GSPLIT: SCALING GRAPH NEURAL NETWORK TRAINING ON LARGE
GRAPHS VIA PROBABILISTIC SPLITTING

3

Sandeep Polisetty *' Juelin Liu“' Jacob Falus' Yi Ren Fung? Seung Hwan Lim® Hui Guan'
Marco Serafini !

ABSTRACT

Graph neural networks (GNNs), an emerging class of machine learning models for graphs, have gained popularity
for their superior performance in various graph analytical tasks. Mini-batch training is commonly used to train
GNNss on large graphs, and data parallelism is the standard approach to scale mini-batch training across multiple
GPUs. Data parallel approaches contain redundant work as subgraphs sampled by different GPUs contain
significant overlap. To address this issue, we introduce a hybrid parallel mini-batch training paradigm called
split parallelism. Split parallelism avoids redundant work by splitting the sampling, loading, and training of each
mini-batch across multiple GPUs. Split parallelism, however, introduces communication overheads that can be
more than the savings from removing redundant work. We further present a lightweight partitioning algorithm
that probabilistically minimizes these overheads. We implement split parallelism in GSplit and show that it
outperforms state-of-the-art mini-batch training systems like DGL, Quiver, and P3.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated superior
performance in various graph analytics tasks. Widely used
systems like DGL (Wang et al., 2020) and PyTorch Geomet-
ric (Fey & Lenssen, 2019), as well as production systems
like AliGraph (Zhu et al., 2019), employ mini-batch training,
which is generally more effective than full-graph training at
scaling to multiple GPUs (Bajaj et al., 2024). To accelerate
GNN model training across multiple GPUs, these systems
utilize data parallelism. At each iteration, they sample mul-
tiple independent micro-batches, one per GPU. Each GPU
independently loads its micro-batch and computes gradients
using a local replica of the GNN model. Each micro-batch
consists of a partition of the target vertices in the mini-batch
along with a sample of their k-hop neighbors.

One drawback of data-parallel training for GNNs is redun-
dant data movements and computations (see Figure 1(a)).
The k-hop neighbors of target vertices in different micro-
batches overlap. Thus, the same vertices appear in mul-
tiple micro-batches. This redundancy leads to overheads
across all stages of the graph neural network model training
pipeline — sampling, loading, and training.

“Equal contribution 'University of Massachusetts, Amherst
*University of Illinois Urbana-Champaign *Oak Ridge Na-
tional Laboratory. Correspondence to: Sandeep Polisetty
<spolisetty @umass.edu>.

Proceedings of the 8" MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

In this paper, we propose using a different hybrid parallelism
approach tailored to mini-batch training that eliminates re-
dundant data loading and computation. During each training
iteration, the sampling step samples one mini-batch for all
GPUs, divides it on the fly into non-overlapping partitions
called splits, and assigns each split to a specific GPU (see
Figure 1(c)). Now, only one GPU is responsible for the
sampling, feature loading, and computation steps associated
with a vertex. GPUs then cooperatively execute the training
of an iteration on the same mini-batch. Each GPU operates
only on the vertices within its assigned split. It shuffles
intermediate results with other GPUs at each GNN layer.
We refer to this parallelism technique as split parallelism.
We implement split parallelism in GSplit, a scalable multi-
GPU GNN training system. GSplit delivers state-of-the-art
performance in mini-batch GNN training by eliminating re-
dundancy. However, applying split parallelism to mini-batch
GNN training requires solving several challenges.

The primary technical challenge in split parallelism is de-
vising a splitting algorithm that satisfies three key require-
ments: (i) minimize the cost of shuffles while balancing
load to avoid stragglers (ii) on-the-fly splitting at each itera-
tion without becoming a performance bottleneck, (iii) Split
vertices in alignment with the location of their cached input
features on the GPU. A straightforward solution to the first
requirement would be to run a min-cut graph partitioning
algorithm online on each sampled mini-batch. However,
this would not satisfy the second requirement as the parti-
tioning problem is NP-hard and difficult to parallelize, nor

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

Input graph
sample sample
load |GPU 1 GPU 2 | load

Input graph
sample sample
load |GPU 1 GPU 2 | Joad

Input graph ——> Mini-batch

!
sample split on-the-fly
load | GPU 1 GPU 2 | load

Mlcro batch Mlcro batch

Mlcro batch

train

D S—
train

. S—

Mlcro batch Split Split

train
. S—

abcdefghlj

EEEE||EEEE

Jabcdefghij %

B B|| B

(a) Data parallelism

(b) Push-pull parallelism (P3)

(c) Split parallelism

Figure 1. Comparison between data parallel, push-pull parallel, and the proposed split parallel training.

the third, since it would not consider where input features
are cached. Many full-graph training systems shuffle in-
termediate data among GPUs at each GNN layer and use
sophisticated scheduling algorithms to minimize communi-
cation and balance load (Cai et al., 2021; Jia et al., 2020; Ma
etal., 2019; Md et al., 2021; Wan et al., 2022b; 2023; Wang
et al., 2023b; Yang et al., 2023). However, these algorithms
do not apply directly to splitting. In full-graph training, the
work performed in each epoch is known in advance, since
the batch is static and training occurs on the entire graph.
In contrast, a splitting algorithm must dynamically split
sampled mini-batches at each iteration, which operates on a
much shorter time scale than a full-graph epoch.

To solve this problem, we propose a probabilistic splitting
algorithm that achieves a negligible online overhead: on a
randomly sampled mini-batch, it provably minimizes the
expected communication cost among splits and balances
the expected load per split. Compared to using a standard
offline graph partitioning algorithm that does not provide
probabilistic guarantees, our algorithm speeds up the end-
to-end training time of our GSplit system by up to 1.7 x.

Another challenge is to preserve the programming abstrac-
tions of data-parallel training systems. Besides simplifying
development, preserving the programming abstractions of
data-parallel training allows us to leverage work on optimiz-
ing single-GPU kernels for GNN sampling and training (Fan
et al., 2023; Fu et al., 2022; Gong et al., 2023; Jangda et al.,
2021; Wu et al., 2021; Ye et al., 2023; Zhou et al., 2023). In
data-parallelism, vertices in a micro-batch layer are always
local, whereas in split parallelism a layer may contain a
mix of local and remote vertices. Further, GSplit provides
a split/shuffle API that hides the low-level data shuffling
details from the end users.

Our evaluation across multiple large graphs and GNN mod-
els shows that GSplit outperforms the state-of-the-art sys-
tems like DGL (Wang et al., 2020) and Quiver (Tan et al.,
2023) by up to 4.4x and 1.9x respectively (2.4x and 1.4x
on average). We also implement and evaluate the push-
pull parallelism approach of P3 (Gandhi & Iyer, 2021) in a
single-host multi-GPU system and show that GSplit outper-
forms it by up to 4.1x (2.4 on average). GSplit’s splitting

Target Target

Mini-batch

a sample of input graph +
input features of sampled
2-hop neighbors of the target vertices

Computation of one vertex
in the first GNN layer

Figure 2. Example of a mini-batch.

algorithm is the key to achieving these speedups, and it is
effective in balancing load among splits and reducing the
cost of shuffles.

Overall, we make the following contributions:

* We propose split parallelism to eliminate redundant
input feature loading and computation (Section 3)

* We propose a lightweight online splitting algorithm
that uses a probabilistic approach to minimize the ex-
pected communication cost and balance the expected
load per split at each iteration (Section 4).

* We develop GSplit’s split/shuffle API, which supports
optimized single-GPU kernels for sampling and train-
ing (Section 5).

2 BACKGROUND AND MOTIVATION

This section first introduces mini-batch GNN training, and
then elaborates on the limitations of existing optimizations.

Mini-Batch GNN Training and Data Parallelism A GNN
model is defined as a sequence of GNN layers. During each
mini-batch training iteration, there are three phases: sam-
pling, loading, and training. Given a set of target vertices,
the sampling phase randomly selects a subgraph from the
k-hop neighborhood of the target vertices. A mini-batch
with two target vertices is shown in Figure 1(a). In the load-
ing phase, the input features of the vertices in the bottom
layer of the mini-batch are loaded into the GPUs. During
forward propagation, each GNN layer [> 0 aggregates
and transforms the features of the vertices in the layer [— 1
of the sample and produces the features of the vertices in
the layer [(see Figure 2). The last GNN layer computes

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

the features of the target vertices, which are then used to
calculate the loss. During backward propagation, the layers
are executed in reverse order to compute gradients. Finally,
all GPUs aggregate and apply the computed gradients.

Redundant loading and computation Data parallelism is
the most commonly used training strategy for mini-batch
GNN training. In data parallel training, the target vertices
are partitioned among GPUs, where each partition corre-
sponds to a separate micro-batch (see Figure 1(a)). Each
GPU independently samples the neighborhood of the tar-
get vertices, loads the input features of all the vertices in
the bottom layer of its micro-batch, and computes the hid-
den representation for the sampled nodes. This approach
has a high degree of sampling, data loading, and computa-
tional redundancy. For example, in Figure 1(a), vertex c is
sampled in two micro-batches, the features of its neighbors
are loaded by two GPUs, and its hidden representation is
computed redundantly.

Table 1 further reports the degree of computational and data
loading redundancy in data-parallel training. With 4 GPUs,
data parallelism creates 4 separate micro-batches (“Micro”),
causing up to 1.2x compute and 2.5 % feature loading com-
pared to having only a single mini-batch (“Mini”).

Graph # Edges Computed | # Features Loaded
Micro | Mini | Ratio | Micro | Mini | Ratio
Orkut 926M |751M | 1.2x | 422M | 169M | 2.5x
Papers100M | 452M |389M | 1.2x | 231M |154M| 1.5x
Friendster | 13.4B |13.1B| 1.0x | [1.4B | 94B | 1.2x

Table 1. Redundant computation and data loading. The total num-
ber of edges computed and feature data loaded over one epoch
when each mini-batch is sampled as 4 micro-batches of size 1024
(Micro) vs. 1 mini-batch of size 4096 (Mini).

Limitations of Existing Optimizations. The P3 system
introduced a hybrid parallelism approach called push-pull
parallelism to partially address the redundancy problem of
data parallelism (Gandhi & Iyer, 2021). It avoids transfer-
ring input features among hosts by proposing an alternative
to data parallelism called push-pull parallelism. The feature
data for each vertex is partitioned across multiple GPUs. As
shown in Figure 1(b), each GPU computes the first layer
for all the micro-batches on its local feature slice. Then
each GPU exchanges partial activations and continues the
iteration for the remaining layers in a data-parallel fash-
ion. Figure 3 shows that push-pull parallelism (described
in Section 6) reduces data loading cost, but it also intro-
duces an expensive shuffle that increases the overall training
time. This shuffle is expensive because P3x still uses data
parallelism for the upper layers.

Previous work also explored using GPU caching to reduce
data-loading overhead in the context of data parallel train-
ing (Kaler et al., 2023; Lin et al., 2020; Tan et al., 2023;

801 W Sample
Load
260 FB .
s Figure 3. Breakdown of epoch
g
Eol 0 time 1pt9 sa.mphng, loading,
§ """ and training time for DGL, P3*,
&20 Quiver, and Edge (naive imple-
mentation of split parallelism)
0 v on Orkut with the GAT model.
DGL P3* Quiver Edge

Yang et al., 2022a;b). These systems populate a static cache
offline with frequently accessed input features. Some sys-
tems use a distributed shared memory to enable GPUs to
fetch features from other GPUs’ memory using fast GPU-
to-GPU interconnects like NVLink (Cai et al., 2023; Song
etal., 2023a; Tan et al., 2023). As shown in Figure 3, the dis-
tributed shared-memory caching mechanism in Quiver (Tan
et al., 2023) can reduce loading time for the Orkut graph,
especially since its whose feature data can be fully cached
across multiple GPUs.

Challenges of avoiding redundancy. Despite these im-
provements, none of the above approaches avoids the com-
putational and loading redundancies of mini-batch GNN
training. In this work, we propose using split parallelism
to avoid these redundancies by splitting each mini-batch
sample on the fly at each iteration. Splitting maps work as-
sociated with a vertex to only one GPU and shuffles vertex
features across GPUs (see Figure 1(c)).

Splitting is on the critical path, so it is necessary to minimize
its overhead. Splitting must also minimize communication
costs during shuffles and balance the load across GPUs. A
naive approach would be to run a min-edge-cut graph parti-
tioning algorithm on each mini-batch we sample. However,
this would be too computationally expensive since splitting
must be executed during the sampling step of each itera-
tion, and it is hard to parallelize across multiple GPUs. A
more practical approach would be to use graph partitions
computed offline using a min-edge-cut graph partitioner like
Metis (Karypis & Kumar, 1997). We evaluate this approach
in Figure 3 and call it Edge, and find that it is not sufficient
to outperform data parallelism since the partitioning is done
on the entire graph, not on the specific mini-batch that is be-
ing split. Edge performs worse than Quiver as the overhead
of shuffling during training and load imbalance exceeds the
savings from eliminating redundancy. This observation mo-
tivates us to design an optimal split assignment (Section 4)
that addresses these challenges.

3 GSPLIT: TRAINING PIPELINE

To eliminate redundant work and reduce training time, we
introduce a hybrid parallelism approach called split paral-
lelism. Instead of sampling micro-batches with overlapping
input and hidden vertices, one micro-batch for each GPU,

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

Sample layer 1

Sample layer 0

[

Sample Shuffle Build layer

Layer 2

Load input features

Shuffle

Sample Build layer

Layer 2
Layer 1
Layer 0 <{})

Layer 2

Layer 1

Layer 0 :

Forward pass layer 0 Forward pass layer 1

Layer 2
Host
memory

— > Layer 04j— ki

ik @ |

() Partition 1 vertex | k
Layer 2 ©—@ l
>
Layer 1 @‘ﬂ) (g
p

m —
——>» Layer0-m—p (k)

Layer 1

(@ Partition 2 vertex

i Vertex features

l Shuffle

T

m

Compute features l Shuffle Compute features

Layer 2 Layer 2

Layer 1 Layer 1

Layer O Layer 0

Layer 2 Layer 2 c—d
B

Layer 1 Layer 1 h—i f—g

Layer 0 —m-—(p—(j—k Layer O m/wk

Figure 4. Overview of the GSplit training pipeline.

the sampling phase now produces non-overlapping sets of
vertices called splits, each assigned to a different GPU. The
key to effective split parallelism is that the splits are ob-
tained by a lightweight online splitting algorithm, which
provides probabilistic performance guarantees described in
Section 4, while sampling each mini-batch at each itera-
tion. Each GPU loads only the features of the input vertices
within its assigned splits, taking into account each GPU’s
local cache. During training, only one GPU computes the
hidden features of any given vertex and then shuffles the
computed feature to other GPUs.

Example of a GSplit iteration We present a running exam-
ple to describe one training iteration in GSplit (see Figure 4)
and introduce GSplit’s API, such as the local and mixed
frontier and the split index that supports existing efficient
single-GPU kernels for sampling and training. Although
GSplit can be combined with distributed GPU caching, the
example assumes no caching to simplify the description.

The first phase of each iteration is sampling. GSplit pushes
sampling to the GPU for performance reasons, in line with
recent work (Gong et al., 2023; Jangda et al., 2021; Pandey
et al., 2020; Wang et al., 2021). Sampling proceeds layer-
by-layer as each GPU samples its local split of the same
mini-batch, rather than a separate micro-batch. At each
layer, a GPU starts from a set of vertices called the local
frontier, samples its neighbors, and obtains what we call the
mixed frontier. Unlike the local frontier, a mixed frontier can
include remote vertices. For example, in Figure 4, GPU 1
starts the iteration with the layer-2 local frontier {a, b} and
samples the mixed frontier {e, h, f}, which includes the
remote vertex h. Similarly, GPU 2 starts from the local

frontier {c, d} and samples the mixed frontier {f, g, h,},
which includes the two remote vertices f and g. Each GPU
uses the splitting algorithm to separate the local and remote
vertices and then shuffles the remote vertices to their parti-
tion. GPUs then build the local frontier for the next layer
based on the vertices they receive. For example, the new
local frontier of GPU 1 is {e, f, g}, where {g} was sampled
by GPU 2. Analogously, the new local frontier of GPU 2
at layer-1 is {h, i}. The next layer is the union of the new
local frontier and the previous mixed frontier: {e, f, g, h}
for GPU 1 and {h, i, f, g} for GPU 2. Sampling for layer-1
is carried out in a similar way from its local frontier. The
splitting step creates an auxiliary data structure, called the
shuffle index, that consists of gather and scatter indexes to
efficiently send and receive sparse vertex data during the
shuffle rounds at each layer.

After sampling finishes, the loading step loads the input
vertex features from the host memory into the GPUs. When
split parallelism is combined with caching, a GPU can skip
loading an input feature if it is already cached locally. Un-
like data-parallel systems that could load redundant input
features, split parallelism eliminates the redundant CPU-
GPU data loading as splits do not have overlapping vertices.
In the example of Figure 4, we consider no caching, so GPU
1 loads the input features of the vertices in layer-0 local
frontier {7, k, !} from the host memory. Similarly, GPU 2
loads the input features of the vertices {m, p}.

The training phase begins after loading and proceeds bottom-
up. At each layer, each GPU is responsible for computing
the hidden features of the vertices in its local frontier by
aggregating the features of the neighbors in the layer below.

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

These neighbor vertices are the same vertices that were in
the mixed frontier for that layer during sampling, so we
can reuse the shuffle index generated at that step. In the
example, GPU 1 must compute the layer-1 hidden features
of vertices {e, f, g}. To do that, it needs features of vertices
{4, k, 1, m}, which constitute the mixed frontier of layer-0
constructed during sampling and include the remote vertex h.
GPU 1 sends the vertex features in its local frontier {j, k} to
GPU 2 and receives the features of the remote vertex {m}
by performing an all-to-all shuffle. The shuffle rebuilds
the mixed frontier, which now holds all the hidden features
required for the computation of all the vertices in the local
frontier of layer-1 {e, f, g}. GPU I proceeds to construct the
mixed frontier of layer-1 by sending {g, f} and receiving
{h} by performing an all-to-all shuffle. Finally, GPU-1 uses
the mixed frontier {e, f,g,h} of layer-1 to compute the
hidden features of the target vertices {a, b}. The backward
pass works in a similar way, moving from the top layer down
to the bottom, but in the opposite direction. Importantly, the
data follows the same paths as during the sampling step, so
we can reuse the shuffle index.

4 THE SPLITTING ALGORITHM

Online splitting is challenging because it must be efficient,
balance load across splits, and minimize communication
cost, as discussed in Section 2. GSplit uses an embarrass-
ingly parallel online splitting algorithm that maps each ver-
tex to a split independently of each other in constant time.
It does so by providing probabilistic guarantees, rather than
deterministic ones: given a random mini-batch sample, it
minimizes the expected communication cost while balanc-
ing the expected load per split. Formally, the splitting algo-
rithm solves the following problem:

Problem definition. (Mini-batch splitting problem)
Let M(Va, En) be a sampled mini-batch of a graph
G(Va, E), S aset of splits, and frr : Var — S a splitting
function that assigns each vertex in Vi to a split. Let S; be
the set of vertices assigned to split i by fy;, X; a random
variable expressing the number of vertices at layer | > 0 in
Si, Y a random variable expressing the number of edges in
Ey having endpoints in two different splits, and e > 0 a
tunable constant. The mini-batch splitting problem involves
finding the splitting function fy; that solves the following
minimization problem:

r?in E[Y]
st Vi EX]<+9- 3 Exs. P

i€[1,]5]]

The problem is to find a splitting function f); that can be
used online by the splitting algorithm to map each sampled
vertex to a split, each corresponding to a different GPU
device. The random variables X; and Y represent the com-

putation and communication cost of the splits, respectively.
When the algorithm assigns a vertex at layer [> 0 to a split,
the corresponding GPU must sample its neighbors during
the sampling phase and compute its hidden feature during
the training phase. Edges connecting vertices in different
splits induce communication costs during the shuffle phases
of both sampling and training. This problem is NP-hard
since it can be reduced to min-edge-cut graph partitioning
by selecting an appropriate sampling function.

Splitting algorithm To avoid solving this NP-hard problem
online, our approach is to reduce it to a problem that can
be solved offline. Therefore, we propose using a splitting
algorithm that has an offline and an online part. Offline, the
algorithm finds a global partitioning function fo : Vg — D
that statically maps each vertex in the whole input graph to a
GPU device. Then, online, the splitting algorithm uses f¢ as
a substitute for fj; to map each vertex to a device and thus
to its corresponding split at each iteration. Online splitting
is embarrassingly parallel since fo maps each vertex to a
split independently and does it in constant time. GSplit uses
the global partitioning f also to determine the GPU where
it statically caches input features of a vertex. This ensures
that the caches are consistent with the splits.

We now describe the details of the offline part of the splitting
algorithm, which finds the global partitioning function. The
first stage of the offline algorithm is pre-sampling, which
weighs the vertices and edges of the input graph. Weights
represent the computational and communication costs in-
curred by GPUs during split-parallel sampling and training.
The second stage uses a weighted min-edge-cut graph parti-
tioning algorithm to find the global partitioning function.

Given an input graph G, the pre-sampling stage assigns
weights to the vertices and edges of GG to obtain a weighted
graph G,,. It runs the same sampling algorithm used during
training for a fixed number of epochs. At each iteration, the
algorithm samples the k-hop neighborhood of the training
(target) vertices in the mini-batch. It then assigns to each
vertex v a weight wy (v) = k,/N, where k, is the total
number of times v is sampled at a layer [> 0 across all
samples and N is the number of samples. The weight of
each edge e is wg(e) = k./N, where k. is the total number
of times e is sampled across all samples.

After completing the pre-sampling stage and obtaining the
weighted graph G, the offline algorithm runs a weighted
min-edge-cut graph partitioning algorithm on G, to ob-
tain partitions. The algorithm outputs partitions that min-
imize the sum of the weights of the edges in the cut and
ensure that the load per partition, which is the sum of the
weights of its vertices, is balanced. Formally, given a graph
G (V, E,wy,wg) and the number of partitions d = |D|,
where D is the set of GPU devices, a weighted min-edge-
cut graph partition algorithm outputs the set of partitions

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

P ={Py,...,P;} of V that solves the following problem:

min Z wg(e)
H=re 2

st. Vi: L, <(1+¢€-L/d

where wg(e) = ke/N is the edge weight of e, C =
{{u,v) € E : w € Pj,v € P;,i # j} is the edge cut
set, Li = >, cp wy(v) = > cp ky/N is the load of
each partition P;, L =), wy (v) is the total load across
all partitions, and € > 0 is a tunable constant. Note that
since the minimization problem of Eq. 2 is NP-hard, we
use heuristics to solve it in practice, for example, using
Metis (Karypis & Kumar, 1997). The partitions P found
by the graph partitioning algorithm determine the global
partitioning function f from vertices to GPUs.

Analysis We show that our splitting algorithm finds a solu-
tion to the mini-batch splitting problem of Eq. 1 by reducing
it to the optimization problem of Eq. 2 with d = |.S|, which
we can solve with a heuristic. We show that E[X;] = L; and
E[Y] = > .cc ke/N. After doing that, we can conclude
that Eq. 2 minimizes E[Y] and constraints E[X;] as in Eq. 1.

We start by showing that E[X;] = L;. Given a ver-
tex v € V, let the random variable Z, be the number
of layers [> 0 where the vertex appears in the sample
S. We have that X; = ZUE p, Zv,» Which implies that
E[Xi] = > ,cp E[Zu]. If we assign vertex weights us-
ing a sufficiently large number of samples IV, according to
the law of large numbers, we have E[Z,] = k, /N, which
implies that E[X;] = L,.

We use a similar argument to show that E[Y] =
> ccc ke/N. Given an edge e € E, let the random vari-
able Z,. be the number of times e is sampled (at different
layers) in S. The set of cross-split edges in the sample
S is a subset of the cross-partition edges C' in the whole
graph,so Y =) _~ Z.. The expected value of Y" is given
by E[Y] = > o E[Z.]. If we use a sufficiently large
number of samples IV to assign edge weights, according to
the law of large numbers, we have that E[Z,] = k. /N, so

E[Y] =2 cec ke/N.

5 GSprLIT’S API

GSplit offers a layer-centric programming API that simpli-
fies the development of GNN sampling and training code
and kernels by hiding cross-GPU coordination. Besides
simplicity, this approach supports the reuse of optimized
single-GPU kernels for GNN sampling and training pro-
posed by recent research (Fan et al., 2023; Fu et al., 2022;
Gong et al., 2023; Jangda et al., 2021; Wang et al., 2023c;
Wu et al., 2021; Ye et al., 2023; Zhou et al., 2023).

Motivation for a layer-centric API Single-GPU kernels
used by data-parallel systems are layer-centric: they assume

Algorithm 1 Split-parallel sampling.

def sp_sample (local_targets):

local_front[L] = local_targets

for 1 in [L-1, 0]:
mixed_-front, edges[l] =
sample_layer (local_front[1+1])
local_front[l], edges[l],
shuffle_idx[1l] = split (mixed_-front,
edges[1])

return edges, shuffle_idx

that at each GNN layer, the source vertex, destination ver-
tex, and edge features for all incoming edges incident to
the same destination vertex are locally available. GSplit’s
API supports this property even after it splits destination
vertices of the same mini-batch among different GPUs. The
alternative hybrid mini-batch parallelism approach, which
is P3, breaks this assumption to offer an edge-centric API
to enable pushing part of the computation of each micro-
batch to multiple hosts and GPUs in a fine-grained manner.
For example, implementing state-of-the-art models such as
Graph Attention Networks (GAT) requires a custom imple-
mentation to ensure correctness (Gandhi & Iyer, 2021).

Sampling Algorithm 1 shows the pseudocode of sampling
using GSplit’s APL

The sp_sample function executed by each GPU takes as
input the subset of target vertices in the mini-batch that
are local to the GPU according to the splitting algorithm
(local_targets) and outputs a split, which consists of
the set of edges at each layer that are used by the local
training kernels to aggregate features. It also outputs a
shuffle index (shuffle_idx), which consists of indices
to efficiently send and receive vertex data in the frontiers
during the sparse all-to-all shuffling at each layer.

The sample_layer function outputs a new mixed frontier
(mixed_front) and the edges from the input local frontier
to the output mixed frontier (edges [1]). The mixed fron-
tier includes both local and remote vertices. The sampling
code must invoke the split function to perform a shuffle
and obtain a local frontier (Line 1).

The benefit of using this layer-wise sampling API is
that we can directly use the sampling implementations in
DGL (Wang et al., 2020) as well as other GPU sampling
kernels (Gong et al., 2023; Jangda et al., 2021; Pandey et al.,
2020; Wang et al., 2021) that sample graph layer by layer.

Training We now explain how to implement cooperative
split-parallel training. Algorithm 2 shows the pseudocode
for the forward propagation. The backward propagation
works similarly, except that the computation happens from
the top layer to the bottom layer.

The sp_-forward function takes as input the GNN model
(model) the input features of the vertices in the local split

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

Algorithm 2 Forward pass of split-parallel training.
feat,

def sp_forward(model,
shuffle_idx):
hidden = feat
for 1 in [L-1, 07]:
gnn_layer = model.layer(l)
mixed_-hidden = shuffle (shuffle_idx
[1], local_hidden)
local_hidden = gnn_layer (edges|[l],

mixed_hidden)
return hidden;

edges,

(feat), the structure of the split (edges), and the shuffle
index (shuffle_idx) required for each layer. The latter
two inputs are produced by the sampling code of Algo-
rithm 1. It outputs the hidden features of the target vertices.

At each layer [, each GPU starts by shuffling the fea-
tures/activations of its local vertices to other GPUs using the
shuf fle function (Line 2). The output of this function is
the mixed_hidden tensor, which contains all the features
required to compute the hidden features at layer [+ 1, in-
cluding the features of remote vertices. The GNN layer then
computes the next-layer hidden features for the vertices in
the local partition of the GPU (Line 2).

During the backward pass, each GPU computes the gradi-
ents for both local and remote vertices at each layer 1. The
shuffle index (shuffle_idx) is then used to push gradi-
ents of remote vertices back to the GPU, storing the vertices
in its local partition. The backward pass proceeds for each
layer, reversing the direction of communication in the for-
ward pass. Our abstraction thus ensures that gradients are
computed accurately across layers when using split paral-
lelism between GPUs and is agnostic to the specific GNN
model being used.

Similar to the case of sampling, using a layer-wise API
for training allows us to reuse the optimized single-GPU
training kernels (Fan et al., 2023; Fu et al., 2022; Wu et al.,
2021; Ye et al., 2023; Zhou et al., 2023) in gnn_layer.

6 EVALUATION

In this section, we evaluate GSplit by answering the follow-
ing questions: What are the end-to-end speedups that can be
achieved by GSplit relative to the baselines (§ 6.2)? What
is the impact of using GSplit’s splitting algorithm, which
provides probabilistic performance guarantees (§ 6.3)? How
does GSplit scale to a larger number of GPUs within one
host and across hosts (§ 6.4)? How does performance vary
when we vary the hyperparameters (§ 6.5)? How does
GSplit’s split parallelism impact accuracy (§ 6.6)?

6.1 Experiment Settings
GNN models and datasets We consider two popular and
diverse GNN models: GraphSage (Hamilton et al., 2017)

[Dataset | #Nodes [#Edges | #Feat | #Type |
Orkut 3.1M 120M 512 Undirected
Papers100M 111M 1.6B 128 Directed
Friendster 65M 1.9B 128 Undirected

Table 2. Datasets used for the evaluation

and GAT (Velickovi¢ et al., 2018). We use the standard
neighborhood sampling algorithm. Its low computational
complexity makes it less likely to hide the cost of shuffling
during split-parallel sampling. By default, we use a sam-
pling fanout of 15, 3 GNN layers, a default hidden size of
256 as used in (Hamilton et al., 2017), and a batch size of
1024. GSplit’s split-parallel implementations use the same
sampling and training kernels as DGL’s data-parallel one.

We use three large datasets listed in Table 2. The Paper100M
dataset, derived from the directed citation graph, is the
largest homogeneous dataset from the Open Graph Bench-
mark (OGB), a standard benchmark for GNN training (Hu
et al., 2021). Additionally, we utilize two other large syn-
thetic graphs from the SNAP repository (Leskovec & Krevl,
2014), consisting of undirected social networks that are
frequently used for evaluating GNN training performance.

Hardware setup By default, our experiments use an AWS
EC2 p3.8xlarge instance with 4 NVIDIA V100 GPUs
(16GB memory) and Xeon E5-2686 v4 @ 2.70GHz, with 32
CPU cores and 244 GB RAM. GPUs are connected to the
CPU with a PClIe 3.0 16 bus and to each other via NVLink.
For experiments with 8 GPUs, we use a similar p3.16xlarge
instance having 64 CPU cores and 488 GB of RAM.

Baseline systems We consider the following systems as
baselines. All systems perform synchronous training to
avoid biasing model accuracy and use GPU-based sampling.

* DGL is a standard production library for data-parallel
GNN training (Wang et al., 2020). We use DGL ver-
sion 1.1.3, the same one we use as a component of
GSplit. DGL only supports caching input features and
the graph topology when they fully fit into one GPU.

* Quiver is a recent data-parallel GNN training system
that uses distributed caches and leverages fast direct
GPU-GPU buses like NVLink (Tan et al., 2023). We
use version 0.1.1. Quiver supports distributed and par-
tial caching across multiple GPUs.

 P3is adistributed GNN training system that uses hy-
brid push-pull parallelism. Its source code is not pub-
licly available, so we adapt the push-pull parallelism
approach to a single-host multi-GPU system and refer
to our implementation as P3*.

* Edge is a variant of GSplit used to investigate the
impact of using a naive offline splitting algorithm that

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

Graph System GraphSAGE GAT
S L FB | Total(s) | Speedup S L FB | Total(s) | Speedup

DGL 1.5 62.7 9.2 73.4 4.4x 1.5 628 | 17.1 81.4 3.6x
P3* 4.0 1.5 8.5 14.1 0.8x 4.0 1.7 37.6 43.3 1.9x
Orkut Quiver 4.9 4.3 8.7 17.8 1.1x 4.7 4.2 16.4 25.5 1.1x
Edge 1.9 1.3 25.1 28.3 1.7x 1.9 1.3 33.3 36.5 1.6x

GSplit 1.9 0.1 14.8 16.7 1.9 0.1 20.5 22.5
DGL 4.6 9.5 11.3 25.4 1.4x 4.7 9.0 31.7 45.4 1.2x
p3* 33 115 | 258 40.6 2.2x 33 11.3 | 65.7 80.4 2.2x
Papers100M | Quiver 11.8 | 104 | 11.7 34.7 1.9x% 11.0 | 11.0 | 305 53.5 1.4x
Edge 11.7 0.1 16.3 28.1 1.5x 11.5 0.1 40.1 51.7 1.4x

GSplit 3.9 2.6 11.8 18.3 3.8 23 31.1 37.2
DGL 62.7 | 2834 | 61.1 407.2 2.9x 62.6 | 284.8 | 2459 | 5933 1.7x
P3* 859 | 350.8 | 151.5 | 588.1 4.1x 76.5 | 3514 | 613.8 1041 3.0x
Friendster Quiver | 132.5 | 249 | 63.6 2239 1.6x 1355 | 24.8 | 2435 | 4042 1.2x
Edge 65.7 1.0 | 121.8 | 1885 1.3x 106.1 | 0.7 | 3682 | 475.0 1.4x

GSplit | 41.2 22 98.9 142.3 62.1 22 | 2835 | 3478

Table 3. Epoch time (in seconds). S = Sampling, L = Loading, FB = Forward and backward pass. The speedups are the total epoch time of

other systems relative to GSplit.

does not weigh vertices and edges using pre-sampling
(see Section 6.3). It uses min-cut partitioning and
balances the number of edges and target vertices in
each partition, as commonly done in data-parallel GNN
training systems (Zheng et al., 2020), while minimizing
the number of edges across partitions.

We configure all systems to maximize the memory available
for caching the graph structure and input features while
allocating sufficient memory to sample and train without
going out of memory. We configure Quiver and GSplit to
use the same sampling frequency criterion to rank the input
features to cache as proposed in (Yang et al., 2022b). P3*
cannot cache input features for only a subset of the vertices,
so it only uses caching for the Orkut graph.

6.2 End-to-End Performance

We now compare the performance of GSplit with existing
work: DGL, Quiver, and P3*. The comparison is based
on epoch time only, as none of these systems biases the
GNN model accuracy they train. We measure the total
epoch time and break it down for the three steps of the mini-
batch training iterations: sampling a subgraph, which also
includes splitting for GSplit, loading the input features into
each GPU, and performing the forward and backward pass.

We report the results in Table 3. Overall, GSplit outper-
forms DGL by up to 4.4x (2.5x on average), P3* by up to
4.1x (2.4x on average), and Quiver by up to 1.9x (1.4x on
average) by eliminating redundant loading and computation.
By avoiding redundant computation, GSplit can reduce its
sampling and training costs, mitigate the additional cost
of shuffling, and in some cases be even faster than some
data-parallel systems in those steps.

Sampling time comparison The sampling step in GSplit
entails not only sampling the mini-batch, as in the other
systems, but also splitting the mini-batch, constructing the

shuffle indexes, and shuffling vertices. The evaluation shows
that these additional costs are balanced, and sometimes
offset, by the elimination of redundant work and by the
use of distributed caching for the graph structure. GSplit’s
online splitting is not a performance bottleneck because it
is embarrassingly parallel and fast.

Loading time comparison Compared to data parallel sys-
tems GSplit reduces the input feature loading time by reduc-
ing redundant loads. P3* and Quiver perform much better
than DGL in the Orkut graph because its input features can
be fully cached across GPUs. The input features for the
Papers100M and Friendster graphs cannot be fully cached,
even when using a distributed cache. Quiver has lower
loading times than DGL and P3* for Friendster because it
supports caching only a subset of the features in the GPUs,
but it cannot leverage its cache effectively for Papers100M
because of the high cost of loading feature cache misses
from the host memory.

Forward/backward pass time comparison In contrast to
data-parallel systems, hybrid-parallel approaches such as
P3* and GSplit introduce communication overhead in the
form of shuffles during training, which generally leads to
increased forward-backward (FB) times. When training
the GraphSage model, P3* partially offsets the overhead
of push-pull shuffling by distributing some computation of
each micro-batch across all GPUs. This optimization allows
P3* to achieve the shortest training time among all systems
on the Orkut graph. However, in all other scenarios, P3*
exhibits the longest FB times due to the need to shuffle all
partial activations across micro-batches, a cost that becomes
particularly pronounced with complex models like GAT,
which generate larger intermediate activations.

GSplit addresses the shuffling overhead by eliminating re-
dundant computation of hidden features, thereby improving

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

overall efficiency. Nonetheless, its FB times remain higher
than those of data-parallel systems. This gap is less pro-
nounced for computationally intensive models such as GAT,
where the benefits of avoiding redundant computation are
more significant. Compared to P3*, GSplit consistently
achieves lower training times across all cases except for the
Orkut-GraphSage setting, attributed to its reduced shuffle
costs and more efficient use of computation.

6.3 Evaluation of the Splitting Algorithm

End-to-end impact of probabilistic splitting GSplit relies
on an offline graph partitioning algorithm to provide prob-
abilistic performance guarantees: balancing the expected
load across splits and minimizing the expected communica-
tion costs across partitions. We evaluate the impact of using
this algorithm by combining GSplit’s online splitting with
three alternative offline partitioning algorithms that do not
provide these guarantees.

The GSplit is the pre-sampling-based algorithm with proba-
bilistic guarantees described in Section 4. The Node algo-
rithm partitions the graph using only the pre-sampled node
weights. Comparing it to GSplit shows the impact of using
edge weights during graph partitioning. The Edge algorithm
uses min-cut partitioning, but it does not assign weights
to vertices and edges using pre-sampling. It balances the
number of edges and target vertices in each partition, as com-
monly done in data-parallel GNN training systems (Zheng
et al., 2020) while minimizing the number of edge cuts
across partitions. Finally, Rand partitioning algorithm ran-
domly assigns each vertex to a partition.

Table 3 shows the end-to-end performance benefit of using
GSplit’s splitting algorithm compared to the Edge baseline.
GSplit helps improve the end-to-end training performance
by up to 1.5x on Orkut, 1.7x on Papers100M, and 1.4 x
on Friendster. We analyze the reasons for these speedups

Workload Imbalance Commounication Overhead

3
o & i
e
23 \0.6
o 12}
= £,0.4
2 g
= o2
o o
> % % _ 8
50.0
O .

GSplit Node Edge Rand GSplitNode Edge Rand

Figure 5. GSplit vs. other offline partitioning algorithms.

more in-depth in Figure 5, which compares the workload
imbalance and communication costs of different partition
strategies using the Papers100M graph. We quantify the
workload imbalance among the splits in each iteration as
the maximum number of edges at layer [> 0 per split
divided by the average, and the communication cost as the
percentage of cross-edges among splits over all the edges in
the mini-batch.

As shown in Figure 5, the Rand baseline leads to the most
evenly distributed computation cost across partitions. Yet,
it results in a high communication overhead with 75% of
the edges crossing two partitions in most iterations. The
Edge baseline achieves a much lower edge cut and reduces
the communication overhead. However, balancing the tar-
get vertices alone does not guarantee that the splits of the
sampled mini-batches will be balanced.

The splitting algorithm of GSplit achieves the benefit of
both approaches. It has a lower communication overhead
compared to the random partition algorithm and a more
balanced workload than simply balancing the number of
target vertices in each partition. This is thanks to its offline
pre-sampling approach.

In addition, we observe that assigning weights to edges us-
ing GSplit effectively reduces the communication overhead
in a mini-batch. Compared to Node, which does not weigh
edges, the average ratio of cross edges over total edges is
reduced from 9% to 5% for Papers100M as shown in Fig-
ure 5. Better yet, the reduction in communication costs does
not significantly impact workload imbalance. We observe a
similar trend in Orkut and Friendster.

Offline pre-processing costs. The splitting algorithm has
two offline steps: pre-sampling and graph partitioning. Em-
pirically, we found that running ten epochs of sampling
during the pre-sampling stage is sufficient. Using a larger
number of sampling epochs has little impact on load bal-
ancing and communication costs. When using 30 and 100
pre-sampling epochs, the difference in average load imbal-
ance per mini-batch remains within 2% for all the graphs,
while the percentage of cross edges over the total number of
edges per mini-batch remains within 7% for Orkut, 2% for
Papers100M, and Friendster. Pre-sampling is fast relative to
the overall training time. The pre-sampling time is 19s for
Orkut, 20s for Papers100M, and 288s for Friendster when
using a machine with four RTX 3090 GPUs.

The final offline step of GSplit is graph partitioning, which
is commonly used in many distributed mini-batch GNN
training systems. We use METIS (LaSalle & Karypis, 2013)
to partition the graphs on an AWS r7a.x24large instance,
which has 48 cores (96 threads) and 768GB of memory. The
partitioning time is 14s for Orkut, 78s for Papers100M, and
534s for Friendster. Both pre-sampling and partitioning are
one-time costs that can be amortized by training over the
same dataset multiple times.

6.4 Scalablity
We now evaluate the performance of GSplit against baseline
systems across different configurations of GPUs and hosts.

Single-host. We first evaluate using a single host and vary-
ing the number of GPUs in Figure 6(a). GSplit scales better

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

than the other systems with a larger number of GPUs be-
cause it has more opportunities to avoid redundant loads
and computation. It can also make more efficient use of the
GPU caches thanks to its use of collective communication
primitives. Quiver relies on direct remote memory access to
transfer cached input features across GPUs efficiently. This,
however, is only possible between GPUs that have direct
NVLink connections. In our 8-GPU host, not all GPUs are
directly connected with each other. Quiver circumvents this
problem by replicating cached features across GPUs that
have no direct links. GSplit, by contrast, does not need to
cache features redundantly.

Multi-hosts. We also run distributed multi-host experiments
where each host has 4 GPUs and show the results in Fig-
ure 6(b). GSplit can be implemented across multiple hosts
by partitioning the graph and node structure across hosts.
Its shuffle function can operate across a diverse set of in-
terconnects as it completely abstracts data collection into
contiguous memory and utilizes low-level libraries such as
NCCL for communication. As NCCL utilizes the best avail-
able interconnect, GSplit can transparently use high-speed
interconnects such as the fifth-generation NVLink Switch
technology. However, in the absence of high-speed inter-
connects across hosts, as in our evaluation setting, GSplit
uses a hybrid approach to scale to multiple hosts, using data
parallelism across hosts and split parallelism within each
host. We observe that GSplit shows consistent speedups in
all configurations and models.

6.5 Ablation Study

We now estimate how consistent GSplit’s speedups are when
the model and training hyperparameters change. The results
for the Friendster graph are reported in Figure 6.

Hidden size. Increasing the hidden feature size impacts
the FB time of GSplit negatively, increasing the overall
volume of data shuffled. However, it also increases the
gains of avoiding redundant computation, especially for
complex models such as GAT. The two factors balance out
and GSplit shows consistent speedups over the baselines, as
shown in Figure 6(c).

Batch size. We vary the mini-batch size while keeping a
hidden size of 128 to avoid going out of memory. Larger
mini-batches increase the relative cost of shuffling during
the FB phase but also offer more opportunities to save on
redundant data loading. Overall, GSplit always outperforms
the data-parallel baselines, as shown in Figure 6(d).

Number of GNN Layers. In this experiment, we use a
hidden size of 128 and pick the largest sampling fanout
that avoids going out of memory for each number of lay-
ers. The results are reported in Figure 6(e). The GNNs are
most commonly trained with 2 or 3 layers, i.e., 2 or 3 hops
from the target vertices. GSplit consistently outperforms the

baselines in these settings. Adding more layers in split par-
allelism increases the number of shuffles but also increases
redundancy across minibatches.

6.6 Accuracy

GSplit is a general GNN training system that introduces
no system-level algorithmic bias that could affect training
accuracy. To validate this, we compare the test accuracy
after each training epoch on the Papers100M dataset using
the GraphSAGE and GAT models, trained with GSplit and
the DGL data-parallel baseline. Figure 7 shows that GSplit
closely mirrors the baseline’s accuracy across all epochs for
both models, as expected. These curves confirm the correct-
ness of our split/shuffle abstraction, which automatically
computes gradients across splits during the backward pass
in a model-agnostic way.

7 RELATED WORK

Mini-batch training systems DistDGL (Zheng et al., 2020)
and AliGraph (Zhu et al., 2019) use data-parallel mini-
batch training to scale to large graphs. ByteGNN opti-
mizes distributed sampling for CPU-based data-parallel
training (Zheng et al., 2022). Another research direction is
taken by Marius++, which runs data-parallel GNN training
on large graphs using a single GPU and an out-of-core ap-
proach rather than a distributed system (Waleffe et al., 2022).
Pipelining multiple batches is another orthogonal technique
to increase resource utilization and reduce training time (Cai
et al., 2023; Kaler et al., 2022; Min et al., 2021).

Prior work has focused on efficient single-GPU sampling
with high-level programming APIs (Gong et al., 2023;
Jangda et al., 2021; Pandey et al., 2020; Tripathy et al., 2024;
Wang et al., 2021). GNNLab reduces the communication
costs in distributed sampling using a factorized approach,
where sampler GPUs cache the entire graph topology while
other trainer GPUs only cache input features (Yang et al.,
2022b). Other systems propose caching both topological
and feature data on each GPU (Cai et al., 2023; Sun et al.,
2023; Zhang et al., 2023b). DSP supports distributed sam-
pling on a partitioned graph structure, but it performs two
all-to-all shuffles for each sampled layer (Cai et al., 2023).
Split-parallel sampling requires only one all-to-all shuffle
per sampled layer, since training is split-parallel. Split
parallelism and cooperative training were introduced in a
preliminary version of this paper (Polisetty et al., 2023).
Dedicated sampling algorithms can increase feature access
locality (Balin et al., 2023). APT adaptively chooses be-
tween data, push-pull, and split parallelism, but it does not
consider probabilistic splitting (Ma et al., 2025).

Sampling algorithms In our work, we consider general sys-
tems that support arbitrary sampling algorithms rather than
imposing a specific algorithm, with its specific performance

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

1000

GAT

1000
2000

1000

512 1024 2048

400

GraphSage
Epoch Time(s)

2 4

, 3 4 64
(a) # GPUs

(b) # Hosts
on Single Host 4 GPUs Each
Il DGL

128 256 384 512 1024 2048
(c) Hidden Size

B Quiver

(e) Number of Layers

(d) Batch Size

BN GSplit

Figure 6. Scalability and ablation study. The reported speedups are the epoch time of other systems relative to GSplit.

GraphSage GAT

=

| ——

301

Test Accuracy(%)
=~ ot
[=} (=}
S

<
=}

»

T T y y 20— T T y
0 5 10 15 0 5 10 15
Epoch Epoch
—— GSplit

DGL

Figure 7. Accuracy study

and accuracy tradeoffs, to the user. A different line of work
has focused on designing specific sampling algorithms that
speed up GNN training and reduce data transfers at the cost
of potentially biasing accuracy (Dong et al., 2021; Liu et al.,
2023; Ramezani et al., 2020; Song et al., 2024; 2023b; Wan
et al., 2022a; Zhang et al., 2023a;c).

Hybrid parallelism in full-graph training Workload char-
acteristics of full graph training systems are different from
data parallel minibatch training as the graph structure used
in training does not change between iterations. Thus, over-
lapping optimized computation and communication sched-
ules can be constructed during preprocessing as a fixed cost
which is amortized during training (Cai et al., 2021; Jia
et al., 2020; Ma et al., 2019; Md et al., 2021; Wan et al.,
2022b; 2023; Wang et al., 2022; 2023a;b; Yang et al., 2023).
Recent work has found mini-batch training to be generally
more effective than full-graph training when using multiple
GPUs (Bajaj et al., 2024).

8 CONCLUSION

This paper introduces split parallelism, a novel hybrid paral-
lelism strategy for mini-batch training that mitigates redun-
dant sampling, data loading, and computation commonly

encountered in data parallelism and push-pull parallelism.
A key technical challenge in using split parallelism is to
develop a lightweight splitting algorithms that can balance
work and minimize communication. This paper proposes a
probabilistic splitting algorithm that can push most of the
computational overhead offline while achieving probabilis-
tic guarantees. It also shows that split parallelism can be
applied transparently using a simple programming API.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-2224054. Any
opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation. The work was also supported by Adobe Research
grants and an Amazon Research Award. We would like
to thank our anonymous reviewers and our shepherd Yuke
Wang for their valuable feedback.

This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-000R22725 with the US Depart-
ment of Energy (DOE). The US government retains and
the publisher, by accepting the article for publication, ac-
knowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or re-
produce the published form of this manuscript, or allow
others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(https://www.energy.gov/doe-public-access-plan). This re-
search used resources of the Oak Ridge Leadership Comput-
ing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-000R22725.

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

REFERENCES

Bajaj, S., Son, H., Liu, J., Guan, H., and Serafini, M. Graph
neural network training systems: A performance com-
parison of full-graph and mini-batch. Proceedings of the
VLDB Endowment, 18(4):1196 — 1209, 2024.

Balin, M. F,, LaSalle, D., and Catalyiirek, U. V. Cooperative
minibatching in graph neural networks. arXiv preprint
arXiv:2310.12403, Oct. 2023.

Cai, Z., Yan, X., Wu, Y., Ma, K., Cheng, J., and Yu,
F. Dgcl: An efficient communication library for dis-
tributed gnn training. In Proceedings of the Sixteenth
European Conference on Computer Systems, EuroSys
21, pp. 130-144, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383349.
doi: 10.1145/3447786.3456233.

Cai, Z., Zhou, Q., Yan, X., Zheng, D., Song, X., Zheng,
C., Cheng, J., and Karypis, G. Dsp: Efficient gnn
training with multiple gpus. In Proceedings of the
28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, PPoPP *23, pp.
392404, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400700156. doi: 10.
1145/3572848.3577528. URL https://doi.org/
10.1145/3572848.3577528.

Dong, J., Zheng, D., Yang, L. F., and Karypis, G. Global
neighbor sampling for mixed cpu-gpu training on giant
graphs. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining, KDD
21, pp. 289-299, 2021.

Fan, R., Wang, W., and Chu, X. Fast sparse gpu kernels for
accelerated training of graph neural networks. In 2023
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2023.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Fu, Q., Ji, Y., and Huang, H. H. Tlpgnn: A lightweight
two-level parallelism paradigm for graph neural network
computation on gpu. In Proceedings of the 31st Inter-

national Symposium on High-Performance Parallel and
Distributed Computing, pp. 122-134, 2022.

Gandhi, S. and Iyer, A. P. P3: Distributed deep graph learn-
ing at scale. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pp. 551-
568, 2021.

Gong, P, Liu, R., Mao, Z., Cai, Z., Yan, X., Li, C., Wang,
M., and Li, Z. gsampler: General and efficient gpu-based
graph sampling for graph learning. In ACM 2023 Sympo-
sium on Operating Systems Principles (SOSP), 2023.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive Rep-
resentation Learning on Large Graphs. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, NIPS’17, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs, 2021.

Jangda, A., Polisetty, S., Guha, A., and Serafini, M. Accel-
erating graph sampling for graph machine learning using
gpus. In European Conference on Computer Systems
(EuroSys), 2021.

Jia, Z., Lin, S., Gao, M., Zaharia, M., and Aiken, A. Improv-
ing the accuracy, scalability, and performance of graph
neural networks with roc. Proceedings of Machine Learn-
ing and Systems, 2:187-198, 2020.

Kaler, T., Stathas, N., Ouyang, A., [liopoulos, A.-S., Schardl,
T., Leiserson, C. E., and Chen, J. Accelerating training
and inference of graph neural networks with fast sampling
and pipelining. In Marculescu, D., Chi, Y., and Wu, C.
(eds.), Proceedings of Machine Learning and Systems,
volume 4, pp. 172-189, 2022.

Kaler, T., Iliopoulos, A., Murzynowski, P., Schardl, T., Leis-
erson, C. E., and Chen, J. Communication-efficient graph
neural networks with probabilistic neighborhood expan-
sion analysis and caching. In Song, D., Carbin, M., and
Chen, T. (eds.), Proceedings of Machine Learning and
Systems, volume 5, pp. 477-494. Curan, 2023.

Karypis, G. and Kumar, V. Metis: A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices.
1997.

LaSalle, D. and Karypis, G. Multi-threaded graph partition-
ing. In Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on, pp. 225-236.
IEEE, 2013.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, 2014.

Lin, Z., Li, C., Miao, Y., Liu, Y., and Xu, Y. Pagraph: Scal-
ing gnn training on large graphs via computation-aware
caching. In Proceedings of the 11th ACM Symposium on
Cloud Computing, SoCC ’20, pp. 401415, New York,
NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450381376. doi: 10.1145/3419111.342128]1.

Liu, T, Chen, Y., Li, D., Wu, C., Zhu, Y., He, J., Peng, Y.,
Chen, H., Chen, H., and Guo, C. BGL: GPU-Efficient

https://doi.org/10.1145/3572848.3577528
https://doi.org/10.1145/3572848.3577528
http://snap.stanford.edu/data
http://snap.stanford.edu/data

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

GNN training by optimizing graph data I/O and prepro-
cessing. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pp. 103-118,
2023.

Ma, K., Liu, R,, Yan, X., Cai, Z., Song, X., Wang, M., Li, Y,,
and Cheng, J. Adaptive parallel training for graph neural
networks. In Proceedings of the 30th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel
Programming, pp. 29-42, 2025.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L.,
and Dai, Y. Neugraph: parallel deep neural network
computation on large graphs. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pp. 443-458,
2019.

Md, V., Misra, S., Ma, G., Mohanty, R., Georganas, E.,
Heinecke, A., Kalamkar, D., Ahmed, N. K., and Avancha,
S. Distgnn: Scalable distributed training for large-scale
graph neural networks. In SC’21: Proceedings of the In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis, 2021.

Min, S. W,, Wu, K., Huang, S., Hidayetoglu, M., Xiong, J.,
Ebrahimi, E., Chen, D., and Hwu, W.-m. Large graph
convolutional network training with gpu-oriented data
communication architecture. Proc. VLDB Endow., 14
(11):2087-2100, oct 2021.

Pandey, S., Li, L., Hoisie, A., Li, X. S., and Liu, H. C-saw: a
framework for graph sampling and random walk on gpus.
In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020.

Polisetty, S., Liu, J., Falus, K., Fung, Y. R., Lim, S.-H.,
Guan, H., and Serafini, M. GSplit: Scaling graph neural
network training on large graphs via split-parallelism.
arXiv preprint arXiv:2303.13775v1, Mar. 2023.

Ramezani, M., Cong, W., Mahdavi, M., Sivasubramaniam,
A., and Kandemir, M. T. Gen meets gpu: Decoupling”
when to sample” from” how to sample”. In NeurIPS,
2020.

Song, J., Jang, H., Lim, H., Jung, J., Kim, Y., and Lee,
J. Granndis: Fast distributed graph neural network
training framework for multi-server clusters. In Pro-
ceedings of the 2024 International Conference on Par-
allel Architectures and Compilation Techniques, PACT
24, pp. 91-107, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400706318.
doi: 10.1145/3656019.3676892. URL https://doi.
org/10.1145/3656019.3676892.

Song, X., Zhang, Y., Chen, R., and Chen, H. Ugache:
A unified gpu cache for embedding-based deep learn-
ing. In Proceedings of the 29th Symposium on Op-
erating Systems Principles, SOSP ’23, pp. 627-641,
New York, NY, USA, 2023a. Association for Com-
puting Machinery. ISBN 9798400702297. doi: 10.
1145/3600006.3613169. URL https://doi.org/
10.1145/3600006.36131609.

Song, Z., Gu, Y., Li, T., Sun, Q., Zhang, Y., Jensen, C. S.,
and Yu, G. Adgnn: Towards scalable gnn training with
aggregation-difference aware sampling. Proceedings of
the ACM on Management of Data, 1(4):1-26, 2023b.

Sun, J., Su, L., Shi, Z., Shen, W., Wang, Z., Wang, L., Zhang,
J., Li, Y., Yu, W., Zhou, J., and Wu, F. Legion: Auto-
matically pushing the envelope of Multi-GPU system for
Billion-Scale GNN training. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pp. 165-179,
Boston, MA, July 2023. USENIX Association. ISBN 978-
1-939133-35-9. URL https://www.usenix.org/
conference/atc23/presentation/sun.

Tan, Z., Yuan, X., He, C., Sit, M.-K,, Li, G., Liu, X., Ai, B.,
Zeng, K., Pietzuch, P., and Mai, L. Quiver: Supporting
gpus for low-latency, high-throughput gnn serving with
workload awareness. arXiv preprint arXiv:2305.10863,
2023.

Tripathy, A., Yelick, K., and Bulug, A. n. Distributed matrix-
based sampling for graph neural network training. In
Gibbons, P., Pekhimenko, G., and Sa, C. D. (eds.), Pro-
ceedings of Machine Learning and Systems, volume 6,
pp. 253-265, 2024.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P, and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Waleffe, R., Mohoney, J., Rekatsinas, T., and Venkatara-
man, S. Marius++: Large-scale training of graph
neural networks on a single machine. arXiv preprint
arXiv:2202.02365, 2022.

Wan, C., Li, Y, Li, A., Kim, N. S, and Lin, Y. Bns-gcn:
Efficient full-graph training of graph convolutional net-
works with partition-parallelism and random boundary
node sampling. Proceedings of Machine Learning and
Systems, 4:673—693, 2022a.

Wan, C., Li, Y., Wolfe, C. R., Kyrillidis, A., Kim, N. S.,
and Lin, Y. PipeGCN: Efficient full-graph training of
graph convolutional networks with pipelined feature com-
munication. In The Tenth International Conference on
Learning Representations (ICLR 2022), 2022b.

https://doi.org/10.1145/3656019.3676892
https://doi.org/10.1145/3656019.3676892
https://doi.org/10.1145/3600006.3613169
https://doi.org/10.1145/3600006.3613169
https://www.usenix.org/conference/atc23/presentation/sun
https://www.usenix.org/conference/atc23/presentation/sun

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

Wan, X., Xu, K., Liao, X., Jin, Y., Chen, K., and Jin,
X. Scalable and efficient full-graph gnn training for
large graphs. Proc. ACM Manag. Data, 1(2), jun 2023.

doi: 10.1145/3589288. URL https://doi.org/10.

1145/3589288.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G, Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. 2020.

Wang, P, Li, C., Wang, J., Wang, T., Zhang, L., Leng, J.,
Chen, Q., and Guo, M. Skywalker: Efficient alias-method-
based graph sampling and random walk on gpus. In 2027
30th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pp. 304-317. IEEE,
2021.

Wang, Q., Zhang, Y., Wang, H., Chen, C., Zhang, X., and Yu,
G. Neutronstar: Distributed gnn training with hybrid de-
pendency management. In Proceedings of the 2022 Inter-
national Conference on Management of Data, SIGMOD
’22, pp. 1301-1315, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450392495.

doi: 10.1145/3514221.3526134. URL https://doi.

org/10.1145/3514221.3526134.

Wang, Q., Chen, Y., Wong, W.-E., and He, B. Hongtu:
Scalable full-graph gnn training on multiple gpus. Pro-
ceedings of the ACM on Management of Data, 1(4):1-27,
2023a.

Wang, Y., Feng, B., Wang, Z., Geng, T., Barker,
K., Li, A, and Ding, Y. MGG: Accelerat-
ing graph neural networks with Fine-Grained Intra-
Kernel Communication-Computation pipelining on
Multi-GPU platforms. In 17th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI 23), pp. 779-795, Boston, MA, July
2023b. USENIX Association. ISBN 978-1-939133-34-2.
URL https://www.usenix.org/conference/
osdi23/presentation/wang-yuke.

Wang, Y., Feng, B., Wang, Z., Huang, G., and
Ding, Y. TC-GNN: Bridging sparse GNN com-
putation and dense tensor cores on GPUs. In
2023 USENIX Annual Technical Conference (USENIX
ATC 23), pp. 149-164, Boston, MA, July 2023c.
USENIX Association. ISBN 978-1-939133-35-9.
URL https://www.usenix.org/conference/
atc23/presentation/wang-yuke.

Wu, Y., Ma, K., Cai, Z., Jin, T., Li, B., Zheng, C., Cheng,
J., and Yu, F. Seastar: vertex-centric programming for
graph neural networks. In Proceedings of the Sixteenth

European Conference on Computer Systems, pp. 359-375,
2021.

Yang, D., Liu, J., Qi, J., and Lai, J. Wholegraph: A fast
graph neural network training framework with multi-gpu
distributed shared memory architecture. In Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC *22.
IEEE Press, 2022a. ISBN 9784665454445.

Yang, J., Tang, D., Song, X., Wang, L., Yin, Q., Chen,
R., Yu, W., and Zhou, J. Gnnlab: a factored system for
sample-based gnn training over gpus. In Proceedings

of the Seventeenth European Conference on Computer
Systems, pp. 417-434, 2022b.

Yang, S., Zhang, M., Dong, W., and Li, D. Betty: En-
abling large-scale gnn training with batch-level graph par-
titioning. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
2023, pp. 103-117, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9781450399166.
doi: 10.1145/3575693.3575725. URL https://doi.
org/10.1145/3575693.3575725.

Ye, Z., Lai, R., Shao, J., Chen, T., and Ceze, L. Sparsetir:
Composable abstractions for sparse compilation in deep
learning. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pp. 660—
678, 2023.

Zhang, M., Hu, Q., Sun, P., Wen, Y., and Zhang, T. Boosting
distributed full-graph gnn training with asynchronous one-
bit communication, 2023a. URL https://arxiv.
org/abs/2303.01277.

Zhang, X., Shen, Y., Shao, Y., and Chen, L. Ducati: A
dual-cache training system for graph neural networks on
giant graphs with the gpu. Proc. ACM Manag. Data, 1
(2), jun 2023b. doi: 10.1145/3589311. URL https:
//doi.org/10.1145/3589311.

Zhang, Z., Luo, Z., and Wu, C. Two-level graph caching for
expediting distributed gnn training. In /EEE INFOCOM
2023 - IEEE Conference on Computer Communications,
pp- 1-10, 2023c. doi: 10.1109/INFOCOMS53939.2023.
10228911.

Zheng, C., Chen, H., Cheng, Y., Song, Z., Wu, Y., Li, C.,
Cheng, J., Yang, H., and Zhang, S. Bytegnn: efficient
graph neural network training at large scale. Proc. VLDB
Endow., 15(6):1228-1242, feb 2022. ISSN 2150-8097.
doi: 10.14778/3514061.3514069. URL https://doi.
org/10.14778/3514061.35140609.

https://doi.org/10.1145/3589288
https://doi.org/10.1145/3589288
https://doi.org/10.1145/3514221.3526134
https://doi.org/10.1145/3514221.3526134
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://doi.org/10.1145/3575693.3575725
https://doi.org/10.1145/3575693.3575725
https://arxiv.org/abs/2303.01277
https://arxiv.org/abs/2303.01277
https://doi.org/10.1145/3589311
https://doi.org/10.1145/3589311
https://doi.org/10.14778/3514061.3514069
https://doi.org/10.14778/3514061.3514069

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X,
Gan, Q., Zhang, Z., and Karypis, G. Distdgl: Distributed
graph neural network training for billion-scale graphs.
arXiv preprint arXiv:2010.05337, 2020.

Zhou, Y., Song, Y., Leng, J., Liu, Z., Cui, W., Zhang,
Z., Guo, C., Chen, Q., Li, L., and Guo, M. Adapt-
gear: Accelerating gnn training via adaptive subgraph-
level kernels on gpus. Proceedings of the 20th
ACM International Conference on Computing Frontiers,
2023.
org/CorpusID:258960480.

Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai, B,
Li, Y., and Zhou, J. Aligraph: A comprehensive graph
neural network platform. Proc. VLDB Endow., 12(12):
2094-2105, 2019.

URL https://api.semanticscholar.

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the source code of SPA and scripts to
run experiments on the baselines to reproduce the results in
our paper. The artifact primarily requires a machine with
four NVIDIA V100 GPUs, fully connected via NVLink.
The artifact supports the key results in Table 3, demonstrat-
ing SPA’s effectiveness in improving end-to-end training
time relative to the baselines by eliminating redundant work
while minimizing load imbalance and communication costs.

A.2 Artifact check-list (meta-information)
¢ Algorithm: Graph Neural Networks
* Program: Pytorch, CUDA and C/C++ Code
» Dataset: Preprocessed datasets are provided.

e Hardware: AWS EC2 p3.8xlarge instance consist-
ing of at least 244 GB RAM with 4 NVIDIA V100
GPUs (16GB memory) and GPUs are connected to the
CPU with a PCIe 3.0 x 16 bus and with each other via
NVLink.

* Metrics: Execution time
* Output: Tables and graphs

¢ Experiments: We provide a README in the artifact
containing instructions to set up, run experiments, and
post-process the results to generate tables and figures.
The maximum variation is 5%.

¢ How much disk space is required (approximately)?:
The artifact requires approximately 300GB to save all
the data and graphs.

* How much time is needed to prepare workflow (ap-
proximately)?: We provide a compile script (build.sh)
which takes 10 min and download script (download.sh)
which takes 50 min.

¢ How much time is needed to complete experiments
(approximately)?: The total execution time takes
approximately 12 hours.

¢ Publicly available?: Yes
e Code licenses (if publicly available)?: Apache-2.0

¢ Archived (provide DOI)?: Zenedo DOI will be
provided after evaluation.

A.3 Description

All computational artifacts are in a single repository, in
which the README contains the detailed instructions to
set up and reproduce the figures and tables in the paper:

https://github.com/Juelin-Liu/dgl.git
(Branch: spa-mlsys-ae)

https://api.semanticscholar.org/CorpusID:258960480
https://api.semanticscholar.org/CorpusID:258960480
https://github.com/Juelin-Liu/dgl.git

GSplit: Scaling Graph Neural Network Training on Large Graphs via Probabilistic Splitting

A.3.1 Hardware dependencies

By default, our experiments use an AWS EC2 p3.8xlarge
instance with 4 NVIDIA V100 GPUs (16GB memory) and
Xeon E5-2686 v4 @ 2.70GHz, with 32 CPU cores and 244
GB RAM. GPUs are connected to the CPU with a PCIe 3.0
x 16 bus and to each other via NVLink. For experiments
with 8 GPUs, we use a similar p3.16xlarge instance having
64 CPU cores and 488 GB of RAM.

A.3.2 Software dependencies

The artifact uses CUDA v11.8 and GCC version 11.3 (-O2)
to compile all the tested systems. We use PyTorch v2.0 as
the backend for all the tested systems. We recommend using
Docker to setup the software dependencies and provide
instructions for the setup in our README file.

A.3.3 Datasets

We provide pre-processed datasets, including the graph
topology and partition maps that can be downloaded from
Amazon S3. Alternatively, you can use the scripts in the
repository to generate the prepared datasets. Notice that this
would take several days on a single machine to generate all
partition maps for the graphs.

A.4 Installation

We provide a Dockerfile for setting up the environment for
compiling the source code. The instructions for running the
Dockerfile are provided in the README. We also provide
scripts used for downloading the dependencies if you prefer
not to use Docker. Please note to set the branch to spa-mlsys-
ae and recursively pull all the submodules, before running
the Docker container. After installing all the dependencies,
and pulling all submodules, simply execute the build.sh
script to install Spara into your Conda environment.

A.5 Experiment workflow

S1 The first step is to obtain the input datasets, which
include the graph topology data and partition maps.
The script download.sh can be used to download these
pre-processed files automatically.

So After obtaining the prepared datasets, you can run the
main experiment by executing the bash script experi-
ment/script/main.sh. This script runs all the baselines
and generates the log file. (Expected time: 120 min,
depends on .S.)

S3 Run the script experiment/partition_ablation to
collect the training logs for varying partitioning strate-
gies. (depends S7)

S4 We postprocess the logs from Sy and S3 to generate
Figures 3 using the notebook plot/time_breakdown.
(depends on S5 and Ss3).

S5 Postprocess the logs from S; and S5 using the note-
book plot /main to generate Table 3 showing the rel-
ative performance of spara against the baselines. (de-
pends on S5 and S3).

S¢ Run the sampling simulation
experiment/sample_main, to generate the varying
edges computed and features loaded for varying
batch sizes (1024,256) and graphs(papers100M, orkut,
friendster) to generate the datapoints in Table 1.
(Expected time: 30min, depends on S)

S7 Run the script experiment/scripts/ablation.sh to
run all the ablation experiments on papers100M graph.
(depends on S7)

Ss Post-process the logs generated in the previous step
with the Jupyter notebook plot/ final_ablation (Ex-
pected time: 3 hours, depends on S)

So : Run the script experiment/script/simulate to
generate the workload characteristics for various parti-
tioning schemes (depends on S)

S10 : Post process the workloads generated in step Sg with
the notebook plot/simulation_plot to generate Fig-
ures 5. (depends on Sg)

A.6 Evaluation and expected result

The key results of the paper can be demonstrated at S5 in
our workflow, where we generate the results in Table 3,
demonstrating the effectiveness of spa’s split parallelism
relative to the baselines.

A.7 Notes
The artifact can be checked for functionality on a machine
with four GPUs with or without NVLink connections.

A.8 Methodology
Submission, reviewing and badging methodology:

e http://cTuning.org/ae/
submission-20190109.html

e http://cTuning.org/ae/
reviewing-20190109.html

e https://www.acm.org/publications/
policies/artifact-review—-badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

