
Unsupervised Compressive Text Summarisation with Reinforcement
Learning

Anonymous ACL submission

Abstract

Recently, compressive text summarisation of-001
fers a balance between the conciseness issue of002
extractive summarisation and the factual hal-003
lucination issue of abstractive summarisation.004
However, most existing compressive summari-005
sation methods are supervised, relying on the006
expensive effort of creating a new training007
dataset with corresponding compressive sum-008
maries. In this paper, we propose an unsuper-009
vised compressive summarisation method that010
utilises reinforcement learning to optimise a011
summary’s semantic coverage and fluency by012
simulating human judgment on summarisation013
quality. Our model consists of an extractor014
agent and a compressor agent, and both agents015
have a multi-head attentional pointer-based016
structure. The extractor agent first chooses017
salient sentences from a document, and then018
the compressor agent compresses these ex-019
tracted sentences by selecting salient words to020
form a summary without using reference sum-021
maries to compute the summary reward. That022
is, a parallel dataset with document-summary023
pairs is not required to train the proposed024
model. To the best of our knowledge, our pro-025
posed method is the first work on unsupervised026
compressive summarisation. Experimental re-027
sults on three widely used datasets, Newsroom,028
CNN/DM, and XSum, show that our model029
achieves promising performance and signifi-030
cant improvement on Newsroom in terms of031
the ROUGE metric. 1032

1 Introduction033

Text summarisation aims to condense a given doc-034

ument into a short and succinct summary that best035

covers the document’s semantics with the least re-036

dundancy. It helps users quickly browse and un-037

derstand long documents by focusing on their most038

important content (Mani, 2001).039

The majority of existing summarisation meth-040

ods are either extractive or abstractive. Extractive041

1Our source code will be publicly available at GitHub.

Figure 1: Illustration of our proposed URLComSum.
It summarises a given text document D first into an ex-
tractive summary SE then into a compressive summary
SC. The agents are trained with reinforcement learning
to mimic human judgment for achieving high summary
quality in terms of semantic coverage and fluency.

methods (Narayan et al., 2018b; Zhang et al., 2019; 042

Liu and Lapata, 2019; Zhong et al., 2020) select 043

salient sentences from a document to form its sum- 044

mary. It ensures the production of grammatically 045

and factually correct summaries, though the output 046

summaries could be inflexible. Abstractive meth- 047

ods (See et al., 2017; Paulus et al., 2018; Zhang 048

et al., 2020; Laban et al., 2020) involve natural lan- 049

guage generation to generate a summary for a given 050

document. However, it is highly prone to produce 051

contents that are unfaithful and non-factual to the 052

original document (Maynez et al., 2020). 053

A recent approach to text summarisation is com- 054

pressive summarisation which selects words, in- 055

stead of sentences, from an input document to as- 056

semble a summary. Compressive summarisation 057

offers a sidestep to improve the factuality and con- 058

ciseness of a summary. Existing compressive meth- 059

ods (Mendes et al., 2019; Xu and Durrett, 2019; 060

Desai et al., 2020) often first select the salient 061

sentences of a given document and then further 062

compress these selected sentences by a sentence 063

compressor to form a summary. However, most 064

of these methods are supervised, which require a 065

parallel dataset with document-summary pairs to 066

train. Since the ground-truth summaries of exist- 067

ing datasets are usually obtained abstractively and 068

do not contain supervision information of extrac- 069

1

tion or compression, existing compressive methods070

require creating new datasets of which the ground-071

truth summaries are compressive.072

Therefore, we propose an unsupervised com-073

pressive summarisation method with reinforcement074

learning, namely URLComSum. As illustrated in075

Figure 1, URLComSum consists of two modules,076

an extractor agent and a compressor agent. We077

model the sentence and word representations us-078

ing a Bi-LSTM (Graves and Schmidhuber, 2005)079

with multi-head attention (Vaswani et al., 2017)080

to capture both the long-range dependencies and081

the relationship between each word and the others,082

and each sentence and other sentences. We use a083

Pointer Network (Vinyals et al., 2015) to solve our084

task of finding the optimal subset of sentences and085

words to be extracted since the Pointer Network086

is well-known for tackling combinatorial optimiza-087

tion problems. The extractor agent uses a hierar-088

chical multi-head attentional Bi-LSTM model for089

learning the sentence representation of the input090

document and a Pointer Network for extracting the091

salient sentences of a document given a length bud-092

get. To further compress these extracted sentences093

all together, the compressor agent uses a multi-head094

attentional Bi-LSTM model for learning the word095

representation and a Pointer Network for selecting096

the words to assemble a summary.097

Note that we also investigated the popular trans-098

former model (Vaswani et al., 2017) in our pro-099

posed framework to replace Bi-LSTM for learning100

the sentence and word representations. However,101

it was noticed the transformer-based agents do not102

perform as well as the Bi-LSTM-based ones while103

training from scratch with the same training pro-104

cedure. The difficulties of training a transformer105

model have also been discussed in (Popel and Bo-106

jar, 2018; Liu et al., 2020). Besides, the commonly107

used pre-trained transformer models, such as BERT108

(Devlin et al., 2019) and BART (Lewis et al., 2020),109

require high computational resources and usually110

use subword-based tokenizers. They are not suit-111

able for URLComSum since our compressor agent112

points to words instead of subwords. Therefore, at113

this stage Bi-LSTM is a simpler and better choice.114

As an unsupervised method, URLComSum115

does not require a parallel training dataset with116

document-summary pairs. We propose an unsu-117

pervised reinforcement learning training procedure118

to mimic human judgment: to reward the model119

that achieves high summary quality in terms of se-120

mantic coverage and language fluency. Inspired by 121

Word Mover’s Distance (Kusner et al., 2015), the 122

semantic coverage reward of a summary is mea- 123

sured by Wasserstein distance (Peyré et al., 2019) 124

between the semantic distribution of the original 125

document and that of the summary. The fluency 126

reward of a summary is measured by Syntactic 127

Log-Odds Ratio (SLOR) (Pauls and Klein, 2012), 128

which is a referenceless fluency evaluation metric. 129

According to prior works, SLOR is effective in 130

sentence compression (Kann et al., 2018), and has 131

better correlation to human acceptability judgments 132

(Lau et al., 2017). 133

Note that our RL reward shares similarity with 134

(Laban et al., 2020) in terms of optimising sum- 135

mary quality by both coverage and fluency. How- 136

ever, our definitions and calculations of coverage 137

and fluency are different. Specifically, (Laban et al., 138

2020) defined coverage as a TF-IDF based keyword 139

coverage and trained a separate model to compute 140

the coverage reward. In addition, for the fluency 141

reward, (Laban et al., 2020) utilised the score from 142

a pretrained language model directly. The key con- 143

tributions of this paper are: 144

• We propose an unsupervised method for com- 145

pressive text summarisation with reinforce- 146

ment learning, namely URLComSum. To the 147

best of our knowledge, URLComSum is the 148

first work on unsupervised compressive sum- 149

marisation. 150

• URLComSum consists of an extractor agent 151

and a compressor agent to extract and com- 152

press a document to a summary given a length 153

budget. We design a multi-head attentional 154

pointer-based neural network for learning the 155

representation and for extracting salient sen- 156

tences and words. 157

• We propose to mimic human judgment by op- 158

timising summary quality in terms of the se- 159

mantic coverage reward, measured by Wasser- 160

stein distance, and the fluency reward, mea- 161

sured by Syntactic Log-Odds Ratio (SLOR). 162

• Comprehensive experimental results on three 163

widely used datasets, including CNN/DM, 164

XSum, Newsroom, demonstrate that URL- 165

ComSum achieves great performance in terms 166

of the ROUGE metric. 167

2

2 Related Work168

Most of the existing works on neural text summari-169

sation are extractive, abstractive, and compressive-170

based. In this section, we review existing text sum-171

marisation methods in these three categories.172

2.1 Extractive Methods173

Extractive methods usually follow the sentence174

ranking conceptualisation, and an encoder-decoder175

scheme is generally adopted. An encoder formu-176

lates document or sentence representations, and177

a decoder predicts extraction classification labels.178

The supervised models commonly rely on creat-179

ing proxy extractive training labels for training180

(Cheng and Lapata, 2016; Nallapati et al., 2017;181

Jia et al., 2021), which can be noisy and may not182

be reliant. Some methods were proposed to tackle183

this issue by training with reinforcement learning184

(Narayan et al., 2018b; Luo et al., 2019) to optimise185

the ROUGE metric directly. Various unsupervised186

methods (Zheng and Lapata, 2019; Padmakumar187

and He, 2021) were also proposed to leverage pre-188

trained language models to compute sentences sim-189

ilarities and select important sentences. Although190

these methods have significantly improved sum-191

marisation performance, since the entire sentences192

are extracted individually, the redundant informa-193

tion that appears in the salient sentences may not194

be minimized effectively.195

2.2 Abstractive Methods196

Abstractive methods formulate text summarisation197

as a sequence-to-sequence generation task, with the198

source document as the input sequence and the sum-199

mary as the output sequence. Most existing meth-200

ods follow the supervised RNN-based encoder-201

decoder framework (See et al., 2017; Zhang et al.,202

2020). As supervised learning with ground-truth203

summaries may not provide useful insights on hu-204

man judgment approximation, reinforcement train-205

ing was proposed to optimise the ROUGE metric206

(Paulus et al., 2018), and to fine-tune a pre-trained207

language model (Laban et al., 2020). These mod-208

els naturally learn to integrate knowledge from the209

training data while generating an abstractive sum-210

mary. Prior studies showed that these generative211

models are highly prone to external hallucination,212

thus may generate contents that are unfaithful to213

the original document (Maynez et al., 2020).214

2.3 Compressive Methods 215

Compressive methods select words from a given 216

document to assemble a summary. Due to the 217

lack of training dataset, not until recently there 218

have emerged works for compressive summarisa- 219

tion (Zhang et al., 2018; Mendes et al., 2019; Xu 220

and Durrett, 2019; Desai et al., 2020). The for- 221

mulation of compressive document summarisation 222

is usually a two-stage extract-then-compress ap- 223

proach: it first extracts salient sentences from a 224

document, then compresses the extracted sentences 225

to form its summary. Most of these methods are 226

supervised, which require a parallel dataset with 227

document-summary pairs to train. However, the 228

ground-truth summaries of existing datasets are 229

usually abstractive-based and do not contain su- 230

pervision information needed for extractive sum- 231

marisation or compressive summarisation (Xu and 232

Durrett, 2019; Mendes et al., 2019; Desai et al., 233

2020). Several reinforcement learning based meth- 234

ods (Zhang et al., 2018) use existing abstractive- 235

based datasets for training, which is not aligned 236

for compression. Note that existing compressors 237

often perform compression sentence by sentence. 238

As a result, the duplicated information among mul- 239

tiple sentences could be overlooked. Therefore, to 240

address these limitations, we propose a novel un- 241

supervised compressive method by exploring the 242

reinforcement learning strategy to mimic human 243

judgment and perform text compression instead of 244

sentence compression. 245

3 Methodology 246

As shown in Figure 1, our proposed compres- 247

sive summarisation method, namely URLComSum, 248

consists of two components, an extractor agent 249

and a compressor agent. Specifically, the extractor 250

agent selects salient sentences from a document 251

D to form an extractive summary SE, and then 252

the compressor agent compresses SE by selecting 253

words to assemble a compressive summary SC. 254

3.1 Extractor Agent 255

Given a document D consisting of a sequence of 256

M sentences {si|i = 1, ...,M}, and each sentence 257

si consisting of a sequence of N words {weij |j = 258

1, ..., N} 2, the extractor agent aims to produce 259

an extractive summary SE by learning sentence 260

representation and selecting LE sentences from D. 261

2We have pre-fixed the length of each sentence and each
document by padding.

3

Figure 2: Illustration of the extractor agent.

As illustrated in Figure 2, we design a hierarchical262

multi-head attentional Bi-LSTM model for learning263

the sentence representations of the document and264

using a Pointer Network to extract sentences based265

on their representations.266

3.1.1 Hierarchical Sentence Representation267

To model the local context of each sentence and268

the global context between sentences, we use two-269

levels Bi-LSTMs to model this hierarchical struc-270

ture, one at the word level to encode the word se-271

quence of each sentence, one at the sentence level272

to encode the sentence sequence of the document.273

To model the context-dependency of the impor-274

tance of words and sentences, we apply two levels275

of multi-head attention mechanism (Vaswani et al.,276

2017), one at each of the two-level Bi-LSTMs.277

Given a sentence si, we encode its words into278

word embeddings xei = {xeij |j = 1, ..., N} by279

xeij = Enc(weij), where Enc() denotes a word280

embedding lookup table. Then the sequence of281

word embeddings are fed into the word-level Bi-282

LSTM to produce an output representation of the283

words lew:284

lewij =
←−−→
LSTM(xeij), j ∈ [1, N] . (1)285

To utilize the multi-head attention mechanism to286

obtain aewi = {aewi1, ...,aewiN} at word level, we287

define Qi = lewi , Ki = Vi = xei,288

aewi = MultiHead(Qi,Ki, Vi) . (2)289

The concatenation of lewi and aewi of the words290

are fed into a Bi-LSTM and the output of the Bi-291

LSTM is concatenated to obtain the local context292

representation hews
i for each sentence si: 293

hewij =
←−−→
LSTM(

[
lewij ;ae

w
ij

]
), j ∈ [1, N] ,

hews
i = [hewi1, ...,he

w
iN] .

(3) 294

To further model the global context between sen- 295

tences, we apply a similar structure at sentence 296

level. hews = {hews
i |i = 1, ...,M} are fed into 297

the sentence-level Bi-LSTM to produce output rep- 298

resentation of the sentences les: 299

lesi =
←−−→
LSTM(hews

i), i ∈ [1,M] . (4) 300

To utilize the multi-head attention mechanism to 301

obtain aes = {aes1, ...,aesM} at sentence level, we 302

define Q = les, K = V = hews, 303

aes = MultiHead(Q,K, V) . (5) 304

The concatenation of the Bi-LSTM output 305

les and the multi-head attention output aes of 306

the sentences are fed into a Bi-LSTM to ob- 307

tain the sentences’ final representation hes = 308

{hes1, ...,hesM}: 309

hesi =
←−−→
LSTM([lesi ;ae

s
i]), i ∈ [1,M] . (6) 310

3.1.2 Sentence-Level Extraction 311

Similar to (Chen and Bansal, 2018), we use an 312

LSTM-based Pointer Network to decode the above 313

sentence representations hes = {hes1, ...,hesM} 314

and extract sentences recurrently to form an extrac- 315

tive summary SE = {A1, ..., Ak, ..., ALE
} with 316

LE sentences, where Ak denotes the sentence ex- 317

tracted at the k-th time step. 318

4

At the k-th time step, the pointer network re-319

ceives the sentence representation of the previous320

extracted sentence and has hidden state dek. It first321

obtains a context vector de′k by attending to hes:322

ueki = vT tanh(W1he
s
i +W2dek), i ∈ (1, ...,M) ,

aeki = softmax(ueki), i ∈ (1, ...,M) ,

de′k =
M∑
i=1

aeki he
s
i ,

(7)323

where v,W1,W2 are learnable parameters of the324

pointer network. Then it predicts the extraction325

probability p(Ak) of a sentence:326

dek ←
[
dek, de

′
k

]
,

ueki = vT tanh(W1he
s
i +W2dek), i ∈ (1, ...,M) ,

p(Ak|A1, ..., Ak−1) = softmax(uek) .
(8)327

This decoding process iterates until LE sen-328

tences are selected. The selected sentences are329

assembled to form SE .330

Figure 3: Illustration of the compressor agent.

3.2 Compressor Agent331

Given an extractive summary SE consisting of a332

sequence of words wc = {wci|i = 1, ..., N}, the333

compressor agent aims to produce a compressive334

summary SC by selecting LC words from SE. As335

illustrated in Figure 3, it has a multi-head atten-336

tional Bi-LSTM model to learn the word represen-337

tations. It uses a pointer network to extract words338

based on their representations.339

3.2.1 Word Representation340

Given a sequence of words wc, we encode the341

words into word embeddings xc = {xci|i =342

1, ..., N} by xci = Enc(wci). Then the sequence343

of word embeddings are fed into a Bi-LSTM to344

produce the words’ output representation lcw:345

lcwi =
←−−→
LSTM(xci), i ∈ [1, N] . (9)346

To utilize the multi-head attention mechanism to 347

obtain acw = {acw1 , ...,acwN}, we define Q = lcw, 348

K = V = xc, 349

acw = MultiHead(Q,K, V) . (10) 350

The concatenation of lcw and acw of the words 351

are fed into a Bi-LSTM to obtain the representation 352

hcwi for each word wci: 353

hcwi =
←−−→
LSTM([lcwi ;ac

w
i]), i ∈ [1, N] . (11) 354

3.2.2 Word-Level Extraction 355

The word extractor of the compressor agent 356

shares the same structure as that of the extrac- 357

tor agent’s sentence extractor. To select the 358

words based on the above word representations 359

hcw = {hcw1 , ...,hcwN}, the word extractor de- 360

codes and extracts words recurrently to produce 361

{B1, ..., Bk, ..., BLC
}, where Bk denotes the word 362

extracted at the k-th time step. 363

3.3 Reward in Reinforcement Learning 364

Our unsupervised reinforcement learning based 365

training strategy is designed to mimic human 366

judgment by maximising summary quality reward 367

Reward(D,S) in terms of the semantic coverage 368

reward Rewardcov(D,S) and the fluency reward 369

Rewardflu(S). We use the compressive summary 370

SC to compute the reward. For simplicity, we de- 371

note Reward(D,SC) as Reward(D,S). Given an 372

original document D, Reward(D,S) is a weighted 373

sum of Rewardcov(D,S) and Rewardflu(S): 374

Reward(D,S) = wcovRewardcov(D,S)

+wfluRewardflu(S) ,
(12) 375

where wcov and wflu denote the weights of semantic 376

coverage reward and fluency reward, respectively. 377

3.3.1 Semantic Coverage Reward 378

Intuitively, a good summary is supposed to be close 379

to the original document regarding their semantic 380

distributions. We measure Rewardcov by comput- 381

ing the Wasserstein distance between the corre- 382

sponding semantic distributions of the document 383

D and the summary S, which is the minimum cost 384

required to transport the semantics from D to S. 385

We denote D = {di|i = 1, ..., N} to repre- 386

sent a document, where di indicates the count 387

of the i-th token (i.e., word or phrase in a vo- 388

cabulary of size N). Similarly, for a summary 389

5

S = {sj |j = 1, ..., N}, sj is respect to the count390

of the j-th token . The semantic distribution of a391

document is characterized in terms of normalised392

term frequency. The term frequency of the i-th393

token in the document D and the j-th token in the394

summary S are denoted as TFD(i) and TFS(j), re-395

spectively. The frequency of each token within a396

document or a summary is formulated by count-397

ing the normalised token’s occurrence over the text.398

Formally, TFD(i) and TFS(j) can be computed as:399

400

TFD(i) =
di∑N
j=1 dj

,TFS(j) =
sj∑N
j=1 sj

.

(13)401

By defining TFD = {TFD(i)} ∈ RN and402

TFS = {TFS(j)} ∈ RN , we have the semantic dis-403

tributions within the document D and the summary404

S respectively. Note that after the normalization405

TFD and TFS have an equal total token quantities406

of 1 and can be completely transported from one to407

the other.408

The transportation cost matrix C is obtained by409

measuring the semantic similarity between each410

of the tokens. Given a pre-trained tokeniser and411

token embedding model with N tokens, define vi412

to represent the feature embedding of the i-th token.413

Then the transport cost cij from the i-th to the j-th414

token is computed based on the cosine similarity:415

cij = 1− < vi,vj >

‖vi‖2 ‖vj‖2
. (14)416

An optimal transport plan T∗ = {t∗i,j} ∈417

RN×N in pursuit of minimizing the transportation418

cost can be obtained by solving the following opti-419

mization problem:420

T∗ = argmin
T

N∑
i,j=1

tijcij , s.t.
N∑
j=1

tij = di,

N∑
i=1

tij = sj , tij ≥ 0, ∀i, j ∈ {1, ..., N} .

(15)421

The Wasserstein distance measuring the distance422

between the two semantic distributions TFD and423

TFS with the optimal transport plan is computed424

by:425

dW (TFD,TFS|C) =
∑
i,j

t∗ijcij . (16)426

Rewardcov(D,S) of the summary S in respect427

to the document D can be further defined as: 428

Rewardcov(D,S) = 1− dW (TFD,TFS|C) .
(17) 429

3.3.2 Fluency Reward 430

We utilize Syntactic Log-Odds Ratio (SLOR) 431

(Pauls and Klein, 2012) to measure Rewardflu. 432

SLOR relies on a trained language model and is 433

adjusted for rare words such as named entities. 434

Given a trained language model LM , Rewardflu 435

of a summary S is defined as: 436

Rewardflu(S) =
1

|S|
(log(PLM (S))−log(PU (S))) ,

(18) 437

where PLM (S) denotes the probability of the sum- 438

mary assigned by the LM, pU (S) =
∏

t∈S P (t) 439

denotes the unigram probability for rare word ad- 440

justment, and |S| denotes the sentence length. 441

URLComSum uses the Self-Critical Sequence 442

Training (SCST) method (Rennie et al., 2017), 443

since this training algorithm has demonstrated 444

promising results in text summarisation (Paulus 445

et al., 2018; Laban et al., 2020). For a given input 446

document, the model produces two separate output 447

summaries: the sampled summary Ss, obtained by 448

sampling the next pointer ti from the probability 449

distribution at each time step i, and the baseline 450

summary Ŝ, obtained by always picking the most 451

likely next pointer t at each i. The training objec- 452

tive is to minimise the following loss: 453

Loss = −(Reward(D,Ss)− Reward(D, Ŝ))

· 1
N

N∑
i=1

log p(tsi |ts1, ..., tsi−1,D) ,

(19) 454

where N denotes the length of the pointer sequence, 455

which is the number of extracted sentences for the 456

extractor agent and the number of extracted words 457

for the compressor agent. 458

Minimising the loss is equivalent to maximis- 459

ing the conditional likelihood of Ss if the sampled 460

summary Ss outperforms the baseline summary 461

Ŝ, i.e. Reward(D,Ss)− Reward(D, Ŝ) > 0, thus 462

increasing the expected reward of the model. 463

4 Experimental Results and Discussions 464

4.1 Datasets 465

To validate the effectiveness of our proposed URL- 466

ComSum, we conducted comprehensive experi- 467

ments on three widely used datasets: Newsroom 468

6

(Grusky et al., 2018), CNN/DailyMail (CNN/DM)469

(Hermann et al., 2015), and XSum (Narayan et al.,470

2018a). These datasets obtained from Hugging-471

Face Datasets 3 are the standard English single-472

document datasets with manually-written sum-473

maries, as summarised in Table 4 in Appendix A.474

4.2 Implementation Details475

The details of hyperparameter settings and software476

used are in Appendix B and C respectively.477

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 33.9 23.2 30.7

LEAD-WORD 34.9 23.1 30.7

Supervised Methods

PG+Coverage (Abs.) 27.5 13.3 23.6

EXCONSUMM (Ext.)* 31.9 16.3 26.9

EXCONSUMM (Ext.+Com.)* 25.5 11.0 21.1

Unsupervised Methods

SumLoop (Abs.) 27.0 9.6 26.4

TextRank (Ext.) 24.5 10.1 20.1

URLComSum (Ext.) 33.9 23.2 30.0

URLComSum (Ext.+Com.) 34.6 22.9 30.5

Table 1: Comparisons on the Newsroom test set. The
symbol * indicates that the model is not directly com-
parable to ours as it is based on a subset (the "Mixed")
of the dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 40.0 17.5 32.9

LEAD-WORD 39.7 16.6 32.5

Supervised Methods

PG+Coverage (Abs.) 39.5 17.3 36.4

ML+RL (Abs.) 39.9 15.8 36.9

REFRESH (Ext.) 40.0 18.2 36.6

LATENTCOM (Ext.) 41.1 18.8 37.5

LATENTCOM (Ext.+Com.) 36.7 15.4 34.3

JECS (Ext.) 40.7 18.0 36.8

JECS (Ext.+Com.) 41.7 18.5 37.9

EXCONSUMM (Ext.) 41.7 18.6 37.8

EXCONSUMM (Ext.+Com.) 40.9 18.0 37.4

CUPS (Ext.) 43.7 20.6 40.0

CUPS (Ext.+Com.) 44.0 20.6 40.4

Unsupervised Methods

SumLoop (Abs.) 37.7 14.8 34.7

TextRank (Ext.) 34.1 12.8 22.5

PacSum (Ext.) 40.3 17.6 24.9

PMI (Ext.) 36.7 14.5 23.3

URLComSum (Ext.) 40.0 17.5 32.9

URLComSum (Ext.+Com.) 39.3 16.0 32.2

Table 2: Comparisons on the CNN/DM test set.

3https://huggingface.co/docs/datasets/

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 19.4 2.4 12.9

LEAD-WORD 18.3 1.9 12.8

Supervised Methods

PG+Coverage (Abs.) 28.1 8.0 21.7

MatchSum (Ext.) 24.9 4.7 18.4

CUPS (Ext.) 24.2 5.0 18.3

CUPS (Ext.+Com.) 26.0 5.4 19.9

Unsupervised Methods

TextRank (Ext.) 19.0 3.1 12.6

PacSum (Ext.) 19.4 2.7 12.4

PMI (Ext.) 19.1 3.2 12.5

URLComSum (Ext.) 19.4 2.4 12.9

URLComSum (Ext.+Com.) 18.0 1.8 12.7

Table 3: Comparisons on the XSum test set.

We compare our model with existing compres- 478

sive methods which are all supervised, includ- 479

ing LATENTCOM (Zhang et al., 2018), EXCON- 480

SUMM (Mendes et al., 2019), JECS (Xu and Dur- 481

rett, 2019), CUPS (Desai et al., 2020). Since our 482

method is unsupervised, we compare with unsu- 483

pervised extractive and abstractive methods, in- 484

cluding TextRank (Mihalcea and Tarau, 2004), Pac- 485

Sum (Zheng and Lapata, 2019), PMI (Padmaku- 486

mar and He, 2021), and SumLoop (Laban et al., 487

2020). We also report the state-of-the-art meth- 488

ods evaluated on the three datasets for reference, 489

including PG+Coverage (See et al., 2017), RE- 490

FRESH (Narayan et al., 2018b), ML+RL (Paulus 491

et al., 2018), MatchSum (Zhong et al., 2020). To 492

better evaluate compressive summarisation meth- 493

ods, we followed a similar concept as LEAD base- 494

line (See et al., 2017) and created LEAD-WORD 495

baseline which extracts the first several words of a 496

document as a summary. 497

4.3 Quantitative Analysis 498

The commonly used ROUGE metric (Lin, 2004) 499

is adopted for our quantitative analysis. It evalu- 500

ates the content consistency between a generated 501

summary and a reference summary. In detail, the 502

ROUGE-n score calculates the number of overlap- 503

ping n-grams between a generated summary and 504

a reference summary. The ROUGE-L score con- 505

siders the longest common subsequence between a 506

generated summary and a reference summary. 507

The experimental results of URLComSum on 508

different datasets are shown in Table 1, Table 2 509

and Table 3 in terms of ROUGE-1, ROUGE-2 and 510

ROUGE-L F-scores. (Ext.), (Abs.), and (Com.) 511

7

denote that the method is extractive, abstractive,512

and compressive, respectively. Note that on the513

three datasets, LEAD and LEAD-WORD baseline514

are considered strong baselines in the literature515

and sometimes perform better than the state-of-516

the-art supervised and unsupervised models. As517

(See et al., 2017; Padmakumar and He, 2021) also518

discussed, it could be due to the Inverted Pyramid519

writing structure (Pöttker, 2003) of news articles,520

in which important information is often located at521

the beginning of an article and a paragraph.522

As shown in Table 1, our URLComSum method523

significantly outperforms all the unsupervised and524

supervised ones on Newsroom. This clearly demon-525

strates the effectiveness of our proposed method.526

Note that, unlike supervised EXCONSUMM, our527

reward strategy contributes to the performance im-528

provement when the compressor agent is utilized.529

For example, in terms of ROUGE-L, EXCON-530

SUMM (Ext.+Com.) does not outperform EXCON-531

SUMM (Ext.), while URLComSum(Ext.+Com.)532

outperforms URLComSum(Ext.). Similarly, as533

shown in Table 3, our URLComSum methods534

achieve the best performance among all the unsu-535

pervised methods on XSum, in terms of ROUGE-1536

and ROUGE-L. URLComSum underperforms in537

ROUGE-2, which may be due to the trade-off be-538

tween informativeness and fluency. Note that the539

improvement on Newsroom is greater than those540

on CNN/DM and XSum, which could be the fact541

that the larger size of Newsroom is more helpful542

for training our model.543

As shown in Table 2, our proposed URLCom-544

Sum methods achieve comparable performance545

with other unsupervised methods on CNN/DM.546

Note that URLComSum does not explicitly take547

position information into account while some ex-548

tractive methods take advantage of the lead bias of549

CNN/DM, such as PacSum and LEAD. Neverthe-550

less, we observe that URLComSum(Ext.) achieves551

the same result as the LEAD baseline. Even URL-552

ComSum is unsupervised, eventually the extractor553

agent learns to select the first few sentences of554

the documents, which follows the principle of the555

aforementioned Inverted Pyramid writing structure.556

It is noticed that URLComSum(Ext.+Com.) gen-557

erally achieves higher ROUGE-1 and ROUGE-L558

scores than its extractive version on Newsroom.559

Meanwhile, on CNN/DM and XSum, the com-560

pressive version has slightly lower ROUGE scores561

than the extractive version. We observe similar562

behaviour in the literature of compressive summari- 563

sation. It may be because the datasets are from the 564

news domain. The sentences of news articles have 565

dense information, and compression does not help 566

much to further condense the documents. 567

We also investigated the transferablility of URL- 568

ComSum. As shown on Table 5 in Appendix D, 569

the models are able to obtain similar performance 570

even they are trained on one dataset and tested on 571

another. This demonstrates that the acquired knowl- 572

edge of the agents are transferable to other datasets, 573

which is not always true to other learning-based 574

summarisation methods. 575

We observed that the extraction and compressive 576

approaches usually obtain better results than the ab- 577

stractive in terms of ROUGE scores on CNN/DM 578

and Newsroom, and vice versa on XSum. It may 579

be because CNN/DM and Newsroom contain sum- 580

maries that are usually more extractive, whereas 581

XSum’s summaries are highly abstractive. 582

4.4 Qualitative Analysis 583

In Figure 4, 5, 6 in Appendix E, summaries pro- 584

duced by URLComSum are shown together with 585

the reference summaries of the sample documents 586

in the CNN/DM, XSum, and Newsroom datasets. 587

This demonstrates that our proposed URLComSum 588

method is able to identify salient sentences and 589

words and produce reasonably fluent summaries 590

even without supervision information. 591

5 Conclusion 592

In this paper, we have presented URLComSum, 593

the first unsupervised method for compressive text 594

summarisation. Our model consists of an extractor 595

agent and a compressor agent. The extractor agent 596

first chooses salient sentences from a document, 597

and then the compressor agent compresses these 598

extracted sentences by selecting salient words to 599

form a summary. As a result, our proposed URL- 600

ComSum can help reduce redundant information 601

existing in multiple sentences. To achieve unsu- 602

pervised training of the extractor and compressor 603

agents, we devise a reinforcement learning strategy 604

to simulate human judgement on summary quality 605

and optimize the summary’s semantic coverage and 606

fluency reward. Comprehensive experiments on 607

three widely used benchmark datasets demonstrate 608

the effectiveness of our proposed URLComSum 609

and the great potential of unsupervised compres- 610

sive summarisation. 611

8

References612

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-613
tive summarization with reinforce-selected sentence614
rewriting. Annual Meeting of the Association for615
Computational Linguistics (ACL).616

Jianpeng Cheng and Mirella Lapata. 2016. Neural617
summarization by extracting sentences and words.618
In Annual Meeting of the Association for Computa-619
tional Linguistics (ACL).620

Shrey Desai, Jiacheng Xu, and Greg Durrett. 2020.621
Compressive summarization with plausibility and622
salience modeling. In Conference on Empirical623
Methods in Natural Language Processing (EMNLP).624

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and625
Kristina Toutanova. 2019. Bert: Pre-training of deep626
bidirectional transformers for language understand-627
ing. In Conference of the North American Chap-628
ter of the Association for Computational Linguistics:629
Human Language Technologies (NAACL-HLT).630

Alex Graves and Jürgen Schmidhuber. 2005. Frame-631
wise phoneme classification with bidirectional lstm632
and other neural network architectures. Neural net-633
works.634

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.635
Newsroom: A dataset of 1.3 million summaries with636
diverse extractive strategies. In Conference of the637
North American Chapter of the Association for Com-638
putational Linguistics: Human Language Technolo-639
gies (NAACL-HLT).640

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-641
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,642
and Phil Blunsom. 2015. Teaching machines to read643
and comprehend. In International Conference on644
Neural Information Processing Systems (NeurIPS).645

Ruipeng Jia, Yanan Cao, Haichao Shi, Fang Fang,646
Pengfei Yin, and Shi Wang. 2021. Flexible non-647
autoregressive extractive summarization with thresh-648
old: How to extract a non-fixed number of summary649
sentences. In AAAI Conference on Artificial Intelli-650
gence.651

Katharina Kann, Sascha Rothe, and Katja Filippova.652
2018. Sentence-level fluency evaluation: Ref-653
erences help, but can be spared! In Confer-654
ence on Computational Natural Language Learning655
(CoNLL).656

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian657
Weinberger. 2015. From word embeddings to docu-658
ment distances. In International Conference on Ma-659
chine Learning (ICML).660

Philippe Laban, Andrew Hsi, John Canny, and Marti A.661
Hearst. 2020. The summary loop: Learning to write662
abstractive summaries without examples. In Annual663
Meeting of the Association for Computational Lin-664
guistics (ACL).665

Jey Han Lau, Alexander Clark, and Shalom Lappin. 666
2017. Grammaticality, acceptability, and probabil- 667
ity: A probabilistic view of linguistic knowledge. 668
Cognitive Science. 669

Mike Lewis, Yinhan Liu, Naman Goyal, Mar- 670
jan Ghazvininejad, Abdelrahman Mohamed, Omer 671
Levy, Veselin Stoyanov, and Luke Zettlemoyer. 672
2020. Bart: Denoising sequence-to-sequence pre- 673
training for natural language generation, translation, 674
and comprehension. In Annual Meeting of the Asso- 675
ciation for Computational Linguistics (ACL). 676

Chin-Yew Lin. 2004. ROUGE: A package for auto- 677
matic evaluation of summaries. In Text Summariza- 678
tion Branches Out. 679

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu 680
Chen, and Jiawei Han. 2020. Understanding the dif- 681
ficulty of training transformers. In Conference on 682
Empirical Methods in Natural Language Processing 683
(EMNLP). 684

Yang Liu and Mirella Lapata. 2019. Text summariza- 685
tion with pretrained encoders. In Conference on 686
Empirical Methods in Natural Language Processing 687
and the International Joint Conference on Natural 688
Language Processing (EMNLP-IJCNLP). 689

Ilya Loshchilov and Frank Hutter. 2018. Decoupled 690
weight decay regularization. In International Con- 691
ference on Learning Representations (ICLR). 692

Ling Luo, Xiang Ao, Yan Song, Feiyang Pan, Min 693
Yang, and Qing He. 2019. Reading like HER: Hu- 694
man reading inspired extractive summarization. In 695
Conference on Empirical Methods in Natural Lan- 696
guage Processing and International Joint Confer- 697
ence on Natural Language Processing (EMNLP- 698
IJCNLP). 699

Inderjeet Mani. 2001. Automatic summarization. John 700
Benjamins Publishing. 701

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and 702
Ryan McDonald. 2020. On faithfulness and factu- 703
ality in abstractive summarization. In Annual Meet- 704
ing of the Association for Computational Linguistics 705
(ACL). 706

Afonso Mendes, Shashi Narayan, Sebastião Miranda, 707
Zita Marinho, André F. T. Martins, and Shay B. Co- 708
hen. 2019. Jointly extracting and compressing doc- 709
uments with summary state representations. In Con- 710
ference of the North American Chapter of the Asso- 711
ciation for Computational Linguistics: Human Lan- 712
guage Technologies (NAACL-HLT). 713

Rada Mihalcea and Paul Tarau. 2004. TextRank: 714
Bringing order into text. In Conference on Em- 715
pirical Methods in Natural Language Processing 716
(EMNLP). 717

9

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.718
Summarunner: A recurrent neural network based se-719
quence model for extractive summarization of doc-720
uments. In AAAI Conference on Artificial Intelli-721
gence.722

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.723
2018a. Don’t give me the details, just the summary!724
topic-aware convolutional neural networks for ex-725
treme summarization. In Conference on Empirical726
Methods in Natural Language Processing (EMNLP).727

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.728
2018b. Ranking sentences for extractive summariza-729
tion with reinforcement learning. In Conference of730
the North American Chapter of the Association for731
Computational Linguistics: Human Language Tech-732
nologies (NAACL-HLT).733

Vishakh Padmakumar and He He. 2021. Unsupervised734
extractive summarization using pointwise mutual in-735
formation. In Conference of the European Chap-736
ter of the Association for Computational Linguistics737
(EACL).738

Adam Pauls and Dan Klein. 2012. Large-scale syntac-739
tic language modeling with treelets. In Annual Meet-740
ing of the Association for Computational Linguistics741
(ACL).742

Romain Paulus, Caiming Xiong, and Richard Socher.743
2018. A deep reinforced model for abstractive sum-744
marization. In International Conference on Learn-745
ing Representations (ICLR).746

Jeffrey Pennington, Richard Socher, and Christopher747
Manning. 2014. Glove: Global vectors for word rep-748
resentation. In Conference on Empirical Methods in749
Natural Language Processing (EMNLP).750

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-751
tional optimal transport: With applications to data752
science. Foundations and Trends in Machine Learn-753
ing.754

Martin Popel and Ondřej Bojar. 2018. Training tips755
for the transformer model. The Prague Bulletin of756
Mathematical Linguistics (NeurIPS).757

Horst Pöttker. 2003. News and its communicative qual-758
ity: the inverted pyramid—when and why did it ap-759
pear? Journalism Studies.760

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,761
Jerret Ross, and Vaibhava Goel. 2017. Self-critical762
sequence training for image captioning. In IEEE763
conference on computer vision and pattern recogni-764
tion (CVPR).765

Abigail See, Peter J. Liu, and Christopher D. Manning.766
2017. Get to the point: Summarization with pointer-767
generator networks. Annual Meeting of the Associa-768
tion for Computational Linguistics (ACL).769

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 770
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 771
Kaiser, and Illia Polosukhin. 2017. Attention is all 772
you need. In International Conference on Neural In- 773
formation Processing Systems (NeurIPS). 774

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 775
2015. Pointer networks. In International Con- 776
ference on Neural Information Processing Systems 777
(NeurIPS). 778

Jiacheng Xu and Greg Durrett. 2019. Neural extractive 779
text summarization with syntactic compression. In 780
Conference on Empirical Methods in Natural Lan- 781
guage Processing and the International Joint Con- 782
ference on Natural Language Processing (EMNLP- 783
IJCNLP). 784

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and 785
Peter Liu. 2020. Pegasus: Pre-training with ex- 786
tracted gap-sentences for abstractive summarization. 787
In International Conference on Machine Learning 788
(ICML). 789

Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming 790
Zhou. 2018. Neural latent extractive document sum- 791
marization. In Conference on Empirical Methods in 792
Natural Language Processing (EMNLP). 793

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI- 794
BERT: Document level pre-training of hierarchical 795
bidirectional transformers for document summariza- 796
tion. In Annual Meeting of the Association for Com- 797
putational Linguistics (ACL). 798

Hao Zheng and Mirella Lapata. 2019. Sentence central- 799
ity revisited for unsupervised summarization. In An- 800
nual Meeting of the Association for Computational 801
Linguistics (ACL). 802

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, 803
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive 804
summarization as text matching. In Annual Meet- 805
ing of the Association for Computational Linguistics 806
(ACL). 807

10

A Dataset Details808

We followed (Mendes et al., 2019) to set LE for809

Newsroom and (Zhong et al., 2020) to set LE for810

CNN/DM and XSum. We also followed their pro-811

tocols to set LC by matching the average number812

of words in summaries.813

Dataset Newsroom CNN/DM XSum

#Sentences in Doc. 27 39 19

#Tokens in Doc. 659 766 367

LE 2 3 2

LC 26 58 24

Train 995,041 287,113 204,045

Test 108,862 11,490 11,334

Table 4: Overview of the three datasets. #Sentences in
Doc. and #Tokens in Doc. denote the average number
of sentences and words in the documents respectively.
LE denotes the number of sentences to be selected by
the extractor agent. LC denotes the number of words
to be selected by the compressor agent. Train and Test
denote the size of train and test sets.

B Hyperparameter Details814

We set the LSTM hidden size to 150 and the num-815

ber of recurrent layers to 3. We used two layers816

of the Bi-LSTM and multi-head attention pairs.817

We performed hyperparameter searching for wcov818

(ranging from 1 to 4) and wflu (ranging from 1 to819

4) and decided to set wcov = 1 , wflu = 2 in all our820

experiments since it provides more balanced results821

across the datasets. We trained the URLComSum822

with AdamW (Loshchilov and Hutter, 2018) with823

learning rate 0.01 with a batch size of 3 for about824

12 hours.825

C Software and Hardware Used826

We obtained the word embedding from the pre-827

trained GloVe (6B tokens, 300-hidden-size) (Pen-828

nington et al., 2014). For the pre-trained tokeniser829

and token embedding models used for computing830

semantic coverage reward, we used BERT (base831

version) from HuggingFace 4. For the trained lan-832

guage model used for computing the fluency re-833

ward, we chose the pre-trained GPT2 (base version)834

from HuggingFace since it is a powerful language835

model. It was fine-tuned on the target domain. To836

compute the Wasserstein distances, we utilized the837

4https://huggingface.co

POT library 5. Our experiments were run on a 838

GeForce GTX 1080 GPU card. 839

We obtained our ROUGE scores by using the 840

pyrouge package 6. 841

5https://pythonot.github.io
6https://pypi.org/project/pyrouge/

11

D Transferability Analysis842

Trained on \Tested on
Newsroom CNN/DM XSum

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Newsroom
Ext. 33.88 23.24 29.97 40.03 17.47 32.92 19.44 2.39 12.94

Ext.+Com. 34.57 22.92 30.51 39.32 16.28 32.30 18.23 1.87 12.78

CNN/DM
Ext. 33.88 23.24 29.97 40.03 17.47 32.92 19.44 2.39 12.94

Ext.+Com. 34.03 21.97 30.01 39.27 15.97 32.18 18.08 1.80 12.69

XSum
Ext. 33.88 23.24 29.97 40.03 17.47 32.92 19.44 2.39 12.94

Ext.+Com. 33.01 21.03 29.08 38.63 15.22 31.60 17.97 1.80 12.69

Table 5: Transferability analysis of URLComSum.

843

12

E Sample Summaries844

The following shows the sample summaries generated by URLComSum on the CNN/DM, XSum,
and Newsroom datasets. Sentences extracted by the URLComSum extractor agent are highlighted.
Words selected by the URLComSum compressor agent are underlined in red. Our unsupervised method
URLComSum can identify salient sentences and words to produce a summary with reasonable semantic
coverage and fluency.

Figure 4: A sample summary produced by URLComSum on the CNN/DM dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 68.8, 52.7, and 62.4 respectively, with
semantic coverage reward 0.76 and fluency reward 0.64, while the reference summary has semantic coverage
reward 0.80 and fluency reward 0.62.

Figure 5: A sample summary produced by URLComSum on the XSum dataset. The summary generated by
URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 38.1, 20.0, and 33.3 respectively, with
semantic coverage reward 0.77 and fluency reward 0.56, while the reference summary has semantic coverage
reward 0.73 and fluency reward 0.59.

Figure 6: A sample summary produced by URLComSum on the Newsroom dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 76.6, 62.2, and 76.6 respectively, with
semantic coverage reward 0.79 and fluency reward 0.61, while the reference summary has semantic coverage
reward 0.76 and fluency reward 0.65.

845

13

