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ABSTRACT

We introduce a new point of view on transferability of graph neural networks based
on the intrinsic notion of information diffusion within graphs. This notion is adapted
to considering graphs to be similar if their overall rough structures are similar, while
their fine-print articulation may differ. Transferability of graph neural networks
is then considered between graphs that are similar from this novel perspective
on transferability. After carefully analysing transferability of single filters, the
transferability properties of entire networks are relegated to the transferability
characteristics of the filters employed inside their convolutional blocks. A rigorous
analysis establishes our main theoretical finding: Spectral convolutional networks
are transferable between graphs whose overall rough structures align, if their
filters arise as Laplace transforms of certain generalized functions. Numerical
experiments illustrate and validate the theoretical findings in practice.

1 INTRODUCTION

A fundamental quality of any machine learning model is its ability to generalize beyond the data on
which it was trained. In the graph neural network (GNN) setting, a crucial aspect of this capability is
characterized by the property of transferability: If two graphs are similar, also their respective latent
embeddings should be similar to each other. I.e. GNNs should be transferable between such graphs.

We may thus think of transferability as encoding information about continuity properties of GNNs:
Equipping the space of graphs, with a suitable distance-notion capturing graph similarity, we may
consider GNNSs as functions mapping from this space to latent Euclidean spaces. Transferable models
then correspond to continuous maps: Their outputs are close if input graphs are close to each other. In
contrast, non-transferable GNNs are discontinuous: Embeddings generated by such models may vary
strongly even if the corresponding graphs are close to each other. If a transferable GNN model is then
confronted during inference with a graph that is similar to a graph that was already observed during
training, generated latent embeddings will be similar. Hence a good performance on the train-set will
translate to a similarly good performance on the test set: The model will be able to generalize.

Here we will be analyzing transferability properties of spectral graph neural networks (Bruna et al.,
2014; Defterrard et al.,|2016); a prominent class of GNNs which continue to set the state of the art
on a diverse set of tasks (He et al.| [2021}; |2022a; [Wang & Zhang| [2022; |Koke & Cremers| [2024).
From a theoretical perspective, transferability of such models has been predominantly investigated
in the setting of (very) large graphs taken to faithfully approximate a common underlying ambient
object. Examples of such objects are metric measure spaces (Levie et al., 2019a)) and graphons (Ruiz
et al., [2020; [Maskey et al.,[2021), which are applicable to graphs where the number of edges || is
of O(N?), with N the number of nodes. Large sparse graphs (|€| = O(N)) are instead considered
to approximate the same graphop (Le & Jegelkal |2023)) or graphing (Roddenberry et al., [2022]).
Transferability outside this asymptotic regime of large graphs has to the best of our knowledge so far
only been investigated for limited examples and a restrictive class of filter functions Koke| (2023)).

Contributions: Here we propose an alternative approach to transferability: Fundamentally, we
consider two graphs to be similar if the rough overall structures within them align, while fine-
print articulations are allowed to vary. This setting captures fundamental examples such as graphs
discretizing the same manifold, graphs describing the same object at different resolutions or graphs
differing by edge deletions. To quantify similarity in this setting, we build on the notion of diffusion
distance (Hammond et al.,2013), which provides a relaxation of the canonical linear distance || L — L]
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between Laplacians L, L of different graphs. Within this relaxed distance measure, variations in
coarse structure are weighted more heavily, while variations in fine-structure are instead discounted.
A rigorous analysis then establishes our main theoretical finding: Networks are transferable between
graphs that are close in the diffusion sense, if their filters arise as Laplace transforms.

Our novel viewpoint provides a broad and general framework to analyze transferability: It is not
dependent on any ambient space, applies outside the setting of large graphs, is not restricted to a
certain scaling behaviour of the number of edges and covers settings where previous transferability
results are not applicable (e.g. between original and coarsified graphs). To provide guidance for the
practicioner, we perform carefully designed numerical experiments highlighting the importance of
transferability, showcasing the failure of common architectures to transfer and numerically verifing
that architectures conforming to our developed theory indeed do exhibit transferability.

Caveat: The notion of diffusion-similarity central to our analysis below is adapted to the setting
where the rough overall structure within graphs is more important than fine structure details. Utilizing
such a relaxation of the standard linear distance ||L — L|| allows to consider more relaxed conditions
on filter functions than previous works (Gama et al., 2019; Wang et al. 2021) in this setting. It
is however important to note that since our analysis is based on a distance notion that discounts
fine-structure details within graphs, the results in our paper do not allow to draw conclusions about
transferability and model performance in settings where the exact articulation of a graph is important.

2 BACKGROUND: SPECTRAL CONVOLUTIONAL NETWORKS ON GRAPHS

2.1 GRAPHS AND THEIR FUNDAMENTAL PROPERTIES

Graphs: A graph G := (G, ) is a collection of nodes G and edges £ € G x G. We assume (real)
edge-weights with potentially A;; # Aj; if the graph is directed. Nodes ¢ € G may have individual
node-weights p; > 0. In a social network, a node weight y; = 1 might e.g. signify that node ¢
represents a single user. A weight ;1; > 1 would indicate that node j represents a group of users.

Feature spaces: Given F-dimensional node features on a graph with N = |G| nodes, we collect
individual scalar node-signals 2 € R” into a feature matrix X of dimension N x F. Taking
node weights into account, we equip the space of such signals with an inner-product according to

(X,)Y)y=Tr(XTMY) = Zf\il Zle(yij}/}j)ui with M = diag ({1;}) the node-weight matrix.

Graph Laplacians: Spectral graph neural networks are typically based on some choice of (positive
semi-definite) graph Laplacian L (Defferrard et al., [2016} He et al., 2021; 2022b)), on which we will
hence also focus here. Most important to us will be the un-normalized (in-degree) graph Laplacian
L = M~Y(D — A). Here A is the (weighted) adjacency matrix and D is the diagonal degree matrix.

2.2  SPECTRAL CONVOLUTIONAL FILTERS

A spectral graph convolutional filter is then constructed by applying a learnable function hg(+)
to an underlying characteristic operator L; typically a graph Laplacian. The resulting filter matrix
he(L) € RN >N acts on scalar graph signals x € R via matrix multiplication; sending z to hg (L) -2:

x> ho(L)-x

In practice it is prohibitively expensive to implement such filters using e.g. an explicit eigendecom-
position (Defferrard et al.,|2016). Instead, a generic filter function hg(-) is typically parameterized
as a weighted sum over ’simpler’ basis functions {1;}ic; =: ¥ as hg(-) := >.._; 0; - ;(-). The
functions 1;(+) are then often chosen as polynomials v;(\) = >, ax\* (Defferrard et al., 2016;
Kenlay et al., 2020; He et al., [2021} [2022b), so that «;(L) is also given as a polynomial; now in
the matrix L: ¢;(L) = >, axL". The matrices {1);(L)};c; are then precomputed. Complete filters
he(L) are parametrized via the learnable coefficients {6; }icr as ho(L) := >,c; 0 - ¥i(L).

2.3  SPECTRAL GRAPH CONVOLUTIONAL NETWORKS:

Learnable filters are then combined into a (K -layer) graph convolutional network mapping initial
node-features X € RN > to final representations X € RN *Fx _ Layer-updates are implemented as
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iel
with biases B¢ € RVN*Ft (B; = b; - 1) and weight matrices W/ € R~ We here con-
sider activation functions p satisfying p(0) = 0 and |p(a) — p(b)| < |a — b| such as e.g. (leaky-)ReLu.
The scalar (1) and matrix (2) viewpoints are connected via the identity hg,, (L) = >}, (W) i1k (L).
With basis functions U = {4; };cs, weights # and biases %, we denote the output of a graph neural
network based on the operator L and applied to the node feature matrix X as ® = ® 5 v (L, X).

Fo_q
X/ =p < D kg, (DX + Bﬁ) ) = X'=p (Zwi@) CXChowl Bf> )
j=1

3  WHEN SHOULD MODELS BE TRANSFERABLE? A DIFFUSION PERSPECTIVE.

To determine between which graphs a GNN should be transferable, we need a measure of closeness
between graphs. If graphs G, G share a node set, an obvious first choice is the distance |L — L|
between their respective Laplacians. This measure is e.g. especially well adapted to the important
setting of similarity under small edge variations (w;; — (w;; + d;;) with |d;;| « 1) (Gama et al.,
2019;2020). There do however also exist structural changes which may be considered small, but to
which this standard measure | L — EH is insensitive: Removing any edge from an unweighted graph
G to obtain G will always result in 2 =
|L — L|. Depending on the location of
this edge removal, the graphs G, G might
however still exhibit considerable simi-
larity: Removing a single edge in an N-
clique graph K (Fig. [I)) intuitively cor-
responds to a much more minor structural )

modification than removing the bridge- Figure 1: Left: original Ky graph  Figure 2: Dumbbell
edge connecting two cliques (Fig.[J).  Right: Ky without edge [1<5]  with & w/o bridge

3.1 THE NOTION OF DIFFUSION DISTANCE

This intuition that the graphs of Fig. [T]are closer to each other than those of Fig. [2]is related to the
way information diffuses within them. Deleting the sole edge between cliques disrupts information
flow. In contrast deleting a single edge in a high connectivity area hardly has any repercussions. To
quantify this, we recall that the diffusion equation on a graph is given by dX (¢)/dt = —L - X (t) with
solution X (t) = e~ L% - X (0). Given the same initial conditions, the maximal possible difference

in diffusion-flows X (t) generated by the

two Laplacians L, L at time ¢ is
n(t) = e — 7M.

In Fig. [3] we plot this difference for the
graphs of Fig. If N > 2, n(t) only
attains small values. Hence at any given oof ; s 005 % 100
time information is indeed diffused very Time: ¢ i fimet

similarly over the distinct graphs G, G. Figure 3: () for Fig. Figure 4: 1(t) for Fig.

Taking the supremum sup, ., 7)(t) leads to the notion of diffusion distance d(G,G) = sup,~q n(t) of
graphs sharing a node set (Hammond et al.,|2013)). As N increases, this maximal overall difference
becomes smaller. Hence from a diffusion perspective, K becomes more and more similar to its
reduced version with edge removed. For K instead d(G,G) = 1. Deleting the single present
edge between two nodes produces a very different graph. Similarly removing the only edge that is
connecting two cliques of N nodes as in Fig. leads to diffusion-flow differences 7(t) that tend to
one (c.f. Fig. ). Hence the corresponding graphs are not considered similar from the perspective of
diffusion. This is a sensible result, as they e.g. differ in their numbers of connected components.

1.0

0.5 0.5

Here we will hence consider two graphs to be similar if information diffuses similarly within them.
For graphs sharing a node set, this is captured by the diffusion distance d(G, G) = sup,~ 7(t). The
exponential suppression of high-lying spectral information renders this metric adept at capturing
variations preserving coarse structures (but ill-suited for fine-structure variations; c.f. Appendix [C).
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3.2 GENERALIZING DIFFUSION SIMILARITY TO VARYING NUMBERS OF NODES
For graphs G, G with different numbers of nodes, the diffusion processes e~ %*, et are defined on
spaces of different dimensions. Hence they may not straightforwardly be compared. A first idea to

overcome this obstacle is to consider a linear intertwining operator .J : RI¢I — RIC, transferring
signals from the graph G to the graph G (Braker Scott, 2021):

Definition 3.1. Graphs G, G are monodirectionally similar

under the intertwining J if sup,~ |Je Xt — e L[ « 1. @ (b)Q_O
In this setting, we can transfer the diffusion process from G Figure 5: Monodirectionally similar

to G without a large deviation, but generically not vice versa. graphs

Such a setting might e.g. occur if GG is a subgraph of G: In the example of Fig. |5|(further discussed in
Appendix |G]) we may transfer the diffusion process on the right hand side onto the graph on the left
hand side. Transferring in the opposite direction is however impossible: Information flowing from
the top node of the directed graph in Fig. [5](a) could never be accounted for in the graph of Fig. [5](b).

In order to establish a reflexive notion of similarity (where G is similar to G and G is also similar to
G), we need to be able to transfer the diffusion process from G to G and then also back to G again,
without accruing a big error. As an example, let us consider graphs that contain clusters of nodes
which are connected by significantly larger edge weights than those of edges outside of these clusters.
From a diffusion perspective, information in a graph equalizes faster along edges with large weights.
In the limit where edge-weights within certain sub-graphs
tend to infinity, information within these clusters equalizes
immediately. Such clusters thus effectively behave as single
nodes. We might thus consider a coarse grained graph G
~¢(b) where strongly connected clusters are fused together and
represented only via single nodes. This naturally leads to the
Figure 6: (a) G (stongly connected) notion of graph coarsification, as first formalized and studied
clusters in red (b) Coarse grained G in|Loukas & Vandergheynst| (2018); Loukas| (2019).

In our case at hand the node set g of the coarse gramed graph G is then given by the set of connected
components in Gejyger (C.f. Flg . Edges £ are given by elements (R P) € G x G with non-zero
accumulated edge weight W pp = Zre R Zpe p Wip. Node weights in G are defined accordingly by
aggregating as R = Y ver Mr- To compare signals on these two graphs, we ¢ /
define intertwining operators J*, J! transferring information between G and G- Y \

Let = be a scalar graph signal and let 1 be the vector that has 1 as entry for [

nodes r € R and is zero otherwise. Denote by ur the entry of w at node R € G. {A

Projection J* is then defined component-wise by evaluation at node R € G as the

average of z over R: (J'z)r = (1g,z)/p - Going in the opposite direction, Figure 7: Gelster
interpolation is defined as J'u = ZReg upR - 1. In this setting, we have (c.f. Appendix that
le= — JTe ™ £V < 1/wpim forany ¢ > 0. 3)

Here wl‘}l‘fg'}q » 1 denotes the minimal edge weight inside the strongly connected clusters in G.

As the strength of the edge-weights in Gger tends to infinity, we have by I 3| that also n(t) =
[e=ft — JTe=LtJl| — 0O for any ¢ > 0. Thus (for ¢ > 0) the diffusion process e~ on G acts
essentially as first projecting the input-signal to G via J*, then diffusing information on the coarse
grained graph G via e £ and finally interpolating back to the original graph G via J'. Generalizing
the notion of projection and interpolation beyond coarse-graining we make the following definition:
Definition 3.2. Consider two graphs G and G with linear intertwining operators .J and~j mapping
from G to G and vice versa. We call G and G bidirectionally similar if |e="* — Je~ " J| = n(t)
for some (fast decaying) function n(t) > 0 with lim;_,o, (t) = 0 and n(0) = |Idg — JJ|.

Since G and G typically have different numbers of nodes, we generically can not demand JJ = Idg.
In the coarse graining setting above, J(= J Y) is not invertible as it maps from a larger to a smaller

graph. Hence in this setting .J.J(=J.J}) will not have full rank and can thus in particular never equal
the identity Id. We thus have sup,-, 7(t) = n(0) = [Idg — J.J| > 0 independent of L, L. In this
bidirectional setting, similarity between the two graphs is instead measured by how fast the dlfference



Under review as a conference paper at ICLR 2025

between the respective diffusion processes on G and G becomes negligible as diffusion
time ¢ increases beyond the initial £ = 0; i.e. by how

fast n(t) decays to zero. Exemplarily , we plot 7, (t) =

le=Et — Jte=Lt JY| for the coarse graining setting :
of Figure [§ I We have 1,,(0) = |[Idg — J'JY| =1 2 ”
irrespective of the variable edge weight w (colored red g ° o
in Fig. [8). For fixed ¢ > 0, we see that n,,(t) — 0 as .
w increases. Additionally, the decay 7,,(t) — 0 for '
. . . ; . A

increasing t is faster, the larger w is chosen. This is 025 0.50
congruent with our intuition: The stronger two nodes
are connected, the more they act as a single entity.

Weight: w

Time: t

Figure 8: 1, (t)-plot for graphs (a) & (b)

4 ESTABLISHING TRANSFERABILITY BETWEEN SIMILAR GRAPHS

We now characterize those filters and networks that are transferable between graphs that are similar in
the mono- and bidirectional diffusion sense of Definitions 3.1 &[3:21 A discussion of the alternative
setting where instead ||L — LH is small is provided in Appendlehere additional conditions on
filter functions are generically necessary to guarantee transferability (Gama et al.,2019;[2020).

4.1 LAPLACE-TRANSFORM-FILTERS

In the bidirectional setting of eq. (3), this e.g. means that we want our filter function gy to satisfy
lgo(L) — JTgo(L)JY| — 0 if e~ ™ — JTe L0 7 1n0 — 0. @

In other words deploying gy on G should approximately result in the same outcome as first projecting
to G, then deploying gy there and finally interpolating back to G if the two graphs are 31m11ar

Typical polynomial filters (gg(L) = 0oId + 61 L + 65 L* + ...) will not be able to satisfy (4)): Here
the norm of the Laplacian L on the graph G tends to infinity as at least one of the weights 1n51de
G tends to infinity (wyy;, — o0). Hence we also have [gy(L)|| — oo for any such polynomial filter.

Since on the coarse grained graph G the norm | gg(L)| < oo is constant, we have o0 « [|gg(L)]/2 <
(lgo(L)| = [T ga (L)) < llga(L) — Jng( )Jt| for any polynomial go. Hence the difference
lge(L) — JTgg(L)J*| diverges and we can in particular never achieve |gs(L) — J'gg(L)J*| — 0.

To characterize the class of filters that can satisfy (@), we note that as per our assumption, at any
time ¢ > 0 the diffusion flows over the graphs GG, G are similar. Such a similarity will persist If
we build up filters as a weighted sum of such diffusion flows that have progressed to various times

(g(L) ~ 3, are ") and the coefficients {ay};, are not too large. If for each time individually
we have |e~It — JTe~LtJ| < 4, we can estimate |g(L) — JTga(L)JY| < (3, |ax|) - d by a
triangle-inequality argument. Making this idea precise, we hence make the following definition:
Definition 4.1. Let ¢ be a (generalized) function defined on [0, o) for Which HTZJH 1= SSO WAJ (t)|dt <
o0. A Laplace Transform Filter (LTF) ¢ is any function defined as v(z) := So _tz’(/J

The integral in Definition |4.1|defines the Laplace-Transform of the (generalized) function w (cf. e.g.
Widder| (1941) or Appendix |H.2|for an introduction). The result of applying such a Laplace transform

filter ¢ to a characteristic operator L can then be represented as (L So e~tLdt. The term
generalized funcnon 1/} is used in a distributional sense: We e.g. allow 1/1( ) to be given as the dirac
delta distribution 1/1& (t) := d(t — to) with ty = 0. We provide a rigorous mathematical discussion
in Appendix [H] Here we give two instructive examples of Laplace Transform Filters:

Example 4.2. Exponential basis functions: Considering wk = 0(t — ktg) (to > 0, k € IN) yields
Yr(z) = e~ (F10)2 Using this set UFP = {¢~(Ft0)2}, v a wide class of filter functions hg(+) :=
3. 0; - ;(+) may be parametrized (c.f. Appendix[H.2). Corresponding filters ¢y, (L) = e~(*%) have
e.g. been used in (Wang et al.| 2021} 2022) to construct convolutional networks on manifolds.
Example 4.3. Resolvent basis functions: Defining 1, := (—¢t)* e~ yields ¢y, (2) = (z + )%
Using the set UR® = {(z + \) "} e yields a function class {hg(-) := X, 6; - ¢;(-)} which was
theoretically investigated in Koke|(2023)) and is used for tasks such as node classification (Levie et al.|
2019c) or molecular property prediction (Batatia et al., [ 2024).
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4.2 ESTABLISHING SINGLE FILTER TRANSFERABILITY

The fact that Laplace transform filters arise as an integral over diffusion processes that have progressed
to various times ¢ € [0, c0), indeed endows such filters with the desired transferability properties:

Theorem 4.4. As we prove in Appendix we find for the transferability of a single filter ¢/ that:
o |JP(L) = (L)T| < [l - sup,sg | Je Xt — e~ ELJ || in the monodirectional setting.
o (L) — JY(L)J| < 5o [(1)] - |le Lt — Je~LtJ|dt in the bidirectional setting.

In the monodirectional setting of Definition |4|1 determines the stability constant, while the

generalized diffusion distance sup,~ | Je %! — e~%.J| measures graph-similarity. Here no further

restrictions on filter functions need to be imposed to guarantee (mono-directional) transferability.

In the bidirectional setting of Definition transferability is determined by the interplay of the

difference |e==t — Je=LtJ|| = () and the (generalized) function ¢(t). As we observed in Fig.
we generically have 0 < 7(0) ~ 1 (as opposed to 77(0) « 1), with a decay to zero for increasing t.

Hence transferability for a filter t is worse (i.e. the difference [)(L) — Jip(L).J| is larger), the
more the (finite) mass of ¢ is concentrated towards the origin. In particular if )(¢) = 6(t), we have
SSC b (t)|n(t)dt = n(0) = |Idg — JJ| = 0. Thus for filters to be transferable in the bidirectional
setting, the generalized function 1[) may not contain any dirac-delta at ¢ = 0. As we show in Appendix
this is equivalent to demanding decay of the resulting filter function 1) to zero at infinity:

Corollary 4.5. Consider a sequence of graphs G, for which le=Lnt — Jne L, [lt=0 — O. Then for
a Laplace transform filter 1, we have ||t)(Ly,) — Jot0(L)J, || — 0 if and only if lim,_, o ¥ (r) = 0.

Here J,, .J,, denote projection and interpolation operators for the n'™ graph G,, in the sequence
{Gpn}n. As a consequence of Corollary only filter functions satisfying lim,_,o ¢(r) = 0
guarantee bidirectional transferability. When expanding filters as hg(L) := >, 0 - ¥r(L) (c.f.
Section[2.2)) and using Exponential- or Resolvent basis- functions (c.f. Examples 4.2 & [4.3)), this
e.g. means that including the k£ = 0 term will (only) result in monodirectional transferability, while
excluding it will additionally also result in bidirectional transferability.

4.3 TRANSFERABILITY AFTER FILTER COMPOSITION: THE NETWORK LEVEL

We now combine filters into entire spectral convolutional networks (c.f. Section[2.3). We will assume
that the basis functions U = {t; },cs utilized in equation are given as Laplace Transform Filters
such as the ones introduced in Examples f.2] & #.3] For such LTF-based architectures, we then
derive transferability guarantees in terms of the learned weights & biases and — importantly — the
transferability properties these basis functions {1; };cr utilized inside the networks.

4.3.1 NODE-LEVEL TRANSFERABILITY

At the node level, we are interested in transferring generated node-embeddings between graphs.

Monodirectional Transferability: In this setting we start by considering initial node-features X
on GG. We then consider two ways of generating embeddings on the graph G: On the one hand, we
may first generate node embeddings ®(X) on G and then transfer the result to G to obtain node
embeddings J®(X) there. On the other hand, we may first transfer the original node-features X

on G to the graph G yielding JX. Then we may generate node-embeddings on G using the same
network ® there, yielding ®(J X ). For the difference between these node-embeddings, we find:
Theorem 4.6. Let ®y 5 ¢ be a K-layer deep LTF-based network. Assume Y., [W/| < W and
|BY| < B. Choose C' = |W,(L)| (i € I) and w.l.o.g. assume CW > 1. Assume p(JX) = Jp(X).
If biases are enabled, assume J1g = 1 5. Then we have with § = max;er{|Jti(L) — (L) J|}:

~ 1
05 0(2.X) = B ol LI < | K- CKWI (X1 4 i8] |6
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We prove Theorem[4.6]in Appendix We see that transferability is determined by the sizes W, B
of learned weight and bias matrices, the network depth K as well as the transferability error ¢ of the
individual basis functions. The constant C is typically of order one (e.g. in Examples #.2] & B.3)).
Stated conditions might be relaxed (e.g. to J and p only almost commuting) at the cost of larger
stability constants. Nevertheless, the commutativity assumption for J and p is e.g. satisfied for the
coarse-graining example of Section [3} Similarly J1g = 15 is satisfied in this setting. If directed
graphs are considered, it however need not be fulfilled, as we discuss further in Appendix There
exist situations for which networks without biases are transferable while networks with biases are not.

Bidirectional Transferability: Here we compare node embeddings ®(X) generated on G with
node-embeddings generated by first projecting to G, applying ® there and then translating back to G.
Theorem 4.7. Let ® 5 ¢ be a K-layer deep LTF-based network. Assume that Y,_, [|W/| < W
and |BY| < B. Choose C > |W,;(L)|, |¥;(L)| (i € I) and w.l.o.g. assume CW > 1. Assume
p(JX) = Jp(X) and if biases are enabled, assume j]l@ = 1. Set maxier {1 (L) — Japs (L) |} =
&y and define 0y = max;er{|vi(L)[JJ — Idg]|}. With this, we have that

- ~ 1
[0 (1. X) = T (B0 | K- CWHR (1XT 4 gt B) |01 4 60,

Here we additionally demand that max;er{[;(L)[JJ — Idg]||} = 2 is small to establish transfer-
ability. This is e.g. true in the coarse graining example of Section where J.J = JVJT =T dg (as
opposed to the opposite pairing J'.J' # Idg). In general demanding Hwi(i)[Jj —Idg]|| « 1is
however a much weaker condition than [.J J—1I ds] = 0. We discuss this further in Appendix

4.3.2 GRAPH LEVEL TRANSFERABILITY

Beyond node level tasks, one might also consider graph level tasks, where entire graphs are embedded
into latent spaces. We first specify how graph-level latent embeddings arise:

Definition 4.8. We aggregate embeddings X € RV *¥ of individual nodes to graph-embeddings
Q(X)eRF as Q(X); = Zfil | X;] - pi- Here {y;}; is the set of node-weights (c.f. Section.

Given such an aggregation of node embeddings into latent-embeddings of entire graphs, we may then
relegate graph-level transferability back to node-level transferability. We have (c.f. Appendix [H.8)):
Theorem 4.9. Assuming Q(JX) = Q(X), we have in the setting of Theorem [4.6] that

[€o @W’@’WQL,X) —Qody zu(L,JX)| <|JPyw z9(L,X)— Py zw(L, JX)|.

Assuming Q(X) = Q(JX), we have in the (bidirectional) setting of Theorem that
[Q0Py 2w(L,X)—QoPy zu(L,JX)| < |Py 29(L,X)—JPy ov(L, JX)|.

The consistency assumption Q(JX) = Q(X) clearly need only be satisfied on the output of the
node-level network ®; where it is e.g. satisfied for the coarse graining example of Section 3]

5 EXAMPLE SETTINGS AND VALIDATION OF THEORETICAL FINDINGS
Having established our theoretical results, we now showcase how they are applicable in practice.

5.1 GRAPH-LEVEL TRANSFERABILITY BETWEEN RESOLUTIONS

Let us first revisit our earlier example of graphs G, G describing the same underlying object at
different resolution scales (c.f. Section[3): One original resolution-scale and one ’coarse-grained’
scale, where (typically strongly connected) clusters within G are aggregated to single nodes in G.

Transferability of LTF-based networks: To numerically investigate transferability of LTF-based
networks in this multi-resolution setting above, we make use of the QM7 dataset (Rupp et al., [2012),
consisting of graphs of organic molecules containing both hydrogen and heavy atoms. Prediction
target is molecular atomization energy. Each molecule is represented by a weighted adjacency matrix,
whose entries A;; = Z;Z; - |#; — Z;|~" correspond to Coulomb repulsions between atoms 4 and j.
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From a physical perspective, describing a molecule at the level of interacting atoms corresponds
to a specific choice of resolution scale: Interactions of individual protons and neutrons inside the
individual atomic nuclei are discarded. Instead only an aggregate description is used and each nucleus
is described by a single node. In order to test GNN-transferability between graphs describing the
same object at different resolutions, we additionally also consider a version of QM7 where we lower
the resolution scale even further: Here we aggregate each heavy atomic core additionally together
with its surrounding single-proton hydrogen atoms into super-nodes. Appendix [J.T|provides exact
details. We might interpret this QM7 0,5 dataset as a model for data obtained from a resolution-
limited observation process unable to resolve positions of individual (small) hydrogen atoms and
only providing information about how many hydrogen atoms are bound to a given heavy atom.

We then consider two architectures using Laplace transform filters (LTF-Exp & LTF-Res) based on
the exponential and resolvent basis-functions introduced in Examples .2 & £.3] We also investigate
transferability properties of typical types of GNN architectures: We represent message-passing
architectures through GCN, attention based methods via GATV2 and simple and advanced spectral
methods via ChebNet and BernNet respectively. Pooling methods are represented through SAG. As
our experiment considers graphs on different resolution scales, we also investigate transferability
of methods whose propagation scheme is inherently multi-scale (SAG-M, UFGNet, Lanczos and
PushNet). Using the high-resolution graphs {G} of QM7 and the low-resolution graphs {G} in
coarsified-QM7, we then investigate the transferability of GNNs by confronting models during
inference with a resolution-scale different from the one they were trained on. Table[I]collects results.

Mean-absolute-errors (MAEs) made dur- Table 1: Regression using high- and low-resolution QM7
ing inference increase significantly for
methods not employing Laplace trans-

Mean Absolute Error (|) on QM7 [kcal/mol]

form filters, when going from a same- Training High Resolution Low Resolution
resolution setting to a cross-resolution Low High Low High
setting. Standard architectures are not Inference  Resolution Resolution Resolution Resolution

transferable in the considered setting.

While also such methods can enjoy GCN 125.34+2.47 63.17+0.92 67.75+3.73 380.51+30.33

¢ ferabilit rties (Rui Cal GATV2 415.09+96.5748.41+19.20 60.01+3.34 245.03+90.97
ransierability properties w1z €t al,  cpepNet 568.47+37.70 64.63+1.21 64.90+4.55339.64+101.30
2020; [Roddenberry et al., 2_022; Le & SAG 542.16+27.33 68.43+1.93104.20+3.92 506.75+60.57
Jegelka, [2023), corresponding guaran- BernNet 765.22+495.2883.76+21.75 90.52+37.17594.62+341.55

tees have only been established in the set- SAGM 28553 66.22 o 207,67

. - .53+95.54 .22+4.5173.57+14.57 67+77.24

Egrge"f:‘;%; eggil’ehsa?gg g;ﬁsﬁ)o ?Icl’t acp(fély_ UFGNet  620.2144.50 13.7141.05 24.53+4.80156.444156.44
: ’ ploying Lanczos  939.87+16.35 10.55+3.22 83.11+5.27654.61+529.13

mon multi-scale propagation schemes py pNet 2442.59-303.27 60.94+1.83 69.25+311 124.08+3.94
does not result in transferability. Cross-
resolution MAEs of such methods are LTF-Res 16.54+3.01 16.53+3.03 15.79+0.98 13.80+1.34

LTF-Exp 16.37+1.71 16.36+2.16 16.25+1.41  16.25+1.41

among the largest (of order 102-103).

MAEs of LTF-based methods do not increase when going from a same- to a cross-resolution setting:
Networks based on Laplace transform filters are transferable. In cross-resolution settings, MAEs of
LTF-Res and LTF-Exp are lower than that of other methods by a factor of order at least 10* but up
to 102. Interestingly LTF-Res’s best performance is achieved when trained on low-resolution data
and deployed on high resolution test-data; a setup is likely to occur in real-life settings without high-
quality training-data. We can understand these transferability results from a diffusion perspective:
Numerically evaluating the left hand side of eq. (@) for graphs G in
T e QMT7and G in QMT7ceurse, we find thate.g. [e=F — JTe LV |15y <
— nacejene | 1071, When investigating the differences |e 'L — JTe tLJ | = n(¢)
of diffusion flows, we find that (¢) drops to zero fast, as exemplarily

05 \ plotted in Fig. 0] for the first few molecules of QM7. Thus from the the

1.0

perspective of diffusion, original molecular graphs G and correspond-
T . ing coarse grained graphs G are close to each other. The transferability
Time: t theory developed in Section[d then explains the transferability of LTF-
Figure 9: 7(t)-plots based networks in Table [T (c.f. also the discussion in Appendix [J.2)).

Continuity of LTF-based Networks: We now probe the properties of LTF-based networks even
further: Theorem guarantees that if a sequence of graphs {G,},, converges to a limit graph G in
the diffusion-flow sense (i.e. 7(¢)|¢~o of Deﬁnition approaching the constant-zero-function), the
embeddings {F}, }, generated for the graphs {G,,}, will converge to the latent embedding F of G.
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Equation @) now guarantees, that increasing edge-weights within the components of Gjygter
that are being collapsed into single nodes produces graphs

Resolvent ChebNet

{G?} that converge (in the diffusion sense) to the coarse- — Goponental — oo
grained graph G. This is of course desirable: The stronger 1° — si — Uraet
the connectivity within the connected components of | — sme o
Gllsuter> the more it is justified to treat them as the (super- 5

Jnodes making up G (c.f. Section[3). To numerically verify i —
the convergence of corresponding latent embeddings we 1
modify the molecular graphs of QM7 again: We now de-
flect hydrogen atoms (H) out of their equilibrium positions
towards the respective nearest heavy atom. This then in-
troduces a setting precisely as discussed: Edge-weights 1
A = Z,Z; - |%; — :E'j|’1 between heavy atoms remain

the same, while those between H-atoms and nearest heavy ©*
atomic nuclei increasingly diverge. We then compare em-

beddings {F'} generated for coarsified graphs {G}, with 1~

embeddings {F'} of graphs {G} where hydrogen atoms s o o =
have been deflected. As is evident from Figure [T0] the 11 = Tneavy | fequilib. dist.] ™
transferability error of LTF-Res and LTF-Exp converges
towards zero. We might thus think of LTF-based models
as continuously mapping from the space of graphs (equipped with the diffusion-flow topology) to the
Euclidean latent space. For other models, the latent distance | F' — F'|| does not tend to zero. Thus
these models can not be considered continuous. As we explore further in Appendix [K] the underlying
reason is that as G — G in the diffusion-flow sense, information propagation inside such models is
more and more governed by an effective propagation graph which is decidedly different from G.

Figure 10: Latent distance |F — F|

5.2 NODE LEVEL TRANSFERABILITY AND GRAPHS WITH VARYING CONNECTIVITY

‘We next consider popular citation networks (c.f. Appendix & &%
[.5] where each node corresponds to a piece of scientific . \/%‘ & 4%{ €
writing. Labels correspond to the academic discipline of N OO e ¢

the paper and an edge implies a citation. We then expand  (a) (b) & &

individual nodes into connected k-cliques (c.f. Fig. [[I). .
We might interpret this as further dissecting each article Figure .111 Individual nodes (a) replaced
into subsections, which reference each other. by k-cliques (b)

Test Accuracy (%)
Test Accuracy (%)

ITF-Res —— GAT —— SAGE _ LTF-Res —— GAT —— SAGE
64, LTF-Exp GIN ChebNet 70, LTF-Exp GIN ChebNet
GCN GCN

1 2 a 5 1 2 4 5

3 3
Clique Size [Citeseer] Clique Size [Cora]

Figure 12: Node-Classification-Accuracy (1) and uncertainty (for 100 runs) vs. clique size.

Both typical models (c.f. Appendix and LTF-based methods were then trained on the same
(k-fold expanded) train-set and asked to classify nodes in the (k-fold expanded) test-partition. The
classification accuracy of methods not employing Laplace Transform filters decreases significantly
with increasing clique size (c.f. Fig. [[2). We can understand the underlying reason for this using
GCN as an Example (c.f. Appendix [K]for other methods): Inside a GCN-layer, a node feature matrix
X isupdated as X — AXW , with the renormalized adjacency matrix A given as A; i~ Aij/A/did;.
As the degree d; of each node increases (linearly) with increasing clique-size k, the message-strength
Aij between the respective cliques decreases as /L-j ~ 1/k. Hence information propagation between
the cliques becomes disrupted as k increases: GCN is more and more transferable between the
given graph and a modified version where edges between cliques are removed. This is not the case
for LTF-based networks since from a diffusion perspective, original- and disconnected graphs are
not similar (c.f. Fig. @)). Hence such models are able to propagate information also berween high
connectivity areas and thus are able to retain a high classification accuracy.
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5.3 TRANSFERABILITY BETWEEN GRAPHS DISCRETIZING A COMMON MANIFOLD

The concept of operators capturing the geometry of underlying spaces also applies to manifolds M,
where the Laplace-Beltrami operator A 4 can be thought of as a continuous analogue of the Graph
Laplacian (Hein et al.,[2006). This is hence is a prime setting for studying transferability. Counter to
previous works (Levie et al.,2019a; [Wang et al.,[2021), our diffusion framework here allows to derive
transferability guarantees beyond the settings of bandlimited signals and probabalistic guarantees:
We consider the setting of two graphs G'1, G discretely approximating the same
manifold (c.f. e.g. Fig. [[3). This can be made mathematically precise using
the concept of generalized norm resolvent convergence (c.f. e.g. (Post,2012)
for a discussion). Here we note the following: Given projection operators JZ-l
mapping from M to GG; and interpolation operators JiT mapping from G; to
M, we may measure the difference e *AM — JTe=tLi J)| < §; in diffusion
flows on the respective spaces. The fidelity of the discrete approximation is then
essentially determined by the size of §; « 1. As discussed in detail in Appendix
[[2] we have in this setting:

L Loty —tLas ol o Figure 13: Torus
le = (Jrdp)e 2 (I3 Jy)| < (61 + b2) (5)  Discretizations

10° ’\— LTF-Exp LTF-Res — GCN —— ChebNet — GATv2

1071
1072 \

10_3 \

250 500 750 1000 1250 1500 1750
# Nodes N

Figure 14: Transferability error E = || &, (J} f) — (J%JQ)QQ(JQ'L‘]C)H vs. # Nodes N = |G3| = 4|G/ ]|

If 61,2 « 1, the graphs (G; and G are thus bidirectionally similar in the sense of Definition @
As an Example, we prove in Appendix [[.2] that for the regular grid discretisation of the Torus and
judiciously chosen translation operators .J. J¢, we have e tAm — Jle=tLi J4||,_ o < §; — 0 as the
number of nodes in the approximating graphs G is increased. Given a fixed input signal f € L?(M)
on the Torus M, eq. () together with Theorem [4.6] then implies that thus also the transferability
error B = ||®4(J; f) — (J}J])®2(J} )| tends to zero as N increases. This error £ measures the
difference between sampling the signal f on M to G and passing it through a GNN there, versus
sampling f to G2, applying the GNN on (G5 instead and subsequently transfering the output to G.
To numerically verify, that this transferability error indeed tends to zero for LTF-based methods, we
fix the number of nodes as N = |G2| = 4|G1] in the respective graphs. We then plot E as a function
of the number of nodes NV for randomly initialized networks, with uncertainty calculated over 100
initializations. Appendix [J.6]contains additional details. As evident from Fig. [I3] the transferability
error for LTF-based methods tends to zero as NV is increased. Additionally transferability errors of
LTF-based methods are consistently two orders of magnitude smaller than those of other networks.

6 CONCLUSION

We developed a novel approach to transferability based on the intrinsic notion of diffusion on graphs,
which considers graphs to be similar if their rough overall structures align. Transferability of entire
networks in this setting was relegated to the filter functions employed inside their convolutional
blocks. A rigorous analysis established that when the rough overall information whithin graphs is
paramount, networks are transferable if filters arise as Laplace transforms while other filter choices
will not lead to transferability. In example settings — including settings not covered by other already
established approaches to transferability — this was then confirmed numerically.
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A NOTATION

We provide a summary of employed notational conventions:

Table 2: Notational Conventions

Symbol Meaning
G a graph
g Nodes of the graph G
£ Edges of the graph G
N number of nodes |G| in G
G Coarse grained version of graph G
i weight of node ¢
M weight matrix
D) inner product
(weighted) adjacency matrix
Dinfout in/out-degree matrix
L in-degree graph Laplacian
LA Graph Laplacian
Apg Manifold Laplacian / Laplace Beltrami operator
v(L) departure from normality of L
o(L) spectrum (i.e. collection of eigenvalues) of L
h a filter function
h(L) function h applied to operator L
v a filter bank
P; an element of a filter-bank
JYJt projection and interpolation operator
J,J intertwining operators
d map associated to a graph convolution network
Q graph-level aggregation mechanism
Z; atomic charge of atom corresponding to node ¢
Z; Cartesian position of atom corresponding to node ¢
‘iziizﬁjl Coulomb interaction between atoms ¢ and j
|z — ;] Euclidean distance between x; and x;

B FURTHER DISCUSSION OF EXISTING APPROACHES TO TRANSFERABILITY

In this section we provide further details on existing approaches to transferability of graph neural
networks:

Graphon Neural Networks and the Transferability of Graph Neural Networks (Ruiz et al., 2020):
This seminal work explores the theoretical underpinnings of Graph Neural Networks (GNNs) in the
context of graphons, a mathematical generalization of graphs to large-scale, continuous structures.
The paper establishes a connection between GNNs and graphons, providing insights into the behavior
of GNNs on large, dense graphs (|€| is of O(NN?), with N the number of nodes (Le & Jegelka, 2023))
by modeling these graphs as graphons. This framework helps understand how GNNs operate in the
limit of large graphs and their potential to generalize across different graph structures in this realm. A
central focus of the paper is the transferability of GNNs—specifically, their ability to perform well
on large graphs that may differ in size or topology from those seen during training. Transferability
errors between graphs discretizing the same graphon are established to be of O(N _%), with N the
minimum number of nodes. Assumptions on considered filter functions are that they are bounded and
Lipschitz continuous (c.f. AS2 on page 6; ibid.).

Transferability of Graph Neural Networks: an Extended Graphon Approach (Maskey et al.,
2021): This work is in spirit similar to (Ruiz et al.,|2020) whose results it extends from considering
the adjacency matrix as the graph shift operator to more general graph shift operators and from
considering only polynomial filters to allowing for general continuous filter functions.
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Limits, approximation and size transferability for GNNs on sparse graphs via graphops (Le
& Jegelka,|[2023): In contrast to approaches using graphons, which focus on large dense graphs,
this paper instead focuses on transferability on sparse graphs (|€] = O(N)). The paper makes use
of the concept of Graphops, a mathematical operator that can be used to model how GNNs behave
on large sparse graphs. This operator helps analyze the limit behavior of GNNSs, capturing the way
information is propagated through large sparse graph structures.

One of the focuses of the paper is size transferability, which refers to the ability of a GNN to
generalize across graphs of different sizes. The authors explore how GNNs can transfer learned
representations from smaller, sparse graphs to larger ones, and vice versa. By leveraging the Graphop
framework, the paper formalizes conditions for successful transferability between graphs of varying
sizes.

On Local Distributions in Graph Signal Processing (Roddenberry et al.,[2022): Thiw work is
rooted in the field of graph signal procesing (GSP) and puts a particular emphasis on the transferability
of GSP techniques across different graph structures. The paper focuses on the concept of graphings,
which are a probabilistic framework for representing large sparse graphs and their underlying
structures.

The paper investigates how local signal behaviors, defined by local distributions over neighborhoods
in a graph, can be transferred from one graph to another. Specifically, it formalizes how GSP
techniques—such as filtering and node classification—can be transferred to graphs that are not
identical but share similar local structures.

By modeling large graphs through graphings, the authors provide a framework that makes it possible
to generalize local distributions and signal processing tasks across different graphs.

Graph Convolutional Neural Networks via Scattering (Zou & Lerman, 2020) This work
provides a different perspective on Graph Convolutional Networks (GCNs) by connecting them to
scattering transforms, a concept from signal processing. The authors demonstrate that GCNs can
be interpreted as a discrete graph counterpart of scattering transforms, which involve multi-scale
wavelet-like operations that capture hierarchical information across different levels of graph structure.
This connection highlights the multi-scale nature of GCNs, similar to scattering transforms, which
analyze signals at varying resolutions.

A key focus of the paper is the stability of GCNs when viewed through the scattering framework.
The authors argue that scattering transforms offer a more stable approach to graph signal processing
compared to traditional GCNs, especially in the presence of noisy or incomplete graph data. The
multi-layer structure of GCNs, when interpreted as a series of scattering operations, allows for more
robust signal propagation across the graph, making GCNs less sensitive to perturbations in the graph
topology.

By linking GCNs with scattering transforms, the paper provides both a theoretical foundation for
understanding GCNs’ operations and an approach to improving their robustness and interpretability
in graph-based learning tasks.

Derived single filter transferability results depend on spectral properties of the utilized Laplacians on
the respective graphs. The conditions on the spectrum also arise from a Lipschitz type approach to
bounding differences, where the difference (L) — (L) is then via a triangle inequality argument
reduced to bounding each term [y (A )Jupu] — 9(\g)ini) | individually. This is done in eq.s (64)
and (68) respectively, which are condingent the there stated spectral restrictions.

Limitless transferability for graph convolutional Networks (Koke}, 2023): This work studies
stability- and transferability proeprties of spectral graph neural networks, with a particular focus
on directed graphs. In spirit, it is the closest to our work here, as one of the main class of filters it
investigates is the class of resolvent based filter functions which constitute an example (i.e. Example
of the more general class of Laplace transform filters considered in this present work.

Stability to Deformations of Manifold Filters and Manifold Neural Networks (Wang et al.,
2024a)
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This work explores the theoretical foundation of manifold filters and manifold neural networks
(MNNSs), focusing on their transferability across manifolds. Similarly to the filters analyzed in the
present work, manifold filters are defined in terms of Laplace transforms. By framing graph neural
networks (GNN5s) as discrete approximations of MNNS, the authors analyze conditions under which
MNNs remain stable under smooth deformations of the manifold.

Stability is shown to depend on specific spectral properties of the filter functions, including Lipschitz
continuity and integral Lipschitz continuity, which control the trade-off between robustness and
frequency discriminability. The paper establishes that filters meeting these conditions can generalize
effectively to new manifolds by adapting to changes in the Laplace-Beltrami operator’s spectrum.

More techicalle, filters are bounded as |1)(L) — ¢(L)| < K| L — L|. In Theorem 2 absolute
perturbations are considered (L = L + A), in Theorem 3 relative perturbations are considered
(L = L + EL). In both cases the conditions on spectrum and filter functions stem from the fact that

Lipschitz-ness does not directly translate to operator Lipschitz-ness when measured in spectral norm
(see e.g. Wihler| (2009) for a discussion).

Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-
offs (Wang et al., 2024b): Here instead of measuring the linear norm difference |LP — LP)||
between a graph Laplacian L and a manifold Laplacian £ (which generically would be infinite
as L is an unbounded operator), the difference of the action of these operators on eigenfunctions
(|LP¢ — LP¢|). After a triangle inequality argument, one term that has to be bounded in order to
bound the difference in filter outputs is | @I — ¢;|| of the i*" eigenfunction and eigenvector respectively.
The fidelity of this approximation depends on spectral separation properties (c.f. Theorem 4 ibid.),
which hence leads to the requirement that the spectrum be c-separated. This requirement can thus be
considered an artifact of considering the linear approximation ||¢} — ¢;| for each eigenfunction. In
contrast, in our approach (c.f. Appendix F.2) the notion of approximation of the Laplacian on the
underlying manifold is different. We bound the quantity |JTe=**.J} — e~*2| instead. Hence we do
not need to bound differences between individual eigenfunctions and eigenvectors and hence avoid
dependencies on spectral separations.

Transferability of Spectral Graph Convolutional Neural Networks (Levie et al.,2019a): As one
of the earliest works challenging the then prevailing belief that spectral methods are not transferable,
this work was among the first to present theoretical proofs and experimental evidence to demonstrate
that these methods can generalize effectively under certain conditions.

The key contribution is a theoretical framework in which transferability depends on how well graphs
approximate a shared underlying continuous domain, such as a topological space or metric-measure
space. Many graph convolutional networks are then shown to have "principle transferability" in this
setting, meaning that their ability to generalize is built-in and does not rely on additional training.
The analysis introduces the transferability inequality, which bounds the generalization error of filters
based on the graph Laplacian’s approximation quality and sampling consistency.

The study also develops sufficient conditions for achieving low transferability errors, demonstrating
that spectral ConvNets can perform consistently across graphs with varying sizes, topologies, and
dimensions, provided the graphs discretize the same continuous domain.

As in our work, filters here are only required to be bounded and Lipschitz continuous (c.f. Theorem
17 ibid.). However, signals are assumed to be bandlimted. We avoid Levie’s growth of the stability
constant with the number of considered eigenvalues (c.f. the discussion towards the end of page
12 ibid.) by avoiding approximations of individual eigenfunctions and instead approximating the
bounded operator e *4 directly.

Diffusion Scattering Transforms on Graphs (Gama et al.,[2019): This work emphasizes the
stability of scattering-based representations against perturbations in graph topology and reindexing.
By extending the concept of scattering transforms to graph-structured data, the framework introduces
diffusion scattering transforms that leverage diffusion operators to capture multi-scale hierarchical
features of graph signals.

The authors focus on ensuring that the transforms are robust to changes in graph structure, such as
modifications to edge weights or topology. Stability is achieved through the use of diffusion wavelets,
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which provide a principled way to construct graph filters that are invariant to local perturbations while
retaining sensitivity to meaningful global graph features. The stability analysis demonstrates that the
scattering transform bounds the impact of graph perturbations in terms of the changes they induce in
the graph Laplacian’s spectrum, ensuring reliable performance across varied graph inputs.

Here the dependence in Theorem 5.3 on the ’spectral gap’ as defined before Proposition 4.1 comes
from the Lipschitz type argument used in eq. (48).

Stability Properties of Graph Neural Networks (Gama et al., 2020): This paper investigates
the stability properties of Graph Neural Networks (GNNs) to perturbations in the underlying graph
structure. The authors analyze how small changes in graph topology— such as modifications to edge
weights, addition or deletion of edges, or reindexing of nodes—affect the outputs of GNNs.

The paper develops a rigorous mathematical framework to assess the stability of GNNs using tools
from spectral graph theory. It establishes that GNNs are stable to localized perturbations in the graph
topology, with the degree of stability depending on the spectral properties of the graph filters used
within the network. Specifically, it is shown that GNNs exhibit a trade-off between stability and
discriminability: filters that are more stable to perturbations may sacrifice sensitivity to high-frequency
information, which can limit their ability to differentiate fine-grained graph structures.

Here as well, Lipschitz type arguments are being used (See e.g. the assumptions of Theorem 1)
to establish single filter transferability. Since scalar Lipschitzness does not translate to operator
Lipschitzness under spectral norm, additional restrictions on spectrum and filter functions need to be
hence imposed.

Following this, the authors highlight the importance of filter design in achieving a balance between
robustness and expressivity. Filters that adhere to conditions such as Lipschitz continuity or integral
Lipschitz continuity are particularly effective in maintaining stability while preserving key graph
features.

C COMPARISON OF DIFFUSION SIMILARITY WITH STANDARD
NORM-SIMILARITY

In contrast to previous works, we do not use the norm difference ||L — Z| | to measure graph similarity.
Instead, the distance measure we are considering is the diffusion distance

d(L, L) = sup |le — e,
t=0

introduced by Hammond et al.| (2013).

From a spectral perspective, the key idea here is that including the exponential into the distance
metric leads to an (exponential) suppression of large eigenvalues of L and L. Information encoded
into these large eigenvalues (and corresponding eigenspaces) corresponds to fine structure details of
the graphs G and G (cf. e.g. (Chung (1997)).

Suppressing this fine-structure information before taking a distance measurement effectively leads
to a comparison that is predominantly determined by the coarse structures within the graphs. If
the rough structures within the two graphs are similar, the distance between the two graphs will
then be relatively small. Thus this metric is adapted to considering graphs that are similar up to
fine-structure variations to be close to each other. This is the setting we are interested in when
considering transferability, so that this distance measure is adapted to this setting of transferring
filters between approximately similar graphs (see also the discussion in Section 3).

In the original pape that first introduced this notion of graph similarity (Hammond et al., 2013)), the
authors showed diffusion distances (d(-, -)) to be a well defined metric on the space of graphs. Here,
metric’ is used in the strictly mathematical sense (i.e. satisfying the defining properties of positivity,
symmetry and the triangle inequality). Hence the notion of diffusion similarity equips the space of
graphs with a well defined (metric-)topology. This topology respects the one induced by Euclidean
norms: If |L,, — L| — 0 for one (and hence all) Euclidean norm, then also d(L,,, L) — 0.
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At the same time, the metric d(-, -) arising from diffusion similarity is able to capture more general
settings of graph similarity: One example is a sequence of graphs where the connectivity in certain
subgraphs increases (c.f. Section[3.2). Such a sequence does not converge in any Euclidean norm.
However, in the diffusion-distance metric it is Cauchy and hence also convergent. The limit is a
coarse grained graph, where strongly connected clusters are collapsed to single nodes. Thus this
diffusion based metric is e.g. naturally able to capture convergence to graphs of reduced size.

Additionally, the notion of diffusion similarity is not limited to the setting of coarse-graining graphs.
Other examples settings captured by this notion of diffusion similarity are rewiring operations in
graphs, the inclusion of subgraphs, or graphs discretizing the same ambient space. Additionally the
notion of diffusion similarity naturally extends to directed graphs.

Hence it is indeed fair to conclude that diffusion similarity is a well-adapted and widely applicable
notion of graph similarity.

D DISCUSSION OF 'RESTRICTED SPECTRAL SIMILARITY’ (LOUKAS,[2019)
AND IMPLICATIONS IN THE GRAPH COARSENING SETTING

A well established notion of graph similarity is that of ’Restricted Spectral Similarity’ (Loukas)
2019).

This notion is adapted to approximations of properties of a graph through a reduced version while
preserving its fundamental spectral characteristics within a restricted subspace. This measure extends
the concept of spectral similarity, commonly used in graph sparsification, to scenarios where the
reduced graph has fewer vertices than the original, thus operating on a lower-dimensional space.

Spectrally restricted similarity ensures that the eigenvalues and eigenspaces of the reduced graph
closely align with those of the original graph for a specified subset of eigenmodes. This property
guarantees that critical features, such as cuts and the behavior of algorithms reliant on spectral
embeddings (e.g., spectral clustering), remain well-approximated in the reduced graph. Theoretical
results demonstrate that preserving this restricted spectral similarity leads to robust graph reduction
techniques that maintain essential graph properties and enable the effective use of the reduced graph
for tasks like unsupervised learning or partitioning.

In the context of the setting in our paper, restricted spectral similarity is almost able to guarantee
transferability between an original graph and its coarse grained version:

Consider two graphs L and L.. Using the notation of ’Andreas Loukas, Graph reduction
with spectral and cut guarantees’, we are interested in bounding the difference in filter outputs
lg(L) — PTg(L.)P|. Let us exemplarily consider the case g(z) = e~ * (corresponding to

gty =4d(t—1
Denote by @, () the spectral projections onto the first & eigenvectors of L, L. respectively. Denote

by Q QC the respective spectral projections onto the remaining eigenvectors of the respective two
operators.

We may first observe that we may reduce the problem to considering only the first k eigenvectors of
the respective operators:

lg(L) — PTg(L)P| = e " — PTe "P|
= HQe_LQ - PTQCC_LCQCPH + HQS_LQ - Qc PTe_LCQcPH
< Qe tQ — PTQ.e Q. P| + max{e Ar+1) T rekin)}
= |QetQ - PTQ.e LQ.P| + Ofe).

We may decompose @ e~ (@ into a sum over one dimensional eigenspaces as
—-L
Q Z e <U7a :
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with eigenvectors {vy }.

Similar considerations also hold for the coarse grained graph. Using this, we find

|Qe™"Q - PTQ.e " Q.P|
k k
< Qe —ee o v,y |+ | DM (Wi vy = PTogi{ vei s P) |
i=1 i=1

The first term is then bounded by a small quantity, as Theorem 13 of ’Andreas Loukas, Graph
reduction with spectral and cut guarantees’ guarantees that A\; ~ A, ; for ¢ < k.

For the second term we note that we may bound

k
| D™ iy = PToei( vei, P)) | < Q—PTQ.P |.
i=1

If we could bound this term by a small quantity, we would be done. In ’Andreas Loukas, Graph
reduction with spectral and cut guarantees’ such an alignment between the eigenspaces of L and
the lifted eigenspaces of L. is attacked from the direction of canonical angles. This uses machinery
introduced in|Davis & Kahan| (1970).

The canonical angle operator introduced there (and utilized in|Loukas|(2019) is defined as

(6 0
0= ( 0 @1)
with O, O, defined in eq. (1.16) of There it is then established (c.f. ibid. page 10) that
| Q"PTQ.P | = |sin(©)]. Hence, had we bounds on the entirety of ©, we would be done.

In ’Andreas Loukas, Graph reduction with spectral and cut guarantees’, a bound on Oy is provided
(c.f. ibid. Theorem 14). However, without an additional bound on © (c.f.[Davis & Kahan| (1970).
eq. (1.16)) we unfortunately can not achieve our desired bound above.

E STABILITY WHEN |[L — L] « 1

In this section we dicuss in addition to results in the main paper also stability in the setting where
|L — L|| « 1 as briefly considered at the beginning of Section [3| This is an important and well
studied setting (Gama et al., 2019}, 2020; Levie et al.l 2019b}; Kenlay et al.,[2021b). It is different
from the one considered in Section[4} as filter outputs are bounded with respect to a different notion
of distance (i.e. the spectral difference | L — L|) than the notion of diffusion similarity.

We first reduce the transferability of entire networks to the transferability of basisi functions {psi;};
making up the basis set ¥ of a given spectral convolutional network (c.f. Section [2)).

Theorem E.1. Let ®+ 5 ¢ be a K-layer deep graph convolutional architecture. Assume in each
layer 1 < £ < K that >, [Wf| < W and | Bf| < B. Choose C > |¥;(L)| (Vi € I) and w.l.o.g.
assume C'W > 1. With this, we have with § = max;er{|¥;(L) — ¥;(L)|} that

~ 1
[Py 29 (L, X) = Py zw(L, X)| < [K CRwEL (|X| + CWIB)} 0.
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Proof. For simplicity in notation, let us denote the hidden representations in the network correspond-
ing to L by X*. With this, we note:

|25 = X5 < Y (L) = a( D) - IX - W+ Y (D) X5 = XRY - (i

i€l el

< SW|XEY + ow | XKL — XK

< SW XK + CWO|XE2| + (CW)? | XK — XK
K

< é . CWwW 4 XK—Z

<G dcwy I
(=1

5 K—-1 ‘ ‘

=G (Z (CW)R-7|x7 I>

j=0

Hence we need to bound the quantity | X7 | in terms of C, W, B and X.
We have
1% < 2 e D) - 1 X774 - (W |+ 187

<CW|X77Y +B
< (CW)?|XI7%|+ CWB+ B

B (i <0W>k> + oWy x|

k=0

N

_ [BEWIL L (cw)i|X| ;oW £ 1
iB+|X| W =1

For the case CW = 1, we thus find

X% - X <

K-1
: (Z (JB+ Xl))
=0

: (KX + BK(KQ_D) .

Qle Ql=

For the case CW # 1, we find

K-1 Jj_ .
XK g < 2 ( % (w) |Gyt oy 'X'D
j=0

For CW > 1, we may further estimate this as

K-1 J_ .
XK K] < % : (Z (Cw)k— [B(OW)I +(CW) IXID

. CW -1
7=0
K(CW)E B
<6 X| 1.
ey 1|
This proves the claim. O

Theorem [E.T] reduces the question of stability of entire networks to the question of single filter

stability of the basis elements ; in U = {1;};c;. In practice, the difference "|;(L) — ;(L)|" may
of course be evaluated numerically if the basis VU is already given.

When designing new architectures, it is however important to know in advance how the choice
of basis functions affects the stability properties of the network. To this end, bounds of the form
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|1hi(L) — hi(L)| < Cy, - | L — L| are desirable. Many existing works focus on deriving bounds of
exactly this form (Gama et al.|[2019;2020; [Levie et al.,[2019b; Kenlay et al.,|2021alb).

Beyond this existing literature, we here provide an additional bound of the above form under the

assumptions that L, L are diagonalizable. This is always true for undirected graphs. Additionally, any
Laplacian of a directed graph can be approximated by diagonalizable matices to arbitrary precision.

The bound below is based on existing work of [Wihler| (2009) who considered the case of unitarily
diagonalizable matrices. To extend this to arbitrarily diagonalizable operators L = V~'AV we
measure the severity of the failure to be unitarily diagonalizable via the condition number (V) =
IVL|I- [Vt || of the change-of-basis matrix V7, (with #(Vz) = 1 whenever the change-of-basis matrix
V1, is unitary).

Importantly in contrast to existing works, it should be noted that below we estimate the difference

|4s(L) — b;(L)| (which is measured in spectral norm | - ) by the difference | L — L|» which is
measured in Frobenius norm. Using the Frobenius norm as opposed to the spectral norm allows us
to derive a uniform bound, where the the stability constant L., does not depend on the eigenvalue

structure of the respective Lapalcians L, L:

Theorem E.2. If L, L are diagonalizable, we have with the Frobenius norm denoted by | - | that
(L) — (L) < (VL) - k(V;) - Ly - |L — L| p. Here Ly, is the Lipschitz constant of ;.

Proof. The claim directly follows from Lemma [E.3]after noting that

[1XTlop = Amax(X) <

DINX) = ||X]|r
=1

O

Lemma E.3. Let g : C — C be Lipschitz continuous with Lipschitz constant D,. Let X and Y’
satisfy

VTIXV = diag(\y,...An) =: D(X)
WYW = diag(uy, ...un) =: D(Y).
This implies
lg(X) =g |F < [VTHIVIIWH[W] - Dy - [ X =Y p.
Proof. This proof builds on the proof idea inWihler| (2009). We find:
l9(X) = g()I[7 = llg(VD(X)V ™) — gWDY)W )%
= [Vg(DX))V ™' = Wg(D(Y )W |3
< [VIIW=H - lg(DX)V W = VTIWe(D(Y)) |7
- _ _ 2
= [VIIWH - D gDV = VT W (DY)
%
2
= [VIIW - 2 12l lV T Wk — [V Wi g(DOY)]kg
i |k
- _ 2
= [VIIW = DIV WG e (y) — g(ua)l®
%
_ _ 2
< [VIIWH - DIV Wil Dy — il
1,7

= [VIIW=H - DZIDX)VIW — VTIWD(Y)| %
<[VIIV=HIwW =W - DIIX =Y.
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F COMPARISON OF DIFFUSION FLOWS FOR EDGE-REWIRING IN Ky

We are interested in establishing that in the setting of Section [3] we have
“e—Lt _ e—Lt H < e—(N—Q)t-
To this end, we first note that both Laplacians L, L correspond to graphs that are connected. Hence

the kernel of both Laplacians is spanned by the vector of 1 of all ones. Denote by P the orthogonal
projection onto 1 and set () = I'd — P. We then have

e — e = [Qe™"'Q — Qe™"Q].
Next we note for the Laplacian L on K that
L=N-Q,

and hence ~ -

e — M) = Qe — Qe Q.
From perturbation theory, we note that for the eigenvalues of symmetric matrices A, (A + B) ordered
in decreasing order, we have (c.f. e.g. |Kato|(1976))

[Ai(A+ B) = Ai(A) < | B].

Since L arises from L by deleting a single edge and the Laplacian defined on an unweighted connected
two-node graph has operator norm equal to two, we find

[A—N|<2
for any A € ¢(L). Thus with spectral projection Py of L, we find

Heth - eff/t” < eVt Z Q(l - e(Nf)\)tP/\Q < 67(N72)t.
0#£Xeo (L)

G EXAMPLE OF UNIDIRECTIONALLY SIMILAR GRAPHS

Here we further discuss the example of unidirectionally similar graphs introduced in Fig. [5of Section

Bl
(a)d?b »O©

Figure 15: Example of unidirectionally similar graphs

Let us denote the graph of Fig. [15|(a) by G and the graph of Fig. |15[(b) by G. On both these graphs
let us consider the out-degree Laplacian (c.f[2.1)

Lout = Dout - W

as characteristic operator on both G and G.

The diffusion process e "*% arises as the solution operator of the differential equation
dx(t)
= —Lx(t).
o (t)

Using this, we see that no information flows from the "top’ node of G to either of the two bottom
nodes in Fig. [15|(a). Chosing as .J the obvious inclusion operator mapping from G to G and assigning
the value "0’ to the top node in G, we easily find e '] — e7*LJ| = 0. The diffusion on G (i.e.

the graph in Fig. (a)) however is dependent on the top node in G as well if this node carries a
non-zero initial value. Hence we can not transfer it to G.
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H LAPLACE TRANSFORM FILTERS

In this section we provide an overview of the concept of Laplace transforms. We begin with a
recapitulation of complex measures.

H.1 COMPLEX MEASURES ON R>( AND THEIR THEORY OF INTEGRATION

As reference for this section Tao| (2013)) might serve.

In mathematics, a measure is a formal generalization of concepts such as length, area and volume.
We are interested in assigning a generalized notion of length (or mass) to subsets of the real half-line

RZO = [07 OO)
The set will turn out to be a so called o-Algebra; i.e. a set X of sets for which

* J,Ryoe X

e ABeo=AnBeX
s ABeXY = A\BeX
e ABeY=AuDBeX.

We now take YXr_, to be the smallest such set of sets 3 that contains all open intervals.

A complex measure then is a set-function that assigns to each setin Xr_, a complex number in a
certain way:

Definition H.1. A complex measure x on R>¢ is a complex valued function p : Y., — C

satisfying
K (U An) = Z 1 (An)

for any countable (potentially infinite) collection of sets in Xr_, which are pairwise disjoint.

Let us provide some examples:

Example H.2. The prototypical example of a measure is the standard Lebesgue measure that assigns
to any interval (a, b) the length e ((a, b)) = |a — b| (a,b € Rxq).

Example H.3. Alternatively, we might consider the Dirac measure /15, , which assigns the value
pe,, ((a,b)) = 1 to any interval (a, b) containing o (i.e. o € (a, b)). Otherwise it assigns the value
o, ((a,b)) =0ifto ¢ (a,b).

Example H.4. Every integrable function ) : R=o — C defines a complex measure via 5((a,b)) =

§2 4 (t)dt.

Any given measure on R defines a unique way of integrating (known as Lebesgue integration) a
function f defined on R>¢. This proceeds by approximating any function f via a weighted sequence
of indicator functions (with A € XR_, a set)

1 ;teA
“@:%~mw

as

F@&) ~ fal(t) := ) apxa,(t).
k
with a;, € C. For these functions, one then sets

fndp = Za? p(Ag).
k

R>o

Since we have lim,,_, 4, f,, = f, one then simply sets

J fdp = lim fndp.
R=o n—00 Rso
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Example H.5. For the prototypical example of the standard Lebesgue measure, this process simply
yields

F()dpren(t) =J f(t)dt.
R>o 0

Example H.6. For the Dirac measure /15, , the above process yields

f®)dps,, (t) = f(to)

R>o
Example H.7. For measures arising from integrable functions ¢ : Rsy — C as 1y ((a,b)) =
SZ ¥ (t)dt, we find

f(t)dpy = LOO D(t) f(t)dt.

Rxo
H.2 LAPLACE TRANSFORMS

We say complex valued measure y is finite if we have

| ) <.
R>o

Here the measure || arises from the original measure p via

|1l ((a;0)) = [u((a, b))].

For any such finite measure ;1 we may define its Laplace transform as
Yu(z) = J e Edu(t).
Rxo

This function f,, is well defined for z in the right hemisphere
Cr:={z € C:Re(z) = 0}.

of the complex plane C, since there we have

|1/J“(Z)‘ =

J e_tzdy(t)‘
Rxo

< f =]l (8)
R>o

< J d|ul|(t) < .
R>o
Example H.8. For the Dirac measure /15, , we have
wuéto (Z) = e*toz.

Example H.9. For any integrable function z/;, we have

W(z) = JR et dpig = L D)t

More specifically, if the integrable function is given as b, := (—t)*~'e~** (with Re()\) > 0), then
Ur(z) = (2 + A7
Example H.10. If ¢y, := (—t)¥~1e=* yields ¢ (z) = (z + A) %, then
Ye(2) = (z+ N) 78

For k = 1, this can be seen from

0 1 0

f e tZe Mg — e~ (N
0 z + A 0

For k > 1, the claim follows from differentiating the above expression with respect to z Note that the
functions 1 (2) = (z + A) " are also defined if Re(z) < 0, as long as z # —\.
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Using the function vy, of the examples above, a wide class of functions may be parametrized
Theorem H.11. Let f : R>o — 0 be any function with lim f(z) = 0. Then for any € > 0, there is
Tr—00

a function
h(w) = ) Oxtbr(x)
for which '
sup |f(z) = hix)| < e.

z€[0,00)

Here the basis functions {1y} may either be chosen as 1y,(2) = (z + N)~F or ¢ (z) = e~ K0)= for
any tg > 0.

Proof. This is a direct consequence of the Weierstrass approximation theorem. O

H.3 PROOF OF THEOREM [4.4]

In this section, we prove Theorem [4.4] which we restate here for convenience:

Theorem H.12. We have | Jv (L) —(L)J| < 4] -sup,sg | Je 2t — e~Lt | in the unidirectional
setting. In the bidirectional setting ||)(L) — Ji(L)J| < SSO [4(t)|n(t)dt holds true.

Proof. We start by proving the first claim. To this end, we note

L) — (D) = fRZO [Je*tL _ e*tiJ] dua’

< J
Rxo

<sup | Je Ht — e_itJH . f dlply
0

t=

[t et

=0

Observing that in the notation of Section 4.2 we precisely have

= [ dlul;
R>O d)

the claim follows.
Proceeding as above, we note

e Juiyal < [ [ = e tha)

from which the second claim follow.

H.4 PROOF OF COROLLARY [4.3]

Here we prove Corollary 4.5} restated here for convenience:

Corollary H.13. Consider a sequence of graphs G, for which le=Ent — Jee Lt | — 0. Then for
a Laplace transform filter 1, we have ||t)(Ly,) — Jot0(L)J, || — 0 if and only if lim,_, o ¥ (r) = 0.

Proof. Let us first prove that the condition is sufficient. To this end assume that lim, o, (1) = 0.
This implies that 11,;({0}) = 0. Hence we have

otz — oDyl = | [ [ = Fe P g0

0 .
< J He—“ - Je—“JH dl
0

5()

The integrand He’“ —Je Itg H converges to zero everywhere except on a set of measure zero (i.e.

the set {¢|t = 0} = {0}). The dominated convergence theorem then yields the claim. O
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H.5 ADDITIONAL TECHNICAL CONVERGENCE RESULT FOR LAPLACE TRANSFORM FILTERS

Here we prove an additional technical convergence result, which will be needed in section

For a generic operator, we measure the failure to be (unitarily) diagonalizable via its so-called
departure from normality v*(L) = (| L] — X\, <, (1) [\x[*) which is zero if and only if L is
unitarily diagonalizable |Bandtlow| (2004).

We then have:

Theorem H.14. Let 1) be a Laplace transform filter. There exists a constant C' = C' (L) (D) <O
so that we have | Jy (L) — ¢(L)J| < C - |J(L + Md)~" — (L + X\Id)~'J]|.

Proof. We make use of the holomorphic functional calculus (Kato, |1976} |Post, 2012) to represent
Y(L) as
= —z-Id)7!
5 § P(z z-Id)" dz

to arrive at
76(0) = $(EV] < 5 6@ (L = 21d) ™ = (L = 21) ]2,
r
Combining results of [Post| (2012) and Bandtlow| (2004)) yields
|J(L = 2Id)~" — (L — zId)~LJ|

NG 1 (i) NG 1 (i)
;S 1 )\ Z|— = eX —_—— . 1 A Z|— = eX _——
<< R @) p<2d<z,o<L>>>) ( P D) p<2d<z,o—(L>>>>

x|[J(L 4+ Md)~" = (L + \d)~'J|.

Hence we may set
1
C = o= P Buiay i (Nl

with

PV(L),U(E)(Z)
_<”'“ o) p<2d<z,a<L>>>) (“” 10D p<2d<w<L>>>>

Such a result also holds in the bidirectional setting:

Theorem H.15. Consider a graph sequence G, with | (L, +AId) =" —.J,,(L+XId)~'.J,,| — 0. If the
graphs are directed, assume eigenvalues of all L,,s lie within a cone of opening angle v < 7 symmetric
about the real axis. Then we have |y (L, ) — J,3(L)J,| — 0 if and only if lim,_,, ¢(r) =

Proof. As in the proof above, we arrive at

(L) ~ FH(E)T] < o ;ﬁ (2| - (L — 2Td)~" — J(E — 2Id) " J]d]z].
I

Since | (L, + \d)~! — Jn (L+)\Id) LT, | — 0implies ||(L,, — 2Id)~* —Jy (L—z[d) LI —0
uniformly (in z) on compact sets (c.f. e.g. |/Arendt (2001))), we can apply dominated convergence as
in the proof of Corollary 4.5]in Appendix if we find an majorizing function that is integrable
on I'. But this is ensured by the decay of ¢ and the possibility to choose I' to lie within in a cone of
opening angle o < 7 about the real axis of opening angle less than 7. [
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H.6 DISCUSSION OF EXTENSION BEYOND SPECTRAL ASSUMPTIONS

Above, we have assumed that all appearing eigenvalues \ € C in the spectrum o (L) have real part
Re(A) = 0. This guarantees that

limsup e %) < oo,
t—00

From this we find that

[p(L)] =

[ etraun) < (smswles) - [ dele) <
Rx>o t—00 Rx>o

so that the filter ¢)(L) is indeed well-defined. If we want to allow Re(\) < 0 as well, we have two
options:

The set {Re())} is bounded from below: In this setting we have a guarantee that there is c_ > 0
so that for all appearing eigenvalues in the spectra of L and L we have
—c_ < Re()).

This implies that
limsup e e || < 0.
t—00

Using

J e_tLd,u(t)' _ f e—tLe—ctecth(t)H
R>0 ]R>0

< (limsup |e_Lt€_C‘t||) J e td|p|(t),
t—o0 R>o

the developed theory above is still applicable in this setting, as long as we assume that the measure p
defining the Laplace transform filter ¢/ satisfies

f e“td|u|(t) < oo.
Rxo

Note that this is stronger than the demand

| ) <
R=o
made in Definition .11

The set {Re(\)} is not bounded from below: In this setting, we pick a x € C with Re(u) < 0
and i ¢ o(L) U o(L). We then restrict the class of filters to those determined by Example
There we chose 1y, := (—t)*~te~#¢, which yielded filters of the form {hg(-) := > 0i-i(-)}, with
UR(L) = [(L+ uId)’l]k. Such filters hence remain defined as long as y ¢ o(L).

H.7 PROOF OF THEOREMS &

Theorem H.16. Let @ 5 ¢ be a K-layer deep LTF-based network. Assume >, _, [W/| < W and
|BY| < B. Choose C' = |W;(L)| (i € I) and w.L.o.g. assume CW > 1. Assume p(JX) = Jp(X).
If biases are enabled, assume J1 = 1 5. Then we have with 0 = max;er{[|Jvi(L) — (L) J|}:

~ 1
|7y 2.0(L. X) = @y z.0(L, JX)| < [K ORI (le + CWlB)] 0.

Proof. Let us define ~
X :=JX.
Let us further use the notation t; := v;(L) and t; := ;(L).
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Denote by X ¢ and X' the (hidden) feature matrices generated in layer ¢ for networks based on v;
and 1; respectively: I.e. we have

Xf=p <Z P XIWE + B€>
el
and
R, (Z FRWE 4 B‘) |
iel

‘We then have

|T®y ,9(L, X) — Oy z,9(L, JX))|

= Jx* - X¥|

=Jp <2 L XEIWE + BK> —p <2 O XETWE 4 BL>
iel el

=lp (JZ P XETIWE 4+ BK> —p (Z O XEWE 4 BL> '
el el

Here we used the assumption that p and J commute. We also made use of the assumption Jlg = 15
when dealing with biases .
Using the fact that p(-) is 1-Lipschitz-continuous (c.f. Section , we can establish

@y zw(L, X) — J®y zw(L, JX)|

(JZ@XL*WZ.K + BK> - (Z G XEIWE 4 BK> ' .

iel iel

<

‘We then have
| TPy 2,0 (L, X) — Py 2,0 (L, JX)|

< Z T X ETWE Z&i)?K_IWiK

el el
From this, we find (inserting a zero), that

| @y 50(L, X) — J®y 5v(L,JX)|

< ijiXKAWiK 721/31)}K71WZK

el el

N

DT = i) XKW

el

+ Dl - XA = X W

el

< D2 — G ) XKW |+ oW [ XK - gx K

i€l
<X ”(‘]wi - JJ’%’J)” X E W+ oW X - g x K
i€l
SPICH e ISR PR b e
i€l

Arguing as in the proof of Appendix [E]then yields the claim.
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For the bidirectional setting we find the following:

Theorem H.17. Let ® 4 ¢ be a K-layer deep LTF-based network. Assume that Y,, [|W/| < W
and |B*| < B. Choose C' > |U;(L)|,|¥;(L)| (i € I) and w.lo.g. assume CW > 1. Assume
p(JX) = Jp(X) and if biases are enabled, assume j]l@ = 1. Setmaxier{|[vi(L)—Juy; (L) J||} =
&y and define &, = max;er{||vi(L)[JJ — Idg]|}. With this, we have that

- ~ 1
[ 00 (L. ) = T (B0 | K- CWHR (X4 gt B) |61+ 6

Proof. Let us define
X :=JX.

Let us further use the notation t; := t;(L) and t; := 1);(L).

Denote by X ‘ and X! the (hidden) feature matrices generated in layer ¢ for networks based on v;
and 1); respectively: L.e. we have

X‘=p <Z Y XTIWE 4 B£>

el
and
-, (2 DX W+ Bf) .
iel
‘We then have

1@ 2,0(L, X) — J®y 5v(L, JX)|

= X% - JXX|

(St o) (g )
iel i€l

=|p (Z QpiXKilWiK + BK> —p <j2 inffolwiK + BL> H
el el

Here we used the assumption that p and J commute. fact that since ReLU(+) maps positive entries
to positive entries and acts pointwise, it commutes with JT. We also made use of the assumption
J1 & = 1 when dealing with biases .

Using the fact that p(-) is 1-Lipschitz-continuous (c.f. Section , we can establish

| @ %,0(L, X) — J®y zu(L, JX)|

el el

<

<D ux w4 BR - ) U XKWWK + BE

el el
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Using the assumption that [)[.J.J — Idg]| < do, we have
|9 .0(L, X) = J®y 59(L, JX)|

< DX ETIWE =S (T ) X WS 4 | T [Idg — JIX KW

el el el
<D XETIWE =D (T ) JXETTWE | 4 6y - | YT X KW
el el el

< Do XK WE =S T TXEWE | 46 H)?K—lH W

el el

From this, we find (assuming | J|, |J] < 1), that

1@y zw(L, X) = J®y z9(L,JX))|

<Y XEWE N (T ) X W

o | X5 W

iel iel
< Z(%_ T XKW +Z 1T | - [FRE = XK [WE | + 6, HX’KAH W
iel el

< Z(% — J ) XKW
iel
31— | P ] W T — x5 g [ o

el

LOW - |JXE-L XK1 4, H)?’HH W

<O [XET W OW TR XY gy [ R

Arguing as in the proof of Appendix |Efthen yields the claim.

Discussion of the condition J, = max;e;{|¢i(L)[JJ — Ids]|} <« 1 Since lim, o ¢;(r) = 0,

JJ only needs to map eigenvectors of L corresponding to small eigenvalues approximately to
themselves. On the remaining eigenvectors, ; (L) will already approximately act as zero. Since only

one of the factors in the product v;(L) - [J.J — Id] needs to be approximately zero, this relaxes
conditions on how the remaining factor (i.e. [JJ — Id]) needs to act on such eigenvectors.

O

H.8 PROOF OF THEOREM [4.9]

Here we prove Theorem 4.9} restated again for convenience:

Theorem H.18. Assuming Q(JX) ZNQ(X ), we have in the setting of Theoremthat
HQ o Q)yyvgg_’q;(L, X) —Qo (137/7'@7\1;(1/, JX)H < HJCDW’@’\IJ(L, X) - @W’gg’\p(L, JX)H
Assuming Q(X) = Q(JX), we have in the (bidirectional) setting of Theorem that
190 @y g0 (L X) = Q0 By spg (L, TX)| < [ p.0(L X) — Ty g0 (L, JX)].

Proof. We note
100 @y (L, X)— Qo Dy z4(L, JX)|
=[Py 2w (L, X)) = APy zu(L, JX))|
=|Q(J Py z.4(L. X)) — APy zw(L, JX))|.
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To prove the claim from here, we only have to note that the aggregation method €2 as defined in
Section4.3.2]is 1-Lipschitz (as a consequence of the reverse triangle inequality). The proof for the
bidirectional setting proceeds analogously. O

A similar proof shows the following for the bidirectional setting:

Theorem H.19. Assuming Q(X) = Q(j X), we have in the setting of Theorem that
[Q0Py zw(L,X)—QoPy zw(L,JX)| <|Py.2v(L,X)—JPy zw(L,JX)|.

I FURTHER DISCUSSION FOR EXAMPLES OF TRANSFERABILITY SETTINGS

I.1 FURTHER DISCUSSION OF THE SETTING OF COARSE-GRAINING GRAPHS

In this appendix, we illustrate:

(A +Id) ™ — TN A + Td) 7 TV S 1/M (Anign)-

Using Theorem [H.T3] then yields the prove of the desired equality (3]
le™t — Jle gt < 1/w}‘1‘i‘2}1 for any ¢ > 0.

after noting the linear relation in scaling behaviour A (Lcjuster) ~ w{]'l“g';]

For convenience, we restate the definitions leading up to this setting again:

Definition I.1. Denote by G the set of connected components in Gyign. We give this set a graph
structure as follows: Let R and P be elements of G (i.e. connected components in Ghign). We define

the real number
WRP = Z Z era

reR peP
with 7 and p nodes in the original graph GG. We define the set of edges £ on G as

E={(R,P)eGxG:Wpp >0}

and assign W as weight to such edges. Node weights of limit nodes are defined similarly as
aggregated weights of all nodes 7 (in G) contained in the component R as

Hr = ZMT'

reR

In order to translate signals between the original graph G and the limit description G, we need
translation operators mapping signals from one graph to the other:

Definition 1.2. Denote by 1 i the vector that has 1 as entries on nodes r belonging to the connected
(in Ghign) component R and has entry zero for all nodes not in R. We define the down-projection
operator .J¥ component-wise via evaluating at node R in G as

(Jlx)R = (1g, x>/ﬁR.
The upsampling operator .J' is defined as

JTUZZ'LLR~]].R;
R

where u p, is a scalar value (the component entry of v at R € G) and the sum is taken over all connected
components in Ghigp.

As proved in (Kokel |[2024), we then have the following:

33



Under review as a conference paper at ICLR 2025

Theorem I1.3. We have

holds; with A1 (Apign) denoting the first non-zero eigenvalue of Apgh.

Amax(Areg.) = HAreg. H

We here restate the proof for convenience.

Proof. We will split the proof of this result into multiple steps. For z < 0 Let us denote by
R.(A) = (A —zId)™!,
R (Apign) = (Apign — 21d) ™
Rz(Areg.) = (Areg. - ZId)_l

the resolvents correspodning to A, Ay, and A, respectively.
Our first goal is establishing that we may write

RZ(A) = [Id + Rz(Ahigh)Areg.]_l . Rz(Ahigh)
This will follow as a consequence of what is called the second resolvent formula|Teschl| (2014):
"Given self-adjoint operators A, B, we may write

R.(A+ B)— R.(A) = —R.(A)BR.(A + B).”

In our case, this translates to
RZ (A) - Rz(Ahigh) = _Rz (Ahigh)Areg.Rz (A)

or equivalently
[Id + Rz(Ahigh)Areg.] RZ(A) = Rz (Ahigh)~

Multiplying with [Id + R, (Ah,-gh)Areg,]_l from the left then yields

R.(A) = [Id + R.(Anigh)Areg ] - Re(Aign)

as desired.
Hence we need to establish that [Id + R.(Apign) Areg | is invertible for z < 0.

To establish a contradiction, assume it is not invertible. Then there is a signal  such that
[Id + R.(Dpigh) Areg. ] © = 0.

Multiplying with (Anigh — 2/d) from the left yields
(Apigh + Areg. — 2Id)z =0

which is precisely to say that

(A—zId)x =0
But since A is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our
contradiction and established

RZ(A) = [Id + Rz(Ahigh)Areg.]_l Rz(Ahig/1)~

Our next step is to establish that

Phigh
Rz(Ahigh) - EZ 5
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where Pg 2 i the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue
A0 (Apign) = 0 of Apgp. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g.
Teschl| (2014)), we may write

1 i
Rz(Ahigh) = (Ahigh - ZId)il = 2 E . P;?gh.
A€o (Apigh)

Here o(Ayg) denotes the spectrum (i.e. the collection of eigenvalues) of Ay, and the

{P;‘igh }.,\eg( Ap) ATE the corresponding (orthogonal) eigenprojections onto the eigenspaces of the
respective eigenvalues. Thus we find

Phigh
Rz (Ahigh) -

—Z

0<Aeo (Anigh)

where the sum on the right hand side now excludes the eigenvalue A = 0.

Using orthonormality of the spectral projections, the fact that z < 0 and monotonicity of 1/(- + |z|)

we find
P 1
A (Drigh) + |2]

R, (Apign) —

Here A1 (Ayign) is the firt non-zero eigenvalue of (Ay;,p).
Non-zero eigenvalues scale linearly with the weight scale since we have

A(S-A)=S5-A(A)
for any graph Laplacian (in fact any matrix) A with eigenvalue A. Thus we have

pligh 1 1

= < — 0

A (QAsign) + 2] T A (Aign)

Rz (Ahigh) -

as )\1<Ahigh) — 0.

Our next task is to use this result in order to bound the difference

1 high
0 - [Id + Rz (Ahigh)Areg.]il Rz(Ahigh) .

high
B

—z

I:=

Id+ =2 A,

To this end we first note that the relation

[A+ B —zId]™" = [Id + R.(A)B]'R.(A)
provided to us by the second resolvent formula, implies

[Id + R.(A)B]™' = Id — B[A+ B — zId] ™.
Thus we have

|10+ Re(Bnin) ]| <1+ [ |- |Ro(8)]

[Areg |
1

<1+

With this, we have
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high -1 phish
[Id + 2 A,, 0 —R.(A)
—Z —Z
high -1 phish
=||1d+ %Areg EZ - [Id + Rz(Ahigh)Areg.]71 ' Rz(Ahigh)
phish high —1 ) phish X
< EZ Id + %Areg. - [Id + Rz(Ahigh)Areg.]i + EZ - Rz(Ahigh) : H [Id + Rz(Ahigh)Areg]i H
. —1
1 Py 1 |Areg | 1
S| [Hd+ 2—Dre | — [Td + Ro(Digh) Areg. +(1+ g) :
|Z| —z 8. [ ( hgh) g] |Z| Al(Ahigh)

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. [Horn &
Johnson|(2012), Section 5.8. "Condition numbers: inverses and linear systems"):

Given square matrices A, B,C with C = B — A and |A~!C| < 1, we have
471 - 14710

A - Bl <
” <A

In our case, this yields (together with | PX"| = 1) that

-1

H |[7d+ PY¥ /(=) - A | = [T+ Ro(Btign) A ™

Phigh
(14 [Arg /12D - |Areg| - 122 = Ra(Apign) |
1-— (1 + HAreg - RZ(Ahigh)H

phieh
/Nz]) - 1 Areg. | - 22

For Shign sufficiently large, we have
1
(L4 | A [I/]2])

high
| = Py /z = R.(Anign) || < 5

so that we may estimate

high | —
Td+ Dy =— | = [Id + Areg Re(Bign)] ™
Phigh
<2 (14 |Are ) - [0 — Re(Atigh) |
_o Lt (A /1]
A1 (Ahigh)

Thus we have now established

-1 Phigh HAre ”
TR YON =o(g->.

high
Id+ —2— Ay,
l —Z & —Z Al (Ahigh)

Hence we are done with the proof, as soon as we can establish
. -1 .
|—21d+ P A | B = T RA(8) %,
with J1, A, J* as defined above. To this end, we first note that

JHgh =Ry (6)
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and
JHJ = TIdg. (7)

Indeed, the relation (6) follows from the fact that the eigenspace corresponding to the eignvalue zero
is spanned by the vectors {1z} r, with { R} the connected components of Ghign. Equation (7) follows
from the fact that

Mg, Lgr) = pp.

With this we have

: -1 . _

|[1d+ Py A | RIS = [1d 4 T1 T Ay ] 1,
To proceed, set
x = Flz
and
: -1 .
2 = [Py Ay = 21d| - R
Then
[Pg"ghA,eg, - zfd] 2 = Plishy

and hence 2" € Ran(Pé’ ") Thus we have

JVIN Ay — 2Id) TN T2 = IV e,
Multiplying with J* from the left yields

TN (Areg, — 2Id) VT2 = Jha.
Thus we have
(J*Areg I — 2Id) TV TV 2 = Jha.

This — in turn — implies

TINL = [T g I — 21d] " b
Using

high
P2 =2,

we then have

X = T[T D I — 21d] 7 b

We have thus concluded the proof if we can prove that J* Areg J 1 is the Laplacian corresponding to
the graph G defined in Definition [I.T] But this is a straightforward calculation. O

As a corollary, we find
Corollary 1.4. We have
R.(A)* - JTRF(A)J

Proof. This follows directly from the fact that

JYIT = Idg.
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1.2 FURTHER DISCUSSION OF GRAPHS DISCRETIZING AN AMBIENT SPACES

Here we further discuss the setting of two graphs discretizing the same ambient space M in the sense
of

2 e R

‘We will assume JZ-l JJ = Idg,, which is a justified assumption, as Examplebelow elucidates. In
this setting, we then have

le 78 — (Jfa)e A2 (I3 ]|
=letA — Jlemt Al + JHAMm + Id) NI — (JfT3)e B2 (J3.0]))|
<l — Jrem Mgl + [ JremtAm gl — (Ja))e 2 (3 ]|

‘We note
et — Jremt S]]
=[Jt gl Mgl — Jtemt A |

—tA —tA
<ITHIIL] - e = Jfe™ B | < 6.

We consider:
le=taM — (JFTD)e 22 (Jy )|

—tA —tA
<[ JHIT] - e 80 — Jlet 2 g5

<lletAm — JlemtR2 g < 6.

Hence we have indeed established

le 7t A — (JJ))e A2 (J3J]))| < 26

Next let us consider an explicit example.

Example I.5. To this end, let us revisit the torus-setting introduced in Fig. [T3]

Figure 16: Distinct Torus Discretizations

We begin by recalling that the standard torus T arises as the cartesian product of two circles S of
circumference 27:

T =5S"x S

Let us parametrize these circles via angles 0 < 61,6, < 27. The Laplacian on T can then be written
as

Ap = -3 —é3..
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A set of corresponding normalized eigenfunctions are given as

1 ) .
—ik101 ,—ik20
¢k11k2 = 27Te . 16 et

with corresponding eigenvalues
Ner oo = ki + K3
and kl, kQ eZ.

We now consider a regular discretization of T using N2 nodes. This mesh can be thought of as

arising from regular discretizations of each S! factor; with a node being placed at angles ¢ = zﬁﬂk

with 0 < k£ < N. The individual node weight of each node in the mesh discretization of T is set to
2

uw= %Lz) We might think of this discretization T 5 pf T as arising via a cartesian product of the

group Z/NZ (i.e. the group of integers modulo V) with itself. Each node of Ty = Z/NZ x Z/NZ

is then specified by a tuple (a,b) € Ty, witha € Z/NZ and b € Z/NZ.

The graph Laplacian Ay on Ty = Z/NZ x 7Z/NZ then acts on a scalar node signal z,; as
2
(ANT)ab = W (4%1; — L(a+1)b — L(a—1)b — La(b+1) — xa(bq)) .

Henceforth we will adopt the notation x(a, b) = 4.
Normalized eigenvectors for this Laplacian Ay on Ty are given as

1 27k 27kg
—ra,—t=—Fx+b
~

N —1 a
— ~
¢k1,k2 271.6 e

with 0 < kq, ko < (IV — 1). Corresponding eigenvalues are found to be
N2 . T . s
)\ﬁk? = ? I:Sln2 (N . kl) + Sln2 (N . kg)] .

To facilitate contact between T and its graph approximation Ty, we define an interpolation operator

JJTV that maps a graph signal f(a, b) defined on T = Z/NZ x Z,/NZ. to a function f defined on T
by defining B
f(ela 92) = f(a'v b)
whenever 27 (a — 1) < 6y < 2Faand 27 (b — 1) < 65 < 27D
We then take J* to be the adjoint of JT (i.e. J* = (J1)*. It is not hard to see that J'.J' = Idy, .

We now want to show that (for ¢ > 0)
et — JTem Av I - 0 ®)

as N — oo. To this end, denote by P, x, the orthogonal projection onto ¢y, x,. Denote by P,i\lf s

the orthogonal projection onto gb{c\i k.- We note

—tATr t —tAN Tl _ — A kot — A kol N
e —J'le J|| = e MRt Py g, — e e

N—-1 N—-1
k1,k2€Z —— 5T <p1,p2< Ty

From this we observe

—tAr t —tAN Tl _ — Ak kot ANt BN
e —J'e J| = e Rkt P, — e "By,
k1,ko€Z —— Nl <py pa< N5
— Ak kot — Ak kot 7/\2\] kot DN
S Z € L2 Pkl,kz + Z (6 v Pkl,k2 —€ Lr2 Pk17k2

BoL <k, | al e Nl k< N

For the first summand, we already have

(N—1)2

ML <k, lka|
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Hence let us investigate the second summand. We note

2

N-—1
<ki,ko <5

N-—1
2

>

N-1 N-1
—=5=<k1,k2<5

For the first summand we note

2

Ay kot AN t) pN

(6_/\k1,k2t —e

—Akq kot —AR ket PN
(6 1 Pkl,kz —€ 12 Pkl,k2

N
A’“1”“216) Bl b,

N2

)

sin® (% ka)—k3)

— Nl <hoy ko< N
N
= sup 67)"@1%275 — 67)"“’1=’“2t
— B <k ko< BE
N2 2 (m g V—k2) —
_ sup o~ 4R) |1 764("—2“ (%k1) k1>6 t(
— Ml <k ko< N5
We note
2 4
N A i 2) = 0 k
— sin” ( =k) — = 5 -
T N N
Using
N2 . ™oL 2
— sin? (—N3> < Ns
2 N
we note
- - N2 . 2 2 N2 . 2
sup ot 4R |1 _ 67t<”—25m (%kl)flﬁ)eft(ﬂ—zsm (Fks)—k
— N <k ko< B
2 ;2 (N2 in2 (k) —k2) (N2 Gin2(E ko) — k2
C ey et | (e ) (3 )1
1
[E1llk2|<N'3
N2 . 2(x 2 N2 - 2(x 2
+ sup e,t(karkg) 1_ e—t(ﬂ—z sin (Wkl)—kl)e—t(w—z sin (Wkg)—kz)
1
[E1l|k2|>N3

< eteN) | —teNE) | kN

(SN

Hence it remains to bound the second summand in (9). We note

2

5= <ki,ka<

< ¥

1|, oz | < B

2

Next we note

N—

2,2
e_(k1+k2)t”Pk1J€2 - Pli\lf,lm H

||Pk1,k2 - Pli\lf,kgH <2 H¢k17k2 - ¢k1,k2H .

It is not hard to see that

N
‘)¢k1,k2 - ¢k1’k2

2T
< 20(|ks| + |k‘|2)ﬁ

for some appropriately chosen C' > 0. Hence we have
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— Ak kot N
e~ Fke (thkz - Pkl,k2)

2
o WD 20k + [k]2) T

N
]

N—-1

[kl k2 5

—O(1/N).

<

Where the lass claim follows from summability in k1, k2. Thus we have in total indeed established
that (8) holds.

1.3 COARSE GRAINING WEIGHTED DIRECTED GRAPHS

In this section, following (Kokel 2024) we consider a graph G with directed weighted adjacency
matrix A° which we (disjointly) decompose as

AP=A+s- A"

into a weighted directed (partial) adjacency matrix A which we keep constant and a weighted
directed (partial) adjacency matrix s - A”™. Both adjacency matrices determine directed graph
structures on the same common node set G. Similar to the setting of Appendix [[.I] we are then
interested in establishing that when s — oo this graph is similar (from a diffusion perspective) to
a coarse grained graph G. In Appendix we saw that the the coarse grained "limit graph" G
was determined by the structure of the kernel of the operator Ay;g,; Which encoded the connected
components of the graph Ghign (c.f. Fig. [7) into its vectors. We expect that this also persists in the
directed setting.

In this directed setting, we are faced with the choice of whether to make use of the in-degree Laplacian
Lin — g7t [Din _ A]
or the out-degree Laplacian
Iout — -t [Dout _ A] _

The following is known about the kernels of these operators (c.f. [Veerman & Lyons| (2020); |Sah1
(2013)):

In-degree Laplacian: To understand the kernel of directed in-degree Laplacians, we need the
concept of reaches. Reaches generalize the concept of connected components of undirected graphs
Veerman & Lyons|(2020): A subgraph R < G is called reach, if for any two vertices a, b € R there is
a directed path in R along which the (directed) edge weights do not vanish, and R simultaneously
possesses no outgoing connections (i.e. for any ¢ € G with ¢ ¢ R: w., = 0). We here limit ourselves
to the setting where all reaches within a given graph are disjoint (c.f. Veerman & Lyons|(2020) for
the general setting).

Consider now a graph G with adjacency matrix A™ The dimensionality of the kernel of L™ on this
graph is then given as the number of reaches Nreacn present in A™. The right-kernel of L™ is spanned
by the vectors {v; }1< R< Ny, Which have entry 1 at all nodes in reach R and are zero outside of R.
By definition these vectors satisfy
L™ v; = 0.

The left-kernel is spanned by vectors {wpr}1<r<Ng.., SO that wpr has non-zero entries only for nodes
in reach R and is zero elsewhere. As can be derived from results in [Sahi| (2013), we may write
wgr = Mwpg with M the matrix of node weights (c.f. Section and the entry (wg); (for ¢ a node

in the reach R) given as
@r)i= Y, [ Am
€T, (ab)eT;

Here 7,7 is the set of all spanning trees of the reach R that are rooted at node i € R. 7; is such

a spanning tree beginning at node i. The quantity [] A7} then multiplies all (directed) edge
(ab)eT;
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weights along the spanning tree 7;. From this, we can derive that we may write the (not necessarily
orthogonal) projection P projecting onto the kernel of L' as

po Yy Ol
ReReaches of A™ ( wR) "VR
We might write this as
p=Jgt
with J* mapping (similarly to the setting in Appendix to a coarsified graph G, whose node set
consists of the reaches in the original graph structure determined by A:

g = {R}RE{Reaches of A™}-

Similarly to Deﬁnition we then have for x a signal defined on the original graph G, that (J¥x) is
a signal on the coarsified graph G. It is defined by specifying it on each node R € G as
1

= TV

. (Mﬁ)R)T - X.

Similarly interpolation back up to G is defined as

JTQ = Z Zp - UR.
Reg

Out-degree Laplacian: For the out-degree Laplacian L°, the roles of left- and right kernels
above are essentially reversed. Instead of reaches R determined by the adjacency matrix A™, one
considers reaches R determined by the transpose (A™)T of the adjacency matrix. The left kernel of
the out-degree Laplacian is given as the set of vectors {5} given as U5 = Mvp, with

v again the vector with entry 1 at all nodes in reach R and zero outside of R. The right kernel is
spanned by vectors {0} whose ith entry is given by

(“71%%: Z H Alb‘

;iefrlR (ab)eT;

Here ’ER is the set of all spanning trees of the reach R (as determined by the connectivity structure of
the transposed adjacency matrix (A™)T).

We then note for the projection P onto the kernel of L°", that we may write
~ w R (M v R) T
P= > L

_ Mug)T-wp
ReReaches of (A™)T ( R) R

We may again write this as
p=JJt

with J* mapping (similarly to the setting in Appendix to a coarsified graph G, whose node set
consists of the reaches in the adjacency structure determined by (A™)T:

Similarly to above, we then have for z a signal defined on the original graph G, that (j ‘z) is a signal
on the coarsified graph G. It is defined by specifying it on each node R € G as

- 1

(Jtz)p = (Mop)T 05 (Mvg)T -

Similarly interpolation back up to G is defined as

T = Z T Wk
Reg
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In the setting

As=A.+s- A"
we may then prove (exactly as done in Appendix that — with L™, L2 the in-and out-degree
Laplacians corresponding to A, — we have

‘ . 1
(LM + I1d)™ — JHL™ + Ta) 't = O (S>

and

- . 1
[ 4 1)~ — JHL + 1)~ = O () .

Investigating the operators .J' and J', we see that we have

JMg =1¢

jT]lQ # 1q.
In view of Theorem [H.17] we hence find:

Proposition 1.6. In the directed setting, using the in-degree Laplacian allows for networks to be
transferable between a graph G and its coarse grained version G even if biases are enabled. This is
not true when using the out-degree Laplacian.

J ADDITIONAL EXPERIMENTAL CONSIDERATIONS

J.1 ADDITIONAL DETAILS ON COARSE GRAINING EXAMPLES

Dataset: The dataset we consider is the QM7 dataset, introduced in Blum & Reymond| (2009);
Rupp et al.| (2012). This dataset contains descriptions of 7165 organic molecules, each with up to
seven heavy atoms, with all non-hydrogen atoms being considered heavy. A molecule is represented
by its Coulomb matrix C“'™", whose off-diagonal elements

VAVA
OClmb _ i4j
9 TR - Ry

correspond to the Coulomb-repulsion between atoms ¢ and j. We discard diagonal entries of Coulomb
matrices; which would encode a polynomial fit of atomic energies to nuclear charge [Rupp et al.
(2012).

For each atom in any given molecular graph, the individual Cartesian coordinates I?; and the atomic
charge Z; are (in principle) also accessible individually. To each molecule an atomization energy -
calculated via density functional theory - is associated. The objective is to predict this quantity. The
performance metric is mean absolute error. Numerically, atomization energies are negative numbers
in the range —600 to —2200. The associated unit is [kcal/mol].

Details on collapsing procedure: Again, we make use of the QM7 dataset|Rupp et al.|(2012) and
its Coulomb matrix description
(Clmb _ ZiZj

v T IR Rj|
of molecules. We modify (all) molecular graphs in QM7 by deflecting hydrogen atoms (H) out of
their equilibrium positions towards the respective nearest heavy atom. This is possible since the QM7
dataset also contains the Cartesian coordinates of individual atoms. Edge weights between heavy
atoms then remain the same, while Coulomb repulsions between H-atoms and respective nearest
heavy atom increasingly diverge; as is evident from (I0).

(10)

Given an original molecular graph G with node weights p; = Z;, the corresponding limit graph
G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are
aggregated into single super-nodes.
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Mathematically, G is obtained by removing all nodes corresponding to H-atoms from G, while adding
the corresponding charges Z;; = 1 to the node-weights of the respective nearest heavy atom. Charges
in (I0) are modified similarly to generate the weight matrix W.

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of
methane — consisting of one carbon atom with charge Z~ = 6 and four hydrogen atoms of charges
Z i = 1 —the corresponding node-feature-matrix is e.g. given as

0 0 01 0--
1 0 0 0 O0--
X=1120 0 0 O0--
1 0 0 0 O0--
1 0 0 0 O0--

with the non-zero entry in the first row being in the 6™ column, in order to encode the charge Z¢ = 6
for carbon.

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring
H-atoms jointly.

Node feature matrices are translated as X = J!X. Applying J! to one-hot encoded atomic charges
yields (normalized) bag-of-word embeddings on G: Individual entries of feature vectors encode how
much of the total charge of the super-node is contributed by individual atom-types. In the example of
methane, the limit graph G consists of a single node with node-weight

p=6+1+1+1+1=10.

The feature matrix
X=J'X

4 6
X* (1()’07 ’0’10’0’“.>.

Experimental Setup: We randomly select 1500 molecules for testing and train on the remaining
graphs. On QM7 we run experiments for 23 different random random seeds and report mean and
standard deviation. All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics
card.

is a single row-vector given as

Additional details on training and models: Typical GNN models are divided into standard
architectures (GCN (Kipf & Welling, 2017)), ChebNet (Defferrard et al., |2016), ARMA (Bianchi
et al.,2019), BernNet (He et al., 2021)), GATv2 (Brody et al.,[2022)) and multi- scale architectures
(PushNet (Busch et al., |2020), UFGNet (Zheng et al., 2021), Lanczos (Liao et al., 2019)). Apart
from UFGNet (already acting as a pooling layer) we also consider self-attention-pooling (Lee et al.,
2019); both acting on the final layer (SAG) and as acting on the output of each indivifual layer, with
resulting layer-wise features concatenated to produce the final embedding (SAG-M). All considered
convolutional layers are incorporated into a two layer deep and fully connected graph convolutional
architecture. In each hidden layer, we set the width (i.e. the hidden feature dimension) to

F, = F, = 64.
For BernNet, we set the polynomial order to K = 3 to combat appearing numerical instabilities.
ARMA issetto K = 2 and T' = 1. ChebNet uses K = 2. Lnaczos uses 20 Lanczos iterations, as
proposed in the original paper (Liao et al,|2019). UFGNet uses Haar wavelets. For all baselines,

the standard mean-aggregation scheme is employed after the graph-convolutional layers to generate
graph level features. Finally, predictions are generated via an MLP.

LTF-Res architecture, we set A = 1 and and build filters using the £ = 1 and = 2 atoms in
PRes — {(z+ )\)_k}ke]N.

For the LTF-Exp architecture, we set ¢ = 1 and and build filters using the £ = 1 and = 2 atoms in
\IIEXP _ {6_(kt0)z}kE]N~

As aggregation, we employ the graph level feature aggregation scheme introduced in Section[3.2 with
node weights set to atomic charges of individual atoms. Predictions are then generated via a final
MLP with the same specifications as the one used for baselines.
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J.2 FURTHER DISCUSSIONS ON TRANSFERABILITY RESULTS IN TABLE[I]USING FIGURE[0]

Fig. [0 showcases why LTF based models in Table [T] are able to transfer. While it is true that
lim;_, o n(t) = 0, the key take-away here is not that the functions 7(¢) decays to zero, but rather that
it decays to zero sufficiently fast. For ¢t = 1, we e.g. already have n(1) ~ 0.

Let us exemplarily examine the implications of this sufficiently fast decay of the function 7(t) for
the transferability of the filter ¢)(z) = e~%. which constitutes a basis element in our investigated

LTF-Exp architecture. The generalized function associated to this filter is given by ¢ (t) = 0(t — 1).
As discussed in Theorem 4.4 (line 274 ff.) the single filter transferability error is bounded as

Q0 e0]

WOl = [ a0~ Dt = (1) ~ o,

0

[W(L) — J(E)]] < f

0

Since n(1) ~ 0, the transferability error of the corresponding filter ¢ is small. Together with Theorem
4.9 this then explains the transferability observed in Table 1.

J.3 ADDITIONAL EXPERIMENTAL RESULTS ON QM9

Here we provide additional experimental results on QM9

Table 3: Regression Mean Absolute Errors (various targets) using high- and low-resolution QM9

Zero point vibrational energy [eV] (]) Dipole Moment [D] (|)

Training High Resolution Low Resolution High Resolution Low Resolution

Low High Low High Low High Low High
Inference Resolution  Resolution  Resolution Resolution Resolution  Resolution  Resolution Resolution
GATV2 3.6464+0.05970.1785+0.00150.1328+0.0061 5.0610+3.3775|| 3.6551+1.78070.8816+0.0336 0.7851+0.0171.7071+0.1063
GCN 0.8463+0.06580.1851+0.00410.1344+0.0040 0.8243+0.0903|| 2.9901+0.40300.9237+0.01370.9594+0.02001.4992+0.1135
LTE-UR*  0.0675+0.01150.0357+0.00620.0398 +0.0022 0.0403i0.0026H 1.3071+40.22270.7523+0.00940.9556 +0.02630.9659+0.0202

Free energy at 298.15K [eV] ({) Rotational constant [GHz] (])

Training High Resolution Low Resolution High Resolution Low Resolution

Low High Low High Low High Low High
Inference Resolution  Resolution  Resolution Resolution Resolution  Resolution  Resolution Resolution

GATV2 1252.14+787.48 409.44+74.09409.54+161.552418.55+637.45|| 0.9654+0.04800.8482+0.06740.8479+0.02231.7811+0.7105
GCN 11017.24+1621.28 344.23+15.85 940.03+14.383588.13+366.20|| 1.4153+0.03540.7996+0.00910.8544+0.02751.0928+0.1043

LTE-WRes 18.00+5.28  18.00+5.28 11.71+2.46 11.711r2.46"0.9138i0.095100.8810i0.06550.8211i0.01920.9531i0.1842

J.4 TRANSFERABILITY ON GRAPHS GENERATED VIA STOCHASTIC BLOCK MODELS

Stochastic Block Models: Stochastic block models (Holland et al.,|1983) are generative models for
random graphs that produce graphs containing strongly connected communities. In our experiments
in this section, we consider a stochastic block model whose distributions is characterized by four
parameters: The number of communities Chymper determine how many (strongly connected) communi-
ties are present in the graph that is to be generated. The community size cg,e determines the number
of nodes belonging to each (strongly connected) community. The probability peonnect determines the
probability that two nodes within the same community are connected by an edge. The probability
Dinter determines the probabilities that two nodes in different communities are connected by an edge.

Experimental Setup: Since stochastic block models do not generate node-features, we equip
each node with a randomly-generated unit-norm feature vector. Given such a graph G drawn from
a stochastic block model, we then compute a version G of this graph, where all communities are
collapsed to single nodes as described in Definition[[.2} We then compare the feature vectors generated
for G and G. All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics card.
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As before, we then consider the LTF-URe and LTF-WExP together with GCN as a baseline when
investigating transferability.

Experiment: Varying the Connectivity within the Communities: As discussed in detail in
Section [3.2 and Appendix [[T] we desire that networks assign similar feature vectors to graphs
with strongly connected communities and coarse-grained versions of these graphs, where these
communities are collapsed to aggregate nodes. The higher the connectivity within these communities,
the more similar should the feature vector of the original graph G and its coarsified version G be, as
Appendix E established. In order to verify this experimentally, we fix the parameters cpymper; Csize
and pineer in our stochastic block model. We then vary the probability peonnect that two nodes within
the same community are connected by an edge from peonnect = 0 tO Peonnect = 1. This corresponds
to varying the connectivity within the communities from very sparse (or in fact no connectivity) to
full connectivity (i.e. the community being a clique). In Figure [T7]below, we then plot the difference
of feature vectors generated by LTF-Res, LTF-Exp and GCN for GG and G respectively. For each
Peonnect € [0, 1], results are averaged over 100 graphs randomly drawn from the same stochastic block
model.

— GCN
74 Resolvent
= Exponential

(a) (b) 0.0 0.2 0.4 0.6 0.8 10

Figure 17: (a) Example Graph (b) Varying the parameter peonnect € [0, 1] for fixed c¢ge = 20,
Dinter = 2/052jze and cyumpber = 10.

We have chosen piper = 2/63ize so that — on average — clusters are connected by two edges. The

choice of two edges (as opposed to 1,3,4,5,...) between clusters is not important; any arbitrary
choice of piyer ensures a decay behavior for ResolvNet as in Figure@ A corresponding ablation
study is provided below.

As can be inferred from Fig. LTF-WRes and LTF-WE* produce more and more similar feature-
vectors for G and its coarse-grained version G, as the connectivity within the clusters is increased.
As a reference, we plot GCN for which such a transferability result clearly does not hold.

J.5 NODE LEVEL TRANSFERABILITY AND GRAPHS WITH VARYING CONNECTIVITY

In the preceding experiments, standard methods proved not transferable. Here we show that this lack
of transferability can be harmful also for node-level tasks on a single graph that has an imbalanced
geometry in the sense that it contains strongly connected subgraphs with weaker connectivity between
such subgraphs.

To this end, we duplicated individual nodes on popular node-classification datasets (CITESEER &
CORA (Sen et al.,|2008; [McCallum et al., 2000)) k-times to form (fully connected) k-cliques, while

keeping the train-val-test partition constant. ) ]
Models were then trained on the same (k-fold expanded) train-set and asked to classify nodes on the

(k-fold expanded) test-partition. Baselines were chosen to form a representative selection of common
information-propagation methods and include GIN [Xu et al.[(2019) and SAGE Hamilton et al.| (2017)
(which could not handle weighted edges).
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(a) (b)
Figure 18: Individual nodes (a) replaced by k-cliques (b)

Additional details on training and models: All experiments were performed on a single NVIDIA
Quadro RTX 8000 graphics card. We closely follow the experimental setup of |Gasteiger et al. (2019b)
on which our codebase builds: All models are trained for a fixed maximum (and unreachably high)
number of n = 10000 epochs. Early stopping is performed when the validation performance has
not improved for 100 epochs. Test-results for the parameter set achieving the highest validation-
accuracy are then reported. Ties are broken by selecting the lowest loss (c.f. [Velickovic et al.| (2018))).
Confidence intervals are calculated over multiple splits and random seeds at the 95% confidence level
via bootstrapping.

We train all models on a fixed learning rate of Ir = 0.1. Global dropout probability p of all models
is optimized individually over p € {0.3,0.35,0.4,0.45,0.5}. We use £ weight decay and optimize
the weight decay parameter A for all models over A € {0.0001, 0.0005}. Where applicable (e.g. not
for He et al.|(2021))) we choose a two-layer deep convolutional architecture with the dimensions of
hidden features optimized over

Ky € {32,64,128}. (11)

In addition to the hyperparemeters specified above, some baselines have additional hyperparameters,
which we detail here: BernNet uses an additional in-layer dropout rate of dp_rate = 0.5 and for its
filters a polynomial order of K = 10 as suggested in|He et al.|(2021)). Hyperparameters depth T’
and number of stacks K of the ARMA convolutional layer Bianchi et al.|(2019) are setto 7' = 1
and K = 2. ChebNet also uses K = 2 to avoid the known over-fitting issue |[Kipf & Welling| (2017)
for higher polynomial orders. The graph attention network |Velickovic et al.|(2018)) uses 8 attention
heads, as suggested in [Velickovic et al.| (2018).

For the LTF-models, we optimize depth over K = 1, 2 with hidden feature dimension optimized over
the values in (IT)) as for baselines. We empirically observed in the setting of unweighted graphs, that
rescaling the Laplacian as

1
Anf = —A
Cnf

with a normalizing factor ¢,y on which we base our ResolvNet architectures improved performance.

We express this normalizing factor in terms of the largest singular value ||A| of the (non-normalized)
graph Laplacian. It is then selected among

cng/llAl € {0.001,0.01,0.1, 2}.
The value A for the resolvent is selected among

A€ {0.14,0.15,0.2,0.25}.

J.6 TRANSFERABILITY BETWEEN GRAPHS DISCRETIZING A COMMON AMBIENT SPACE: THE
Torus

We make use of the operators JiTl defined in Appendix The function f € L?(M) on the torus is
chosen as

f= o) sin(¢) cos().

All networks have two hidden layers of width 64 and are asked to predict a scalar signal on the
respective graphs.
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K EFFECTIVE PROPAGATION SCHEMES

For definiteness, we here discuss limit-propagation schemes in the setting where edge-weights are
large. The discussion for high-connectivity in the Sense of large cliques proceeds analogously.

In this section, we then take up again the setting of Section [3.2] We reformulate this setting here in
a slightly modified language, that is more adapted to discussing effective propagation schemes of
standard architectures:

We partition edges on a weighted graph G, into two disjoint sets & = Eeg. Uhigh, Where the set of
edges with large weights is given by:

Enigh := {(4,7) € € 1 wij = Shign}
and the set with small weights is given by:

greg- = {(Z,j) ec: Wij < Sreg.}

for weight scales Shigh > Sreg. > 0. Without loss of generality, assume Speg. to be as low as possible
(i.. Sreg. = max(; jjee,, Wij) and Shigh to be as high as possible (i.e. Sage = Min jjee,,,) and no
weights in between the scales.

( (;\( /L . |

€ € €

[ €
— (©) (\\( © (d) € ) (“\X

Figllfe 19: (a) Gfaph G with gregA (blue) & ghigh (red); (b) Greg.; (C) Ghigh; (d) GregA, exclusive

This decomposition induces two graph structures corresponding to the disjoint edge sets on the node
set G: We set Greg, 1= (G, Ereg.) and Ghigh := (G, &nign) ¢.f. Fig. [19).

We also introduce the set of edges ey exclusive := {(4,7) € Eree | VE € G 1 (4, k) ¢ Enigh & (K, J) ¢
Enign } connecting nodes that do not have an incident edge in Eyign. A corresponding example-graph
Gheg., exclusive 18 depicted in Fig. @] (d).

We are now interested in the behaviour of graph convolution schemes if the scales are well
separated:
Shigh > Sreg.

K.1 SPECTRAL CONVOLUTIONAL FILTERS

We first discuss resulting limit-propagation schemes for spectral convolutional networks. Such
networks implement convolutional filters as a mapping

z— go(T)x

for a node feature x, a learnable function gy and a graph shift operator 7'.

K.1.1 NEED FOR NORMALIZATION

The graph shift operator 7' facilitating the graph convolutions needs to be normalized for established
spectral graph convolutional architectures:

For Bianchi et al.[(2019), this e.g. arises as a necessity for convergence of the proposed implementa-
tion scheme for the rational filters introduced there (c.f. eq. (10) in Bianchi et al.|(2019)).

The work |Defferrard et al.|(2016) needs its graph shift operator to be normalized, as it approximates
generic filters via a Chebyshev expansion. As argued in Defferrard et al.| (2016)), such Chebyshev
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polynomials form an orthogonal basis for the space L?([—1, 1], dx/+/1 — 2:2). Hence, the spectrum
of the operator 7" to which the (approximated and learned) function gy is applied needs to be contained
in the interval [—1, 1].

In Kipf & Welling| (2017)), it has been noted that for the architecture proposed there, choosing 1" to
have eigenvalues in the range [0, 2] (as opposed to the normalized ranges [0, 1] or [—1, 1]) has the
potential to lead to vanishing- or exploding gradients as well as numerical instabilities. To alleviate
this, Kipt & Welling| (2017)) introduces a "renormalization trick" (c.f. Section 2.2. of Kipf & Welling
(2017) to produce a normalized graph shift operator on which the network is then based.

We can understand the relationship between normalization of graph shift operator 7" and the stability
of corresponding convolutional filters explicitly: Assume that we have

1T » 1.
This might e.g. happen when basing networks on the un-normalized graph Laplacian A or the

weight-matrix W if edge weights are potentially large (such as in the setting Shigh > Sieg. that we are
considering).

By the spectral mapping theorem (see e.g. [Teschl| (2014))), we have

o (90(T)) = {ge(A) : Ae a(T)}, (12)
with o(T") denoting the spectrum (i.e. the set of eigenvalues) of T'. For the largest (in absolute value)
eigenvalue A\, of 7', we have

|)‘max| = HTH (13)
Since learned functions are either implemented directly as a polynomial (as e.g. in|Defferrard et al.
(2016); He et al.[(2021))) or approximated as a Neumann type power iteration (as e.g. in|Bianchi et al.
(2019)); Gasteiger et al.|(2019a)) which can be thought of as a polynomial, we have

li A)| = 0.
Jm lgs(A)] = o
Thus in view of and we have for |T'|| sufficiently large, that

lgo (T = g0 (£ T
with the sign + determined by A\, 2 0. Since non-constant polynomials behave at least linearly
for large inputs, there is a constant C' > 0 such that
C-ITI < llgo(T)]
for all sufficiently large | T'|. We thus have the estimate
[z - C-IT] < llgo(T)]

for at least one input signal = (more precisely all x in the eigen-space corresponding to the largest (in
absolute value) eigenvalue A ax). Thus if 7" is not normalized (i.e. |T| is not sufficiently bounded),
the norm of (hidden) features might increase drastically when moving from one (hidden) layer to the

next. This behaviour persists for all input signals = have components in eigenspaces corresponding to
large (in absolute value) eigenvalues of 7T'.

K.1.2 SPECTRAL NORMALIZATIONS

As discussed in the previous Section [K.1.T} instabilities aris- € /i
ing from non-normalized graph shift operators can be traced \
back to the problem of such operators having large eigenval- ¢

ues. It was thus — among other considerations — suggested in © -
Deftferrard et al.| (2016)) to base convolutional filters on the . )
spectrally normalized graph shift operator ¢ ©

—_—

€
T = _ A, Figure 20: Limit graph correspond-
Amax(A) ing to Fig[T9|for spectral normaliza-
tion

with A the un-normalized graph Laplacian. In the setting Spigh » Speg. We are considering, this
leads to an effective feature propagation along Ghign (c.f. also Fig. 20) only, as Theorem [K.T|below
establishes:
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Theorem K.1. With

1
T=—"-"=A
)\max(A) ’
and the scale decomposition as above we have that
1 Ste )
T— ————Apign| = O [ =2 (14)
' Amax (Ahigh) high ( Shigh
for Shigh > Sreg.-
Proof. For convenience in notation, let us write
Thigh = ! Ap
high = Amax(Ahigh) high
and similarly
1
Tieg. = ———Areg.-
& /\max (Areg.) &

We may write
A= Ahigh + Areg.a

which we may rewrite as

Amax (Areg.)
A:>\maxAi ' Ti 7;%"1}6 . 15
(Brigh) ( high Amax (Dhigh) & (1s)
Let us consider the equivalent expression
1 )\max(Are )
A = Thigh + L T 16)
)\max (Ahigh) high /\max (Ahigh) e (
‘We next note that . N (A)
Amax | ———— A ) = /27 17
(Amax(Ahigh) ) Amax(Ahigh) ( )

and
>\max (Thigh) =1
since the operation of taking eigenvalues of operators is multiplicative in the sense of
Amax(lal - T) = |a] - Amax(T)
for non-negative |a| > 0.

Since the right-hand-side of constitutes an analytic perturbation of Th;gn, we may apply analytic
perturbation theory (c.f. e.g. [Kato|(1976) for an extensive discussion) to this problem. With this
(together with |Thign| = 1) we find

1 )\max(Are ) )
Apas | ————— A ) =14 O Dmax\Dreg) ) 18
( )\max (Ahigh) > < Amax(Ahigh) ( )

Using and the fact that

/\max(Areg.) Sreg.
oc , 19
Amax(Ahigh) Shigh ( )

we thus have
Amax (A)

S,
Amax () 4 n reg) )
Amax (Dhigh) ( Shigh

Since for small €, we also have

=1
1+e +0(e),
the relation (T9) also implies
/\max(Ahigh) =140 (Sreg.> )
)\max (A) Shigh
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Multiplying with 1/Apmax (A) yields

)\max(Ahigh) /\max(Areg.)
T'=———77""|Th T e ) - 2
)\max(A) high * Amax(Ahigh) £ ( 0)

Since [Tgal, [Teg | = 1 and
)\max<Areg.> o Sreg.
Amax (Dhigh)  Shigh

for sufficiently large Shign, relation implies
-0 ( Sreg. )
Shigh

Note that we might in principle also make use of Lemma[K.2]below, to provide quantitative bounds:
Lemma states that

<1

1

A —
' Amax(Ahigh)

Ahigh

as desired.

[Ak(A) = Ak(B) < |A = B

for self-adjoint operators A and B and their respective k" eigenvalues ordered by magnitude. On a
graph with NV nodes, we clearly have A\, = An for eigenvalues of (rescaled) graph Laplacians, since
all such eigenvalues are non-negative. This implies for the difference |1 — Amax(A)/Amax (Qhigh )|
arising in (T8) that explicitly

Ama(8) | _ e (Brg)
)\max(Ahigh) )\max(Ahigh)

This in turn can then be used to provide a quantitative bound in (14). Since we are only interested in
the qualitative behaviour for Spigh » Sreg., We shall however not pursue this further.

-

O

It remains to state and establish Lemma [K.2]referenced at the end of the proof of Theorem

Lemma K.2. Let A and B be two hermitian n x n dimensional matrices. Denote by {\x(M)}7_,
the eigenvalues of a hermitian matrix in increasing order.
With this we have:

|IAk(A) — Ae(B)| < ||A - BJ|.

Proof. After the redefinition B — (—B), what we need to prove is
[Ai(A+ B) = Mi(A)] < ||B]|
for Hermitian A, B. Since we have
Ai(A) = N(A+B)=MN({(A+B)+ (—B)) — \i(A+ B)
and || — B|| = || B]| it follows that it suffices to prove
Ai(A+B) = Xi(A) < 1Bl
for arbitrary hermitian A, B.

We note that the Courant-Fischer min — max theorem tells us that if A is an n x n Hermitian matrix,
we have

Ai(M) = sup v*Mu.

inf
dim(V)=i veVi||v]|=1
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With this we find
Ai(A+ B)—Xi(A) = sup inf  v*(A+ B)v— sup inf  v*Av
dim(V)=: veV;|[v[|=1 dim(V)=i veVi|[v]|=1
< sup inf  v*Av+ sup inf  v*Buv
dim(V)=i veV;|lv[|=1 dim(V)=4 veV;||v]|=1

sup inf  v*Av
dim (V) =4 veVillv]|=1
= sup inf  v*Bv
dim(V)=i veV;|[v]|=1
sup inf  v*Buv
dim (V) =i v€V;[v]|=1
max {|Ax(B)[}

1<k<n

1Bl

N

K.1.3 SYMMETRIC NORMALIZATIONS

Most common spectral graph convolutional networks (such

as e.g. [He et al.|[(2021)); Bianchi et al.| (2019); |Defferrard e

et al|(2016)) base the learnable filters that they propose on

the symmetrically normalized graph Laplacian /
€

| ¢
£ —I1d— D WD}, | / ,
€ . ©—e

In the setting Shign » Sreg. We are considering, this leads
to an effective feature propagation along edges in Epign and Figure 21: Limit graph correspond-

Elow, exclusive (€. also Fig. 21)) only, as Theorem [K.3]below ing to Fig[T9|for symmetric normal-
establishes: ization

Theorem K.3. With ) )
T=I1d—D 2WD™ 2,
and the scale decomposition as introduced above, we have that

_1 _1 _1 -1 Sreg.
HT — <Id — DhigiWhighDhigi - Dregz. VVI()W, exclusiveDregQ. ) H = O S (21)
high
for Shigh > Sreg.-

Proof. We first note that instead of (2I), we may equivalently establish
-3 -3 —3 -3 -3 -3 Sreg.
HD *WD™= — (DhighWhighDhigh + Dreg. I/Vlow, exclusiveDreg. ) H =0 Si .
high

W = Whigh + Wreg.~

We have

With this, we may write

D iWD™% = D" 3 WygnD ™2 + D3 Wu D™ 2. (22)
Let us first examine the term D*%WhighD* 3. We note for the corresponding matrix entries that
1 1 1 1
D7 W,y D*a) = —— (Wigen)ii - ——
( high i \/CTl ( h gh)z] \/@

Let us use the notation
N N N

high reg. low,exclusive
di = Z(Whigh)ij7 dz = Z(Wreg‘)i_j al’ld dz = Z(VVlow,exclusive)ij'

j=1 j=1 j=1
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We then find
1 1
I a
Using the Taylor expansion
1
=1——e+ 0O(),
1+e€

we thus have

?

1 reg.
Sy
Jae o\ dE
J

<D_%WhighD_%> Whigh )i

1
=
©j d?lgh

d;® Sreg.

2
high v
d;'®" " Shigh

Since we have

this yields
1 _1 7% 7% Sreg_
D™z WhighD 2 = DhighWhighDhigh +0 Shigh .
Thus let us turn towards the second summand on the right-hand-side of (22). We have
1 1 1 1
D3, D‘E) o (W )i ——.
( & i Ad; ( eg)dej

Suppose that either i or j is not in Glow, exclusive- Without loss of generality (since the matrix under
consideration is symmetric), assume ¢ ¢ Glow, exclusive, DUt (Wreg,)qp ; # 0. We may again write

1 B 1 1

/d . hich reg.

d; \/djg ,/1+3}%ﬂ;
1

<1,
&
1+ S

i

Since

we have

1 Sreg.
fqhieh Shigh )

(D7%Wreg,D7%>U

1
< ‘\/a : (Wreg.)ij
If instead we have 7, j € Giow, exclusive> then clearly

_1 1 -1 -1
(D 2 VVreg.D 2) = (DregQ. VVlow,exclusiveDre; ) e

)

ij
Thus in total we have established

_1 _1 -1 _1 _1 _1 S :
D:WD™> = (Dhi;l'lwhighDhigi + DregQ. VVIOW, exclusiveDregz.) +0 <Sreg >
high

which was to be established.
O

Apart from networks that make use of the symmetrically normalized graph Laplacian ., some
methods, such as most notably |Kipf & Welling|(2017), instead base their filters on the operator
T— D WD},
with _
W = (W + Id)
and _
D =D+ 1d.

In analogy to Theorem we here establish the limit propagation scheme determined by such
operators:
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Theorem K.4. With L
T=D":WD"2,
where W = (W + Id) and D = D + Id as well as the scale decomposition introduced above, we

have that
_1 _1 1. _1 Sree. + 1
HT - (DhigiWhighDhi;h + Dregz. VVlow, exc]usiveDregz. ) H =0 ( 1€;>
\ high

for Shigh » Sreg.. Here Wigw, exclusive 1S given as

I/Vlow, exclusive +=— I/Vlow, exclusive 1 dlag (]1 Glow, exdusive)

and 1g,, ... denotes the vector whose entries are one for nodes in Glow, exclusive and zero for all
other nodes.

The difference to the result of Theorem [K.3]is thus that applicability of the limit propagation scheme
of Fig. for the GCN [Kipf & Welling| (2017) is not only contingent upon Syigh > Sreg. but also
Shigh > 1.

Proof. To establish this — as in the proof of Theorem [K.3]— we first decompose 7":

D*WD™% = D" 2 Wy D™% + D" 2W,;, D™% + D™21dD "% (23)
= Diéwhighbié + Diéwreg.[)ié + D7t
For the first term, we note
-1 ~ 1 1 1
l)_iﬂf-AD_ﬁ) e (Wais)i) - ———.
< high i dz 1 ( hgh) J dj 1
We then find
1 1
di+1 [ high o
VETL e i d
Analogously to the proof of Theorem [K.3] this yields
~ 1 ~ 1 1 1 1+ d;eg.
(D 2 Whigh D 2>A. = —— (Whign)i; - — + 0O nigh |
K (hieh dieh d;
7

This implies
. 3 _ _1 —1 Sreg. + 1
D72 WhignD™ % = Dy 2 Whign Dy + O <g> :
Shigh
Next we turn to the second summand in 23):

~_1 ~_1 1 1
(D74 D7) = g Wi ey

Suppose that either i or j is not in Glow, exclusive- Without loss of generality (since the matrix under
consideration is symmetric), assume ¢ ¢ Glow, exclusive, DUt (Wreg,)ij # 0. We may again write

11 1
d;+1 high Il
\/ J \/d] 1+ H‘T
di
Since
1
<1,
11
]. + ;Tgh
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we have
1 1 1 1
D Wi D74 |< | s (Wi )5
l( * ij ‘\/1+di (Weee ) / jhieh
j
1 1
< ‘\/drTg . (Wreg.)ij . dhigh

J

-0 < Sreg.) )
\ Shign

If instead we have 7, j € Giow, exclusive> then clearly

~_ 1 ~ 1 ~_ 1 ~_ 1
(D 2 VVreg.D 2 ) = (DregQ. I/Vlow,exclusiveDre; )

ij

ij

Finally we note for the third term on the right-hand-side of that

if 4 ¢ Glow, exclusive -

In total we thus have found

e~ 1 _1 1 1 —1 Sreg. + 1
D 2WD™2 = (Dhi;},WhighDhi;h + DregQ. I/Vlow, exclusiveDreg2.> +0 ( r;gh' N > ;
1g

which was to be proved. O

K.2 SPATIAL CONVOLUTIONAL FILTERS

Apart from spectral methods, there of course also exist methods that purely operate in the spatial
domain of the graph. Such methods most often fall into the paradigm of message passing neural
networks (MPNNs) |Gilmer et al.| (2017); [Fey & Lenssen| (2019): With Xf e R¥ denoting the
features of node 7 in layer £ and w;; denoting edge features, a message passing neural network may
be described by the update rule (c.f. |Gilmer et al.[(2017))

X = [ X ] o (X XL wy) |- (24)
JEN (i)

Here N (i) denotes the neighbourhood of node i, | | denotes a differentiable and permutation invariant

function (typically "sum", "mean" or "max") while v and ¢ denote differentiable functions such as
multi-layer-perceptrons (MLPs) which might not be the same in each layer. [Fey & Lenssen| (2019).

Before we discuss corresponding limit-propagation schemes, we first establish that MPNNs are
not able to reproduce the limit propagation scheme ofFigure 6] (b) and are thus not stable to scale
transitions and topological perturbations.

K.2.1 SCALE-SENSITIVITY OF MESSAGE PASSING NEURAL NETWORKS
Here we establish that message passing networks (as defined in (24) above) are unable to emulate a

limit propagation scheme similar to the one in Figure[6](b). Hence such architectures are also not
stable to scale-changing topological perturbations such as coarse-graining procedures.
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To this end, we consider a simple, fully connected graph G

on three nodes labeled 1, 2 and 3 (c.f. Fig. 22). We assume 3
all node-weights to be equal to one (u; = 1 fori = 1,2, 3)
and edge weights
W13, W23 < Sreg.
1 2
as well as
w12 = Shigh- Figure 22: Three node Graph G with
We now assume Shigh > Sreg. on large weight wio > 1.

Given states { X{, X4, X4} in layer ¢, a limit propagation scheme as in FigureE] (b) would require the
updated feature vector of node 3 to be given by

X{+ X5
X?li,—gésired = <X§7 o (X§7 1T27 (w31 + w32))>

However, the actual updated feature at node 3 is given as (c.f. (24)):

X:f,ﬁclmal = (X§7 ¢ (X5, X1, ws1) H¢ (X§7X53w32)> (25)
Since there is no dependence on Shig, in equation — which defines X g:clmal — the desired

propagation scheme can not arise, unless it is paradoxically already present at all scales Spigp. If it is
present at all scales, there is however only propagation along edges in G, even if Shigh ~ Sreg., Which
would imply that the message passing network would not respect the graph structure of GG. Hence
X i‘f,+ac1tual - X g;elsired does not converge as Shjgn increases.

K.2.2 LIMIT PROPAGATION SCHEMES

The number of possible choices of message functions ¢, aggregation functions | | and update functions
~ is clearly endless. Here we shall exemplarily discuss limit propagation schemes for two popular
architectures: We first discuss the most general case where the message function ¢ is given as a
learnable perceptron. Subsequently we assume that node features are updated with an attention-type
mechanism.

Generic message functions: We first consider the possibility that the message function ¢ in
(25) is implemented via an MLP using ReLU-activations: Assuming (for simplicity in notation) a
one-hidden-layer MLP mapping features X! € R to features X ™! € RF*+! we have

O(X{, X5, wij) = ReLU (WY - X{ + Wy - X5 + Wy - wi; + BY)
with bias term B! € R¥*+1 and weight matrices W} ™, W4T € RFe+1Fe and Wi € RFe+1,
We will assume that the weight-vecor W' has no-nonzero entries. This is not a severe limitation
experimentally and in fact generically justified: The complementary event of at-least one entry of Wy

being assigned precisely zero during training has probability weight zero (assuming an absolutely
continuous probability distribtuion according to which weights are learned).

Let us now assume that the edge (ij) belongs to &Eien and the corresponding weight w;; is large
(wi; » 1). The behaviour of entries qS(Xf,Xf,wij)a of the message (b(Xf,Xf,wij) e RFfe+1 is
then determined by the sign of the corresponding entry (ng )a of the weight vector Wf e RFfe+1:

If we have (ng)a <0, then ¢( X!, X f, w;;)q approaches zero for larger edge-weights w;;:
lim  ¢(X{, X5 wij)a =0 (26)

Wy j—>0

If we have (W), > 0, then (X, X7, w;;), increasingly diverges for larger edge-weights w;;:
im | $(X, X, wig)a = o0 @7

For either choice of aggregation function | [ in (24) among "max", "sum" or "mean" the behaviour
in (27) leads to unstable networks if the update function ~ is also given as an MLP with ReL.U
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activations. Apart from instabilities, we also make the following observation: If Shigh » Sieg., then by
|| and continuity of ¢ we can conclude that components ¢ (X}, X f, w;j)q of messages propagated
along &pign for which (Wf)a > (0 dominate over messages propagated along edges in &, . By ,
the former clearly also dominate over components ¢(X f , X j" ,w;;)q of messages propagated along

non

Enign for which (W5) < 0. This behaviour is irrespective of whether "max", "sum" or "mean"
aggregations are employed. Hence the limit propagation scheme essentially only takes into account
message channels ¢(X;, X, w;;)q for which (ij) € Eygn and (W:f)a > 0.

Similar considerations apply, if non-linearities are chosen as leaky ReLU. If instead of ReLU
activations a sigmoid-nonlinearity o like tanh is employed, messages propagated along Ejare. become

increasingly uninformative, since they are progressively more independent of features X! and weights
w;;. Indeed, for sigmoid activations, the limits @[) and (27) are given as follows:

If we have (W:f ) . <0, then we have for larger edge-weights w;; that

lim ¢(X{, X}, wij)a = lim o(y).

wij—>00 Yy—>—00

If we have (ng)a > 0, then

lm ¢(X/, X!, wij)e = lim o(y).

Wi —>0 Yy—00

In both cases, the messages ¢( X!, X f, w;j) propagated along &juree become increasingly constant as
the scale Sy increases.

Attention based messages: Apart from general learnable message functions as above, we here
also discuss an approach where edge weights are re-learned in an attention based manner. For this
we modify the method Velickovic et al.|(2018) to include edge weights. The resulting propagation
scheme — with a single attention head for simplicity and a non-linearity p — is given as

Xt =p [ X ay(WXH)

Here we have W € RFe+1%Fe gnd
exp (LeakyRelu (@' [WX{ | WX || wi;]))

>, exp (LeakyRelu (@7 [WX! | WX{ | wir]))’
keN (i)

(28)

aij =

with || denoting concatenation. The weight vector @ € R?!¢+171 is assumed to have a non zero entry
in its last component. Otherwise, this attention mechanism would correspond to the one proposed in
Velickovic et al.| (2018)), which does not take into account edge weights. Let us denote this entry of @
()determining attention on the weight w;;) by a.,.

If a,, < 0, we have for (i, j) € &pign that
exp (LeakyRelu (@ [WX{ | WX/ | w;])) — 0

as the weight w;; increases. Thus propagation along edges in &g is essentially suppressed in this
case.

If a,, > 0, we have for (i, j) € &qign that
exp (LeakyRelu (@™ [WX! | WX/ | w;])) — o
as the weight w;; increases. Thus for edges (4, j) € Ereg. (i.€. those that are not in &pigp), we have
Qg5 — 0,

since the denominator in @ diverges. Hence in this case, propagation along &g is essentially
suppressed and features are effectively only propagated along &Epigh.
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