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Abstract—Understanding how prenatal exposure to psychoac-
tive substances such as cannabis shapes adolescent brain organi-
zation remains a critical challenge, complicated by the complexity
of multimodal neuroimaging data and the limitations of conven-
tional analytic methods. Existing approaches often fail to fully
capture the complementary features embedded within structural
and functional connectomes, constraining both biological insight
and predictive performance. To address this, we introduced
NeuroKoop, a novel graph neural network-based framework that
integrates structural and functional brain networks utilizing neu-
ral Koopman operator-driven latent space fusion. By leveraging
Koopman theory, NeuroKoop unifies node embeddings derived
from source-based morphometry (SBM) and functional network
connectivity (FNC) based brain graphs, resulting in enhanced
representation learning and more robust classification of prenatal
drug exposure (PDE) status. Applied to a large adolescent cohort
from the ABCD dataset, NeuroKoop outperformed relevant
baselines and revealed salient structural–functional connections,
advancing our understanding of the neurodevelopmental impact
of PDE.

Index Terms—Prenatal Drug Exposure, Structural–Functional
Fusion, Neural Koopman Operator, Graph Neural Network

I. INTRODUCTION

Adolescence marks a critical stage of brain development,
characterized by extensive remodeling of neural circuits that
support cognition, behavior, and emotional regulation [1], [2].
Accumulating evidence indicates that prenatal exposure to psy-
choactive substances—particularly cannabis—can contribute
to lasting alterations in brain connectivity and neurocognitive
functioning [3], [4]. As cannabis use became increasingly
common during pregnancy nowadays, clarifying its potential
impact on neurodevelopment is both a scientific and public
health priority. Although previous studies [4], [5] have demon-
strated that prenatal cannabis exposure may lead to enduring
changes in neural organization, the precise mechanisms and
specific brain network alterations involved remain poorly
understood, hindering opportunities for timely intervention and
support.

Recent advances in multimodal neuroimaging [6] provide
a unique window into the architecture of the adolescent

brain. Structural measures, such as source-based morphometry
(SBM) derived from structural magnetic resonance imag-
ing (sMRI), captures inter-network gray matter covariation,
while functional network connectivity (FNC) from resting-
state fMRI reveals the temporal synchrony of distributed brain
networks. The joint analysis of structural and functional con-
nectomes holds promise for uncovering subtle neurobiological
effects of early exposures that may be invisible to unimodal
analysis. However, several key obstacles remain. First, most
existing analytic frameworks [7]–[12] either examine these
modalities in isolation or perform naı̈ve integration by sim-
ple feature concatenation, neglecting the complex, nonlinear
dependencies and cross-modal dynamics inherent in brain
networks. Second, standard deep learning approaches [13],
[14], including many recently proposed graph neural network
(GNN)-based frameworks [9]–[12], [15], tend to focus on
local connectivity patterns while overlooking higher-order and
dynamic interactions across brain regions. This limits their
capacity to model the complex structure-function interaction
and cognitive modulation effects that are critical for un-
derstanding the neural impact of prenatal exposures. Third,
most studies [10], [16] frequently overlook important sources
of cognitive heterogeneity, such as individual differences in
working memory (WM), which are not only crucial determi-
nants of adolescent outcomes but may themselves be subtly
altered by prenatal drug exposure (PDE), as suggested by
prior studies [5], [17]. Neglecting to model these individual
differences risks introducing confounding effects and limits
the biological interpretability of findings, potentially masking
key mechanisms by which neurodevelopmental perturbations
exert their influence.

To address these gaps, we propose NeuroKoop, a novel
GNN based multimodal framework that fuses structural and
functional connectomes via a neural Koopman operator-guided
latent dynamics fusion. Inspired by the theoretical strengths
of Koopman operator theory [18]—which provides a linear
yet expressive mapping for analyzing complex, nonlinear
dynamical systems—our approach projects both structural and



functional graphs into a shared latent space. Here, cross-modal
information was exchanged and refined, enabling the model to
learn richer and more biologically plausible representations of
brain organization. Additionally, we incorporated WM scores
as subject-specific conditioning signals within the fusion pro-
cess. WM was selected based on its well-established role as
a core cognitive domain affected by PDE, with prior studies
[5], [17] reporting both behavioral deficits and disruptions in
brain network organization among exposed individuals. From
a developmental neuroscience perspective, WM is considered
closely tied to the maturation of large-scale brain systems
particularly those supporting executive function and self-
regulation, and is known to be heritable, well-characterized in
adolescence, and strongly associated with distributed patterns
of functional connectivity [19], [20]. By integrating WM
scores into the latent fusion process, NeuroKoop tries to
disentangle exposure-specific effects from broader individual
variability, thereby enhancing both predictive performance and
underlying neuroscientific insights.

In brief, our contributions can be outlined as follows:
• We proposed a novel GNN framework that aligned

and integrated structural and functional brain networks
through neural Koopman operator, enabling a unified
latent representation.

• We incorporated individual WM measures as auxiliary
information, enhancing the robustness of network fusion
by leveraging cognitive mechanisms underlying exposure
effects.

• Extensive evaluation on a large adolescent cohort demon-
strated NeuroKoop’s superiority over state-of-the-art
(SOTA) fusion baselines.

II. METHODOLOGY

Let D = {(Ai,Bi), ci, ti}Ni=1 denote a dataset of N sub-
jects, where Ai ∈ RQ×Q and Bi ∈ RQ×Q are the structural
and functional connectivity matrices for the i-th subject, each
defined over Q brain networks. Here, ci ∈ R is the individual
WM score, and ti ∈ {0, 1} indicates PDE status. Subject-
specific SBM matrices Ai were constructed as the outer
product of the subject’s SBM loading vector, Ai = lil

⊤
i , with

li ∈ Rη representing their structural features across η SBM
components. As illustrated in Figure 1, our goal is to build a
predictive framework that leverages multimodal connectomes
and cognitive assessment to determine each individual’s PDE
status t̂i.

A. Modality-Wise Graph Encoding

For the given dataset D, we constructed for each subject
a structural graph GSi = (V, ESi ,XS

i ) and a functional graph
GFi = (V, EFi ,XF

i ). Here, V represents the shared set of Q
brain networks, while subject-specific edges ESi and EFi are
defined by applying k-nearest neighbor (kNN) sparsification
to the respective SBM (Ai) and FNC (Bi) matrices. Node
feature matrices XS

i and XF
i were constructed such that each

node’s feature vector corresponds to the respective row of Ai

and Bi, respectively.

Modality-specific GNN encoders, FS and FF , were then
applied to the full sets of structural and functional graphs
GS = {GSi }Ni=1 and GF = {GFi }Ni=1 to obtain latent node
representations:

HS = FS(GS), HF = FF (GF ) (1)

where HS ,HF ∈ RN×Q×d denote the collections of latent
node embeddings for the structural and functional modalities,
and d is the embedding dimension. We employed traditional
graph convolutional networks (GCNs) [21] as our encoders
due to their effectiveness for simply capturing topological
patterns in brain graphs [11] and their robustness for subject-
level representation learning.

B. Neural Koopman-Driven Multimodal Fusion

1) Dynamic Latent Fusion via Neural Koopman Operator:
To robustly integrate structural and functional connectomes,
after deriving node-level latent representations from both
modalities we employed a bidirectional cross-modal attention
layer (CAL) [22] that allowed each modality to attend to
the other. Specifically, we applied two parallel scaled dot-
product attention operations: one where the structural em-
bedding (HS) served as the query (Q) and the functional
embedding (HF ) provided the keys (K) and values (V), and
a second where this relationship was reversed. This design
facilitated the exchange of information between modalities and
accentuates salient inter-modality relationship. For each node,
the resulting attention-weighted features from both directions
were concatenated, yielding an initial fused representation
Z0 ∈ RQ×2d. This joint embedding preserved both intra- and
inter-modality topological patterns and provides a unified basis
for subsequent dynamic latent fusion via the neural Koopman
operator.

To move beyond static fusion, we introduced a neural
Koopman operator that dynamically evolved the fused latent
representation for each subject. Drawing inspiration from
Koopman operator theory [18]—originally developed for dy-
namical systems—we employed a learnable neural operator
[23] to iteratively refine the fused node states in a cognitively
informed manner. Unlike classic Koopman approaches, which
operated on temporal sequences, we leveraged the operator’s
capacity to simulate virtual trajectories within the latent space,
even with static connectome inputs.

Formally, for each subject, we initialized with a fused
embedding Z0 and unrolled it through T steps according to:

Zt+1 = Uψ(Zt)⊙Mψ(c), t = 0, . . . , T − 1, (2)

where Uψ and Mψ are independent multilayer perceptrons
(MLPs) applied to the current latent state Zt and the subject’s
WM score c, respectively, and ⊙ denotes element-wise mul-
tiplication. While the WM score c is a single scalar value,
the network learns to project it into a higher-dimensional
vector through Mψ(c). This enables the Koopman evolution
to adapt based on subject-specific cognitive context, allowing
meaningful modulation of the latent trajectory using minimal
but informative input.
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Fig. 1. NeuroKoop overview: After obtaining SBM form sMRI and FNC from rs-fMRI, modality-specific GNN encoders generated node embeddings from
corresponding structural and functional brain graphs, which were fused through cross-modal attention layer (CAL). The neural Koopman layer then dynamically
refined the fused latent representation based on each individual’s working memory (WM) score, followed by global average pooling (GAP) to yield a subject-
level vector for classifying prenatal drug exposure (PDE) status, while adversarial regularization encourages alignment with functional organization.

Through this iterative process, each subject’s fused latent
state was dynamically adjusted to reflect both their multimodal
connectome and individual cognitive profile. This mechanism
captured complex relationships between brain connectivity and
cognition, allowing individualized adaptations linked to PDE
and WM. Unlike conventional fusion strategies that produce
static joint embeddings, our neural Koopman approach person-
alizes and refines the latent representation, thereby improving
both predictive power and neurological relevance.

2) Joint Training Objective and PDE Classification: The
fused and dynamically refined latent representations obtained
from the neural Koopman operator, denoted as ZT ∈ RQ×2d

after T Koopman steps, were pooled at the graph level and
passed to a final classifier to predict the exposure status for
each subject. Specifically, we aggregated node-level embed-
dings via global average pooling (GAP) to obtain a subject-
level vector, hfused = GAP(ZT ) ∈ R2d. A fully connected
layer (FCL) classification head, parameterized by weights
w ∈ R2d and bias b ∈ R, was then applied to compute the
exposure probability: t̂ = σ(w⊤hfused+b), where σ(·) denotes
the sigmoid function.

The model was trained end-to-end with a dual-objective
loss function that jointly optimized exposure classification and
structural–functional representation alignment. The primary
objective is binary cross-entropy loss for classification as
follows:

Lcls = − 1

N

N∑
i=1

[
ti log(t̂i) + (1− ti) log(1− t̂i)

]
, (3)

where ti is the true exposure label and t̂i is the predicted
probability for subject i.

To further encourage the fused latent space to capture
meaningful structure–function relationships, we incorporated
an adversarial loss that distinguished between true FNC pat-
terns and those obtained via our fusion model. Specifically,
we employed a discriminator network Dθ, implemented with
two multilayer perceptrons (MLPs), which received as input
the global pooled embedding from the FNC GNN encoder (as
real) and the projected pooled embedding from the Koopman
fusion branch (as synthetic), and was trained to distinguish
between the two sources. By adversarially aligning the dis-
tributions of the Koopman-fused and base FNC embeddings,
this mechanism acts as a functional regularizer—encouraging
the fused space to remain anchored to biologically mean-
ingful functional organization, promoting more neurologically
grounded representation and reducing the risk of implausible
cross-modal fusion artifacts.

Since the Koopman-fused representation hfused ∈ R2d

and the pooled FNC embedding hF = GAP(HF ) ∈ Rd
differ in dimension, we employed a linear projection layer
Pγ : R2d → Rd to map the fused vector to the same space
as the FNC representation before input to the discriminator.
Thus, the adversarial loss is formulated as:

Ladv =
1

2N

N∑
i=1

[
logDθ(h

F
i ) + log

(
1−Dθ(Pγ(h

fused
i ))

)]
,

(4)
where Pγ(·) denotes the linear projection of the Koopman-
fused pooled embedding.

The overall training objective combines the binary cross-
entropy classification loss with the adversarial loss:

Ljoint = Lcls + λadvLadv, (5)



where λadv controls the strength of adversarial regularization.
This dual-objective optimization encourages the network not

only to maximize PDE classification performance, but also to
ensure that the fused representations remain grounded by the
true functional brain dynamics, thereby enhancing robustness,
generalization, and neurological plausibility.

III. RESULTS AND DISCUSSION

A. Dataset and Data Pre-processing

The Adolescent Brain Cognitive Development (ABCD)
study [6] is a comprehensive, multi-site longitudinal research
initiative designed to elucidate how diverse biological, envi-
ronmental, and social influences shape cognitive and mental
health trajectories from childhood through adolescence across
the United States. For our analysis, we leveraged the baseline
ABCD dataset comprising 7,289 children aged 9 to 10 years,
each with available rs-fMRI, sMRI, and WM assessments.
Among these, 430 participants were identified as having
prenatal cannabis exposure. To ensure a balanced comparison,
we subsampled 430 non-exposed controls from the remaining
6,859 non-exposed participants, resulting in a final cohort of
860 individuals. To reduce site-specific variability, all imaging
features were derived using Neuromark’s standardized ICA
pipeline, which ensures spatial consistency across acquisition
sites. Only subjects with complete and high-quality sMRI, rs-
fMRI, and WM scores at baseline were retained for analysis.
Subjects with missing data or failing Neuromark QC [26] were
excluded during preprocessing.

To derive subject-level functional connectivity profiles, we
utilized the Neuromark [26] framework, which implements a
spatially constrained independent component analysis (ICA)
approach. Specifically, for each individual, adaptive-ICA was
first used to extract 53 reproducible intrinsic connectivity
networks (ICNs) along with their associated time courses.
Pairwise Pearson correlations among these time courses pro-
duced individualized 53× 53 functional network connectivity
(FNC) matrices, representing the functional connectome for
each subject.

Structural features were extracted from sMRI scans using
the same Neuromark [26] pipeline within the GIFT toolbox.
A constrained ICA was performed based on the standardized
53-component template, yielding source-based morphometry
(SBM) [27], [28] loading parameters that capture independent
spatial patterns of gray matter volume (GMV) variation across
the cohort. Each participant’s structural brain organization was
summarized as a 53-dimensional vector of SBM loadings,
reflecting their individual expression of distributed GMV pat-
terns.

B. Experimental Settings

All model development and experimentation were con-
ducted using the PyTorch framework and ran on an
NVIDIA V100 GPU. To identify robust hyperparameters
for NeuroKoop, we carried out a comprehensive grid
search across batch sizes: 8, 16, 32, 64, 128, learning rates:

1× 10−3, 1× 10−4, 3× 10−4, 5× 10−4, GNN latent dimen-
sions 32, 64, 128, Koopman operator steps 1, 3, 5, 7, and
weight decay values 1× 10−5, 5× 10−5. Both diagonal and
full linear forms of the Koopman operator were evaluated. To
sparsify the brain graphs, we applied k-nearest neighbor (k-
NN) thresholding with k = 5 to both structural and functional
modalities matrices. This value was selected based on thor-
ough investigation with k ∈ {3, 5, 7, 10}, which showed that
performance peaked at k = 5 and declined after that for larger
values. To maintain consistency and simplicity throughout the
pipeline, we reported all results in this study using k = 5.
Additionally, all WM scores were standardized prior to model
input.

Experimental evaluation relied on stratified 5-fold cross-
validation, preserving an approximate 80 : 20 train-test split
within each fold. Our final selected configuration consisted of
a batch size of 16, learning rate 3 × 10−4, hidden and latent
dimension of 64, 5 Koopman steps, λadv value 0.2 and weight
decay of 1× 10−5. The whole model was trained end-to-end
for 100 epochs using the Adam optimizer.

Additionally, to ensure a fair comparison, all reported base-
line models were trained using the same data splits, optimizer,
and number of training epochs. Hyperparameters for each
baselines were tuned individually through grid search to reflect
their optimal configurations.

C. Quantitative Evaluation

1) Comparative Evaluation with SOTA Methods: We
benchmarked our NeuroKoop framework against two different
classical classifiers and a suite of relevant multimodal GNN-
based fusion baselines, all utilizing multimodal connectome
data. As summarized in Table I, all methods were evaluated
under an identical cross-validation protocol.

These two classical classifiers: logistic regression and ran-
dom forest were trained on 106 dimensional feature vectors
constructed by concatenating global average pooled SBM and
FNC representations (53 features each). As shown in Table I,
these shallow models, which rely on simplified summary
statistics and lack spatial or cross-modal modeling capabilities,
achieved substantially lower performance with higher standard
deviation across folds compared to NeuroKoop.

For the GAT [24] and Graph Transformer [25] as baselines,
modality-specific features were extracted in parallel and then
concatenated for classification via an MLP. These strategies
yielded accuracy scores of 69.77% and 70.25%, respectively,
indicating that straightforward feature fusion is insufficient
for modeling the complex dependencies present in brain
connectome data. In contrast, more sophisticated multimodal
models—including GCNN [9], Joint GCN [10], Joint DCCA
[11], and BrainNN [12]—delivered higher performance, with
accuracy values ranging from 70.07% to 77.45%. BrainNN
[12], leveraging graph contrastive learning based fusion mech-
anisms, achieved the strongest baseline accuracy at 77.45%,
highlighting the benefit of advanced cross-modal integration.

Our proposed NeuroKoop framework achieved the highest
overall accuracy (82.33%), representing an improvement of



TABLE I
COMPARISON AGAINST SOTA APPROACHES [UNIT: %] (MEAN ± STANDARD DEVIATION).

Method Accuracy Precision Recall F1-score
Logistic Regression 66.82 ± 1.3152 66.51 ± 1.2661 66.40 ± 1.3351 66.60 ± 1.4881

Random Forest 68.94 ± 1.2279 70.01 ± 1.6691 68.62 ± 1.7522 68.85 ± 1.5792
GAT [24] 69.77 ± 0.0011 70.89 ± 0.2436 69.40 ± 0.4899 69.57 ± 0.3254

Graph Transformer [25] 70.25 ± 0.0335 71.12 ± 0.2228 70.67 ± 0.2295 70.26 ± 0.1428
GCNN [9] 70.07 ± 0.1589 70.82 ± 0.2282 70.93 ± 0.2148 69.92 ± 0.1610

Joint GCN [10] 74.53 ± 0.0186 75.66 ± 0.0261 74.65 ± 0.0213 74.91 ± 0.0228
Joint DCCA [11] 75.67 ± 0.1302 75.29 ± 0.2162 75.89 ± 0.2054 75.33 ± 0.2667

BrainNN [12] 77.45 ± 0.0212 77.89 ± 0.0252 77.09 ± 0.0213 77.18 ± 0.0237
NeuroKoop [Proposed] 82.33 ± 0.0197 82.49 ± 0.0178 82.09 ± 0.0342 82.26 ± 0.0215

TABLE II
COMPARISON OF PERFORMANCES WITH FIVE DISTINCT RANDOM SUBSETS FROM UNEXPOSED COHORT [UNIT: %] (MEAN ± STANDARD DEVIATION).

Trial Accuracy Precision Recall F1-score
Subset 1 82.12 ± 0.0189 82.23 ± 0.0189 81.88 ± 0.0337 82.04 ± 0.0268
Subset 2 82.33 ± 0.0197 82.49 ± 0.0178 82.09 ± 0.0342 82.26 ± 0.0215
Subset 3 82.17 ± 0.0191 82.32 ± 0.0181 81.97 ± 0.0392 82.14 ± 0.0244
Subset 4 82.08 ± 0.0201 82.20 ± 0.0212 81.84 ± 0.0289 82.00 ± 0.0291
Subset 5 82.26 ± 0.0185 82.39 ± 0.0280 82.01 ± 0.0311 82.19 ± 0.0223

TABLE III
ABLATION EXPERIMENT OUTCOMES [UNIT: %] (MEAN ± STANDARD DEVIATION).

NeuroKoop variants Accuracy Precision Recall F1-score
w/o WM Scores (c) 80.16 ± 0.0141 80.07 ± 0.0160 79.77 ± 0.0119 80.90 ± 0.0138

w/o Cross-modal Attention 75.47 ± 0.0306 74.35 ± 0.0339 74.91 ± 0.0337 75.05 ± 0.0295
w/o Neural Koopman Layer 70.12 ± 0.0267 71.70 ± 0.0367 71.86 ± 0.0324 70.65 ± 0.0200
w/o Adversarial Loss (Ladv) 80.51 ± 0.0256 79.02 ± 0.0340 79.56 ± 0.0345 80.71 ± 0.0240

FNC only + Neural Koopman Layer 76.98 ± 0.0587 77.25 ± 0.0429 76.73 ± 0.0821 76.82 ± 0.0437
SBM only + Neural Koopman Layer 74.61 ± 0.0362 76.04 ± 0.0518 74.25 ± 0.0778 74.41 ± 0.0395

Proposed 82.33 ± 0.0197 82.49 ± 0.0178 82.09 ± 0.0342 82.26 ± 0.0215

nearly five percentage points over the best competing method.
This margin was consistently maintained across validation
folds, as reflected in the low standard deviation. These results
underscore the effectiveness of our approach in extracting
and integrating complementary patterns from both connectome
modalities.

To further assess NeuroKoop’s robustness, we conducted an
additional analysis using five randomly drawn subsets of 430
unexposed subjects of ABCD baseline cohort, each paired with
the same set of 430 exposed individuals. As shown in Table II,
NeuroKoop achieved consistently high and stable performance
across all five runs, with minimal variation across accuracy,
precision, recall, and F1-score. Among these, Subset 2 yielded
the highest performance and is the one reported and discussed
in this paper for comparative analysis (Table I, III). These
outcomes confirm that the model’s predictive capacity is not
sensitive to the specific control group composition, reinforcing
the general reliability and robustness of our findings.

2) Ablation Experiments: To assess the contribution of each
architectural component, we performed a series of ablation
studies, systematically removing key modules, investigating
different configurations and measuring the impact on classifi-
cation performance, as reported in Table III. We addressed
five guiding research questions (RQs): (RQ1) What is the

contribution of WM scores? (RQ2) How essential is cross-
modal attention? (RQ3) What is the effect of the neural
Koopman layer? (RQ4) Does adversarial loss enhance model
generalization? (RQ5) How does the full multimodal fusion
compare with unimodal Koopman configurations?

Removing WM scores reduced accuracy to 80.16%, high-
lighting their benefit for PDE status detection. Omitting cross-
modal attention led to a pronounced drop to 75.47%, un-
derscoring its importance for modeling inter-modality rela-
tionships. Excluding the Koopman layer produced the largest
decline (70.12%), indicating its crucial role in capturing
network dynamics. The removal of adversarial loss resulted
in a moderate decrease to 80.51%, suggesting its utility for
generalization. Finally, by applying the Koopman operator
to fMRI-derived FNC and sMRI-derived SBM graphs sep-
arately, we further evaluated two unimodal configurations.
Both setups underperformed compared to the full NeuroKoop
framework, with FNC+Koopman achieving 76.98% accuracy
and SBM+Koopman reaching 74.61%. These results indicate
that while the Koopman mechanism improves single-modality
modeling, fusing both modalities within a unified latent space
leads to significantly stronger performance across all metrics.
This supports our central hypothesis that dynamic integra-
tion of structural and functional information offers a more



comprehensive representation of PDE-related brain alterations.
Collectively, these findings demonstrate that each component
makes a unique and essential contribution to the overall model
performance.

D. Qualitative Evaluation

To elucidate the neural pathways most relevant for PDE
classification, we analyzed the top 3% of cross-modal attention
weights from NeuroKoop’s structural-to-functional (SBM-to-
FNC) attention layer as illustrated in Figure 2. These weights
quantify how each structural network draws upon information
from functional networks during multimodal integration. By
averaging attention patterns within each group, we highlighted
the connections most prominent in refining the fused represen-
tation.

Unexposed Exposed

SCN

ADN

SMN

VSN

CON

DMN

CBN

Fig. 2. Axial depiction of group-averaged cross-modal attention, showing
the top 3% strongest connections for both unexposed and exposed groups
across seven brain networks from NeuroMark—subcortical (SCN), auditory
(ADN), sensorimotor (SMN), visual (VSN), cognitive control (CON), default
mode (DMN), and cerebellar (CBN) network. Edges within the same network
are color-coded, while those linking different networks are shown in gray.
Edge thickness is proportional to attention weight, highlighting the relative
importance of each connection in the fused representation.

Among unexposed individuals, the highest cross-modal at-
tention was observed between the sensorimotor (SMN), visual
(VSN), cognitive control (CON) and default mode (DMN)
networks, consistent with broadly distributed integration typi-
cal of normative brain development. In contrast, the exposed
group exhibits more concentrated attention patterns, with the
majority of high-weighted connections clustered among the
DMN, CON, and cerebellar (CBN) networks. This focused
pattern aligns with recent studies [29]–[32] showing that
that PDE is associated with associated with reorganization
and tighter coupling within DMN, CON, and CBN, possibly
reflecting compensatory or maladaptive changes in neural
communication. Such focused connectivity within the exposed
group indicates a shift toward selective engagement of key
brain networks, potentially resulting from PDE.

IV. CONCLUSIONS

We introduced NeuroKoop, a novel GNN based multimodal
framework that leverages Koopman operator theory to fuse
multimodal connectomes for robust classification of PDE sta-
tus. By integrating WM score as a personalized control input,
our approach enabled dynamic latent space fusion, capturing

subtle structure–function relationships beyond conventional
fusion approaches. Applied to ABCD dataset, NeuroKoop con-
sistently outperformed existing SOTA multimodal baselines,
highlighting its potential to advance individualized risk assess-
ment and mechanistic understanding in neurodevelopmental
research. Future work will explore more expressive neural
operators and self-supervised strategies to further enhance gen-
eralizability and interpretability for multimodal brain network
analysis.
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