNk1,k2q

›

›

›

›

›

›

ď
ÿ

|k1|,|k2|ď
N´1

2

e´pk21`k22qt}Pk1,k2 ´ PNk1,k2}.

Next we note
}Pk1,k2 ´ PNk1,k2} ď 2 }ϕk1,k2 ´ ϕk1,k2} .

It is not hard to see that
›

›

›
ϕk1,k2 ´ ϕNk1,k2

›

›

›
ď 2Cp|k1| ` |k|2q

2π

N

for some appropriately chosen C ą 0. Hence we have
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›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2
tpPk1,k2 ´ PNk1,k2q

›

›

›

›

›

›

ď
ÿ

|k1|,|k2|ď
N´1

2

e´pk21`k22qt ¨ 2Cp|k1| ` |k|2q
2π

N

“Op1{Nq.

Where the lass claim follows from summability in k1, k2. Thus we have in total indeed established
that (8) holds.

I.3 COARSE GRAINING WEIGHTED DIRECTED GRAPHS

In this section, following (Koke, 2024) we consider a graph G with directed weighted adjacency
matrix As which we (disjointly) decompose as

As ” Ac ` s ¨Am

into a weighted directed (partial) adjacency matrix AC which we keep constant and a weighted
directed (partial) adjacency matrix s ¨ Am. Both adjacency matrices determine directed graph
structures on the same common node set G. Similar to the setting of Appendix I.1, we are then
interested in establishing that when s Ñ 8 this graph is similar (from a diffusion perspective) to
a coarse grained graph G. In Appendix I.1, we saw that the the coarse grained "limit graph" G
was determined by the structure of the kernel of the operator ∆high; which encoded the connected
components of the graph Ghigh (c.f. Fig. 7) into its vectors. We expect that this also persists in the
directed setting.

In this directed setting, we are faced with the choice of whether to make use of the in-degree Laplacian

Lin “ M´1
“

Din ´A
‰

or the out-degree Laplacian

Lout “ M´1
“

Dout ´A
‰

.

The following is known about the kernels of these operators (c.f. Veerman & Lyons (2020); Sahi
(2013)):

In-degree Laplacian: To understand the kernel of directed in-degree Laplacians, we need the
concept of reaches. Reaches generalize the concept of connected components of undirected graphs
Veerman & Lyons (2020): A subgraph R Ď G is called reach, if for any two vertices a, b P R there is
a directed path in R along which the (directed) edge weights do not vanish, and R simultaneously
possesses no outgoing connections (i.e. for any c P G with c R R: wca “ 0). We here limit ourselves
to the setting where all reaches within a given graph are disjoint (c.f. Veerman & Lyons (2020) for
the general setting).

Consider now a graph G with adjacency matrix Am The dimensionality of the kernel of Lin on this
graph is then given as the number of reaches NReach present in Am. The right-kernel of Lin is spanned
by the vectors tviu1ďRďNReach which have entry 1 at all nodes in reach R and are zero outside of R.
By definition these vectors satisfy

Lin ¨ vi “ 0.

The left-kernel is spanned by vectors twRu1ďRďNReach so that wR has non-zero entries only for nodes
in reach R and is zero elsewhere. As can be derived from results in Sahi (2013), we may write
wR “ MŵR with M the matrix of node weights (c.f. Section 2.1) and the entry pŵRqi (for i a node
in the reach R) given as

pŵRqi “
ÿ

τiPT R
i

ź

pabqPτi

Amab.

Here T R
i is the set of all spanning trees of the reach R that are rooted at node i P R. τi is such

a spanning tree beginning at node i. The quantity
ś

pabqPτi

Amab then multiplies all (directed) edge
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weights along the spanning tree τi. From this, we can derive that we may write the (not necessarily
orthogonal) projection P projecting onto the kernel of Lin as

P “
ÿ

RPReaches ofAm

vR ¨ pMŵRq⊺

pMŵRq⊺ ¨ VR
.

We might write this as
P “ JÒJÓ

with JÓ mapping (similarly to the setting in Appendix I.1) to a coarsified graph G, whose node set
consists of the reaches in the original graph structure determined by A:

G “ tRuRPtReaches ofAm
u.

Similarly to Definition I.2, we then have for x a signal defined on the original graph G, that pJÓxq is
a signal on the coarsified graph G. It is defined by specifying it on each node R P G as

pJÓxqR “
1

pMŵRq⊺ ¨ VR
¨ pMŵRq⊺ ¨ x.

Similarly interpolation back up to G is defined as

JÒx :“
ÿ

RPG
xR ¨ vR.

Out-degree Laplacian: For the out-degree Laplacian Lout, the roles of left- and right kernels
above are essentially reversed. Instead of reaches R determined by the adjacency matrix Am, one
considers reaches R̃ determined by the transpose pAmq⊺ of the adjacency matrix. The left kernel of
the out-degree Laplacian is given as the set of vectors tṽR̃u given as ṽR̃ “ MvR̃, with

vR̃ again the vector with entry 1 at all nodes in reach R̃ and zero outside of R̃. The right kernel is
spanned by vectors tw̃R̃u whose ith entry is given by

pw̃R̃qi “
ÿ

τ̃iPT R̃
i

ź

pabqPτ̃i

A⊺
ab.

Here T R̃
i is the set of all spanning trees of the reach R̃ (as determined by the connectivity structure of

the transposed adjacency matrix pAmq⊺).

We then note for the projection P̃ onto the kernel of Lout, that we may write

P̃ “
ÿ

R̃PReaches of pAm
q
⊺

w̃R̃ ¨ pMvR̃q⊺

pMvR̃q⊺ ¨ w̃R̃
.

We may again write this as
P “ J̃ÒJ̃Ó

with JÓ mapping (similarly to the setting in Appendix I.1) to a coarsified graph G, whose node set
consists of the reaches in the adjacency structure determined by pAmq⊺:

Similarly to above, we then have for x a signal defined on the original graph G, that pJ̃Óxq is a signal
on the coarsified graph G. It is defined by specifying it on each node R̃ P G as

pJ̃ÓxqR̃ “
1

pMvR̃q⊺ ¨ w̃R̃
¨ pMvR̃q⊺ ¨ x

Similarly interpolation back up to G is defined as

J̃Òx :“
ÿ

R̃PG

xR ¨ w̃R̃.
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In the setting
As ” Ac ` s ¨Am

we may then prove (exactly as done in Appendix I.1) that – with Lin
s , L

out
s the in-and out-degree

Laplacians corresponding to As – we have

}pLin
s ` Idq´1 ´ JÓpLin

` Idq´1JÒ} “ O
ˆ

1

s

˙

and

}pLout
s ` Idq´1 ´ J̃ÓpLout

` Idq´1J̃Ò} “ O
ˆ

1

s

˙

.

Investigating the operators JÒ and J̃Ò, we see that we have

JÒ1G “ 1G

J̃Ò1G ‰ 1G.

In view of Theorem H.17 we hence find:
Proposition I.6. In the directed setting, using the in-degree Laplacian allows for networks to be
transferable between a graph G and its coarse grained version G even if biases are enabled. This is
not true when using the out-degree Laplacian.

J ADDITIONAL EXPERIMENTAL CONSIDERATIONS

J.1 ADDITIONAL DETAILS ON COARSE GRAINING EXAMPLES

Dataset: The dataset we consider is the QM7 dataset, introduced in Blum & Reymond (2009);
Rupp et al. (2012). This dataset contains descriptions of 7165 organic molecules, each with up to
seven heavy atoms, with all non-hydrogen atoms being considered heavy. A molecule is represented
by its Coulomb matrix CClmb, whose off-diagonal elements

CClmb
ij “

ZiZj
|Ri ´Rj |

correspond to the Coulomb-repulsion between atoms i and j. We discard diagonal entries of Coulomb
matrices; which would encode a polynomial fit of atomic energies to nuclear charge Rupp et al.
(2012).

For each atom in any given molecular graph, the individual Cartesian coordinates Ri and the atomic
charge Zi are (in principle) also accessible individually. To each molecule an atomization energy -
calculated via density functional theory - is associated. The objective is to predict this quantity. The
performance metric is mean absolute error. Numerically, atomization energies are negative numbers
in the range ´600 to ´2200. The associated unit is rkcal/mols.

Details on collapsing procedure: Again, we make use of the QM7 dataset Rupp et al. (2012) and
its Coulomb matrix description

CClmb
ij “

ZiZj
|Ri ´Rj |

(10)

of molecules. We modify (all) molecular graphs in QM7 by deflecting hydrogen atoms (H) out of
their equilibrium positions towards the respective nearest heavy atom. This is possible since the QM7
dataset also contains the Cartesian coordinates of individual atoms. Edge weights between heavy
atoms then remain the same, while Coulomb repulsions between H-atoms and respective nearest
heavy atom increasingly diverge; as is evident from (10).

Given an original molecular graph G with node weights µi “ Zi, the corresponding limit graph
G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are
aggregated into single super-nodes.
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Mathematically, G is obtained by removing all nodes corresponding to H-atoms fromG, while adding
the corresponding charges ZH “ 1 to the node-weights of the respective nearest heavy atom. Charges
in (10) are modified similarly to generate the weight matrix W .

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of
methane – consisting of one carbon atom with charge ZC “ 6 and four hydrogen atoms of charges
ZH “ 1 – the corresponding node-feature-matrix is e.g. given as

X “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‚

with the non-zero entry in the first row being in the 6th column, in order to encode the charge ZC “ 6
for carbon.

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring
H-atoms jointly.

Node feature matrices are translated as X “ JÓX . Applying JÓ to one-hot encoded atomic charges
yields (normalized) bag-of-word embeddings on G: Individual entries of feature vectors encode how
much of the total charge of the super-node is contributed by individual atom-types. In the example of
methane, the limit graph G consists of a single node with node-weight

µ “ 6 ` 1 ` 1 ` 1 ` 1 “ 10.

The feature matrix
X “ JÓX

is a single row-vector given as

X “

ˆ

4

10
, 0, ¨ ¨ ¨ , 0,

6

10
, 0, ¨ ¨ ¨

˙

.

Experimental Setup: We randomly select 1500 molecules for testing and train on the remaining
graphs. On QM7 we run experiments for 23 different random random seeds and report mean and
standard deviation. All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics
card.

Additional details on training and models: Typical GNN models are divided into standard
architectures (GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), ARMA (Bianchi
et al., 2019), BernNet (He et al., 2021), GATv2 (Brody et al., 2022)) and multi- scale architectures
(PushNet (Busch et al., 2020), UFGNet (Zheng et al., 2021), Lanczos (Liao et al., 2019)). Apart
from UFGNet (already acting as a pooling layer) we also consider self-attention-pooling (Lee et al.,
2019); both acting on the final layer (SAG) and as acting on the output of each indivifual layer, with
resulting layer-wise features concatenated to produce the final embedding (SAG-M). All considered
convolutional layers are incorporated into a two layer deep and fully connected graph convolutional
architecture. In each hidden layer, we set the width (i.e. the hidden feature dimension) to

F1 “ F2 “ 64.

For BernNet, we set the polynomial order to K “ 3 to combat appearing numerical instabilities.
ARMA is set to K “ 2 and T “ 1. ChebNet uses K “ 2. Lnaczos uses 20 Lanczos iterations, as
proposed in the original paper (Liao et al., 2019). UFGNet uses Haar wavelets. For all baselines,
the standard mean-aggregation scheme is employed after the graph-convolutional layers to generate
graph level features. Finally, predictions are generated via an MLP.

LTF-Res architecture, we set λ “ 1 and and build filters using the k “ 1 and “ 2 atoms in
ΨRes “ tpz ` λq´kukPN.

For the LTF-Exp architecture, we set t “ 1 and and build filters using the k “ 1 and “ 2 atoms in
ΨExp “ te´pkt0qzukPN.

As aggregation, we employ the graph level feature aggregation scheme introduced in Section 3.2 with
node weights set to atomic charges of individual atoms. Predictions are then generated via a final
MLP with the same specifications as the one used for baselines.
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J.2 FURTHER DISCUSSIONS ON TRANSFERABILITY RESULTS IN TABLE 1 USING FIGURE 9

Fig. 9 showcases why LTF based models in Table 1 are able to transfer. While it is true that
limtÑ8 ηptq “ 0, the key take-away here is not that the functions ηptq decays to zero, but rather that
it decays to zero sufficiently fast. For t “ 1, we e.g. already have ηp1q « 0.

Let us exemplarily examine the implications of this sufficiently fast decay of the function ηptq for
the transferability of the filter ψpzq “ e´z . which constitutes a basis element in our investigated
LTF-Exp architecture. The generalized function associated to this filter is given by ψ̂ptq “ δpt´ 1q.

As discussed in Theorem 4.4 (line 274 ff.) the single filter transferability error is bounded as

}ψpLq ´ J̃ψpL̃qJ} ď

ż 8

0

ηptq|ψ̂ptq|dt “

ż 8

0

ηptqδpt´ 1qdt “ ηp1q « 0.

Since ηp1q « 0, the transferability error of the corresponding filter ψ is small. Together with Theorem
4.9 this then explains the transferability observed in Table 1.

J.3 ADDITIONAL EXPERIMENTAL RESULTS ON QM9

Here we provide additional experimental results on QM9

Table 3: Regression Mean Absolute Errors (various targets) using high- and low-resolution QM9

Zero point vibrational energy [eV] (Ó) Dipole Moment [D] (Ó)

Training High Resolution Low Resolution High Resolution Low Resolution

Inference
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution

GATv2 3.6464˘0.05970.1785˘0.00150.1328˘0.0061 5.0610˘3.3775 3.6551˘1.78070.8816˘0.0336 0.7851˘0.0171.7071˘0.1063

GCN 0.8463˘0.06580.1851˘0.00410.1344˘0.0040 0.8243˘0.0903 2.9901˘0.40300.9237˘0.01370.9594˘0.02001.4992˘0.1135

LTF-ΨRes 0.0675˘0.01150.0357˘0.00620.0398˘0.0022 0.0403˘0.0026 1.3071˘0.22270.7523˘0.00940.9556˘0.02630.9659˘0.0202

Free energy at 298.15K [eV] (Ó) Rotational constant [GHz] (Ó)

Training High Resolution Low Resolution High Resolution Low Resolution

Inference
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution

GATv2 1252.14˘787.48 409.44˘74.09409.54˘161.552418.55˘637.45 0.9654˘0.04800.8482˘0.06740.8479˘0.02231.7811˘0.7105

GCN 11017.24˘1621.28 344.23˘15.85 940.03˘14.383588.13˘366.20 1.4153˘0.03540.7996˘0.00910.8544˘0.02751.0928˘0.1043

LTF-ΨRes 18.00˘5.28 18.00˘5.28 11.71˘2.46 11.71˘2.46 0.9138˘0.095100.8810˘0.06550.8211˘0.01920.9531˘0.1842

J.4 TRANSFERABILITY ON GRAPHS GENERATED VIA STOCHASTIC BLOCK MODELS

Stochastic Block Models: Stochastic block models (Holland et al., 1983) are generative models for
random graphs that produce graphs containing strongly connected communities. In our experiments
in this section, we consider a stochastic block model whose distributions is characterized by four
parameters: The number of communities cnumber determine how many (strongly connected) communi-
ties are present in the graph that is to be generated. The community size csize determines the number
of nodes belonging to each (strongly connected) community. The probability pconnect determines the
probability that two nodes within the same community are connected by an edge. The probability
pinter determines the probabilities that two nodes in different communities are connected by an edge.

Experimental Setup: Since stochastic block models do not generate node-features, we equip
each node with a randomly-generated unit-norm feature vector. Given such a graph G drawn from
a stochastic block model, we then compute a version G of this graph, where all communities are
collapsed to single nodes as described in Definition I.2. We then compare the feature vectors generated
for G and G. All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics card.
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As before, we then consider the LTF-ΨRes and LTF-ΨExp together with GCN as a baseline when
investigating transferability.

Experiment: Varying the Connectivity within the Communities: As discussed in detail in
Section 3.2 and Appendix I.1, we desire that networks assign similar feature vectors to graphs
with strongly connected communities and coarse-grained versions of these graphs, where these
communities are collapsed to aggregate nodes. The higher the connectivity within these communities,
the more similar should the feature vector of the original graph G and its coarsified version G be, as
Appendix I.1 established. In order to verify this experimentally, we fix the parameters cnumber, csize
and pinter in our stochastic block model. We then vary the probability pconnect that two nodes within
the same community are connected by an edge from pconnect “ 0 to pconnect “ 1. This corresponds
to varying the connectivity within the communities from very sparse (or in fact no connectivity) to
full connectivity (i.e. the community being a clique). In Figure 17 below, we then plot the difference
of feature vectors generated by LTF-Res, LTF-Exp and GCN for G and G respectively. For each
pconnect P r0, 1s, results are averaged over 100 graphs randomly drawn from the same stochastic block
model.

(a) (b)

Figure 17: (a) Example Graph (b) Varying the parameter pconnect P r0, 1s for fixed csize “ 20,
pinter “ 2{c2size and cnumber “ 10.

We have chosen pinter “ 2{c2size so that – on average – clusters are connected by two edges. The
choice of two edges (as opposed to 1, 3, 4, 5, ...) between clusters is not important; any arbitrary
choice of pinter ensures a decay behavior for ResolvNet as in Figure 17. A corresponding ablation
study is provided below.

As can be inferred from Fig. 17, LTF-ΨRes and LTF-ΨExp produce more and more similar feature-
vectors for G and its coarse-grained version G, as the connectivity within the clusters is increased.
As a reference, we plot GCN for which such a transferability result clearly does not hold.

J.5 NODE LEVEL TRANSFERABILITY AND GRAPHS WITH VARYING CONNECTIVITY

In the preceding experiments, standard methods proved not transferable. Here we show that this lack
of transferability can be harmful also for node-level tasks on a single graph that has an imbalanced
geometry in the sense that it contains strongly connected subgraphs with weaker connectivity between
such subgraphs.

To this end, we duplicated individual nodes on popular node-classification datasets (CITESEER &
CORA (Sen et al., 2008; McCallum et al., 2000)) k-times to form (fully connected) k-cliques, while
keeping the train-val-test partition constant.
Models were then trained on the same (k-fold expanded) train-set and asked to classify nodes on the
(k-fold expanded) test-partition. Baselines were chosen to form a representative selection of common
information-propagation methods and include GIN Xu et al. (2019) and SAGE Hamilton et al. (2017)
(which could not handle weighted edges).
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(a) (b)

Figure 18: Individual nodes (a) replaced by k-cliques (b)

Additional details on training and models: All experiments were performed on a single NVIDIA
Quadro RTX 8000 graphics card. We closely follow the experimental setup of Gasteiger et al. (2019b)
on which our codebase builds: All models are trained for a fixed maximum (and unreachably high)
number of n “ 10000 epochs. Early stopping is performed when the validation performance has
not improved for 100 epochs. Test-results for the parameter set achieving the highest validation-
accuracy are then reported. Ties are broken by selecting the lowest loss (c.f. Velickovic et al. (2018)).
Confidence intervals are calculated over multiple splits and random seeds at the 95% confidence level
via bootstrapping.

We train all models on a fixed learning rate of lr “ 0.1. Global dropout probability p of all models
is optimized individually over p P t0.3, 0.35, 0.4, 0.45, 0.5u. We use ℓ2 weight decay and optimize
the weight decay parameter λ for all models over λ P t0.0001, 0.0005u. Where applicable (e.g. not
for He et al. (2021)) we choose a two-layer deep convolutional architecture with the dimensions of
hidden features optimized over

Kℓ P t32, 64, 128u. (11)

In addition to the hyperparemeters specified above, some baselines have additional hyperparameters,
which we detail here: BernNet uses an additional in-layer dropout rate of dp_rate “ 0.5 and for its
filters a polynomial order of K “ 10 as suggested in He et al. (2021). Hyperparameters depth T
and number of stacks K of the ARMA convolutional layer Bianchi et al. (2019) are set to T “ 1
and K “ 2. ChebNet also uses K “ 2 to avoid the known over-fitting issue Kipf & Welling (2017)
for higher polynomial orders. The graph attention network Velickovic et al. (2018) uses 8 attention
heads, as suggested in Velickovic et al. (2018).

For the LTF-models, we optimize depth over K “ 1, 2 with hidden feature dimension optimized over
the values in (11) as for baselines. We empirically observed in the setting of unweighted graphs, that
rescaling the Laplacian as

∆nf :“
1

cnf
∆

with a normalizing factor cnf on which we base our ResolvNet architectures improved performance.

We express this normalizing factor in terms of the largest singular value }∆} of the (non-normalized)
graph Laplacian. It is then selected among

cnf {}∆} P t0.001, 0.01, 0.1, 2u.

The value λ for the resolvent is selected among

λ P t0.14, 0.15, 0.2, 0.25u.

J.6 TRANSFERABILITY BETWEEN GRAPHS DISCRETIZING A COMMON AMBIENT SPACE: THE
TORUS

We make use of the operators JÒÓ

i defined in Appendix I.2. The function f P L2pMq on the torus is
chosen as

f “
1

4π2
sinpϕq cospθq.

All networks have two hidden layers of width 64 and are asked to predict a scalar signal on the
respective graphs.
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K EFFECTIVE PROPAGATION SCHEMES

For definiteness, we here discuss limit-propagation schemes in the setting where edge-weights are
large. The discussion for high-connectivity in the Sense of large cliques proceeds analogously.

In this section, we then take up again the setting of Section 3.2. We reformulate this setting here in
a slightly modified language, that is more adapted to discussing effective propagation schemes of
standard architectures:

We partition edges on a weighted graph G, into two disjoint sets E “ Ereg. 9YEhigh, where the set of
edges with large weights is given by:

Ehigh :“ tpi, jq P E : wij ě Shighu

and the set with small weights is given by:

Ereg. :“ tpi, jq P E : wij ď Sreg.u

for weight scales Shigh ą Sreg. ą 0. Without loss of generality, assume Sreg. to be as low as possible
(i.e. Sreg. “ maxpi,jqPEreg. wij) and Shigh to be as high as possible (i.e. Slarge “ minpi,jqPEhigh ) and no
weights in between the scales.

(a) (b) (c) (d)

Figure 19: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Greg., exclusive

This decomposition induces two graph structures corresponding to the disjoint edge sets on the node
set G: We set Greg. :“ pG, Ereg.q and Ghigh :“ pG, Ehighq c.f. Fig. 19).
We also introduce the set of edges Ereg., exclusive :“ tpi, jq P Ereg.| @k P G : pi, kq R Ehigh & pk, jq R

Ehighu connecting nodes that do not have an incident edge in Ehigh. A corresponding example-graph
Greg., exclusive is depicted in Fig. 19 (d).

We are now interested in the behaviour of graph convolution schemes if the scales are well
separated:

Shigh " Sreg.

K.1 SPECTRAL CONVOLUTIONAL FILTERS

We first discuss resulting limit-propagation schemes for spectral convolutional networks. Such
networks implement convolutional filters as a mapping

x ÞÝÑ gθpT qx

for a node feature x, a learnable function gθ and a graph shift operator T .

K.1.1 NEED FOR NORMALIZATION

The graph shift operator T facilitating the graph convolutions needs to be normalized for established
spectral graph convolutional architectures:

For Bianchi et al. (2019), this e.g. arises as a necessity for convergence of the proposed implementa-
tion scheme for the rational filters introduced there (c.f. eq. (10) in Bianchi et al. (2019)).

The work Defferrard et al. (2016) needs its graph shift operator to be normalized, as it approximates
generic filters via a Chebyshev expansion. As argued in Defferrard et al. (2016), such Chebyshev

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

polynomials form an orthogonal basis for the space L2pr´1, 1s, dx{
?
1 ´ x2q. Hence, the spectrum

of the operator T to which the (approximated and learned) function gθ is applied needs to be contained
in the interval r´1, 1s.

In Kipf & Welling (2017), it has been noted that for the architecture proposed there, choosing T to
have eigenvalues in the range r0, 2s (as opposed to the normalized ranges r0, 1s or r´1, 1s) has the
potential to lead to vanishing- or exploding gradients as well as numerical instabilities. To alleviate
this, Kipf & Welling (2017) introduces a "renormalization trick" (c.f. Section 2.2. of Kipf & Welling
(2017) to produce a normalized graph shift operator on which the network is then based.

We can understand the relationship between normalization of graph shift operator T and the stability
of corresponding convolutional filters explicitly: Assume that we have

}T } " 1.

This might e.g. happen when basing networks on the un-normalized graph Laplacian ∆ or the
weight-matrix W if edge weights are potentially large (such as in the setting Shigh " Sreg. that we are
considering).

By the spectral mapping theorem (see e.g. Teschl (2014)), we have
σ pgθpT qq “ tgθpλq : λ P σpT qu , (12)

with σpT q denoting the spectrum (i.e. the set of eigenvalues) of T . For the largest (in absolute value)
eigenvalue λmax of T , we have

|λmax| “ }T }. (13)
Since learned functions are either implemented directly as a polynomial (as e.g. in Defferrard et al.
(2016); He et al. (2021)) or approximated as a Neumann type power iteration (as e.g. in Bianchi et al.
(2019); Gasteiger et al. (2019a)) which can be thought of as a polynomial, we have

lim
λÑ˘8

|gθpλq| “ 8.

Thus in view of (12) and (13) we have for }T } sufficiently large, that
}gθpT q} “ |gθp˘}T }q|

with the sign ˘ determined by λmax ż 0. Since non-constant polynomials behave at least linearly
for large inputs, there is a constant C ą 0 such that

C ¨ }T } ď }gθpT q}

for all sufficiently large }T }. We thus have the estimate
}x} ¨ C ¨ }T } ď }gθpT qx}

for at least one input signal x (more precisely all x in the eigen-space corresponding to the largest (in
absolute value) eigenvalue λmax). Thus if T is not normalized (i.e. }T } is not sufficiently bounded),
the norm of (hidden) features might increase drastically when moving from one (hidden) layer to the
next. This behaviour persists for all input signals x have components in eigenspaces corresponding to
large (in absolute value) eigenvalues of T .

K.1.2 SPECTRAL NORMALIZATIONS

As discussed in the previous Section K.1.1, instabilities aris-
ing from non-normalized graph shift operators can be traced
back to the problem of such operators having large eigenval-
ues. It was thus – among other considerations – suggested in
Defferrard et al. (2016) to base convolutional filters on the
spectrally normalized graph shift operator

T “
1

λmaxp∆q
∆, Figure 20: Limit graph correspond-

ing to Fig 19 for spectral normaliza-
tion

with ∆ the un-normalized graph Laplacian. In the setting Shigh " Sreg. we are considering, this
leads to an effective feature propagation along Ghigh (c.f. also Fig. 20) only, as Theorem K.1 below
establishes:
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Theorem K.1. With
T “

1

λmaxp∆q
∆,

and the scale decomposition as above we have that
›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

(14)

for Shigh " Sreg..

Proof. For convenience in notation, let us write

Thigh “
1

λmaxp∆highq
∆high

and similarly

Treg. “
1

λmaxp∆reg.q
∆reg..

We may write
∆ “ ∆high ` ∆reg.,

which we may rewrite as

∆ “ λmaxp∆highq ¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (15)

Let us consider the equivalent expression

1

λmaxp∆highq
¨ ∆ “ Thigh `

λmaxp∆reg.q

λmaxp∆highq
¨ Treg.. (16)

We next note that

λmax

ˆ

1

λmaxp∆highq
¨ ∆

˙

“
λmaxp∆q

λmaxp∆highq
. (17)

and
λmax pThighq “ 1

since the operation of taking eigenvalues of operators is multiplicative in the sense of

λmaxp|a| ¨ T q “ |a| ¨ λmaxpT q

for non-negative |a| ě 0.

Since the right-hand-side of (16) constitutes an analytic perturbation of Thigh, we may apply analytic
perturbation theory (c.f. e.g. Kato (1976) for an extensive discussion) to this problem. With this
(together with }Thigh} “ 1) we find

λmax

ˆ

1

λmaxp∆highq
¨ ∆

˙

“ 1 ` O
ˆ

λmaxp∆reg.q

λmaxp∆highq

˙

. (18)

Using (17) and the fact that
λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
, (19)

we thus have
λmax p∆q

λmaxp∆highq
“ 1 ` O

ˆ

Sreg.

Shigh

˙

.

Since for small ϵ, we also have
1

1 ` ϵ
“ 1 ` Opϵq,

the relation (19) also implies

λmaxp∆highq

λmax p∆q
“ 1 ` O

ˆ

Sreg.

Shigh

˙

.
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Multiplying (15) with 1{λmaxp∆q yields

T “
λmaxp∆highq

λmaxp∆q
¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (20)

Since }Thigh}, }Treg.} “ 1 and
λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
ă 1

for sufficiently large Shigh, relation (20) implies
›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

as desired.

Note that we might in principle also make use of Lemma K.2 below, to provide quantitative bounds:
Lemma K.2 states that

|λkpAq ´ λkpBq| ď }A´B}

for self-adjoint operators A and B and their respective kth eigenvalues ordered by magnitude. On a
graph withN nodes, we clearly have λmax “ λN for eigenvalues of (rescaled) graph Laplacians, since
all such eigenvalues are non-negative. This implies for the difference |1 ´ λmaxp∆q{λmaxp∆highq|

arising in (18) that explicitly
ˇ

ˇ

ˇ

ˇ

1 ´
λmaxp∆q

λmaxp∆highq

ˇ

ˇ

ˇ

ˇ

ď
λmaxp∆reg.q

λmaxp∆highq
.

This in turn can then be used to provide a quantitative bound in (14). Since we are only interested in
the qualitative behaviour for Shigh " Sreg., we shall however not pursue this further.

It remains to state and establish Lemma K.2 referenced at the end of the proof of Theorem K.1:

Lemma K.2. Let A and B be two hermitian nˆ n dimensional matrices. Denote by tλkpMqunk“1
the eigenvalues of a hermitian matrix in increasing order.
With this we have:

|λkpAq ´ λkpBq| ď ||A´B||.

Proof. After the redefinition B ÞÑ p´Bq, what we need to prove is

|λipA`Bq ´ λipAq| ď ||B||

for Hermitian A,B. Since we have

λipAq ´ λipA`Bq “ λippA`Bq ` p´Bqq ´ λipA`Bq

and || ´B|| “ ||B|| it follows that it suffices to prove

λipA`Bq ´ λipAq ď ||B||

for arbitrary hermitian A,B.

We note that the Courant-Fischer min´max theorem tells us that if A is an nˆ n Hermitian matrix,
we have

λipMq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚Mv.
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With this we find

λipA`Bq ´ λipAq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚pA`Bqv ´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

ď sup
dimpV q“i

inf
vPV,||v||“1

v˚Av ` sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

ď max
1ďkďn

t|λkpBq|u

“ ||B||.

K.1.3 SYMMETRIC NORMALIZATIONS

Most common spectral graph convolutional networks (such
as e.g. He et al. (2021); Bianchi et al. (2019); Defferrard
et al. (2016)) base the learnable filters that they propose on
the symmetrically normalized graph Laplacian

L “ Id´D´ 1
2WD´ 1

2 .

In the setting Shigh " Sreg. we are considering, this leads
to an effective feature propagation along edges in Ehigh and
Elow, exclusive (c.f. also Fig. 21) only, as Theorem K.3 below
establishes:

Figure 21: Limit graph correspond-
ing to Fig 19 for symmetric normal-
ization

Theorem K.3. With
T “ Id´D´ 1

2WD´ 1
2 ,

and the scale decomposition as introduced above, we have that

›

›

›
T ´

´

Id´D
´ 1

2

highWhighD
´ 1

2

high ´D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg.

Shigh

¸

(21)

for Shigh " Sreg..

Proof. We first note that instead of (21), we may equivalently establish

›

›

›
D´ 1

2WD´ 1
2 ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯›

›

›
“ O

˜
d

Sreg.

Shigh

¸

.

We have
W “ Whigh `Wreg..

With this, we may write

D´ 1
2WD´ 1

2 “ D´ 1
2WhighD

´ 1
2 `D´ 1

2Wreg.D
´ 1

2 . (22)

Let us first examine the term D´ 1
2WhighD

´ 1
2 . We note for the corresponding matrix entries that

´

D´ 1
2WhighD

´ 1
2

¯

ij
“

1
?
di

¨ pWhighqij ¨
1

a

dj

Let us use the notation

dhigh
i “

N
ÿ

j“1

pWhighqij , dreg.
i “

N
ÿ

j“1

pWreg.qij and dlow,exclusive
i “

N
ÿ

j“1

pWlow,exclusiveqij .
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We then find
1

?
di

“
1

b

dhigh
i

¨
1

c

1 `
dreg.
i

dhigh
i

Using the Taylor expansion
1

?
1 ` ϵ

“ 1 ´
1

2
ϵ` Opϵ2q,

we thus have
´

D´ 1
2WhighD

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

` O

˜

dreg.
i

dhigh
i

¸

.

Since we have
dreg.
i

dhigh
i

9
Sreg.

Shigh
,

this yields

D´ 1
2WhighD

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high ` O
ˆ

Sreg.

Shigh

˙

.

Thus let us turn towards the second summand on the right-hand-side of (22). We have
´

D´ 1
2Wreg.D

´ 1
2

¯

ij
“

1
?
di

¨ pWreg.qij .
1

a

dj
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under
consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write

1
a

dj
“

1
b

dhigh
j

¨
1

c

1 `
dreg.
i

dhigh
i

.

Since
1

c

1 `
dreg.
i

dhigh
i

ď 1,

we have
ˇ

ˇ

ˇ

ˇ

´

D´ 1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?
di

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly
´

D´ 1
2Wreg.D

´ 1
2

¯

ij
“

´

D
´ 1

2
reg. Wlow,exclusiveD

´ 1
2

reg.

¯

ij
.

Thus in total we have established

D´ 1
2WD´ 1

2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯

` O
ˆ

Sreg.

Shigh

˙

which was to be established.

Apart from networks that make use of the symmetrically normalized graph Laplacian L , some
methods, such as most notably Kipf & Welling (2017), instead base their filters on the operator

T “ D̃´ 1
2 W̃ D̃´ 1

2 ,

with
W̃ “ pW ` Idq

and
D̃ “ D ` Id.

In analogy to Theorem K.3, we here establish the limit propagation scheme determined by such
operators:
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Theorem K.4. With
T “ D̃´ 1

2 W̃ D̃´ 1
2 ,

where W̃ “ pW ` Idq and D̃ “ D ` Id as well as the scale decomposition introduced above, we
have that

›

›

›
T ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg. ` 1

Shigh

¸

for Shigh " Sreg.. Here W̃low, exclusive is given as

W̃low, exclusive :“ Wlow, exclusive ` diag
`

1Glow, exclusive

˘

and 1Glow, exclusive denotes the vector whose entries are one for nodes in Glow, exclusive and zero for all
other nodes.

The difference to the result of Theorem K.3 is thus that applicability of the limit propagation scheme
of Fig. 21 for the GCN Kipf & Welling (2017) is not only contingent upon Shigh " Sreg. but also
Shigh " 1.

Proof. To establish this – as in the proof of Theorem K.3 – we first decompose T :

D̃´ 1
2 W̃ D̃´ 1

2 “ D̃´ 1
2WhighD̃

´ 1
2 ` D̃´ 1

2Wreg.D̃
´ 1

2 ` D̃´ 1
2 IdD̃´ 1

2 (23)

“ D̃´ 1
2WhighD̃

´ 1
2 ` D̃´ 1

2Wreg.D̃
´ 1

2 ` D̃´1

For the first term, we note
´

D̃´ 1
2WhighD̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWhighqij ¨
1

a

dj ` 1
.

We then find
1

?
di ` 1

“
1

b

dhigh
i

¨
1

c

1 `
dreg.
i `1

dhigh
i

.

Analogously to the proof of Theorem K.3, this yields

´

D̃´ 1
2WhighD̃

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

` O

˜

1 ` dreg.
i

dhigh
i

¸

.

This implies

D̃´ 1
2WhighD̃

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high ` O
ˆ

Sreg. ` 1

Shigh

˙

.

Next we turn to the second summand in (23):

´

D̃´ 1
2Wreg.D̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWreg.qij .
1

a

dj ` 1
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under
consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write

1
a

dj ` 1
“

1
b

dhigh
j

¨
1

c

1 `
dreg.
i `1

dhigh
i

.

Since
1

c

1 `
dreg.
i `1

dhigh
i

ď 1,
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we have
ˇ

ˇ

ˇ

ˇ

´

D´ 1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?
1 ` di

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1
a

dreg.
i

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly

´

D̃´ 1
2Wreg.D̃

´ 1
2

¯

ij
“

´

D̃
´ 1

2
reg. Wlow,exclusiveD̃

´ 1
2

reg.

¯

ij
.

Finally we note for the third term on the right-hand-side of (23) that

1

di
ď

1

dhigh
i

“ O
ˆ

1

Shigh

˙

if i R Glow, exclusive.

In total we thus have found

D̃´ 1
2 W̃ D̃´ 1

2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯

` O

˜
d

Sreg. ` 1

Shigh

¸

;

which was to be proved.

K.2 SPATIAL CONVOLUTIONAL FILTERS

Apart from spectral methods, there of course also exist methods that purely operate in the spatial
domain of the graph. Such methods most often fall into the paradigm of message passing neural
networks (MPNNs) Gilmer et al. (2017); Fey & Lenssen (2019): With Xℓ

i P RF denoting the
features of node i in layer ℓ and wij denoting edge features, a message passing neural network may
be described by the update rule (c.f. Gilmer et al. (2017))

Xℓ`1
i “ γ

¨

˝Xℓ
i ,

ž

jPN piq

ϕ
`

Xℓ
i , X

ℓ
j , wij

˘

˛

‚. (24)

Here N piq denotes the neighbourhood of node i,
š

denotes a differentiable and permutation invariant
function (typically "sum", "mean" or "max") while γ and ϕ denote differentiable functions such as
multi-layer-perceptrons (MLPs) which might not be the same in each layer. Fey & Lenssen (2019).

Before we discuss corresponding limit-propagation schemes, we first establish that MPNNs are
not able to reproduce the limit propagation scheme ofFigure 6 (b) and are thus not stable to scale
transitions and topological perturbations.

K.2.1 SCALE-SENSITIVITY OF MESSAGE PASSING NEURAL NETWORKS

Here we establish that message passing networks (as defined in (24) above) are unable to emulate a
limit propagation scheme similar to the one in Figure 6 (b). Hence such architectures are also not
stable to scale-changing topological perturbations such as coarse-graining procedures.
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To this end, we consider a simple, fully connected graph G
on three nodes labeled 1, 2 and 3 (c.f. Fig. 22). We assume
all node-weights to be equal to one (µi “ 1 for i “ 1, 2, 3)
and edge weights

w13, w23 ď Sreg.

as well as
w12 “ Shigh.

We now assume Shigh " Sreg..

1 2

3

Figure 22: Three node GraphGwith
on large weight w12 " 1.

Given states tXℓ
1, X

ℓ
2, X

ℓ
3u in layer ℓ, a limit propagation scheme as in Figure 6 (b) would require the

updated feature vector of node 3 to be given by

Xℓ`1
3,desired :“ γ

ˆ

Xℓ
3, ϕ

ˆ

Xℓ
3,
Xℓ

1 `Xℓ
2

2
, pw31 ` w32q

˙˙

However, the actual updated feature at node 3 is given as (c.f. (24)):

Xℓ`1
3,actual :“ γ

´

Xℓ
3, ϕ

`

Xℓ
3, X

ℓ
1, w31

˘

ž

ϕ
`

Xℓ
3, X

ℓ
2, w32

˘

¯

(25)

Since there is no dependence on Shigh in equation (25) – which defines Xℓ`1
3,actual – the desired

propagation scheme can not arise, unless it is paradoxically already present at all scales Shigh. If it is
present at all scales, there is however only propagation along edges in G, even if Shigh « Sreg., which
would imply that the message passing network would not respect the graph structure of G. Hence
Xℓ`1

3,actual Û Xℓ`1
3,desired does not converge as Shigh increases.

K.2.2 LIMIT PROPAGATION SCHEMES

The number of possible choices of message functions ϕ, aggregation functions
š

and update functions
γ is clearly endless. Here we shall exemplarily discuss limit propagation schemes for two popular
architectures: We first discuss the most general case where the message function ϕ is given as a
learnable perceptron. Subsequently we assume that node features are updated with an attention-type
mechanism.

Generic message functions: We first consider the possibility that the message function ϕ in
(25) is implemented via an MLP using ReLU-activations: Assuming (for simplicity in notation) a
one-hidden-layer MLP mapping features Xℓ

i P RFℓ to features Xℓ`1
i P RFℓ`1 we have

ϕpXℓ
i , X

ℓ
j , wijq “ ReLU

`

W ℓ
1 ¨Xℓ

i `W ℓ
2 ¨Xℓ

2 `W ℓ
3 ¨ wij `Bℓ

˘

with bias term Bℓ`1 P RFℓ`1 and weight matrices W ℓ`1
1 ,W ℓ`1

2 P RFℓ`1ˆFℓ and W ℓ
3 P RFℓ`1 .

We will assume that the weight-vecor W ℓ`1
3 has no-nonzero entries. This is not a severe limitation

experimentally and in fact generically justified: The complementary event of at-least one entry of W3

being assigned precisely zero during training has probability weight zero (assuming an absolutely
continuous probability distribtuion according to which weights are learned).

Let us now assume that the edge pijq belongs to Ehigh and the corresponding weight wij is large
(wij " 1). The behaviour of entries ϕpXℓ

i , X
ℓ
j , wijqa of the message ϕpXℓ

i , X
ℓ
j , wijq P RFℓ`1 is

then determined by the sign of the corresponding entry
`

W ℓ
3

˘

a
of the weight vector W ℓ

3 P RFℓ`1 :

If we have
`

W ℓ
3

˘

a
ă 0, then ϕpXℓ

i , X
ℓ
j , wijqa approaches zero for larger edge-weights wij :

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ 0 (26)

If we have
`

W ℓ
3

˘

a
ą 0, then ϕpXℓ

i , X
ℓ
j , wijqa increasingly diverges for larger edge-weights wij :

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ 8 (27)

For either choice of aggregation function
š

in (24) among "max", "sum" or "mean" the behaviour
in (27) leads to unstable networks if the update function γ is also given as an MLP with ReLU
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activations. Apart from instabilities, we also make the following observation: If Shigh " Sreg., then by
(27) and continuity of ϕ we can conclude that components ϕpXℓ

i , X
ℓ
j , wijqa of messages propagated

along Ehigh for which
`

W ℓ
3

˘

a
ą 0 dominate over messages propagated along edges in Ereg.. By (26),

the former clearly also dominate over components ϕpXℓ
i , X

ℓ
j , wijqa of messages propagated along

Ehigh for which
`

W ℓ
3

˘

a
ă 0. This behaviour is irrespective of whether "max", "sum" or "mean"

aggregations are employed. Hence the limit propagation scheme essentially only takes into account
message channels ϕpXℓ

i , X
ℓ
j , wijqa for which pijq P Ehigh and

`

W ℓ
3

˘

a
ą 0.

Similar considerations apply, if non-linearities are chosen as leaky ReLU. If instead of ReLU
activations a sigmoid-nonlinearity σ like tanh is employed, messages propagated along Elarge become
increasingly uninformative, since they are progressively more independent of featuresXℓ

i and weights
wij . Indeed, for sigmoid activations, the limits (26) and (27) are given as follows:

If we have
`

W ℓ
3

˘

a
ă 0, then we have for larger edge-weights wij that

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ lim

yÑ´8
σpyq.

If we have
`

W ℓ
3

˘

a
ą 0, then

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ lim

yÑ8
σpyq.

In both cases, the messages ϕpXℓ
i , X

ℓ
j , wijq propagated along Elarge become increasingly constant as

the scale Shigh increases.

Attention based messages: Apart from general learnable message functions as above, we here
also discuss an approach where edge weights are re-learned in an attention based manner. For this
we modify the method Velickovic et al. (2018) to include edge weights. The resulting propagation
scheme – with a single attention head for simplicity and a non-linearity ρ – is given as

Xℓ`1
i “ ρ

¨

˝

ÿ

jPN piq

αijpWXℓ`1
j q

˛

‚.

Here we have W P RFℓ`1ˆFℓ and

αij “
exp

`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

j } wij
‰˘˘

ř

kPN piq

exp
`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

k } wik
‰˘˘ , (28)

with } denoting concatenation. The weight vector a⃗ P R2Fℓ`1`1 is assumed to have a non zero entry
in its last component. Otherwise, this attention mechanism would correspond to the one proposed in
Velickovic et al. (2018), which does not take into account edge weights. Let us denote this entry of a⃗
()determining attention on the weight wij) by aw.

If aw ă 0, we have for pi, jq P Ehigh that

exp
`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

j } wij
‰˘˘

ÝÑ 0

as the weight wij increases. Thus propagation along edges in Ehigh is essentially suppressed in this
case.

If aw ą 0, we have for pi, jq P Ehigh that

exp
`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

j } wij
‰˘˘

ÝÑ 8

as the weight wij increases. Thus for edges pi, jq P Ereg. (i.e. those that are not in Ehigh), we have

αij Ñ 0,

since the denominator in (28) diverges. Hence in this case, propagation along Ereg. is essentially
suppressed and features are effectively only propagated along Ehigh.
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