
Under review as a conference paper at ICLR 2024

GHOST IN THE MINECRAFT: HIERARCHICAL AGENTS
FOR MINECRAFT VIA LARGE LANGUAGE MODELS
WITH TEXT-BASED KNOWLEDGE AND MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

As modern computer games continue to evolve, there is a growing need for adaptive
agents that can effectively navigate, make decisions, and interact within vast, ever-
changing worlds. While recently developed agents based on Large Language
Models (LLMs) show promise in adaptability for controlled text environments,
expansive and dynamic open worlds like Minecraft still pose challenges for their
performance. To address this, we introduce Ghost in the Minecraft (GITM),
a novel hierarchical agent that integrates LLMs with text-based knowledge and
memory. Structured actions are constructed to enable LLMs to interact in Minecraft
using textual descriptions, bridging the gap between desired agent behaviors and
LLM limitations. The hierarchical agent then decomposes goals into sub-goals,
actions, and operations by leveraging text knowledge and memory. A text-based
in-context learning method is also designed to enhance future planning. GITM
demonstrates the potential of LLMs in Minecraft’s evolving open world. Notable
milestones are collecting 99.2% of items and a 55% success rate on the popular
“ObtainDiamond” task. GITM also shows impressive learning efficiency, requiring
minimal computational resources.

1 INTRODUCTION

In modern computer games, NPCs (non-player characters) are more than just background decoration
or task distributors (Laird and VanLent, 2001; Yannakakis, 2012). They have their own lives, needs,
and daily routines in the game world. However, current NPCs, whether based on traditional designs
such as Finite State Machines (FSMs) (Champandard, 2003) and Behavior Trees (Palma et al., 2011),
or on model-driven approaches such as Reinforcement Learning (RL) (Wang et al., 2009; Makri and
Charalambous, 2021), still struggle to adapt to changing game environments. This results in NPCs
that often exhibit illogical, awkward, and irrational behavior when encountering unexpected game
scenarios or changes. The lack of adaptability not only diminishes the realism and immersion in
games, but also highlights a broader issue: the need for agents capable of autonomously navigating,
interacting with, and executing tasks within constantly changing environments.

The recent emergence of Generative Agents (Park et al., 2023) based on Large Language Models
(LLM-based agents) has attracted much attention. This innovative approach empowers agents to
mimic daily human activities like waking up, making breakfast, working, and even creating art
and writing - all within a controlled, text-based gaming environment called Smallville (Park et al.,
2023). While these generative agents demonstrate strength in mimicking believable human activities,
Smallville itself offers only a narrow, controlled game environment. In this limited setting, agents act
within pre-defined roles and behaviors specific to crafted scenarios and tasks. The adaptability of
LLM-based agents in more open and dynamic game worlds remains an open problem.

Developing an agent that can navigate, make decisions, and interact effectively in a vast and ever-
changing world presents unique challenges. However, the highly controlled environment of Smallville
obscures such complexities and uncertainties. To delve deeper into this challenge, we chose Minecraft
as our experimental platform due to its massive scale, vast landscape, and unrestricted freedom.
Minecraft introduces procedurally generated terrain, where agent interactions also have a persistent
impact on the environment, requiring agents to handle unpredictable situations and adapt to diverse

1

Under review as a conference paper at ICLR 2024

acacia_boat acacia_dooracacia_fence acacia_stairs

activator_rail

anvil

apple

golden_apple

armor_stand

arrow

baked_potato

rabbit_stew

bannerbed

beef

cooked_beef

beetroot

beetroot_soup

beetroot_seedsbone

bone_meal

bone_blockbook

bookshelf

enchanted_book

enchanting_table

writable_book

bow

dispenser

bowl

mushroom_stew

bread

brick

brick_block flower_pot

brick_stairs

brown_mushroom

brown_mushroom_blockfermented_spider_eye

bucket

lava_bucketmilk_bucket water_bucket

cactus

cake carpet

carrot

carrot_on_a_stick

golden_carrot

cauldron

chest

chest_minecart

hopper

trapped_chest

chicken

cooked_chicken

clay

hardened_clay

clay_ball

clock

coal

coal_blocktorch

cobblestone

cobblestone_wall

dropper

furnacelever

mossy_cobblestone piston

stone

stone_pickaxe stone_stairsstone_sword

compass

map

cooked_mutton cooked_porkchop cooked_rabbit

crafting_table

detector_rail diamond_block diamond_bootsdiamond_pickaxe diamond_sword emerald_block

fishing_rod

glass_bottle glass_pane

gold_block golden_bootsgolden_pickaxegolden_rail golden_sword

hay_block

iron_bars iron_blockiron_boots iron_dooriron_pickaxeiron_sword

item_frame

jukebox

ladder leadleather_bootsmelon_block

minecart

noteblockpainting

paper

pumpkin_pie

rail

redstone_block

repeater

sandstone_stairs

shield

sign slime snow_layer

speckled_melon

stone_brick_stairs

stone_slabtnt

tripwire_hook

wooden_pickaxe wooden_slabwooden_sword

deadbush diamond

obsidian

dirt

egg

emerald

feather

fireworks

flint

flint_and_steel

furnace_minecart

glass

gold_ingot

iron_ingot

gold_nuggetlight_weighted_pressure_plate

gold_oregrass

gravel

gunpowder

heavy_weighted_pressure_plate

hopper_minecart

iron_nuggetiron_trapdoorshears

iron_ore

redstone

lapis_block

leather

leaves

lit_pumpkin

log

planks

melon

melon_seeds

tnt_minecart

mutton

sticky_piston

stick wooden_button wooden_pressure_plate

poisonous_potato

porkchop potato

pumpkin

pumpkin_seeds

rabbit

rabbit_foot rabbit_hide red_flower

redstone_torch

reeds

sugar

rotten_flesh

sand

sandstone

sapling

vine wool

slime_ball snow

snowball

spider_eye

stone_button stone_pressure_plate stonebrick

lapis_lazuli

string

waterlily

wheat

wheat_seeds

ink_sac

Unlocked by Existing Minecraft Agents Unlocked by Our Approach Only

Unlocked by Existing Minecraft Agents

Unlocked by Our Approach Only
Our

Figure 1: GITM unlocks 99.2% of the technology tree in Minecraft. Each node represents an
individual item. The directed edges between nodes represent prerequisite relationships for obtaining.
For better readability, we manually merge some similar nodes, e.g., “wooden pickaxe/axe/hoe/shovel”
are merged into one node, and “wooden pickaxe” is selected to represent the merged node. Existing
Minecraft agents Baker et al. (2022); Hafner et al. (2023); Wang et al. (2023) only unlocked 78 / 262
= 30% items, while our GITM successfully unlocked 260 / 262 = 99.2% items.

surroundings. Researchers must take into account the diversity and unpredictability of Minecraft,
requiring innovative solutions to ensure high adaptability.

Enabling LLM-based agents to physically interact within the Minecraft world using keyboard and
mouse controls presents a major challenge. This is because LLMs inherently lack intuitive mastery
of these controls. To overcome this limitation, we develop a structured action set that translates
common in-game physical interactions into executable textual descriptions. This approach bridges
the gap between desired agent behaviors and LLMs’ inability to fluidly handle physical in-game
interactions. With this action set translating inputs into text, LLMs can now leverage their language
skills to participate in Minecraft’s physical game world. This allows the LLM to make decisions in
an abstract textual space rather than directly interacting with the physical environment. However,
this conversion is not perfect, as it cannot fully capture the complexity of tasks and the uncertainty
of physical interactions. To better address these challenges, we developed a hierarchical agent that
starts with an overall goal, breaks it down into sub-goals, structured actions, and finally specific
keyboard/mouse operations. We also design a text-based in-context learning strategy that utilizes
text-based knowledge and memory to improve the accuracy of LLM in physical interaction.

Specifically, we first construct a set of structured actions by LLM through action decomposition
and clustering from 3141 pre-defined MineDojo (Fan et al., 2022) tasks. The structured actions are
defined with clear semantics and corresponding feedback, enabling LLM to understand surrounding
environments and make decisions at the cognitive level. LLM can use them to physically interact
with the environment and complete various tasks. Then, the agent uses a hierarchical structure with
an LLM decomposer, planner, and interface module to break down goals into sub-goals, structured
actions, and executable operations. When given a goal, the decomposer breaks it down into a series
of sub-goals based on relevant text-based knowledge gathered from the internet. The planner then
maps out a sequence of structured actions to accomplish each sub-goal. Finally, the LLM Interface
module executes these planned actions to interact with the environment. It does this by processing raw
keyboard/mouse input and observations. We also design a text-based in-context learning strategy that
records and summarizes successful action lists into a text-based memory to enhance future planning.

In this paper, we demonstrate the feasibility of developing autonomous agents in Minecraft using
Large Language Models (LLMs). LLM can leverage its vast knowledge and reasoning capabilities to
provide logical responses to unforeseen or out-of-scope situations. It can also rapidly enhance its
interaction capabilities and goal completion using text-based knowledge and memory. Our approach,
Ghost In the Minecraft (GITM), showcases the potential for autonomous agents to address a wide
range of challenges in vast and ever-changing environments, allowing them to effectively navigate
such open-world settings. As a result, our agent has successfully collected 99.2% items in the
Minecraft Overworld as a milestone (see Fig. 1). It also achieves a decent success rate of 55% for
the popular “ObtainDiamond” task. Our agent demonstrates superior learning efficiency. It could be
trained with 32 CPU cores in just two days.

2 RELATED WORK

Minecraft agents are intelligent programs that can perform various tasks within the Minecraft
world. Reinforcement learning has dominated this area for many years. Some initial attempts have
tried to use hierarchical RL (Skrynnik et al., 2021; Mao et al., 2022; Lin et al., 2021) or imitation

2

Under review as a conference paper at ICLR 2024

goal
LLM

Planner

structured actions

action list

feedback observation

keyboard & mouse

environment

explore

mine

craft / smelt

dig_down

…

text-based

knowledge

text-based

memory

(Object, Count, Material, Tool, Info)

goal format

LLM

Decomposer

equip, explore, approach, mine,
attack, dig_down, go_up, build,
craft, smelt, apply, place

structured action set

sub-goal tree

update update

LLM Interface

Figure 2: Overview of our GITM. Given a Minecraft goal, the LLM Decomposer divides the goal
into a sub-goal tree. The LLM Planner then plans an action sequence for each sub-goal. Finally,
the LLM Interface executes each action in the environment. Our LLM-based agents can be further
enhanced by leveraging text-based knowledge and memory.
learning (Amiranashvili et al., 2020) in MineRL competitions (Milani et al., 2020; Guss et al., 2021;
Kanervisto et al., 2022). Recently, with large-scale web data, VPT (Baker et al., 2022) builds a
foundation model for Minecraft by learning from videos. Based on its success, many works (Milani
et al., 2023) have also explored to fine-tune foundation model with human feedback. On the other
hand, as Minecraft agents become increasingly proficient in handling simple tasks, the importance
of multi-task learning becomes more prominent. Some previous works have adopted knowledge
distillation (Tessler et al., 2017) and curriculum learning (Kanitscheider et al., 2021), while recent
works (Fan et al., 2022; Cai et al., 2023) tried to construct a language-conditioned multi-task agent
via feeding the goal description embedding into the model.

Recently, researchers have come to be aware of the extraordinary general planning ability of
LLMs (Huang et al., 2022a). Many works (Huang et al., 2022b; Wang et al., 2023; Yuan et al.,
2023) have leveraged LLMs to enhance the high-level planning ability of Minecraft agents. Inner
Monologue (Huang et al., 2022b) leveraged environment feedback to improve the planning ability
of LLM. DEPS (Wang et al., 2023) further extended this closed-loop interaction by introducing
a description, explainer, and selector. Plan4MC (Yuan et al., 2023) pre-defined basic skills and
instructed LLM to extract the relationship between skills to construct a skill graph.

Unlike previous RL-based or RL with LLM methods, our LLM-native approach brings the Minecraft
agent to another level both in efficiency and robustness by leveraging high-level action abstraction
and text-based knowledge and memory.

Large Language Models with Tools Extending the ability of LLMs by leveraging external tools
has drawn a lot of attention recently. Several works (Liang et al., 2022; Singh et al., 2022; Driess
et al., 2023) have explored to augment LLMs with robot perception and control abilities. Code as
Polices (Liang et al., 2022) tried to prompt LLM to generate codes that can drive robots. PaLM-
E (Driess et al., 2023) unified robot perception, instruction following, task planning, and low-level
control into a unified framework. Another line of works tries to build external plugins around LLMs
to enhance its ability. Toolformer (Schick et al., 2023) tries to teach LLMs to choose and use a wide
range of tools like calculators and search engines and incorporate the results from tools into text
generation. HuggingGPT (Shen et al., 2023) builds an agent for leveraging a combination of vision,
language, and audio models hosted on HuggingFace. API Bank (Li et al., 2023) proposes a synthetic
benchmark suite for evaluating how good LLMs are for using external tools.

Compared with these tool-augmented LLMs, our agents are tasked with much more complex goals in
a highly uncertain open-world.

3 METHOD

3.1 ACTION ABSTRATION

LLM is not proficient at handling physical interactions based on keyboard and mouse operations,
therefore we abstract the actions into a set of structured actions represented in text. The structured
actions are designed with well-defined functions and clear semantics, enabling LLMs to make
decisions at the cognitive level. A structured action can be defined as follows:

(ActionName, Arguments, Description), (1)

3

Under review as a conference paper at ICLR 2024

Table 1: Examples of structured actions. A structured action contains name and arguments for
execution, as well as description to help LLMs understand and decide when to choose this action.

Name Arguments Description

equip object Equip the object from the inventory: used to equip equipment, including tools, weapons, and armor.
explore object, strategy Move around to find the object: used to find objects including block items and entities on the ground.
approach object Move close to a visible object: used to approach the object you want to attack or mine.
mine/attack object, tool Attack/Mine the object with the tool: used to attack/mine the object within reach.
dig down/go up ylevel, tool Dig down/Go up with the tool: used to go down/up underground.
craft/smelt object, tool, material Craft/Smelt the object with the materials and tool: used to craft new object that is not in the inventory or is not enough.
apply/place object, tool Apply/Place the tool on the object: used to apply tools or place blocks.

The action name and arguments define the action we want the agent to execute, while the action
description provides enough information to let LLMs know when to choose the corresponding actions,
as shown in Tab. 1.

We extract the set of structured actions by leveraging the powerful reasoning capability of LLMs.
Specifically, a pre-trained LLM is utilized to decompose the 3141 predefined tasks provided by Mine-
Dojo (Fan et al., 2022) into action sequences. Instructions for guiding LLMs on action decomposition
are provided in Appendix. Then, we use their text embeddings to cluster action sequences. Finally,
we extract the structured actions by selecting frequent action clusters and merging action clusters
with similar functionalities. See Appendix for the set of structured actions.

3.2 LLM-BASED HIERARCHICAL AGENT

As illustrated in Fig. 2, the LLM-based Hierarchical Agent comprises three components: an LLM
Decomposer, an LLM Planner, and an LLM Interface. These components collaborate to progressively
break down the task goal into sub-goals, structured actions, and keyboard/mouse operations.

3.2.1 LLM DECOMPOSER

Rather than directly assigning the task goal to the agent and expecting a comprehensive and robust
action plan, this work suggests the more practical strategy of decomposing the task goal into a
series of more achievable sub-goals. By addressing each constituent sub-goal, the task goal can
be progressively achieved. To this end, an LLM Decomposer is proposed. Goals are fed to the
decomposer and recursively decomposed into a sub-goal tree. Text-based knowledge provides the
necessary information for decomposition.

Goal Format. Since we aim to unlock the entire Overworld technology tree in Minecraft, all goals
can be defined as obtaining items in the format of

(Object, Count, Material, Tool, Info), (2)

where “Object” denotes the target item, “Count” specifies the target quantity. “Material” and “Tool”
refer to prerequisites needed to obtain the target item. “Info” stores the text-based knowledge related
to this goal. Given a specific goal, its sentence embedding extracted from a pre-trained LLM is used
to retrieve the most relevant text-based knowledge from an external knowledge base. Then, the LLM
identifies the required material, tools, and related information from the gathered knowledge. The
complete instructions for the LLM are described in Appendix.

Recursive Decomposition. This goal format enables the recursive decomposition of each goal into
a sub-goal tree. Specifically, given a goal, all prerequisite items are listed as sub-goals, including
materials, tools, and their corresponding quantities. Then, the recursive decomposition continues for
each sub-goal until it has no prerequisites. After the decomposition, the execution sequence of the
sub-goals is planned through post-order traversal. Such goal decomposition enhances the success rate
of LLM planning, especially for goals necessitating long-horizon planning.

3.2.2 LLM PLANNER

LLMs excel at language understanding and reasoning but struggle with low-level control and mul-
timodal perception. To leverage LLMs’ strengths while addressing their limitations, we develop
structured actions and feedback mechanisms as an abstract interface for them to manage agent-
environment interaction. We propose an LLM-based Planner to achieve goals in Minecraft. Given a
goal, it generates structured actions to control agents, receives feedback, and revises plans accordingly.
It also has a text memory that aids planning by providing solutions for frequent goals.

4

Under review as a conference paper at ICLR 2024

Action Interface:
𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑜𝑏𝑗𝑒𝑐𝑡)
𝑚𝑖𝑛𝑒(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡𝑜𝑜𝑙)
𝑑𝑖𝑔_𝑑𝑜𝑤𝑛(𝑦_𝑙𝑒𝑣𝑒𝑙, 𝑡𝑜𝑜𝑙)
...

Query Illustration:
Query contains a goal, feedback from the

agent, and reference plan from the memory

Response Format:
{

“explanation”: “explain action failure”,
“thoughts”: “thoughts on your plan”,
“action_list”: […]

}

Interaction Guideline:
You will receive feedback messages. If

your action failed, please replan …

Instruction

Query

Goal: obtain 1 log.

External info: Log can be mined

without any tool …

Feedback

Reference plan

Plan

{
“explanation”: “The last action failed because log only exists on the ground,

but I am underground (y=15), I can not find any log.”,
“thoughts”: “First I need to go back to the ground using stone pickaxe.

Then I can explore log on the ground, approach it and mine it.”,
“action_list”: [

{“name”: “go_back_to_ground”, “args”: {“tool”: “stone_pickaxe”}},
{“name”: “explore”, “args”: {“object”: “log”, “strategy”: “bfs”}},
{“name”: “approach”, “args”: {“object”: “log”}},
{“name”: “mine”, “args”: {“object”: “log”, “tool”: null}}

]
}

Large
Language

Model

Feedback

The action {“name”: “explore”, “args”: {“object”: “log”, “strategy”: “bfs”}}
failed

Error message: cannot find the object “log” in a certain number of steps

- inventory: {‘stone_pickaxe’: 1, ‘planks’: 2, ‘crafting_table’: 1, …}
- environment: {‘biome’: forest, ‘y_level’: 15}

Agent

Memory
Goal object: log

Reference plan:

[
{“name”: “explore”, “args”: {“object”: “log”, “strategy”: “bfs”}},
{“name”: “approach”, “args”: {“object”: “log”}},
{“name”: “mine”, “args”: {“object”: “log”, “tool”: null}}

]

Figure 3: Illustration of our planning process with the LLM Planner and the agent in the loop.
Given a specific goal, the planner generates plans with structured actions under the guidance of
instruction, user query, previous feedback, and reference plan from memory. The agent executes the
actions and provides feedback for the following planning.

Feedback Mechanism. Open-loop planning cannot guarantee success, especially in open-world
environments, where agents might encounter unexpected events. Feedback is crucial to form an effec-
tive closed loop. Without appropriate feedback, the LLM has no information about the consequences
of actions and may repeat failed action plans. Feedback message is designed to present the agent’s
current state in the environment (i.e., inventory and environment), as well as the success and failure
information for each executed action, as shown in Fig. 3. By incorporating this feedback, the LLM
can update its understanding of the environment, refine strategies, and adapt its behavior accordingly.

Planning. Once the abstract interface is prepared, a pre-trained LLM is queried to generate a
goal-specific action sequence. This is achieved through carefully designed instructions and user
queries, enabling the LLM to efficiently create and revise the plans. Fig. 3 illustrates the planning
process. See Appendix for the full description.

Instruction specifies the guidelines that LLMs must follow, including 1) Action Interface
provides functional descriptions of the structured actions and their parameters; 2) Query Illustration
clarifies the structure and meaning of user queries; 3) Response Format requires LLM to return
responses in the format of {Explanation, Thought, Action List}, where “Explanation” requires LLMs
to explain the reason for action failure, “Thought” requires LLM to use natural language to plan
before outputting action sequences as a chain-of-thought (CoT) mechanism (Wei et al., 2022), and
“Action List” outputs a list of structured actions to be executed; 4) Interaction Guideline guides LLMs
to correct failed actions based on the feedback message, thus enabling the LLM to revise the plan.

User Query provides the specific query for a given goal, including 1) Goal represents the objective
by text as “Obtain Count Item, given Material and Tool. Extra info: Info” according to
Eq. equation 2; 2) Feedback is the feedback information of the abstract interface; 3) Reference Plan
provides a common reference plan for the current goal retrieved from the text-base memory.

3.2.3 LLM INTERFACE

Unlike the existing RL-based agents that directly control the keyboard and mouse, LLM-based agents
interact with the environment through structured actions and feedback messages. The LLM interface
serves to implement structured actions as keyboard/mouse operations and extract observations
provided by the environment into feedback messages.

Structured actions can be implemented in various ways such as hand-written scripts or RL-learned
models. While RL-learned models have been employed in Minecraft previously, they were either
broad in functionality but ineffective in practice or too specific in functionality, limiting their appli-
cability to general tasks and actions. Clarifying the capability boundary of RL-learned models is

5

Under review as a conference paper at ICLR 2024

challenging. Instead, in this work, we choose to implement structured actions using hand-written
scripts. Since structured actions are well-defined and easy to implement, we can manually implement
them based on observations (e.g., location, LiDAR, and voxel) and basic operations (e.g., move,
jump, adjust camera angle, click left mouse button, and click right mouse button) provided by the
MineDojo (Fan et al., 2022) environment. See Appendix for details.

Feedback messages include whether the structured action execution succeeded or failed. Failure
messages include bounds checks before the action execution and run-time failures after the action
execution. Here we only consider the two directly known run-time failures, death and timeout. If
the execution fails, the failure messages are additionally notified. Feedback also includes the current
state of the agent in the environment, including the items in the inventory, the current biome, and
depth, etc. See Appendix for details.

3.3 TEXT-BASED IN-CONTEXT LEARNING

Our agent employs LLM as its core component, potentially encountering the issue of hallucination.
To improve the LLM’s precision in managing physical interactions and planning, we introduce a
text-based in-context learning strategy. This strategy explicitly integrates external knowledge and
stores successful experiences through textual representations. Text-based knowledge will serve as
context for the LLM Decomposer, while text-based memory will support the LLM Planner.

Text-based Knowledge is essential for automatic goal decomposition. We build an external knowl-
edge base documented in text from the Minecraft Wiki on the Internet 1 and the item crafting/smelting
recipes, providing an exhaustive source of knowledge about the Minecraft world. For instance, if we
need to craft a wooden pickaxe, the crafting recipe will indicate that the required materials are three
planks and two sticks and the tool is a crafting table. It also provides information about the distribution
of raw materials. For example, diamonds are frequently found in levels 10∼12 underground.

Text-based Memory is designed for LLM to maintain common reference plans for each encountered
objective as experiential knowledge. LLMs acquire experience in controlling agents and resolving
specific situations through game-play and agent interaction. Instead of starting from scratch every
time, using prior experience allows LLMs to handle tasks more efficiently, a process similar to human
skill improvement through practice.

To this end, we design a text-based memory mechanism for LLM to store and retrieve gained
knowledge. Unlike the model-driven methods, which store knowledge in parameters, this textual
knowledge memory is explicit, logical, and closely aligned with human thought processes. This
allows for direct application to a wide range of similar tasks, leading to more efficient learning and
improved generalization.

Text-based In-context Learning is designed to improve the LLM Planner. Specifically, during each
game episode, once the goal is achieved, the entirely executed action list would be stored in memory.
The LLM may achieve the same goal under various circumstances, resulting in a range of different
plans. To identify a common reference plan suitable for general situations, essential actions from
multiple plans are summarized. This summarization process is also implemented using LLMs (see
Appendix for details). When encountering similar goals, the LLM creates new plans based on the
summarized reference plans retrieved from memory. Successful action sequences from these new
plans are also added to memory for future summarization. As the LLM-based Planner accumulates
summaries, it becomes increasingly effective.

4 EXPERIMENTS

Task Definition and Metrics. We measure the ability of GITM through item collection tasks. Col-
lecting all in-game items clearly demonstrates the adaptability of our agent, as it requires interaction
with diverse terrains, biomes, and mobs. We only collect items could be found in the Overworld.
We exclude items could only be obtained by trading with villagers, opening treasure chest or find a
special structure on the map. This give us a total of 262 tasks. For the assessment of our agent, we
employ “Coverage of the Overworld Technology Tree” and“Success Rate” as evaluation metrics.

1https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki

6

https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki

Under review as a conference paper at ICLR 2024

crafting table

wooden pickaxe

stone pickaxe
furnace

iron pickaxe
diamond

diamond pickaxe

Items

0

25

50

75

100

Su
cc

es
s R

at
e

Mining & Crafting

rotten flesh string bone
spider eye

slime ball
gunpowder

Items

0

25

50

75

100

Su
cc

es
s R

at
e

Killing mobs

beef
cooked beef

leather
bread

Items

0

25

50

75

100

Su
cc

es
s R

at
e

Eating

snowball
clay ball

waterlily
deadbush

Items

0

20

40

60

Su
cc

es
s R

at
e

Biomes

Figure 4: Success rate for typical items in the entire Minecraft Overworld Technology Tree. Our
agent is able to handle a wide range of tasks that are required to effectively navigate the open-world,
including mining, crafting, killing mobs, eating and exploring biomes.

Implementation Details. In this paper, we take the classic robotics approach (Brooks, 1986) of
dividing an agent into three parts: sensing, planning, and acting. We focus on using large language
models (LLMs) to handle the planning challenges in Minecraft. Rather than work on perception and
control, we use more reliable off-the-shelf tools for those parts (lidar scans provided by MineDojo (Fan
et al., 2022) for sensing and pre-programmed actions for control). This lets us concentrate on using
LLMs for planning without getting bogged down by limitations in perception and control. By relying
on oracle for sensing and acting, we can better evaluate how well LLMs perform at planning tasks
in the Minecraft environment. Overall, our goal is to show how capable LLMs are at planning by
focusing on that while using simple but effective solutions for perception and control.

4.1 MAIN RESULT

Unlocking the Overworld Technology Tree. Compared with existing Minecraft agents (Baker et al.,
2022; Hafner et al., 2023; Wang et al., 2023) which mostly focuses on solving the ObtainDiamond
task and could only unlock a limited part of the full technology tree (13/262 for Dreamerv3, 15/262
VPT, 69/262 for DEPS), our approach could collect 99.2% items of the technology tree as shown in
Fig. 1. Previous methods have weak abilities to generalize to unseen tasks and solve extremely long-
horizon tasks (e.g., obtaining a “enchanted book”). To deal with these challenges, we extract a well-
defined set of structured actions by using LLMs to decompose over 3141 predefined MineDojo tasks.
This provides broad, open-world Minecraft capability. Combined with LLM planning, it enables
solving more complex tasks than ObtainDiamond. We note that crafting TNT items appears to be
still challenging for our agent, because it requires to kill multiple creepers. Strengthening the combat
capability is a future direction for more powerful agents.

Success Rate for the Technology Tree. We show the success rate of our method for collecting
typical items in Fig. 4. To effectively navigate the open-world, the agent must learn to gather
resources, craft tools, fight with mobs, eat to recover health and explore different biomes. Our
method can achieve decent success rate for most of these tasks, enabling the agent to adapt to the
ever-changing environment. We provide the success rate for all Overworld items in the appendix.

4.2 COMPARISON WITH OTHER MINECRAFT AGENTS

In Tab. 2, we test different agents on the well known ObtainDiamond challenge, i.e, obtaining
a diamond from scratch in Minecraft. Based on the abstract interface provided by our designed
structured action, we implement some representative LLM-based agents including ReAct (Yao et al.,

7

Under review as a conference paper at ICLR 2024

Table 2: Comparison of our GITM with previous methods on the ObtainDiamond challenge. The
milestone items from left to right are crafting table , wooden pickaxe , stone pickaxe ,

iron pickaxe , and diamond . Note that the LLM-based methods cannot be directly compared
with RL-based methods (with grey text) since they have different observations and actions. † Both
AutoGPT and our GITM have a memory mechanism. The “-zero” agents are tested with empty
memory initialized in each episode.

Method Observation Action Learning
steps

Success Rate (%)

DreamerV3 RGB, status low-level ∼1e8 - 50.0 3.0 0.01 0.01
DEPS RGB, voxels, status low-level - 90.0 80.0 73.3 10.0 0.6
VPT RGB low-level ∼1e10 100.0 100.0 100.0 85.0 20.0

ReAct LiDAR, voxels, status structured 0 30.0 15.0 0.0 0.0 0.0
AutoGPT-zero† LiDAR, voxels, status structured 0 35.0 17.5 2.5 0.0 0.0
AutoGPT LiDAR, voxels, status structured ∼1e5 50.0 30.0 15.0 0.0 0.0
GITM-zero† LiDAR, voxels, status structured 0 100.0 100.0 82.5 62.5 32.5
GITM LiDAR, voxels, status structured ∼1e5 100.0 100.0 97.5 80.0 55.0

2022) and AutoGPT (Significant-Gravitas/AutoGPT:, 2023) and compare them with our GITM.
We also report the results of existing RL-based agents as reference, including VPT (Baker et al.,
2022), DreamerV3 (Hafner et al., 2023), and DEPS (Wang et al., 2023). Note that we do not directly
compare the success rate of our method with RL-based methods since their observations and actions
are different. Detailed observation and action spaces of different methods are listed in Appendix.

ReAct (Yao et al., 2022) is a common approach for LLM-based agent which synthesizes reasoning
and action with chain-of-thought prompting (Wei et al., 2022). It can only handle simple tasks such as
obtaining crafting table and wooden pickaxe with low success rates. This indicates that even though
the physical interaction with the environment is mainly handled by the structured actions, planning
is still challenging in Minecraft. The difficulty of planning arises from the long-horizon complex
tasks, as well as the unpredictable nature of the open-world environment including unexpected
events and imperfections of the structured actions in perception and control. AutoGPT (Significant-
Gravitas/AutoGPT:, 2023) decomposes tasks into high-level goals and short-term plans and executes
actions in a ReAct-style loop. Utilizing high-level plans, it unlocks more complex tasks such as
obtaining stone pickaxe. Besides, AutoGPT leverages memory mechanism to store and retrieve useful
information in previous experience. The success rates increase with a learned memory (e.g., from
2.5% to 15.0% for stone pickaxe).

Our GITM is the only LLM-based agent that successfully obtains diamond and iron pickaxe with
success rates 80.0% and 55.0%, respectively. On simple tasks, GITM achieves success rates equal
or approximate to 100%, greatly outperforming existing LLM-based methods. Furthermore, GITM
gains significant boosts with the learned memory (+17.5% for iron pickaxe and +22.5% for diamond
in success rate), confirming the effectiveness of our proposed text-based in-context learning. Our
method is superior because it recursively decomposes goals into sub-goals, enabling the agent to
learn from simple to complex tasks. The experience gained on easier sub-goals directly informs
solutions for harder goals. Additionally, our agent summarizes and refines general plans in memory,
rather than simply recording all history which may include distracting errors and hallucinations.

Existing RL-based agents have also achieved considerable success rates on this task. For example,
VPT (Baker et al., 2022) gets 85.0% for iron pickaxe and 20.0% for diamond. However, it takes tens
of millions of steps to for an RL agent to converges to meaningful non-zero success rates, and the
learned agents can not be easily re-tasked for other tasks.

4.3 ABLATION STUDY

We conduct ablation experiments on the ObtainDiamond task. When leveraging goal decomposi-
tion, for each sub-goal, we limit the maximum number of queries to LLM as 30, and exceeding the
query limit will be counted as a failure. For each setting, we run 40 games and calculate the success
rate. We report the success rates of achieving the milestone items, including crafting table, wooden
pickaxe, stone pickaxe, iron pickaxe, and diamond.

8

Under review as a conference paper at ICLR 2024

Table 3: Ablation study of structured action. “w/o structured action” means having the LLM
planner directly output low-level controls instead of structured actions. “w/o feedback message”
indicates that the output from executing structured actions is not reported back to the LLM planner.
“RL w/ structured action” refers to training an agent with RL on structured actions.

Setting Success Rate (%)

(a) w/o structured action 0.0 0.0 0.0 0.0 0.0
(b) w/o feedback message 100.0 97.5 85.0 12.5 2.5
(c) GITM 100.0 100.0 97.5 80.0 55.0

(d) RL w/ structured action 0.0 0.0 0.0 0.0 0.0

Table 4: Ablations of LLM decomposer, text-based external knowledge, and text-based memory.

Setting Success Rate (%)

(a) w/o decomposer 100.0 97.5 50.0 0.0 0.0
(b) w/o external knowledge 100.0 100.0 82.5 55.0 30.0
(c) w/o memory 100.0 100.0 80.0 60.0 32.5
(d) GITM 100.0 100.0 97.5 80.0 55.0

Structured Action. Tab. 3 studies the importance of structured action. Tab. 3(a) and (c) shows that,
without structured action, LLM can not produce reasonable actions due to the lack of environment
grounding. Feedback contains the agent’s state and the execution result of the actions, which helps the
planner to understand and make another attempt to correct the mistakes in the previous and deal with
corner cases. This enables the planner to accomplish a broader range of goals with higher success
rate. As shown in Tab. 3(b) and (c), our agent enhances the ability to collect diamond by combining
feedback with structured action. We also make an initial attempt to apply reinforcement learning on
structured actions in Tab. 3(d). We are not able to obtain a reasonable result with similar learning
steps of our method. We suspect the structured action space is too large for RL methods to learn from
scratch (note the structured action parameters should also be considered).

Goal Decomposition. Without goal decomposition, the planner achieved only short-term tasks like
obtaining stone axes, and only at a 50% success rate (Tab. 4(a)). This demonstrates the necessity of
goal decomposition. Leveraging the powerful long-term planning capabilities of LLMs, the goals
are decomposed into sub-goals feasible and practical for the planner, so the agent is able to obtain
diamond with a 55% success rate.

External Knowledge Base. External knowledge contains general rules, crafting recipes, and common
tricks in Minecraft, such as the recipes for crafting iron ingot and iron pickaxe, the suitable location to
find diamond ore, and the efficient way to get cobblestone. Providing the planner with this information
greatly boosts the success rate of obtaining iron pickaxe and diamond, and the success rate of mining
diamond increase by 25% by learning from the knowledge base that diamonds are more likely to
appear in specific levels (Tab. 4(b)).

Text-based Memory. Leveraging the reference plans in the memory, the planner handles the tasks it
has encountered more efficiently. The success rates of obtaining iron pickaxe and diamond are 80.0%
and 55.0%, surpassing the model without memory by 20.0% and 22.5%, respectively (Tab. 4(c)).

5 CONCLUSION

We introduce the GITM framework for Minecraft, which utilizes Large Language Models (LLMs)
with text-based knowledge and memory for hierarchical planning of goals. A set of structured
actions is constructed to enable LLMs to interact within Minecraft using textual descriptions. LLM
Decomposer, LLM Planner, and LLM Interface are introduced to gradually decompose goals into
sub-goals, structured actions, and keyboard/mouse operations. A text-based in-context learning is
designed to enhance future planning. By achieving decent performance and impressive learning
efficiency, this work makes significant progress towards adaptive agents that can effectively navigate,
make decisions, and interact in the open-world and ever-evolving environment of Minecraft.

9

Under review as a conference paper at ICLR 2024

REFERENCES

A. Amiranashvili, N. Dorka, W. Burgard, V. Koltun, and T. Brox. Scaling imitation learning in minecraft. arXiv
preprint arXiv:2007.02701, 2020.

B. Baker, I. Akkaya, P. Zhokov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro, and J. Clune. Video
pretraining (vpt): Learning to act by watching unlabeled online videos. Advances in Neural Information
Processing Systems, 35:24639–24654, 2022.

R. Brooks. A robust layered control system for a mobile robot. IEEE journal on robotics and automation, 2(1):
14–23, 1986.

S. Cai, Z. Wang, X. Ma, A. Liu, and Y. Liang. Open-world multi-task control through goal-aware representation
learning and adaptive horizon prediction. arXiv preprint arXiv:2301.10034, 2023.

A. J. Champandard. AI game development: Synthetic creatures with learning and reactive behaviors. New
Riders, 2003.

D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu,
et al. Palm-e: An embodied multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu, and A. Anand-
kumar. Minedojo: Building open-ended embodied agents with internet-scale knowledge. arXiv preprint
arXiv:2206.08853, 2022.

W. H. Guss, S. Milani, N. Topin, B. Houghton, S. Mohanty, A. Melnik, A. Harter, B. Buschmaas, B. Jaster,
C. Berganski, et al. Towards robust and domain agnostic reinforcement learning competitions: Minerl 2020.
In NeurIPS 2020 Competition and Demonstration Track, pages 233–252. PMLR, 2021.

D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Extracting actionable
knowledge for embodied agents. In International Conference on Machine Learning, pages 9118–9147. PMLR,
2022a.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar,
et al. Inner monologue: Embodied reasoning through planning with language models. arXiv preprint
arXiv:2207.05608, 2022b.

A. Kanervisto, S. Milani, K. Ramanauskas, N. Topin, Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, W. Yang, et al.
Minerl diamond 2021 competition: Overview, results, and lessons learned. NeurIPS 2021 Competitions and
Demonstrations Track, pages 13–28, 2022.

I. Kanitscheider, J. Huizinga, D. Farhi, W. H. Guss, B. Houghton, R. Sampedro, P. Zhokhov, B. Baker, A. Ecoffet,
J. Tang, et al. Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft. arXiv
preprint arXiv:2106.14876, 2021.

J. Laird and M. VanLent. Human-level ai’s killer application: Interactive computer games. AI magazine, 22(2):
15–15, 2001.

M. Li, F. Song, B. Yu, H. Yu, Z. Li, F. Huang, and Y. Li. Api-bank: A benchmark for tool-augmented llms.
arXiv preprint arXiv:2304.08244, 2023.

J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as policies: Language
model programs for embodied control. arXiv preprint arXiv:2209.07753, 2022.

Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, and W. Yang. Juewu-mc: Playing minecraft with sample-efficient hierarchical
reinforcement learning. arXiv preprint arXiv:2112.04907, 2021.

S. Makri and P. Charalambous. Towards a multi-agent non-player character road network: a reinforcement
learning approach. In 2021 IEEE Conference on Games (CoG), pages 1–5. IEEE, 2021.

H. Mao, C. Wang, X. Hao, Y. Mao, Y. Lu, C. Wu, J. Hao, D. Li, and P. Tang. Seihai: A sample-efficient hierar-
chical ai for the minerl competition. In Distributed Artificial Intelligence: Third International Conference,
DAI 2021, Shanghai, China, December 17–18, 2021, Proceedings 3, pages 38–51. Springer, 2022.

S. Milani, N. Topin, B. Houghton, W. H. Guss, S. P. Mohanty, K. Nakata, O. Vinyals, and N. S. Kuno.
Retrospective analysis of the 2019 minerl competition on sample efficient reinforcement learning. In NeurIPS
2019 Competition and Demonstration Track, pages 203–214. PMLR, 2020.

10

Under review as a conference paper at ICLR 2024

S. Milani, A. Kanervisto, K. Ramanauskas, S. Schulhoff, B. Houghton, S. Mohanty, B. Galbraith, K. Chen,
Y. Song, T. Zhou, et al. Towards solving fuzzy tasks with human feedback: A retrospective of the minerl
basalt 2022 competition. arXiv preprint arXiv:2303.13512, 2023.

R. Palma, A. A. Sánchez-Ruiz, M. A. Gómez-Martı́n, P. P. Gómez-Martı́n, and P. A. González-Calero. Combining
expert knowledge and learning from demonstration in real-time strategy games. In International Conference
on Case-Based Reasoning, pages 181–195. Springer, 2011.

J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative agents: Interactive
simulacra of human behavior. arXiv preprint arXiv:2304.03442, 2023.

T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and T. Scialom.
Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang. Hugginggpt: Solving ai tasks with chatgpt and its
friends in huggingface. arXiv preprint arXiv:2303.17580, 2023.

Significant-Gravitas/AutoGPT:. Autogpt: the heart of the open-source agent ecosystem. 2023. URL https:
//github.com/Significant-Gravitas/AutoGPT.

I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg. Progprompt:
Generating situated robot task plans using large language models. arXiv preprint arXiv:2209.11302, 2022.

A. Skrynnik, A. Staroverov, E. Aitygulov, K. Aksenov, V. Davydov, and A. I. Panov. Hierarchical deep q-network
from imperfect demonstrations in minecraft. Cognitive Systems Research, 65:74–78, 2021.

C. Tessler, S. Givony, T. Zahavy, D. Mankowitz, and S. Mannor. A deep hierarchical approach to lifelong
learning in minecraft. In Proceedings of the AAAI conference on artificial intelligence, 2017.

H. Wang, Y. Gao, and X. Chen. Rl-dot: A reinforcement learning npc team for playing domination games. IEEE
Transactions on Computational intelligence and AI in Games, 2(1):17–26, 2009.

Z. Wang, S. Cai, A. Liu, X. Ma, and Y. Liang. Describe, explain, plan and select: Interactive planning with large
language models enables open-world multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought prompting elicits
reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

G. N. Yannakakis. Game ai revisited. In Proceedings of the 9th conference on Computing Frontiers, pages
285–292, 2012.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629, 2022.

H. Yuan, C. Zhang, H. Wang, F. Xie, P. Cai, H. Dong, and Z. Lu. Plan4mc: Skill reinforcement learning and
planning for open-world minecraft tasks. arXiv preprint arXiv:2303.16563, 2023.

11

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

A.1 ACTION ABSTRACTION

Instruction for Extracting Structured Actions. To extract structured actions, we first ask LLM
to generate a tree-structured action planning for each of the 3141 predefined tasks provided by
MineDojo, and then converts each action step into a (verb, object, tool, material)
tuple. During decomposition, it is essential to ensure actions are neither too broad nor too specific.
We adjusted the depth of the action decomposition tree to achieve balance, and empirically set the
depth as 2 to meet our requirements.

Specifically, we use gpt-3.5-turbo from OpenAI API to generate the structured actions. We add
the following instruction to the content of “SYSTEM” role to generate the tree-structured plan. We
add the goal description, e.g., ”find material and craft a iron pickaxe”, to the content of “USER” role
and then asks LLM to response according to the requirements.

SYSTEM:
You serve as an assistant that helps me play Minecraft.

I will give you my goal in the game, please break it down as a tree-structure plan to achieve
this goal.

The requirements of the tree-structure plan are:

1. The plan tree should be exactly of depth 2.
2. Describe each step in one line.
3. You should index the two levels like ’1.’, ’1.1.’, ’1.2.’, ’2.’, ’2.1.’, etc.
4. The sub-goals at the bottom level should be basic actions so that I can easily execute them
in the game.

USER:
The goal is to {goal description}. Generate the plan according to the requirements.

After that, we extract the action tuple from each sentence of the leaf nodes. We use the following
instruction as the content of “SYSTEM” role to extract the tuple and add the sentence to the content
of “USER” role.

SYSTEM:
You serve as an assistant that helps me play Minecraft.

I will give you a sentence. Please convert this sentence into one or several actions according
to the following instructions.

Each action should be a tuple of four items, written in the form (’verb’, ’object’, ’tools’,
’materials’)

’verb’ is the verb of this action.
’object’ refers to the target object of the action.
’tools’ specifies the tools required for the action.
’material’ specifies the materials required for the action.
If some of the items are not required, set them to be ’None’.

USER:
The sentence is {sentence}. Generate the action tuple according to the requirements.

Then, we extract the structured actions by selecting frequent actions and merging actions with
similar functionalities. The set of structured actions is {equip, explore, approach,
mine/attack, dig down, go up, build, craft/smelt, apply}. Note that we
disregard more detailed action decomposition for attack and build to remove overly detailed
short-term actions and focus on long-term task completion.

12

Under review as a conference paper at ICLR 2024

A.2 LLM-BASED HIERARCHICAL AGENT

A.2.1 LLM DECOMPOSER

We use gpt-3.5-turbo from OpenAI API 2 for goal decomposition. The prompt is shown as
follows, which consists of two parts: instruction with the role of “SYSTEM” and query with the role
of “USER”. The {object quantity}, {object name} and {related knowledge} are
injectable slots that will be replaced with corresponding texts before fed into the LLM.

SYSTEM:
You are an assistant for the game Minecraft.

I will give you some target objects and some knowledge related to the object. Please write the
obtaining of the object as a goal in the standard form.

The standard form of the goal is as follows:
{

”object”: ”the name of the target object”,
”count”: ”the target quantity”,
”material”: ”the materials required for this goal, a dictionary in the form {material name:

material quantity}. If no material is required, set it to None”,
”tool”: ”the tool used for this goal. If multiple tools can be used for this goal, only write

the most basic one. If no tool is required, set it to None”,
”info”: ”the knowledge related to this goal”

}
The information I will give you:
Target object: the name and the quantity of the target object
Knowledge: some knowledge related to the object.

Requirements:
1. You must generate the goal based on the provided knowledge instead of purely depending
on your own knowledge.
2. The ”info” should be as compact as possible, at most 3 sentences. The knowledge I give you
may be raw texts from Wiki documents. Please extract and summarize important information
instead of directly copying all the texts.

Goal Example:
{

”object”: ”iron ore”,
”count”: 1,
”material”: None,
”tool”: ”stone pickaxe”,
”info”: ”iron ore is obtained by mining iron ore. iron ore is most found in level 53. iron ore

can only be mined with a stone pickaxe or better; using a wooden or gold pickaxe will yield
nothing.”
}
{

”object”: ”wooden pickaxe”,
”count”: 1,
”material”: {”planks”: 3, ”stick”: 2},
”tool”: ”crafting table”,
”info”: ”wooden pickaxe can be crafted with 3 planks and 2 stick as the material and

crafting table as the tool.”
}

USER:

2https://platform.openai.com/docs/api-reference

13

https://platform.openai.com/docs/api-reference

Under review as a conference paper at ICLR 2024

Target object: {object quantity} {object name}
Knowledge: {related knowledge}

The recursive decomposition generates a sub-goal tree starting from the final goal object as the root
node: if a goal has some prerequisites (materials or tools), for each required material or tool, we add a
child node representing the goal of obtaining that material or tool, and then recursively decompose the
child node, until there is no more prerequisites. The related knowledge is from: 1) Crafting/smelting
recipes in MineDojo (Fan et al., 2022), written in the form “Crafting {quantity} {object}
requires {material} as the material and {tool} as the tool”; 2) Wiki on the Internet 3. We extract
the paragraphs with keywords “obtaining”, “mining”, “sources”, etc.

A.3 LLM PLANNER

Here we present the prompt for planning with LLM. We also use gpt-3.5-turbo from OpenAI
API as the LLM planner. The model accepts inputs in the form of a chat, i.e., the prompt is a
dialogue consisting of several messages, each of which contains a role and the content. We set the
Instruction with the role “SYSTEM” at the beginning, and use the User Query with the role
“USER” to query the LLM for response. The content of the Instruction and User Query are
as follows.

A.3.1 INSTRUCTION

SYSTEM:
You serve as an assistant that helps me play the game Minecraft.

I will give you a goal in the game. Please think of a plan to achieve the goal, and then write a
sequence of actions to realize the plan. The requirements and instructions are as follows:

1. You can only use the following functions. Don’t make plans purely based on your
experience, think about how to use these functions.

explore(object, strategy)
Move around to find the object with the strategy: used to find objects including block items
and entities. This action is finished once the object is visible (maybe at a distance).
Augments:
- object: a string, the object to explore.
- strategy: a string, the strategy for exploration.

approach(object)
Move close to a visible object: used to approach the object you want to attack or mine. It may
fail if the target object is not accessible.
Augments:
- object: a string, the object to approach.

craft(object, materials, tool)
Craft the object with the materials and tool: used for crafting new object that is not in the
inventory or is not enough. The required materials must be in the inventory and will be
consumed, and the newly crafted objects will be added to the inventory. The tools like the
crafting table and furnace should be in the inventory and this action will directly use them.
Don’t try to place or approach the crafting table or furnace, you will get failed since this
action does not support using tools placed on the ground. You don’t need to collect the items
after crafting. If the quantity you require is more than a unit, this action will craft the objects
one unit by one unit. If the materials run out halfway through, this action will stop, and you
will only get part of the objects you want that have been crafted.
Augments:
- object: a dict, whose key is the name of the object and value is the object quantity.

3https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki

14

https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki

Under review as a conference paper at ICLR 2024

- materials: a dict, whose keys are the names of the materials and values are the quantities.
- tool: a string, the tool used for crafting. Set to null if no tool is required.

mine(object, tool)
Mine the object with the tool: can only mine the object within reach, cannot mine object from
a distance. If there are enough objects within reach, this action will mine as many as you
specify. The obtained objects will be added to the inventory.
Augments:
- object: a string, the object to mine.
- tool: a string, the tool used for mining. Set to null if no tool is required.

attack(object, tool)
Attack the object with the tool: used to attack the object within reach. This action will keep
track of and attack the object until it is killed.
Augments:
- object: a string, the object to attack.
- tool: a string, the tool used for mining. Set to null if no tool is required.

equip(object)
Equip the object from the inventory: used to equip equipment, including tools, weapons, and
armor. The object must be in the inventory and belong to the items for equipping.
Augments:
- object: a string, the object to equip.

digdown(object, tool)
Dig down to the y-level with the tool: the only action you can take if you want to go
underground for mining some ore.
Augments:
- object: an int, the y-level (absolute y coordinate) to dig to.
- tool: a string, the tool used for digging. Set to null if no tool is required.

go back to ground(tool)
Go back to the ground from underground: the only action you can take for going back to the
ground if you are underground.
Augments:
- tool: a string, the tool used for digging. Set to null if no tool is required.

apply(object, tool)
Apply the tool on the object: used for fetching water, milk, lava with the tool bucket, pooling
water or lava to the object with the tool water bucket or lava bucket, shearing sheep with the
tool shears, blocking attacks with the tool shield.
Augments:
- object: a string, the object to apply to.
- tool: a string, the tool used to apply.

2. You cannot define any new function. Note that the ”Generated structures” world creation
option is turned off.

3. There is an inventory that stores all the objects I have. It is not an entity, but objects can be
added to it or retrieved from it anytime at anywhere without specific actions. The mined or
crafted objects will be added to this inventory, and the materials and tools to use are also from
this inventory. Objects in the inventory can be directly used. Don’t write the code to obtain
them. If you plan to use some object not in the inventory, you should first plan to obtain it.
You can view the inventory as one of my states, and it is written in form of a dictionary whose
keys are the name of the objects I have and the values are their quantities.

4. You will get the following information about my current state:
- inventory: a dict representing the inventory mentioned above, whose keys are the name of
the objects and the values are their quantities
- environment: a string including my surrounding biome, the y-level of my current location,
and whether I am on the ground or underground

15

Under review as a conference paper at ICLR 2024

Pay attention to this information. Choose the easiest way to achieve the goal conditioned on
my current state. Do not provide options, always make the final decision.

5. You must describe your thoughts on the plan in natural language at the beginning. After
that, you should write all the actions together. The response should follow the format:
{

”explanation”: ”explain why the last action failed, set to null for the first planning”,
”thoughts”: ”Your thoughts on the plan in natural languag”,
”action list”: [
{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

expected results of this action”},
{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

expected results of this action”},
{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

expected results of this action”}
]

}
The action list can contain arbitrary number of actions. The args of each action should
correspond to the type mentioned in the Arguments part. Remember to add “‘dict“‘ at the
beginning and the end of the dict. Ensure that you response can be parsed by Python json.loads

6. I will execute your code step by step and give you feedback. If some action fails, I will
stop at that action and will not execute its following actions. The feedback will include error
messages about the failed action. At that time, you should replan and write the new code just
starting from that failed action.

A.3.2 USER QUERY

USER:
My current state:
- inventory: {inventory}
- environment: {environment}
The goal is to {goal}.

Here is one plan to achieve similar goal for reference: {reference plan}.

Begin your plan. Remember to follow the response format.
or Action {successful action} succeeded, and {feedback message}. Continue
your plan. Do not repeat successful action. Remember to follow the response format.
or Action {failed action} failed, because {feedback message}. Revise your plan
from the failed action. Remember to follow the response format.

A.3.3 LLM INTERFACE

Action Implementation. The observation of the action contains LiDAR rays with an interval of 5
degrees in the horizon and vertical direction for locating objects, and voxels with 10 unit radius only
for navigation, inventory, life status, and agent location status (X-ray cheating is carefully avoided).
RGB is not used in our implementation, although it provides more information than LiDAR rays. For
example, the biome, and category of the dropping item can not be identified by LiDAR rays. Some
objects may also be missed by LiDAR due to the sparseness of LiDAR rays. Different from Hafner
et al. (2023) who set the breaking speed to 100, we did not change the game settings. The detailed
implementation of each structured action is as follows:

• equip: The equip action calls the environment API to equip the required object. The action
succeeds when the API returns success. The action fails when the object is not in inventory or the
equip API returns failure.

• explore: The explore action traverses the world until the object is visible. This action regards
the world as a chessboard, and each node on the chessboard is the center point of a 20×20 units

16

Under review as a conference paper at ICLR 2024

area. Two strategies are implemented depending on whether the agent is on the ground or not.
When the agent is on the ground, the BFS explore will be adopted. When the agent is under the
ground, mainly for exploring ore, the DFS explore will be adopted. In the DFS exploration, the
agent will break the blocks to form a mine road with a width of 1 and a height of 2. The action
succeeds when the object is visible. The action fails when the explore exceeds a preset steps of
10,000 but the required object is not found.

• approach: The approach action finds the nearest visible required object and walks towards the
object. We adopt A∗ algorithm for finding a path. The A∗ algorithm can jump, translate, and fall
in four directions of north, south, east and west. We also allow the agent to jump while placing a
block under the agent for ascent. If the object is out of the voxel observation range, A∗ algorithm is
iteratively applied to find the location nearest to the object. The action succeeds when the ℓ∞ norm
distance between the object and agent is less than 2. The action fails when there is no required
object visible or no path can be found to walk close to the object.

• mine/attack: The mine/attack action uses the keyboard attack API with the tools to attack the
object. Only visible objects could be mined or attacked. The object of mine should be blocks, and
the agent will continue mining the block until it is broken. The object of attack should be entities,
and the agent will iteratively approach and attack the entity until it is killed. After the block is
broken or the entity is killed, if there are items dropped by them, the agent will approach the items
to collect them. The action succeeds when the block is broken or the entity is killed. The action
fails when there is no visible object, no required tools is in inventory, or the visible object is out of
attack range.

• dig down: The dig down action iteratively breaks the block underfoot with the tool until the
required ylevel is reached. If the agent is on the ground, before digging down, the current location
is stored for going up action. After the action succeeds, the state of the agent is set to underground.
The action succeeds when the required ylevel is reached. The action fails when it exceeds the reset
max steps 10,000 or no required tool is in inventory.

• go up: The agent will first go back to the location stored by dig down. Then, the go up action
puts dirt blocks underfoot to raise the agent. After the action is finished, the state of agent is set to
on the ground. The action succeeds when the pre-stored location is reached. The action fails when
the walk fails, exceeds the reset max steps 10,000 or there is no required tool in inventory.

• build: The build action places the required blocks according to a given blueprint from bottom
to up. The action succeeds when all blocks have been placed. The action fails when there are no
enough materials in inventory or it is invalid to place some blocks.

• craft/smelt: The action calls the environment API to craft/smelt the required object. The
action succeeds when the required object is obtained. The actions fail when there are no enough
materials in inventory or the agent is unable to place the crafting table/furnace or the API fails.

• apply: The apply action calls the keyboard use API, and applies the specific tool to the object,
e.g., applying the bucket on water to obtain water bucket. The action succeeds when the API
returns success. The action fails when there is no visible object, no tool in inventory or the API
fails.

Feedback Message. After the execution of each action, we will get feedback from the structured
actions. The feedback will refresh the agent’s state in Sec. A.3.2, including current inventory, biome,
ylevel, and on/under the ground status. The feedback will also contain the success/fail message from
these actions, as well as the inventory change during the action.

A.4 MEMORY

A.4.1 LEARNING PROCESS

We maintain the text-based memory with a dictionary, whose keys are sub-goals and values are lists
of successful action sequences for the corresponding sub-goals. The construction and update of the
memory are through the following learning process:

• When encountering a new sub-goal that is not in the memory, the LLM planner creates plans
without reference. Once the sub-goal is achieved, the entirely executed action sequence will be
stored in the memory.

17

Under review as a conference paper at ICLR 2024

• When encountering a sub-goal with memory, the first action sequence in the recording list for this
goal is retrieved as the reference plan, with which the LLM planner tries to achieve the goal. If it
succeeds, the newly executed action sequence will be added to the last of the recording list.

• For each sub-goal, once the number of action sequences recorded in its list reaches N , we pop
all the N sequences and use LLM to summarize them into a common plan solution suitable for
various scenarios, which is then put first in the list. N is set to 5 in all our experiments.

To learn the memory for obtaining all items, starting from scratch each time would take a long time.
In addition, it is necessary to avoid spending most of the time on learning simple tasks and not
investing enough in learning difficult tasks. To improve learning efficiency, we suggest studying the
sub-goals individually one by one. We first use our LLM Decomposer to generate sub-goal trees for
all items, acquiring the set of all sub-goals involved. Then for each sub-goal, the LLM planner plays
multiple times given its prerequisites including the required materials and tools. The learning process
of the sub-goal is finished once we obtain N = 5 successful action sequences and summarize them
into one common plan solution for reference.

A.4.2 IMPLEMENTATION OF MEMORY SUMMARIZATION

We also use gpt-3.5-turbo from OpenAI API for memory summarization but in a different
dialogue. We use the following prompt to instruct the summarization with the role “SYSTEM”.
The slot {action description} is replaced with the same descriptions of interfaces of the
structured actions as Sec. A.3.1. We list all the action sequences to be summarized in the query with
the role “USER”, which is fed into the LLM for response.

SYSTEM:
You serve as an assistant that helps me play the game Minecraft.

I am using a set of actions to achieve goals in the game Minecraft. I have recorded several
action sequences successfully achieving a goal in a certain state. I will give you the goal, the
state, and the sequences later. Please summarize the multiple action sequences into a single
action sequence as a universal reference to achieve the goal given that certain state. Here are
the instructions:

1. Each action sequence is a sequence of the following actions:

{action description}
2. The action sequences before and after summarization are always conditioned on the given
state, i.e., the actions are taken in that certain state to achieve the goal. I will describe the state
in the following form: State: - inventory: a dict whose keys are the name of the objects and
the values are their quantities. This inventory stores all the objects I have. - environment: a
dict including my surrounding biome and whether I am on the ground or underground.

3. The action sequence you summarize should be able to achieve the goal in general cases
without specific modification. Every necessary action should be included, even though it does
not appear in some sequences because I manually skipped it in some lucky cases. The actions
redundant or irrelevant to the goal should be filtered out. The corner cases, such as success by
luck and dealing with contingencies, should not be summarized into the final sequence.

4. You should describe your thoughts on summarization in natural language at the beginning.
After that, give me the summarized action sequence as a list in JSON format. Your response
should follow this form:

Thoughts: ”Your thoughts and descriptions of your summarization”
Summarized action sequence:
[

{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the
expected results of this action”},

{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the
expected results of this action”},

{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

18

Under review as a conference paper at ICLR 2024

expected results of this action”}
]

B OBSERVATION AND ACTION SPACES

We list the observation and action spaces of different methods in Tab. 5. Prior RL-based agents
take raw images as input and use low-level controls, while our agent accepts oracle inputs and uses
structured actions. We only use voxel information of the blocks on the surface without X-ray cheating.

Table 5: Observation and output spaces of different methods.

Method Perception Observation Status Observation Output Space

VPT camera view RGB keyboard/mouse
(20 keys, mouse movements)

DreamerV3 camera view RGB inventory
life status

keyboard/mouse & GUI-free
crafting
(25 actions based on MineRL
ObtainDiamond)

DEPS camera view RGB
block voxel (3 x 3 x 3)

yaw/pitch angle
GPS location

keyboard/mouse & GUI-free
crafting
(42 actions discretized from
MineDojo)

GITM (ours) LiDAR rays (interval = 5”)
block voxel (radius = 10,
without X-ray cheating)

inventory
life status
biome
agent position

action APIs
(9 APIs manually implemented
on MineDojo)

C RESULTS OF ALL ITEMS

We provide the success rate of all items in the entire Minecraft Overworld Technology Tree in Tab. 6.

Experiment Setting. Considering the large number of items, including those difficult to be obtained,
we implemented an incremental testing strategy. This strategy is designed to keep the testing costs
within a reasonable range, while also accounting for the rarity of certain items. We avoided a uniform
increase in the number of tests across all items to accommodate the hardest-to-obtain ones, which
would have resulted in prohibitive testing costs. Instead, we employed a incremental testing process.

For each item, we begin with 20 games. If the success count is less than or equal to 1, we increase
to 50 games. If the success count remains less than or equal to 1, we further increase to 100, and
eventually 200 games. This testing continues until the success count finally exceeds 1, or we complete
200 games. By following this efficient strategy, we ensure a cost-effective and reliable evaluation of
each item, regardless of its availability. Moreover, because some items need long-term planning and
crafting chain, we do not set restrictions on the time limit or query limit.

Exploring Biome. Biomes can be a key factor that strongly influences the success rate. Some items,
like cactus, pumpkin, or melon, can only be found in specific biomes. The distribution of biomes
highly limits the success rate of some items.

19

Under review as a conference paper at ICLR 2024

Table 6: Success rate for all 262 items in the entire Minecraft Overworld Technology Tree.

Item Name Success
Rate Item Name Success

Rate Item Name Success
Rate Item Name Success

Rate

acacia boat 100 stonebrick 100 milk bucket 65 cactus 20
acacia door 100 trapdoor 100 coal block 65 activator rail 15
acacia fence 100 wooden axe 100 gravel 65 detector rail 15
acacia fence gate 100 wooden button 100 water bucket 60 diamond helmet 15
acacia stairs 100 wooden door 100 iron bars 60 slime ball 15
beef 100 wooden hoe 100 iron door 60 gold ingot 15
birch boat 100 wooden pickaxe 100 rail 60 gold nugget 15
birch door 100 wooden pressure plate 100 flower pot 60 gold ore 15
birch fence 100 wooden shovel 100 cauldron 60 golden shovel 15
birch fence gate 100 wooden slab 100 iron leggings 60 deadbush 15
birch stairs 100 wooden sword 100 flint 55 red mushroom block 15
boat 100 armor stand 100 arrow 55 golden hoe 15
bowl 100 rotten flesh 100 iron chestplate 55 golden sword 15
chest 100 stone slab 100 iron block 55 light weighted pressure plate 15
chicken 100 stone slab2 100 brick block 55 diamond leggings 15
cobblestone 100 red sandstone stairs 100 clay 55 pumpkin 15
cobblestone wall 100 sandstone stairs 100 hardened clay 55 pumpkin seeds 15
cooked beef 100 feather 100 red flower 50 brown mushroom block 15
cooked chicken 100 rabbit foot 100 yellow flower 50 mushroom stew 10
cooked mutton 100 item frame 95 egg 50 emerald 10
cooked porkchop 100 leather 95 hay block 45 lit pumpkin 10
crafting table 100 leather boots 95 flint and steel 45 golden axe 10
dark oak boat 100 leather helmet 85 hopper minecart 45 golden pickaxe 10
dark oak door 100 sapling 80 apple 45 golden boots 10
dark oak fence 100 tallgrass 80 beetroot 40 repeater 9
dark oak fence gate 100 wheat 80 beetroot seeds 40 carrot on a stick 9
dark oak stairs 100 wheat seeds 80 string 40 melon 8
dirt 100 iron ingot 80 diamond 40 melon seeds 8
double plant 100 iron nugget 80 diamond shovel 40 obsidian 7
fence 100 iron ore 80 jukebox 40 golden helmet 7
fence gate 100 iron shovel 80 bone 40 diamond chestplate 7
furnace 100 shield 80 bone meal 40 anvil 7
glass bottle 100 trapped chest 80 red mushroom 35 map 7
glass pane 100 tripwire hook 80 diamond hoe 35 writable book 6
jungle boat 100 grass 80 diamond sword 35 redstone block 6
jungle door 100 heavy weighted pressure plate 80 lava bucket 35 gunpowder 6
jungle fence 100 iron hoe 80 paper 35 bow 6
jungle fence gate 100 iron sword 80 reeds 35 golden carrot 5
jungle stairs 100 leaves 80 sugar 35 cake 4
ladder 100 painting 80 waterlily 35 sticky piston 4
lever 100 shears 80 baked potato 35 bone block 4
log 100 wool 80 potato 35 golden leggings 3
mutton 100 leather leggings 80 carrot 35 diamond block 3
oak stairs 100 coal 75 brown mushroom 35 clock 3
planks 100 torch 75 book 35 melon block 3
porkchop 100 snow 75 dropper 30 fermented spider eye 2
rabbit hide 100 snow layer 75 noteblock 30 pumpkin pie 2
red sandstone 100 snowball 75 redstone 30 golden rail 2
sandstone 100 bucket 75 redstone torch 30 fireworks 2
sign 100 iron axe 75 beetroot soup 30 lapis block 2
spruce boat 100 iron pickaxe 75 diamond axe 30 slime 2
spruce door 100 iron boots 75 diamond pickaxe 30 dispenser 1
spruce fence 100 iron trapdoor 75 bookshelf 25 golden chestplate 1
spruce fence gate 100 carpet 70 banner 25 gold block 1
spruce stairs 100 bed 70 diamond boots 25 speckled melon 1
stick 100 mossy cobblestone 70 fishing rod 25 lead 1
stone 100 vine 70 piston 25 poisonous potato 1
stone axe 100 brick 65 compass 20 rabbit stew 1
stone brick stairs 100 clay ball 65 brick stairs 20 emerald block 1
stone button 100 leather chestplate 65 spider eye 20 enchanting table 1
stone hoe 100 bread 65 lapis lazuli 20 golden apple 1
stone pickaxe 100 chest minecart 65 glass 20 enchanted book 0.5
stone pressure plate 100 furnace minecart 65 sand 20 tnt 0
stone shovel 100 hopper 65 ink sac 20 tnt minecart 0
stone stairs 100 iron helmet 65 cooked rabbit 20
stone sword 100 minecart 65 rabbit 20

20

	Introduction
	Related Work
	Method
	Action Abstration
	LLM-based Hierarchical Agent
	LLM Decomposer
	LLM Planner
	LLM Interface

	Text-based In-context Learning

	Experiments
	Main Result
	Comparison with Other Minecraft Agents
	Ablation Study

	Conclusion
	Implementation Details
	Action Abstraction
	LLM-based Hierarchical Agent
	LLM Decomposer

	LLM Planner
	Instruction
	User Query
	LLM Interface

	Memory
	Learning Process
	Implementation of Memory Summarization

	Observation and Action Spaces
	Results of All Items

