Unsupervised Compressive Text Summarisation with Reinforcement
Learning

Anonymous ACL submission

Abstract

Recently, compressive text summarisation of-
fers a balance between the conciseness issue of
extractive summarisation and the factual hal-
lucination issue of abstractive summarisation.
However, most existing compressive summari-
sation methods are supervised, relying on the
expensive effort of creating a new training
dataset with corresponding compressive sum-
maries. In this paper, we propose an unsuper-
vised compressive summarisation method that
utilises reinforcement learning to optimise a
summary’s semantic coverage and fluency by
simulating human judgment on summarisation
quality. Our model consists of an extractor
agent and a compressor agent, and both agents
have a multi-head attentional pointer-based
structure. The extractor agent first chooses
salient sentences from a document, and then
the compressor agent compresses these ex-
tracted sentences by selecting salient words to
form a summary without using reference sum-
maries to compute the summary reward. That
is, a parallel dataset with document-summary
pairs is not required to train the proposed
model. To the best of our knowledge, our pro-
posed method is the first work on unsupervised
compressive summarisation. Experimental re-
sults on three widely used datasets, Newsroom,
CNN/DM, and XSum, show that our model
achieves promising performance and signifi-
cant improvement on Newsroom in terms of
the ROUGE metric. !

1 Introduction

Text summarisation aims to condense a given doc-
ument into a short and succinct summary that best
covers the document’s semantics with the least re-
dundancy. It helps users quickly browse and un-
derstand long documents by focusing on their most
important content (Mani, 2001).

The majority of existing summarisation meth-
ods are either extractive or abstractive. Extractive

'Our source code will be publicly available at GitHub.

N Action Action :
' o (Extract Sent.) % @ (Extract Words)! @
. xtractor ‘ompressor
— 0 — — 1 —

Age Extractive Agent | Compressive
Summary Sy | Summary S¢

Document D 3

Figure 1: Illustration of our proposed URLComSum.
It summarises a given text document D first into an ex-
tractive summary Sg then into a compressive summary
Sc. The agents are trained with reinforcement learning
to mimic human judgment for achieving high summary
quality in terms of semantic coverage and fluency.

methods (Narayan et al., 2018b; Zhang et al., 2019;
Liu and Lapata, 2019; Zhong et al., 2020) select
salient sentences from a document to form its sum-
mary. It ensures the production of grammatically
and factually correct summaries, though the output
summaries could be inflexible. Abstractive meth-
ods (See et al., 2017; Paulus et al., 2018; Zhang
et al., 2020; Laban et al., 2020) involve natural lan-
guage generation to generate a summary for a given
document. However, it is highly prone to produce
contents that are unfaithful and non-factual to the
original document (Maynez et al., 2020).

A recent approach to text summarisation is com-
pressive summarisation which selects words, in-
stead of sentences, from an input document to as-
semble a summary. Compressive summarisation
offers a sidestep to improve the factuality and con-
ciseness of a summary. Existing compressive meth-
ods (Mendes et al., 2019; Xu and Durrett, 2019;
Desai et al., 2020) often first select the salient
sentences of a given document and then further
compress these selected sentences by a sentence
compressor to form a summary. However, most
of these methods are supervised, which require a
parallel dataset with document-summary pairs to
train. Since the ground-truth summaries of exist-
ing datasets are usually obtained abstractively and
do not contain supervision information of extrac-

tion or compression, existing compressive methods
require creating new datasets of which the ground-
truth summaries are compressive.

Therefore, we propose an unsupervised com-
pressive summarisation method with reinforcement
learning, namely URLComSum. As illustrated in
Figure 1, URLComSum consists of two modules,
an extractor agent and a compressor agent. We
model the sentence and word representations us-
ing a Bi-LSTM (Graves and Schmidhuber, 2005)
with multi-head attention (Vaswani et al., 2017)
to capture both the long-range dependencies and
the relationship between each word and the others,
and each sentence and other sentences. We use a
Pointer Network (Vinyals et al., 2015) to solve our
task of finding the optimal subset of sentences and
words to be extracted since the Pointer Network
is well-known for tackling combinatorial optimiza-
tion problems. The extractor agent uses a hierar-
chical multi-head attentional Bi-LSTM model for
learning the sentence representation of the input
document and a Pointer Network for extracting the
salient sentences of a document given a length bud-
get. To further compress these extracted sentences
all together, the compressor agent uses a multi-head
attentional Bi-LSTM model for learning the word
representation and a Pointer Network for selecting
the words to assemble a summary.

Note that we also investigated the popular trans-
former model (Vaswani et al., 2017) in our pro-
posed framework to replace Bi-LSTM for learning
the sentence and word representations. However,
it was noticed the transformer-based agents do not
perform as well as the Bi-LSTM-based ones while
training from scratch with the same training pro-
cedure. The difficulties of training a transformer
model have also been discussed in (Popel and Bo-
jar, 2018; Liu et al., 2020). Besides, the commonly
used pre-trained transformer models, such as BERT
(Devlin et al., 2019) and BART (Lewis et al., 2020),
require high computational resources and usually
use subword-based tokenizers. They are not suit-
able for URLComSum since our compressor agent
points to words instead of subwords. Therefore, at
this stage Bi-LSTM is a simpler and better choice.

As an unsupervised method, URLComSum
does not require a parallel training dataset with
document-summary pairs. We propose an unsu-
pervised reinforcement learning training procedure
to mimic human judgment: to reward the model
that achieves high summary quality in terms of se-

mantic coverage and language fluency. Inspired by
Word Mover’s Distance (Kusner et al., 2015), the
semantic coverage reward of a summary is mea-
sured by Wasserstein distance (Peyré et al., 2019)
between the semantic distribution of the original
document and that of the summary. The fluency
reward of a summary is measured by Syntactic
Log-Odds Ratio (SLOR) (Pauls and Klein, 2012),
which is a referenceless fluency evaluation metric.
According to prior works, SLOR is effective in
sentence compression (Kann et al., 2018), and has
better correlation to human acceptability judgments
(Lau et al., 2017).

Note that our RL reward shares similarity with
(Laban et al., 2020) in terms of optimising sum-
mary quality by both coverage and fluency. How-
ever, our definitions and calculations of coverage
and fluency are different. Specifically, (Laban et al.,
2020) defined coverage as a TF-IDF based keyword
coverage and trained a separate model to compute
the coverage reward. In addition, for the fluency
reward, (Laban et al., 2020) utilised the score from
a pretrained language model directly. The key con-
tributions of this paper are:

* We propose an unsupervised method for com-
pressive text summarisation with reinforce-
ment learning, namely URLComSum. To the
best of our knowledge, URLComSum is the
first work on unsupervised compressive sum-
marisation.

* URLComSum consists of an extractor agent
and a compressor agent to extract and com-
press a document to a summary given a length
budget. We design a multi-head attentional
pointer-based neural network for learning the
representation and for extracting salient sen-
tences and words.

* We propose to mimic human judgment by op-
timising summary quality in terms of the se-
mantic coverage reward, measured by Wasser-
stein distance, and the fluency reward, mea-
sured by Syntactic Log-Odds Ratio (SLOR).

* Comprehensive experimental results on three
widely used datasets, including CNN/DM,
XSum, Newsroom, demonstrate that URL-
ComSum achieves great performance in terms
of the ROUGE metric.

2 Related Work

Most of the existing works on neural text summari-
sation are extractive, abstractive, and compressive-
based. In this section, we review existing text sum-
marisation methods in these three categories.

2.1 Extractive Methods

Extractive methods usually follow the sentence
ranking conceptualisation, and an encoder-decoder
scheme is generally adopted. An encoder formu-
lates document or sentence representations, and
a decoder predicts extraction classification labels.
The supervised models commonly rely on creat-
ing proxy extractive training labels for training
(Cheng and Lapata, 2016; Nallapati et al., 2017;
Jia et al., 2021), which can be noisy and may not
be reliant. Some methods were proposed to tackle
this issue by training with reinforcement learning
(Narayan et al., 2018b; Luo et al., 2019) to optimise
the ROUGE metric directly. Various unsupervised
methods (Zheng and Lapata, 2019; Padmakumar
and He, 2021) were also proposed to leverage pre-
trained language models to compute sentences sim-
ilarities and select important sentences. Although
these methods have significantly improved sum-
marisation performance, since the entire sentences
are extracted individually, the redundant informa-
tion that appears in the salient sentences may not
be minimized effectively.

2.2 Abstractive Methods

Abstractive methods formulate text summarisation
as a sequence-to-sequence generation task, with the
source document as the input sequence and the sum-
mary as the output sequence. Most existing meth-
ods follow the supervised RNN-based encoder-
decoder framework (See et al., 2017; Zhang et al.,
2020). As supervised learning with ground-truth
summaries may not provide useful insights on hu-
man judgment approximation, reinforcement train-
ing was proposed to optimise the ROUGE metric
(Paulus et al., 2018), and to fine-tune a pre-trained
language model (Laban et al., 2020). These mod-
els naturally learn to integrate knowledge from the
training data while generating an abstractive sum-
mary. Prior studies showed that these generative
models are highly prone to external hallucination,
thus may generate contents that are unfaithful to
the original document (Maynez et al., 2020).

2.3 Compressive Methods

Compressive methods select words from a given
document to assemble a summary. Due to the
lack of training dataset, not until recently there
have emerged works for compressive summarisa-
tion (Zhang et al., 2018; Mendes et al., 2019; Xu
and Durrett, 2019; Desai et al., 2020). The for-
mulation of compressive document summarisation
is usually a two-stage extract-then-compress ap-
proach: it first extracts salient sentences from a
document, then compresses the extracted sentences
to form its summary. Most of these methods are
supervised, which require a parallel dataset with
document-summary pairs to train. However, the
ground-truth summaries of existing datasets are
usually abstractive-based and do not contain su-
pervision information needed for extractive sum-
marisation or compressive summarisation (Xu and
Durrett, 2019; Mendes et al., 2019; Desai et al.,
2020). Several reinforcement learning based meth-
ods (Zhang et al., 2018) use existing abstractive-
based datasets for training, which is not aligned
for compression. Note that existing compressors
often perform compression sentence by sentence.
As a result, the duplicated information among mul-
tiple sentences could be overlooked. Therefore, to
address these limitations, we propose a novel un-
supervised compressive method by exploring the
reinforcement learning strategy to mimic human
judgment and perform text compression instead of
sentence compression.

3 Methodology

As shown in Figure 1, our proposed compres-
sive summarisation method, namely URLComSum,
consists of two components, an extractor agent
and a compressor agent. Specifically, the extractor
agent selects salient sentences from a document
D to form an extractive summary Sg, and then
the compressor agent compresses Sg, by selecting
words to assemble a compressive summary Sc.

3.1 Extractor Agent

Given a document D consisting of a sequence of
M sentences {s;|i = 1, ..., M}, and each sentence
s; consisting of a sequence of N words {we;;|j =
1,..., N} 2, the extractor agent aims to produce
an extractive summary Sg by learning sentence
representation and selecting L i sentences from D.

2We have pre-fixed the length of each sentence and each
document by padding.

Russia is considering Alexis Tsipras, _,

bailing ... Greece’s ...

The visit will
raise fears ...

Iy
.. Ahead of his
visit, Mr ...

! 1
1
. Extractor Agent ; '
1
! i
! 1
' Bi-LSTM hes; :
i Multi-head '
i Sentence Attention aes; '
' .
i -level Bi-LSTM le5; '
1 uey ue; ue, H
: Concat. he*s; .. :
|
| e, e e \
|
i Bi-LSTM he¥; !
I
i Multi-head :
: Attention ae”;; :
1

rd-level 1
| Word-leve Bi-LSTM le"; '
| - - .
| Embedding xe; coniderng wilrase Toprs :

. |

! . bailing ... Greece's ...
: Word we;; The) ailing Sears reece’s :
! i
! 1
! 1
! 1
! 1
! 1

Hierarchical Sentence Representation

Figure 2: Illustration of the extractor agent.

As illustrated in Figure 2, we design a hierarchical
multi-head attentional Bi-LSTM model for learning
the sentence representations of the document and
using a Pointer Network to extract sentences based
on their representations.

3.1.1 Hierarchical Sentence Representation

To model the local context of each sentence and
the global context between sentences, we use two-
levels Bi-LSTMs to model this hierarchical struc-
ture, one at the word level to encode the word se-
quence of each sentence, one at the sentence level
to encode the sentence sequence of the document.
To model the context-dependency of the impor-
tance of words and sentences, we apply two levels
of multi-head attention mechanism (Vaswani et al.,
2017), one at each of the two-level Bi-LSTMs.

Given a sentence s;, we encode its words into
word embeddings xe; = {xe;;|j = 1,..., N} by
xe;; = Enc(we;;), where Enc() denotes a word
embedding lookup table. Then the sequence of
word embeddings are fed into the word-level Bi-
LSTM to produce an output representation of the
words le®:

le}j = £ST™ (xe;),j € [L,N] . (1)

To utilize the multi-head attention mechanism to
obtain ae}’ = {aef}, ..., aey } at word level, we
define Q; = le}’, K; = V; = xe;,

ae;’ = MultiHead(Q;, K;,V;) . 2)

The concatenation of le;” and ae;’ of the words
are fed into a Bi-LSTM and the output of the Bi-
LSTM is concatenated to obtain the local context

representation he;’® for each sentence s;:

hel’ = LSTM([le}’; ae?’]), j € [1,N] ,

(JM J (3)

hel’® = [he}, ..., hejy] .

To further model the global context between sen-
tences, we apply a similar structure at sentence
level. he"® = {he{"*|i = 1, ..., M} are fed into
the sentence-level Bi-LSTM to produce output rep-
resentation of the sentences le®:

le} = LSTM(he),i € [1,M] . ()

To utilize the multi-head attention mechanism to
obtain ae® = {aef, ..., ae},} at sentence level, we
define) = le®, K =V = he"?,

ae® = MultiHead(Q, K, V) . 5)

The concatenation of the Bi-LSTM output
le® and the multi-head attention output ae® of
the sentences are fed into a Bi-LSTM to ob-
tain the sentences’ final representation he® =
{hej,...,hej,; }:

het = LSTM([le}; aef]),i € [1,M]. (6)

3.1.2 Sentence-Level Extraction

Similar to (Chen and Bansal, 2018), we use an
LSTM-based Pointer Network to decode the above
sentence representations he® = {hej,...,hej,}
and extract sentences recurrently to form an extrac-
tive summary Sg = {4, ..., Ak, ..., AL, } with
L g sentences, where A;. denotes the sentence ex-
tracted at the k-th time step.

At the k-th time step, the pointer network re-
ceives the sentence representation of the previous
extracted sentence and has hidden state dey,. It first
obtains a context vector dej, by attending to he®:

ue’ = vT tanh(Wihe! + Wadey),i € (1, ..., M) ,
ael = softmax(ue),ie(1,..., M),
de), = Z aefhe’ |
i=1
(7

where v, W1, Wy are learnable parameters of the
pointer network. Then it predicts the extraction
probability p(Ay) of a sentence:

dej, < [dek,deﬁc] ,
uel = o7 tanh(Wihe + Wadey),i € (1, ...,
p(Ak’Al, PN

M),
A1) = softmax(uek) .
3
This decoding process iterates until Lg sen-
tences are selected. The selected sentences are
assembled to form Sg.

Compressor Agent
!]
- ﬁ lﬁ =
[Wordwe, Ruia losen -
‘Word Representatmn Word Extraction

Figure 3: Illustration of the compressor agent.

3.2 Compressor Agent

Given an extractive summary Sg consisting of a
sequence of words wec = {wc;|i = 1,..., N}, the
compressor agent aims to produce a compressive
summary Sc by selecting L words from Sg. As
illustrated in Figure 3, it has a multi-head atten-
tional Bi-LSTM model to learn the word represen-
tations. It uses a pointer network to extract words
based on their representations.

3.2.1 Word Representation

Given a sequence of words wc, we encode the

words into word embeddings xc = {xc;|i =
., N} by xc; = Enc(wc;). Then the sequence

of word embeddings are fed into a Bi-LSTM to

produce the words’ output representation lc":

I’ = i:STM(xci),z’ €[1,N] .)

To utilize the multi-head attention mechanism to
obtain ac” = {ac{’, ..., acly }, we define) = 1c”
K=V =xc,

— MultiHead(Q, K, V). (10)

The concatenation of Ic* and ac® of the words
are fed into a Bi-LSTM to obtain the representation
hc}’ for each word wc;:

hc}’ = I STM([Ic

3.2.2 Word-Level Extraction

The word extractor of the compressor agent
shares the same structure as that of the extrac-
tor agent’s sentence extractor. To select the
words based on the above word representations
hc” = {hc{,...,hcy}, the word extractor de-
codes and extracts words recurrently to produce
{Bi,..., B, ..., B }, where By, denotes the word
extracted at the k-th time step.

[1,N] . D

;ac’]),i €

3.3 Reward in Reinforcement Learning

Our unsupervised reinforcement learning based
training strategy is designed to mimic human
judgment by maximising summary quality reward
Reward(D, S) in terms of the semantic coverage
reward Reward.,, (D, S) and the fluency reward
Rewardg, (S). We use the compressive summary
Sc to compute the reward. For simplicity, we de-
note Reward(D, Sc) as Reward(D, S). Given an
original document D, Reward(D, S) is a weighted
sum of Reward.oy (D, S) and Rewardg, (S):

Reward(D, S) = weoyRewardeoy (D, S)

(12)
+wgy,Rewardg, (S) ,

where wcoy and wgy, denote the weights of semantic
coverage reward and fluency reward, respectively.

3.3.1 Semantic Coverage Reward

Intuitively, a good summary is supposed to be close
to the original document regarding their semantic
distributions. We measure Reward.,, by comput-
ing the Wasserstein distance between the corre-
sponding semantic distributions of the document
D and the summary S, which is the minimum cost
required to transport the semantics from D to S.
We denote D = {d;|i = 1,..., N} to repre-
sent a document, where d; indicates the count
of the ¢-th token (i.e., word or phrase in a vo-
cabulary of size N). Similarly, for a summary

S = {57 =1,..., N}, s; is respect to the count
of the j-th token . The semantic distribution of a
document is characterized in terms of normalised
term frequency. The term frequency of the i-th
token in the document D and the j-th token in the
summary S are denoted as TFp(7) and TFg(j), re-
spectively. The frequency of each token within a
document or a summary is formulated by count-
ing the normalised token’s occurrence over the text.
Formally, TFp (i) and TFg(j) can be computed as:

d;

N
Zj:l d;

TFs(j) = —p—
j=157
(13)

By defining TFp = {TFp(i)} € RY and
TFs = {TFs(j)} € R, we have the semantic dis-
tributions within the document D and the summary
S respectively. Note that after the normalization
TFp and TFg have an equal total token quantities
of 1 and can be completely transported from one to
the other.

The transportation cost matrix C is obtained by
measuring the semantic similarity between each
of the tokens. Given a pre-trained tokeniser and
token embedding model with N tokens, define v;
to represent the feature embedding of the i-th token.
Then the transport cost ¢;; from the ¢-th to the j-th
token is computed based on the cosine similarity:

TFp (i) =

< Vi,V >

SRR R Rty (14)
Ivilly vl

Cij = 1
An optimal transport plan T* = {t;,} €
RN >N in pursuit of minimizing the transportation

cost can be obtained by solving the following opti-
mization problem:

N
T* = argmin g tijcij ,S.t.
T =1

N
Z ti; = d;,
=1

N
S ty=sj, tiy =0, Vij € {L,.,N}.

i=1

(15)

The Wasserstein distance measuring the distance

between the two semantic distributions TFp and

TFg with the optimal transport plan is computed
by:

i,J

Reward.o, (D, S) of the summary S in respect

to the document D can be further defined as:

Rewardqoy (D, S) = 1 — dw (TFp, TFs|C) .
a7

3.3.2 Fluency Reward

We utilize Syntactic Log-Odds Ratio (SLOR)

(Pauls and Klein, 2012) to measure Rewardg,.

SLOR relies on a trained language model and is

adjusted for rare words such as named entities.
Given a trained language model LM, Rewardg,

of a summary S is defined as:

1

Rewardg, (S) = 5 (log(PrLm(S))—log(Py(S)))

(18)
where Pr,57(S) denotes the probability of the sum-
mary assigned by the LM, pyr(S) = [[,cq P(2)
denotes the unigram probability for rare word ad-
justment, and |.S| denotes the sentence length.

URLComSum uses the Self-Critical Sequence
Training (SCST) method (Rennie et al., 2017),
since this training algorithm has demonstrated
promising results in text summarisation (Paulus
et al., 2018; Laban et al., 2020). For a given input
document, the model produces two separate output
summaries: the sampled summary S?, obtained by
sampling the next pointer ¢; from the probability
distribution at each time step 7, and the baseline
summary S, obtained by always picking the most
likely next pointer ¢ at each ¢. The training objec-
tive is to minimise the following loss:

Loss = —(Reward(D, S*) — Reward(D, S))

N

1

N E Ing(tﬂti,..., ?—17D)7
=1

19)
where IV denotes the length of the pointer sequence,
which is the number of extracted sentences for the
extractor agent and the number of extracted words
for the compressor agent.

Minimising the loss is equivalent to maximis-
ing the conditional likelihood of S? if the sampled
summary S* outperforms the baseline summary
S, i.e. Reward(D, S%) — Reward(D, S) > 0, thus
increasing the expected reward of the model.

4 Experimental Results and Discussions

4.1 Datasets

To validate the effectiveness of our proposed URL-
ComSum, we conducted comprehensive experi-
ments on three widely used datasets: Newsroom

(Grusky et al., 2018), CNN/DailyMail (CNN/DM)
(Hermann et al., 2015), and XSum (Narayan et al.,
2018a). These datasets obtained from Hugging-
Face Datasets 3 are the standard English single-
document datasets with manually-written sum-
maries, as summarised in Table 4 in Appendix A.

4.2 Implementation Details

The details of hyperparameter settings and software
used are in Appendix B and C respectively.

| Method | ROUGE-1 ROUGE2 ROUGE-L |
LEAD 33.9 232 30.7
LEAD-WORD 349 23.1 30.7

‘ Supervised Methods ‘
PG+Coverage (Abs.) 27.5 13.3 23.6
EXCONSUMM (Ext.)* 31.9 16.3 26.9
EXCONSUMM (Ext.+Com.)* 255 11.0 21.1
Unsupervised Methods ‘
SumLoop (Abs.) 27.0 9.6 26.4
TextRank (Ext.) 24.5 10.1 20.1
URLComSum (Ext.) 339 23.2 30.0
URLComSum (Ext.+Com.) 34.6 229 30.5

Table 1: Comparisons on the Newsroom test set. The
symbol * indicates that the model is not directly com-
parable to ours as it is based on a subset (the "Mixed")
of the dataset.

| Method | ROUGE-1 ROUGE2 ROUGE-L |
LEAD 40.0 17.5 329
LEAD-WORD 39.7 16.6 325

‘ Supervised Methods ‘
PG+Coverage (Abs.) 39.5 17.3 36.4
MLA+RL (Abs.) 39.9 15.8 36.9
REFRESH (Ext.) 40.0 18.2 36.6
LATENTCOM (Ext.) 41.1 18.8 375
LATENTCOM (Ext.+Com.) 36.7 154 34.3
JECS (Ext.) 40.7 18.0 36.8
JECS (Ext.+Com.) 41.7 18.5 379
EXCONSUMM (Ext.) 41.7 18.6 37.8
EXCONSUMM (Ext.+Com.) 40.9 18.0 37.4
CUPS (Ext.) 43.7 20.6 40.0
CUPS (Ext.+Com.) 44.0 20.6 404
Unsupervised Methods ‘
SumLoop (Abs.) 37.7 14.8 34.7
TextRank (Ext.) 34.1 12.8 22.5
PacSum (Ext.) 40.3 17.6 24.9
PMI (Ext.) 36.7 14.5 233
URLComSum (Ext.) 40.0 17.5 329
URLComSum (Ext.+Com.) 39.3 16.0 322

Table 2: Comparisons on the CNN/DM test set.

3https://huggingface.co/docs/datasets/

| Method | ROUGE-1 ROUGE-2 ROUGE-L |
LEAD 19.4 24 12.9
LEAD-WORD 18.3 1.9 12.8

‘ Supervised Methods ‘
PG+Coverage (Abs.) 28.1 8.0 21.7
MatchSum (Ext.) 249 4.7 18.4
CUPS (Ext.) 242 5.0 18.3
CUPS (Ext.+Com.) 26.0 5.4 19.9

‘ Unsupervised Methods
TextRank (Ext.) 19.0 3.1 12.6
PacSum (Ext.) 194 2.7 12.4
PMI (Ext.) 19.1 32 125
URLComSum (Ext.) 194 2.4 129
URLComSum (Ext.+Com.) 18.0 1.8 12.7

Table 3: Comparisons on the XSum test set.

We compare our model with existing compres-
sive methods which are all supervised, includ-
ing LATENTCOM (Zhang et al., 2018), EXCON-
SUMM (Mendes et al., 2019), JECS (Xu and Dur-
rett, 2019), CUPS (Desai et al., 2020). Since our
method is unsupervised, we compare with unsu-
pervised extractive and abstractive methods, in-
cluding TextRank (Mihalcea and Tarau, 2004), Pac-
Sum (Zheng and Lapata, 2019), PMI (Padmaku-
mar and He, 2021), and SumLoop (Laban et al.,
2020). We also report the state-of-the-art meth-
ods evaluated on the three datasets for reference,
including PG+Coverage (See et al., 2017), RE-
FRESH (Narayan et al., 2018b), ML+RL (Paulus
et al., 2018), MatchSum (Zhong et al., 2020). To
better evaluate compressive summarisation meth-
ods, we followed a similar concept as LEAD base-
line (See et al., 2017) and created LEAD-WORD
baseline which extracts the first several words of a
document as a summary.

4.3 Quantitative Analysis

The commonly used ROUGE metric (Lin, 2004)
is adopted for our quantitative analysis. It evalu-
ates the content consistency between a generated
summary and a reference summary. In detail, the
ROUGE-n score calculates the number of overlap-
ping n-grams between a generated summary and
a reference summary. The ROUGE-L score con-
siders the longest common subsequence between a
generated summary and a reference summary.
The experimental results of URLComSum on
different datasets are shown in Table 1, Table 2
and Table 3 in terms of ROUGE-1, ROUGE-2 and
ROUGE-L F-scores. (Ext.), (Abs.), and (Com.)

denote that the method is extractive, abstractive,
and compressive, respectively. Note that on the
three datasets, LEAD and LEAD-WORD baseline
are considered strong baselines in the literature
and sometimes perform better than the state-of-
the-art supervised and unsupervised models. As
(See et al., 2017; Padmakumar and He, 2021) also
discussed, it could be due to the Inverted Pyramid
writing structure (Pottker, 2003) of news articles,
in which important information is often located at
the beginning of an article and a paragraph.

As shown in Table 1, our URLComSum method
significantly outperforms all the unsupervised and
supervised ones on Newsroom. This clearly demon-
strates the effectiveness of our proposed method.
Note that, unlike supervised EXCONSUMM, our
reward strategy contributes to the performance im-
provement when the compressor agent is utilized.
For example, in terms of ROUGE-L, EXCON-
SUMM (Ext.+Com.) does not outperform EXCON-
SUMM (Ext.), while URLComSum(Ext.+Com.)
outperforms URLComSum(Ext.). Similarly, as
shown in Table 3, our URLComSum methods
achieve the best performance among all the unsu-
pervised methods on XSum, in terms of ROUGE-1
and ROUGE-L. URLComSum underperforms in
ROUGE-2, which may be due to the trade-off be-
tween informativeness and fluency. Note that the
improvement on Newsroom is greater than those
on CNN/DM and XSum, which could be the fact
that the larger size of Newsroom is more helpful
for training our model.

As shown in Table 2, our proposed URLCom-
Sum methods achieve comparable performance
with other unsupervised methods on CNN/DM.
Note that URLComSum does not explicitly take
position information into account while some ex-
tractive methods take advantage of the lead bias of
CNN/DM, such as PacSum and LEAD. Neverthe-
less, we observe that URLComSum(Ext.) achieves
the same result as the LEAD baseline. Even URL-
ComSum is unsupervised, eventually the extractor
agent learns to select the first few sentences of
the documents, which follows the principle of the
aforementioned Inverted Pyramid writing structure.

It is noticed that URLComSum(Ext.+Com.) gen-
erally achieves higher ROUGE-1 and ROUGE-L
scores than its extractive version on Newsroom.
Meanwhile, on CNN/DM and XSum, the com-
pressive version has slightly lower ROUGE scores
than the extractive version. We observe similar

behaviour in the literature of compressive summari-
sation. It may be because the datasets are from the
news domain. The sentences of news articles have
dense information, and compression does not help
much to further condense the documents.

We also investigated the transferablility of URL-
ComSum. As shown on Table 5 in Appendix D,
the models are able to obtain similar performance
even they are trained on one dataset and tested on
another. This demonstrates that the acquired knowl-
edge of the agents are transferable to other datasets,
which is not always true to other learning-based
summarisation methods.

We observed that the extraction and compressive
approaches usually obtain better results than the ab-
stractive in terms of ROUGE scores on CNN/DM
and Newsroom, and vice versa on XSum. It may
be because CNN/DM and Newsroom contain sum-
maries that are usually more extractive, whereas
XSum’s summaries are highly abstractive.

4.4 Qualitative Analysis

In Figure 4, 5, 6 in Appendix E, summaries pro-
duced by URLComSum are shown together with
the reference summaries of the sample documents
in the CNN/DM, XSum, and Newsroom datasets.
This demonstrates that our proposed URLComSum
method is able to identify salient sentences and
words and produce reasonably fluent summaries
even without supervision information.

5 Conclusion

In this paper, we have presented URLComSum,
the first unsupervised method for compressive text
summarisation. Our model consists of an extractor
agent and a compressor agent. The extractor agent
first chooses salient sentences from a document,
and then the compressor agent compresses these
extracted sentences by selecting salient words to
form a summary. As a result, our proposed URL-
ComSum can help reduce redundant information
existing in multiple sentences. To achieve unsu-
pervised training of the extractor and compressor
agents, we devise a reinforcement learning strategy
to simulate human judgement on summary quality
and optimize the summary’s semantic coverage and
fluency reward. Comprehensive experiments on
three widely used benchmark datasets demonstrate
the effectiveness of our proposed URLComSum
and the great potential of unsupervised compres-
sive summarisation.

References

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. Annual Meeting of the Association for
Computational Linguistics (ACL).

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Shrey Desai, Jiacheng Xu, and Greg Durrett. 2020.
Compressive summarization with plausibility and
salience modeling. In Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT).

Alex Graves and Jiirgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional Istm
and other neural network architectures. Neural net-
works.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT).

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In International Conference on
Neural Information Processing Systems (NeurIPS).

Ruipeng Jia, Yanan Cao, Haichao Shi, Fang Fang,
Pengfei Yin, and Shi Wang. 2021. Flexible non-
autoregressive extractive summarization with thresh-
old: How to extract a non-fixed number of summary
sentences. In AAAI Conference on Artificial Intelli-
gence.

Katharina Kann, Sascha Rothe, and Katja Filippova.
2018. Sentence-level fluency evaluation: Ref-
erences help, but can be spared! In Confer-
ence on Computational Natural Language Learning
(CoNLL).

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to docu-
ment distances. In International Conference on Ma-
chine Learning (ICML).

Philippe Laban, Andrew Hsi, John Canny, and Marti A.
Hearst. 2020. The summary loop: Learning to write
abstractive summaries without examples. In Annual

Meeting of the Association for Computational Lin-
guistics (ACL).

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, acceptability, and probabil-
ity: A probabilistic view of linguistic knowledge.
Cognitive Science.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu
Chen, and Jiawei Han. 2020. Understanding the dif-
ficulty of training transformers. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Conference on
Empirical Methods in Natural Language Processing
and the International Joint Conference on Natural
Language Processing (EMNLP-1IJCNLP).

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations (ICLR).

Ling Luo, Xiang Ao, Yan Song, Feiyang Pan, Min
Yang, and Qing He. 2019. Reading like HER: Hu-
man reading inspired extractive summarization. In
Conference on Empirical Methods in Natural Lan-
guage Processing and International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP).

Inderjeet Mani. 2001. Automatic summarization. John
Benjamins Publishing.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Afonso Mendes, Shashi Narayan, Sebastido Miranda,
Zita Marinho, André F. T. Martins, and Shay B. Co-
hen. 2019. Jointly extracting and compressing doc-
uments with summary state representations. In Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT).

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Conference on Em-

pirical Methods in Natural Language Processing
(EMNLP).

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of doc-
uments. In AAAI Conference on Artificial Intelli-
gence.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018a. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

Vishakh Padmakumar and He He. 2021. Unsupervised
extractive summarization using pointwise mutual in-
formation. In Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL).

Adam Pauls and Dan Klein. 2012. Large-scale syntac-
tic language modeling with treelets. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations (ICLR).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport: With applications to data
science. Foundations and Trends in Machine Learn-

ing.

Martin Popel and Ondfej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics (NeurlPS).

Horst Pottker. 2003. News and its communicative qual-
ity: the inverted pyramid—when and why did it ap-
pear? Journalism Studies.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In /IEEE
conference on computer vision and pattern recogni-
tion (CVPR).

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

10

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In International Conference on Neural In-
formation Processing Systems (NeurIPS).

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In International Con-
ference on Neural Information Processing Systems
(NeurIPS).

Jiacheng Xu and Greg Durrett. 2019. Neural extractive
text summarization with syntactic compression. In
Conference on Empirical Methods in Natural Lan-
guage Processing and the International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP).

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In International Conference on Machine Learning

(ICML).

Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming
Zhou. 2018. Neural latent extractive document sum-
marization. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI-
BERT: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. In Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Hao Zheng and Mirella Lapata. 2019. Sentence central-
ity revisited for unsupervised summarization. In An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

A Dataset Details

We followed (Mendes et al., 2019) to set Lg for
Newsroom and (Zhong et al., 2020) to set Lg for
CNN/DM and XSum. We also followed their pro-
tocols to set L by matching the average number
of words in summaries.

’ Dataset ‘ ‘ Newsroom CNN/DM XSum
#Sentences in Doc. 27 39 19
#Tokens in Doc. 659 766 367
Lg 2 3 2
Lc 26 58 24
Train 995,041 287,113 204,045
Test 108,862 11,490 11,334

Table 4: Overview of the three datasets. #Sentences in
Doc. and #Tokens in Doc. denote the average number
of sentences and words in the documents respectively.
Lg denotes the number of sentences to be selected by
the extractor agent. L denotes the number of words
to be selected by the compressor agent. Train and Test
denote the size of train and test sets.

B Hyperparameter Details

We set the LSTM hidden size to 150 and the num-
ber of recurrent layers to 3. We used two layers
of the Bi-LSTM and multi-head attention pairs.
We performed hyperparameter searching for weey
(ranging from 1 to 4) and wg, (ranging from 1 to
4) and decided to set weoy = 1, wy = 2 in all our
experiments since it provides more balanced results
across the datasets. We trained the URLComSum
with AdamW (Loshchilov and Hutter, 2018) with
learning rate 0.01 with a batch size of 3 for about
12 hours.

C Software and Hardware Used

We obtained the word embedding from the pre-
trained GloVe (6B tokens, 300-hidden-size) (Pen-
nington et al., 2014). For the pre-trained tokeniser
and token embedding models used for computing
semantic coverage reward, we used BERT (base
version) from HuggingFace *. For the trained lan-
guage model used for computing the fluency re-
ward, we chose the pre-trained GPT2 (base version)
from HuggingFace since it is a powerful language
model. It was fine-tuned on the target domain. To
compute the Wasserstein distances, we utilized the

*https://huggingface.co

11

POT library 5. Our experiments were run on a
GeForce GTX 1080 GPU card.

We obtained our ROUGE scores by using the
pyrouge package .

>https://pythonot.github.io
Shttps://pypi.org/project/pyrouge/

D Transferability Analysis

. Newsroom CNN/DM XSum
Trained on \Tested on
ROUGE-1 ROUGE-2 ROUGE-L | ROUGE-1 ROUGE-2 ROUGE-L | ROUGE-1 ROUGE-2 ROUGE-L
Ext. 33.88 23.24 29.97 40.03 17.47 32.92 19.44 2.39 12.94
Newsroom
Ext.+Com. 34.57 22.92 30.51 39.32 16.28 32.30 18.23 1.87 12.78
Ext. 33.88 23.24 29.97 40.03 17.47 32.92 19.44 2.39 12.94
CNN/DM
Ext.+Com. 34.03 21.97 30.01 39.27 15.97 32.18 18.08 1.80 12.69
%S Ext. 33.88 23.24 29.97 40.03 17.47 32.92 19.44 2.39 12.94
um
Ext.+Com. 33.01 21.03 29.08 38.63 15.22 31.60 17.97 1.80 12.69

Table 5: Transferability analysis of URLComSum.

12

E Sample Summaries

The following shows the sample summaries generated by URLComSum on the CNN/DM, XSum,
and Newsroom datasets. Sentences extracted by the URLComSum extractor agent are highlighted.
Words selected by the URLComSum compressor agent are underlined in red. Our unsupervised method
URLComSum can identify salient sentences and words to produce a summary with reasonable semantic
coverage and fluency.

Source Document:

Russia is considering bailing out Greece in exchange for the country’s ‘assets’. it was reported last night. Alexis Tsipras,
Greece’s prime minister, will meet Vladimir Putin in Moscow today. amid reports that the Kremlin will offer controversial

loans and discounts on supplies of natural gas in a bid to lessen its dependence on the West . The visit will raise fears the
radical left government is looking east in search of alternative sources of finance as it bids to avoid bankruptcy. Scroll
down for video . Alexis Tsipras, Greece’s (...)

Reference Summary:

Alexis Tsipras, Greece’s prime minister, will meet Vladimir Putin in Moscow . The meeting comes amid reports Russia
is considering bailing out Greece . Reports Kremlin may offer loans and discounts on supplies of natural gas .

URLComSum:

Russia is considering bailing out Greece in exchange for the country * s “ assets * , it was reported last night . Alexis
Tsipras , Greece ’ s prime minister , will meet Vladimir Putin in Moscow today , amid reports that the Kremlin will offer
controversial loans and discounts on supplies of natural gas in a bid its raise alternative as bids to avoid bankruptcy .

Figure 4: A sample summary produced by URLComSum on the CNN/DM dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 68.8, 52.7, and 62.4 respectively, with
semantic coverage reward 0.76 and fluency reward 0.64, while the reference summary has semantic coverage
reward 0.80 and fluency reward 0.62.

Source Document:

Paul Robson is the second trader at the Dutch bank to plead guilty to trying to rig the Yen Libor rate and the first Briton
to do so. Last year Rabobank paid $1bn (A£597m) to US and European regulators for its part in the global rate-rigging
scandal. Barclays Bank, Royal Bank of Scotland and Lloyds Bank have all previously been fined for rate rigging. (...)

Reference Summary:
A former senior trader at Rabobank has pleaded guilty to interest rate rigging in the US.
URLComSum:

Paul Robson is the second trader at the Dutch bank to plead guilty to trying to rig the Yen Libor rate and global
rate-rigging scandal .

Figure 5: A sample summary produced by URLComSum on the XSum dataset. The summary generated by
URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 38.1, 20.0, and 33.3 respectively, with
semantic coverage reward 0.77 and fluency reward 0.56, while the reference summary has semantic coverage
reward 0.73 and fluency reward 0.59.

Source Document:

A man armed with a rifle has killed four people in a rampage in Girona province, north-east Spain. police say. The
gunman walked into a bar in the town of Olot, 120km (70 miles) north of Barcelona, and shot two men - reportedly a
father and son who were both construction workers. Minutes later, he went to a bank and killed two staff, police said. (...)

Reference Summary:
A man armed with a rifle kills four people in a shooting rampage in north-east Spain, police say.
URLComSum:

A man armed with a rifle has killed four people in a rampage in Girona province , north-east Spain , police say . The
gunman walked into a bar in

Figure 6: A sample summary produced by URLComSum on the Newsroom dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 76.6, 62.2, and 76.6 respectively, with
semantic coverage reward 0.79 and fluency reward 0.61, while the reference summary has semantic coverage
reward 0.76 and fluency reward 0.65.

13

